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Abstract Thanks to CUDA and OpenCL, Graphics Processing Units (GPUs)
have recently gained considerable attention in science and engineering as accel-
erators for High Performance Computing (HPC). In this chapter, we show how
the Operations Research (OR) community can take great benefit of GPUs. In
particular, we present a survey of the main contributions to the field of GPU
computing applied to linear and mixed-integer programming. The OR field is
rich in complex problems and sophisticated algorithms that can take advan-
tage of parallelization. However, all algorithms in the literature do not fit to
the SIMT paradigm. Therefore, we highlight the main issues tackled by dif-
ferent authors to overcome the difficulties of implementation and the results
obtained with their optimization algorithms via GPU computing.

Keywords GPU Computing · Operations Research · Linear Programming ·
Mixed-Integer Programming · Metaheuristics · Exact Solution Methods ·
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1 Introduction

GPUs are many cores parallel architectures that have originally been de-
signed for visualization purpose. They have also evolved during the last decade
towards powerful computing accelerators for High Performance Computing
(HPC).
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GPU # cores Clock (GHz) Memory (GB)
GeForce 7800 GTX 24 0.58 0.512
GeForce 8600 GTX 32 0.54 0.256
GeForce 9600 GT 64 0.65 0.512
GeForce GTX 260 192 1.4 0.9
GeForce GTX 280 240 1.296 1
GeForce GTX 285 240 1.476 1
GeForce GTX 295 240 1.24 1
GeForce GTX 480 480 1.4 1.536
Tesla C1060 240 1.3 4
T10 (Tesla S1070) 240 1.44 4
C2050 448 1.15 3
K20X 2,688 0.732 6

Table 1 Overview of NVIDIA GPUs quoted in the chapter (see http://www.nvidia.com

for more details)

The exploitation of GPUs for HPC applications presents many advantages:

– GPUs are powerful accelerators featuring thousands of computing cores;
– GPUs are widely available and relatively cheap devices;
– GPUs accelerators require less energy than classical computing devices.

Tesla NVIDIA computing accelerators are currently based on Kepler and
Maxwell architectures. The recent versions of CUDA, like CUDA 7.0, coupled
with the Kepler and Maxwell architectures facilitate the dynamic use of GPUs.
Moreover, data transfers can now happen via high-speed network directly out
of any GPU memory to any other GPU memory in any other cluster without
involving assistance of the CPU. At present, efforts are placed on maximiz-
ing the GPU resources and fast data exchanges between host and device. In
2016, the PASCAL architecture should feature more memory, one terabyte per
second memory bandwith and twice as much flops as Maxwell. NVLink tech-
nology will also permit data to move five to ten times faster between GPUs and
CPUs than with current PCI-Express, making GPU computing accelerators
very efficient devices for HPC. Going back at the GPU computing accelerators
previously released (some of which are presented in Table 1, that summarizes
also the characteristics of GPUs considered in this paper) we can measure the
progress accomplished during a decade.

GPUs have been widely applied to signal processing and linear algebra.
The interest in GPU computing is now wide-spread. Almost all domains in
science and engineering are concerned. We can quote for example astrophysics,
seismic, oil industry, and nuclear industry, e.g., see Nguyen (2008). Most of the
time, GPUs accelerators lead to dramatic improvements in the computation
time required to solve complex practical problems. It was quite natural for
the Operations Research (OR) community, whose field of interest is prolific in
difficult problems, to be interested in GPU computing.

Some works have attempted to survey contributions on a specific topic in
the OR field. Brodtkorb et al. (2013) and Schulz et al. (2013) deals with routing
problems. Luong (2011b) considers Metaheuristics on GPU. More generally,
Alba et al. (2013) study parallel metaheuristics.
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In this chapter, we present an overview on research contributions of GPU
computing applied to OR; each section contains a short introduction and useful
references of the algorithm implementations. It is dedicated to researchers,
engineers, and students working in the field of OR who are interested in the
use of GPU to accelerate their optimization algorithms. This work will also
help readers to identify domains of research in this field that have not been
addressed so far.

The organization of this chapter is the following: Section 2 introduces the
field of Operations Research. The main exact optimization algorithms imple-
mented via GPU computing in the domain of OR are described in Section 3.
Section 4 is dedicated to present relevant metaheuristics that have been de-
veloped with GPU computing. Finally, some conclusions and future research
lines are discussed in Section 5.

2 Operations Research in Practice

Operations research can be described as the application of scientific and espe-
cially mathematical methods to the study and analysis of problems involving
complex systems. It has been used intensively in business, industry, and gov-
ernment. Many new analytical methods have evolved, such as: mathematical
programming, simulation, game theory, queuing theory, network analysis, de-
cision analysis, multicriteria analysis, etc., which have powerful application to
practical problems with the appropriate logical structure.

Most of the problems OR tackles are messy and complex, often entailing
considerable uncertainty. OR can use advanced quantitative methods, mod-
elling, problem structuring, simulation and other analytical techniques to ex-
amine assumptions, facilitate an in-depth understanding and decide on prac-
tical action.

Nowadays, many decision problems are formulated as mathematical pro-
grams, which require the maximization or minimization of an objective func-
tion subject to a set of constraints. A general representation of an optimization
problem is the following:

max f(x) (1)

s.t. x ∈ D (2)

where x = (x1, x2, ..., xn), n ∈ N, is the vector of decision variables, (1) is
the objective function, and (2) imposes that x belongs to a defined domain
D. A solution x∗ is said feasible when x∗ ∈ D and x∗ is optimal when ∀x ∈
D, f(x∗) ≥ f(x).

When the problem is linear, the objective function is linear and the domain
D can be described by a set of linear equations. In this case, it exists p =
(p1, p2, ..., pn) called the vector of profits such that f(x) = pT .x, and it exists
a matrix A ∈ Rn×Rm, m ∈ N, and a vector b ∈ Rm such that x ∈ D ⇔ Ax = b.
Hence, a linear program have the following general form:
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max pTx (3)

s.t. Ax = b (4)

The relationships among the objective function, constraints, and decision
variables determine how hard it is to solve and the solution methods that
can be used for optimization. There are different classes of linear optimization
problems according to the nature of the variable x: linear programming (x is
continuous), mixed-integer programming (a part of the decision variables in
x should be integer), combinatorial problem (the decision variables can take
only 0-1 values), etc. There is not a single method or algorithm that works
best on all classes of problems.

Linear programming problem are generally solved with the simplex algo-
rithm and its variants (see Schrijver (1986)). A basis solution is defined such
that x = (xB , xH) and A.x = ABxB + AHxH , where AB = Rn × Rn and
det(AB) 6= 0. In this case, xB = A−1

B b and xH = 0. The principle of the sim-
plex algorithm is to build at each iteration new basis solution that improve
the current objective value pTx by swapping one variable in xB with one in
xH , until none improvement is possible.

Mixed-integer programming and combinatorial problems are generally much
harder to solve since, in the worst case, all possible solutions for x should be
explored in order to prove optimality. The branch-and-bound algorithm is de-
signed to explore these solutions in a smart way by building an exploration
tree where each branch corresponds to a subspace of solutions. For instance, in
combinatorial optimization, two branches can be generated by fixing a variable
to 0 and 1. During the exploration, the encountered feasible solution is used
to eliminate branches in the tree through bounding techniques. They consist
in evaluating the best solution that can be found in a subspace (relaxing the
integrality of the variables and solving the resulting linear subproblem with
the simplex is commonly used).

Metaheuristics have been designed to tackle complex optimization prob-
lems where other optimization methods have failed to provide a good feasible
solution in a convenient processing time. These methods have come to be
recognized as one of the most practical approaches for solving many com-
plex problems, and this is particularly true for many real-world problems that
are combinatorial in nature (see Ólafsson (2006)). Simulated Annealing (SA),
Tabu Search (TS), Scatter Search (SS), Genetic Algorithms (GA), Variable
Neighborhood Search (VNS), Greedy Randomized Adaptive Search Procedure
(GRASP), Adaptive Large Neighborhood Search (ALNS), and Ant Colony
(ACO) are some of the most widely used metaheuristics.

The purpose of a metaheuristic is to find an optimal or near optimal solu-
tion without guarantee of optimality in order to save processing time. These
algorithms generally start from a feasible solution obtained through any con-
structive method and try to improve it by exploring one or more defined neigh-
borhoods. A neighborhood is composed by all solutions that are obtained by
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applying a specific change (move) in the current solution. So, the goal of the
exploration is to find better solutions than the current one. This process can be
repeated until a stopping criterion is reached. In order to reinforce the search
process, sometimes multiple initial solutions are generated and explored in
parallel like in GA or ACO, and information are exchanged between these
solutions in order to improve the convergency of the approach.

The solution of real-world decision problems represented as mathematical
programs (optimization problems) is often hindered by size. In mathematical
programing, size is determined by the number of variables, the number and
complexity of the constraints and objective functions. Hence, the methods for
solving optimization problems tend to be complex and require considerable
numerical effort. By developing specialized solution algorithms to take advan-
tage of the problem structure, significant gains in computational efficiency and
reduction in computer memory requirements may be achieved. Hence, practi-
tioners and researchers have concentrated their efforts to develop optimization
algorithms that exploit the capabilities of the GPU computing.

In the literature related to GPU computing applied to OR, there are mainly
two classes of optimization problems that have been studied: linear program-
ming problems and mixed-integer programming problems. For solving linear
optimization problems the Simplex method is by far one of the most widely
used exact method and for mixed-integer optimization problems the Branch-
and-Bound method is the most common exact method. For solving different
mixed-integer optimization problems metaheuristics like TS, GA, ACO, and
SA have been proposed by using GPU computing and their high performance
is remarkable with respect to their sequential implementation.

3 Exact Optimization Algorithms

In this section, the GPU implementation of exact optimization methods is pre-
sented. These methods are essentially the Simplex, the Dynamic Programming,
and the Branch-and-Bound algorithms (see Winston and Goldberg (2004)).
Due that these algorithms should follow a strict scheme to guarantee opti-
mality, and tend to have a tree structure, their implementation on GPUs is
particularly challenging. Research in this area mainly focuses on data arrange-
ment for coalesced memory accesses or speeding part of the algorithm on GPU.

3.1 The Simplex Method

Originally designed by Dantzig (1951), the simplex algorithm and its variants
(see Schrijver (1986)) are largely used to solve linear programming (LP) prob-
lems. Basically, from an initial feasible solution, the simplex algorithm tries,
at each iteration, to build an improved solution while preserving feasibility
until optimality is reached. Although this algorithm is designed to solve LPs,
it is also used to solve the linear relaxation of MIPs (Mixed-Integer Problems)
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in many heuristics and exact approaches like the Branch-and-Bound. Further-
more, it is known that in algorithms like the Branch-and-Bound, the major
part of the processing time is spent in solving these linear relaxations. Hence,
faster simplex algorithms benefit to all fields of Operations Research. Table
2 summarizes the contributions related to GPU implementations of simplex
algorithms that can be found in the literature.

Algorithm Reference
The Simplex Tableau Lalami et al. (2011a,b)

The Two-Phase Simplex Meyer et al. (2011)

The Revised Simplex Ploskas and Samaras (2015)
Nikolaos and Nikolaos (2013)
Bieling et al. (2010)
Spampinato and Elster (2009)
Greeff (2005)

The Interior Point Method Jung and O’Leary (2008)
The Exterior Point Method Ploskas and Samaras (2015)

Table 2 Linear Programming and GPUs

The first GPU implementation of a simplex algorithm, i.e. the revised sim-
plex method, has been proposed by Greeff (2005) in 2005. Most of the GPU
computing drawbacks encountered by Greef at that time have been addressed
since then, with the development of the GPUs architecture and CUDA. How-
ever, in this early work, a speedup of 11.5 is achieved as compared with an
identical CPU implementation.

Simplex algorithm, like the revised simplex algorithm, involves many oper-
ations on matrices and many authors tried to take advantage to recent advance
in linear programming. Indeed, some well-known tools like BLAS (Basic Linear
Algebra Subprograms) or MATLAB have some of their matrix operations, such
as inversions or multiplication, implemented in GPU. Spampinato and Elster
(2009), with cuBLAS (https://developer.nvidia.com/cublas), achieve a
speedup of 2.5 for problems with 2,000 variables and 2,000 constraints when
comparing their GPU implementation on a NVIDIA GeForce GTX 280 GPU
to the ATLAS-based solver Whaley and Dongarra (1999) on an Intel Core 2
Quad 2.83GHz processor. Nikolaos and Nikolaos (2013) propose an implemen-
tation based on MATLAB and CUDA environments and report a speedup of
5.5 with an Intel Core i7 3.4GHz and a NVIDIA Quadro 6000 with instances
up to 5,000 variables and 5,000 constraints.

In order to improve the efficiency of their approach, Ploskas and Samaras
Nikolaos and Nikolaos (2013) made a complete study on the basis update
for the revised simplex method. They propose a GPU implementation of the
Product Form of the Inverse (PFI) from Dantzig and Orchard-Hays (1954) and
of Modification of the PFI (MPFI) from Benhamadou (2002). Both approaches
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tend to reduce the computation effort of the matrices operations. Their results
show that PFI is slightly better than MPFI.

Ploskas and Samaras (2015) present a comparison of GPU implementa-
tions of the revised simplex and the exterior point method. In the exterior
point method, the simplex algorithm can explore infeasible regions in order
to improve the convergence of the algorithm. They also use the MATLAB
environment for their implementation and compare their results to MATLAB
large-scale linprog built-in function. All the main phases of both algorithms are
performed on GPU. The experimental tests carried out with some instances
of the netlib benchmark and a NVIDIA Quadro 6000 show that the exterior
point method outperforms the revised simplex with a maximum speedup of
181 on dense LPs and 20 on the sparse ones.

Bieling et al. (2010) propose some algorithm optimizations for the revised
simplex used by Ploskas and Samaras (2015). They use the steepest-edge
heuristic from Goldfarb and Reid (1977) to select the entering variables and an
arbitrary bound process in order to select the leaving variables. The authors
compare their results to the GLPK solver (http://www.gnu.org/software/
glpk/) and report a reduction in computation time by a factor of 18 for in-
stances with 8,000 variables and 2,700 constraints on a system with Intel Core
2 Duo E8400 3.0 GHz processor and NVIDIA GeForce 9600 GT GPU.

Like Bieling et al. (2010) show, sometimes controlling all the implemen-
tation of the algorithm can lead to better performance. The simplex tableau
algorithm is very appealing in this context. Indeed, in this case, data are or-
ganized in a table structure that fits particularly to the GPU architecture.
Lalami et al. (2011a,b) and Meyer et al. (2011) propose two implementations
of this algorithm, on one GPU and on multi-GPUs, and they reported that
both algorithms reach a significant speedup.

Lalami et al. (2011b) use the algorithm of Garfinkel and Nemhauser (1972)
which improves the algorithm of Dantzig by reducing the number of operations
and the memory occupancy. They extend this implementation to the multi-
GPU context in Lalami et al. (2011b). They adopt a horizontal decomposition
where the constraints, i.e. the lines in the tableau, are distributed on the
different GPUs. Hence, each GPU updates only a part of the tableau and the
work of each GPU is managed by a distinct CPU thread. For their experimental
tests, they use a server with an Intel Xeon E5640 2.66GHz CPU and two
NVIDIA C2050 GPUs, and instances with up to 27,000 variables and 27,000
constraints. They observe a maximum speedup of 12.5 with a single GPU and
24.5 with two GPUs.

Meyer et al. (2011) propose a multi-GPU implementation of the two-phase
simplex. The authors consider a vertical decomposition of the simplex tableau,
i.e. the variables are distributed amongst the GPUs, in order to have less com-
munications between GPUs. Like in Lalami et al. (2011a,b), they consider
the implementation of the pivoting phase and the selection of the entering
and leaving variables. They use a system with two Intel Xeon X5570 2.93GHz
processors and four NVIDIA Tesla S1070. They solve instances with up to
25,000 variables and 5,000 constraints and show that their approach outper-
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forms the open-source solver CLP (https://projects.coin-or.org/Clp) of
the COIN-OR project.

Jung and O’Leary (2008) study the implementation of the Interior Point
Method. They propose a mixed precision hybrid algorithm using a primal-
dual interior point method. The algorithm is based on a rectangular-packed
matrix storage scheme and uses the GPU for computationally intensive tasks
like matrix assembly, Cholesky factorization and forward and back substitu-
tion. However, computational tests show that the proposed approach does not
clearly outperforms the sequential version on CPU due to the data transfer
cost and communication latency. To the best of our knowledge, it is the only
interior point method that has been proposed in the literature even that it is
one of the most effective in sequential implementations.

3.2 Dynamic Programming

The Dynamic Programming algorithm has been introduced by Bellman (1957).
The main idea of this algorithm consists in solving complex problems by de-
composing them in smaller problems that are iteratively solve. This algorithm
has a natural parallel structure. An overview of the literature dealing with the
implementation of Dynamic Programming on GPU can be found in Table 3.
As we can see, only Knapsack Problems (KP) have been studied so far, more
details on these contributions are given in the sequel.

Algorithm Problem Reference
Dense Dynamic
Programming

Knapsack Problem Boyer et al. (2011,
2012)

Dense Dynamic
Programming

Multi-Choice
Knapsack Problem

Suri et al. (2012)

Table 3 Dynamic Programming on GPU

3.2.1 Knapsack Problems

The KP (see Martello and Toth (1990)) is one of the most studied problems
in OR. It consists in selecting a set of items which are associated with a profit
and a weigh. The objective is to maximize the sum of the profits of the chosen
items without exceeding the capacity of the knapsack. In this context, the
dynamic algorithm starts to explore the possible solutions with a capacity
equal to zero and increases the capacity of the knapsack by one unit at each
iteration until the maximum capacity is reached.
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Boyer et al. (2011) propose a hybrid dense dynamic programming algorithm
implementation on GPU. Data are organized in a table where the columns rep-
resent the items and the raws, the increasing capacity of the knapsack. At each
iteration, a raw is filled based on information provided by the previous one.
The authors also propose a data compression technique in order to deal with
the high memory requirement of the approach. This technique permits one to
reduce the memory occupancy needed to reconstruct the optimal solution and
the amount of data transferred between the host and the device. Computa-
tional experiments are carried out on a system with an Intel Xeon 3.0 GHz
and a NVIDIA GTX 260 GPU and randomly generated correlated problems
with up to 100,000 variables are considered. A reduction in computation time
by a factor of 26 is reported and the reduction in memory occupancy appears
more efficient when the size of the problem increases while the overhead does
not exceed 3% of the overall processing time.

Boyer et al. (2012) gave an extension of their approach whereby a multi-
GPU hybrid implementation of the dense dynamic programming method is
proposed. The solution presented is based on multithreading and the concur-
rent implementation of kernels on GPUs; each kernel is associated with a given
GPU and managed by a CPU thread; the context of each host thread is main-
tained all along the application, i.e., host threads are not killed at the end of
each dynamic programming step. This technique also tends to reduce data ex-
changes between the host and the devices. A load balancing procedure is also
implemented in order to maintain efficiency of the parallel algorithm. Com-
putational experiments, carried out on a machine with an Intel Xeon 3 GHz
processor and a Tesla S1070 computing system, show a speedup of 14 with
one GPU and 28 with two GPUs, without any data compression techniques.
Strongly correlated problems with up to 100,000 variables are considered.

3.2.2 Multiple-Choice Knapsack Problem

Suri et al. (2012) studied a variant of the knapsack problem which is called the
multiple-choice knapsack problem (see Martello and Toth (1990)). In this case,
the items are grouped in subsets and exactly one item of each subset should
be selected without exceeding the capacity of the knapsack. Their dynamic
programming algorithm is similar to the one of Boyer et al. (2011, 2012),
however, in order to ensure high processor utilization multiple cells of the
table are computing by one GPU thread.

They report an important speedup of 220 as compared to a sequential
implementation of the algorithm and a speedup of 4 compared to a CPU multi-
core one. Furthermore, they show that their implementation outperforms the
one of Boyer et al. (2011, 2012) on randomly generated instances of the multi-
choice knapsack problem. For their experimental tests, they use two Intel Xeon
E5520 CPUs and a NVIDIA Tesla M2050. However, no information is given
on the memory occupancy of their algorithm.
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3.3 Branch and Bound

The Branch and Bound (B&B) algorithm has been designed to explore in a
smart way the solution space of a MIP. From the original problem, the B&B
generates new nodes which corresponds to subproblems obtained by fixing
variables or adding constraints. Each node generates in a similar way other
nodes and so on until the optimality condition is reached. The tree structure
of the B&B is irregular and generally leads to branching performance issues
with a GPU; thus, implementing this algorithm on GPU is in many cases a
challenge.

To the best of our knowledge, as we can see in Table 4, there are three types
of problems that have been solved by a B&B GPU implementation: Knapsack
Problems (KP) , Flow-shop Scheduling Problems (FSP) (see Pinedo (2012)),
and a Traveling Salesman Problem (TSP) (see Reinelt (1994)). Two parallel
approaches have been proposed:

– either MIP is entirely solved on GPU(s) through a specific or adapted
parallel algorithm;

– or GPUs are used to accelerate only the most time consuming activities or
parts of codes.

Algorithm Problem Reference
Branch-And-
Bound

Knapsack Problem Boukedjar et al. (2012)

Lalami and El Baz (2012)
Lalami (2012)

Branch-And-
Bound

Flow-shop Scheduling
Problem

Chakroun and Melab (2012)

Chakroun et al. (2012, 2013)
Melab et al. (2012)

Branch-And-
Bound

Traveling Salesman
Problem

Carneiro et al. (2011)

Table 4 Branch and Bound on GPU

3.3.1 Knapsack Problem

Boukedjar et al. (2012), Lalami and El Baz (2012), and Lalami (2012) studied
the GPU implementation of the B&B algorithm for KPs. The nodes are first
generated in sequential on the host. When their number reach a threshold,
the GPU is then used to explore the nodes in parallel, i.e. one node per GPU
thread. Almost all the phases of the algorithm are implemented on the device,
i.e. bounds computation, generation of the new nodes, and updates of the
best lower bound found via atomic operations. Parallel bounds comparison
and identification of non-promising nodes are also performed on the GPU. At
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each step, a concatenation of the list of nodes is performed on the CPU. An
Intel Xeon E5640 2.66GHz processor and a NVIDIA C2050 GPU are used for
the computational tests. The authors report a speedup of 52 in Lalami (2012)
for strongly correlated problems with 1000 variables.

3.3.2 Flow-shop Scheduling Problem

The solution of the FSP via parallel B&B methods using GPU is studied
by Melab et al. (2012), Chakroun and Melab (2012), and Chakroun et al.
(2012). In this problem, a set of jobs have to be scheduled on a set of available
machines. In Melab et al. (2012) and Chakroun et al. (2012), the authors
identify that 99% of the time spent by the B&B algorithm is in the bounding
process. Hence, they focus their effort on parallelizing this operator on a GPU,
and eliminating, selecting, and branching are carried out by the CPU. Indeed,
at each step in the tree exploration of the B&B, a pool of subproblems is
selected and is sent to the GPU which performs, in parallel, the evaluation of
their lower bound through the algorithm proposed by Lageweg et al. (1978).

Furthermore, in order to avoid divergent threads in a warp resulting from
conditional branches, the authors propose a branch refactoring which consists
in rewriting the conditional instructions so that threads of the same warp
execute an uniform code (see Table 5).

Original Condition Branch Refactoring
if(x 6= 0) a = b; int coef = cosf(x);
else a = c; a = (1− coef)× b + coef × c;
if(x > y) a = b; int coef = min(1, expf(x− y − 1));
(x and y are integers) a = coef × b + (1− coef)× a;

Table 5 Branch Refactoring From Chakroun et al. (2012)

Computational experiments are carried out on a system with an Intel Xeon
E5520 2.27GHz and a NVIDIA C2050 computing system. Some instances of
FSP proposed by Taillard (1993) and a maximum speedup factor of 77 is
observed for instances with 200 jobs on 20 machines as compared with a se-
quential version. This approach is extended in Chakroun and Melab (2012) to
the multi-GPU case where a maximum speedup of 105 is reported with two
Tesla T10.

Finally, Chakroun et al. (2013) consider a complete hybrid CPU-GPU im-
plementation to solve the FSP, where CPU cores and GPU cores cooperate
in parallel for the exploration of the nodes. Based on the results obtained
in their previous work, they add the branching and the pruning operator on
GPU to the bounding operator. Two approaches are then considered. Firstly,
a concurrent exploration of the B&B tree, where a pool of subproblems is
partitioned between the CPU cores. Secondly a cooperative exploration of the
B&B tree, where CPU threads handle a part of the pool of the subproblems to
explore on GPU, which allows to interleave and overlap data transfer through
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asynchronous operations. The pool of subproblems to explore is determined
dynamically with a heuristic according to the instance being solve and the
GPU configuration.

With an Intel Xeon E5520 2.27GHz and a NVIDIA C2050, on the instances
of Taillard (1993), they achieve an acceleration of 160 with the cooperative
approach. Indeed, the cooperative approach appears to be 36% faster than
the concurrent one. From these results, the authors recommend to use the
GPU cores for the tree exploration and the CPU cores for the preparation and
the transfer of data.

3.3.3 Traveling Salesman Problem

Carneiro et al. (2011) consider the solution of the TSP on a GPU. The TSP
consists in finding the shortest route that will follow a salesman to visit all his
customers. At each step of their B&B algorithm, a pool of pending subproblems
is sent to the GPU. A GPU thread processes the exploration of the resulting
subtree through a depth first strategy with backtracking. This strategy permits
to generate only one child at each iteration and the complete exploration of
the subspace of solution is ensured through the backtracking process. The
process is repeated until all pending subproblems have been solved. Hence, in
this approach, the GPU explores in parallel different portions of the solution
space. As compared to an equivalent sequential implementation, Carneiro et al.
(2011) report a maximum speedup of 11 on a system with an Intel Core i5
750 2.66GHz and an NVIDIA GeForce GTS 450. The authors use randomly
generated instances of asymmetric traveling salesman problem with up to 16
cities.

4 Metaheuristics

A metaheuristic is formally defined as an iterative generation process which
guides a subordinate heuristic by combining intelligently different concepts
for exploring and exploiting the search space, learning strategies are used to
structure information in order to find efficiently near-optimal solutions (see
Osman and Laporte (1996)).

GPU implementations of metaheuristics has received a particular atten-
tion by practicioners and researchers. Unlike exact optimization procedures,
metaheuristics allow high flexibility on their design and implementation and
they are usually easier to implement. However, they are approximate methods
which sacrifice the guarantee of finding optimal solutions for the sake of getting
good solutions in a short computation time. In this chapter, we discuss the
most relevant metaheuristics (Genetic Algorithms, Ant Colony, Tabu Search,
amongst others) that have been implemented under a GPU architecture. .
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Algorithm Problem Reference
Cellular Genetic
Algorithm

Independent Tasks
Scheduling Problem

Pinel et al. (2013, 2010)

Systolic Genetic
Search

Knapsack Problem Pedemonte et al. (2012)

Island-Based
Genetic Algorithm

Flow-Shop Scheduling
Problem

Zaj́ıc̆ek and S̆ucha (2011)

Genetic Algorithm Traveling Salesman
Problem

Chen et al. (2011)

Immune Algorithm Traveling Salesman
Problem

Li et al. (2009b)

Table 6 Genetic Algorithms on GPU

4.1 Genetic Algorithms

As shown in Table 6, Genetic Algorithms (GAs) and their variants on GPU
have been proposed in the literature for the solution of complex optimization
problems. GAs try to imitate the natural process of selection. GAs are based
on three main operators:

– Selection (a subset of the population is selected in order to generate the
new generation);

– Crossover (a pair of parents are recombined in order to produce a child);
– Mutation (the initial gene of an individual is partially or entirely altered

in order to provide diversification).

At the beginning of the algorithm, a population is created. Each individual
in the population represents a solution of the problem to solve. At each iter-
ation, a subset of the individuals are selected according to a fitness function,
and a new population is created through the crossing operator. The mutation
operator is then applied in order to bring diversity in the search space.

4.1.1 The Traveling Salesman Problem

Li et al. (2009b) and Chen et al. (2011) propose a Fine Grained Parallel GA on
GPU in order to solve the well-known TSP. In the approach of Li et al. (2009b),
a tour is assigned to a block of GPU threads and each thread within this block
is associated to a city. All the operators are treated on the GPU. In particular,
they use a partially mapped crossover method (see Sivanandam and Deepa
(2007)) and the selection of the parents is done via an adjacency-partnership
method, however no details are provided on this process. The tournament
selection is preferred to the classic roulette wheel selection. On a GeForce
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9600GT, they report an acceleration between 2.42 and 11.5 on instances of
the literature with up to 226 cities.

Chen et al. (2011) use an order crossover operator where parents exchange
their sequence orders of a portion of their chromosome, which prevents a city
to appear more than once in a solution. Furthermore, they implement the
2-opt mutation operator which seems to be particularly adapted to the TSP.
They also use a simple selection process, that conserves the best chromosome.
Due to the need of synchronization at each step of their GA, they carry out
experimental tests with only one block on a Tesla C2050. Indeed, we recall
that within the same block during a kernel call, threads can be synchronized,
which is not possible with threads belonging to different blocks. However it is
possible to synchronize all the blocks through multiple kernel calls. Although
they do not exploit all the capability of computation of their GPU, they show
that their parallel GA on GPU outperforms the sequential one on an Intel
Xeon E5504.

4.1.2 Scheduling Problems

Pinel et al. (2013) propose a fine grained parallel GA for a scheduling problem,
i.e., the Independent Tasks Scheduling Problem. In this variant of the FSP, no
precedence relation is considered between the tasks. The proposed algorithm,
called GraphCell, starts by building a good feasible solution using the Min-
Min heuristic from Ibarra and Kim (1977) and this solution is added to the
initial population of a Cellular Genetic Algorithm (see Alba and Dorronsoro
(2008)). The two main steps of this algorithm are conducted in parallel on the
GPU, i.e. the search for the best machine assignment for each task and the
update of the solution.

In the Cellular Genetic Algorithm, the population is arranged in a two-
dimensional grid and only individuals close to each others are allowed to inter-
act. This approach, whereby one individual is managed by one thread, reduces
the communications involved. Computational tests carried out by Pinel et al.
(2013) with a Tesla C2050 on randomly generated instances with up to 65536
tasks and 2048 machines show that:

– the Min-Min heuristic on GPU outperforms the parallel implementation
on CPUs (two Intel Xeon E5440 processors with 2× 4 cores);

– the Cellular Genetic Algorithm is able to improve up to 3% in the first
generation the initial solution provided by the Min-Min heuristic.

In Zaj́ıc̆ek and S̆ucha (2011), a parallel island-based Genetic Algorithm is
implemented on GPU for the solution of the FSP. In this variant of the GA, the
population is divided in multiple sub-populations isolated on an island in order
to preserve genetic diversity. These populations can share genetic information
through an operator of migration. Zaj́ıc̆ek and S̆ucha perform evaluations,
mutations and crossovers of individuals in sub-populations in parallel and
independently from other populations, and they report a speedup of 110 on a
Tesla C1060.
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4.1.3 Knapsack Problems

Pedemonte et al. (2012) propose a Systolic Genetic Search (SGS) for the solu-
tion of the KP using GPU. The population is arranged in a two-dimensional
toroidal grid of cells, and at each iteration, solutions are transiting horizontally
and vertically in a determined direction within the grid. This communication
scheme is based on the model of systolic computation from Kung (1982) and
Kung and Leiserson (1978), i.e. the synchronous circulation of data through a
grid of processing units.

Cells are in charge of the crossover and mutation operators, the fitness
function evaluation and the selection operator. The authors associate a block
of GPU threads to a cell of the grid.

Experiments are carried out on a system with a GeForce GTX 480 GPU.
Problems without correlation and up to 1,000 variables are considered. Ex-
perimental results show that the SGS method produces solutions of very good
quality and that the reduction in computation time ranges from 5.09 to 35.7
times according to the size of the tested instances.

4.2 Ant Colony Optimization

In this subsection, we focus on ant colony approaches which have been receiv-
ing a particular attention in the literature for the solution of routing problems.
As we can see in Table 7, to the best of our knowledge, no other class of prob-
lems has been addressed in the literature on GPU with ant colony.

Ant Colony Optimization (ACO) (see Dorigo et al. (2006)) is an other
population-based metaheuristic for solving complex optimization problems.
This algorithm mimics the behavior of ants searching for a path from their
colony to a point of interest (food). It is composed by two main operators, i.e.
the constructive operator and the pheromone update operator. Artificial ants
are used to construct solutions by considering pheromone trails that reflect
the search procedure.

The first implementation of the ACO is due to Catala et al. (2007) for
the solution of the orienteering problem (OP), also known as the selective
traveling salesman problem (see Laporte and Martello (1990)). In this variant
of the TSP, the visits are optional and each customer has a positive score
which is collected by the salesman if and only if the customer is visited. Hence
the OP consists in finding a route that maximizes the total collected score
within a time limit.

The authors propose to arrange the path followed by each ant in a two-
dimensional table where each row is associated to an ant and a column rep-
resents the position of a node in the ant’s path. The attractiveness between a
pair of nodes (or pheromones) is stored also in a table. In order to build the
paths for the ants, they use a selection by projection which is based on the
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Algorithm Problem Reference
Ant Colony
Optimization

Transit stop inspection
and maintenance
scheduling

Kallioras et al. (2015)

Ant Colony
Optimization

Traveling Salesman
Problem

Uchida et al. (2014)

Max-Min Ant
System

Traveling Salesman
Problem

Delévacq et al. (2013)

Ant Colony
Optimization

Traveling Salesman
Problem

Cecilia et al. (2011)

Max-Min Ant
System

Traveling Salesman
Problem

Fu et al. (2010)

Max-Min Ant
System

Traveling Salesman
Problem

Bai et al. (2009)

Max-Min Ant
System

Traveling Salesman
Problem

Jiening et al. (2009)

Ant Colony
Optimization

Orienteering Problem Catala et al. (2007)

Table 7 Ant Colony Algorithms on GPU

principle of an orthographic camera clipping a space to determine, in parallel,
the next node to visit. The results obtained show that their approach, im-
plemented on a single GeForce 6600 GT GPU, is competitive with a parallel
ACO running on a GRID with up to 32 nodes.

Cecilia et al. (2011) study different strategies for the GPU implementation
of the constructive operator and the pheromone update operator involved in
the ACO. Each ant is associated with a block of threads, and each block
thread represents a set of nodes (customers) to visit. Hence the parallelism in
the tour constructor phase is improved and warp divergence is reduced. They
also propose to use a scatter-to-gather transformation (see Scavo (2010)) for
the pheromone update, in place of build in atomic operations. Their results
obtained with a C1060 GPU with instances with up to 2,396 nodes show a
speedup of 25.

Uchida et al. (2014) propose an extensive study on strategies to accelerate
the ACO on GPU. In particular, they study different selection methods for the
construction operator to determine randomly the next city to visit. In their im-
plementation a thread is associated to a city which computes its fitness value.
Then a random number is generated and a city is selected based on a roulette-
wheel scheme. The proposed methods differ in how to avoid to select a node
already visited by using the prefix-sum algorithm (see Harris et al. (2007)),
eliminating them through a compression method or by stochastic trial.They
also study the update of the pheromones through the shared memory in order
to avoid un-coalesced memory access. The computational tests carried out with
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a GTX580 and a set of benchmark instances from the TSPLIB (see Reinelt
(1991)) show that the efficiency of the proposed approches depends on the
number of visited cities and hence proposed a hybrid approach. A maximum
speedup of 22 is reported.

The solution of the transit stop inspection and maintenance scheduling
problem is presented by Kallioras et al. (2015). In this problem, the transit
stops should be grouped in districts and the visits, of the transit stops, for
each vehicle within a district should be scheduled. They propose a hybrid
CPU-GPU implementation where the lengh of the ant’s path, the pheromone
update, addition, and comparaison operations are performed on the GPU. The
implementation is not detailed in the paper and they report a speedup of 21
with a GTX 660M.

Reference is also made to You (2009) and Li et al. (2009a) who also study
the GPU implementation of ACO on GPU. However, very few details on the
implementation are provided in their published article.

4.2.1 Max-Min Ant System

The Max-Min Ant System (MMAS) (see Stützle and Hoos (2000)) is a variant
of the ACO. It adds the following features to the classic ACO:

– only the best ants are allowed to update the pheromone trails;
– pheromone trail values are bounded to avoid premature convergences;
– it can be combined with a local search algorithm.

Jiening et al. (2009) and Bai et al. (2009) propose the first implementations
of the MMAS on GPU for the solution of TSP. In Jiening et al. (2009), only
the tour construction stage is processed on GPU, whilst in Bai et al. (2009),
the pheromone update on GPU is also studied. In these works, the reported
speedup do not exceed 2.

Fu et al. (2010) use the Jacket toolbox which connects MATLAB to GPU
for their implementation of MMAS on GPU. Ants share only one pseudo-
random number matrix, one pheromone matrix, one tabu matrix and one
probability matrix in order to reduce communication between CPU and GPU.
Furthermore, they present a variation of the traditional roulette wheel selec-
tion, i.e. the All-In-Roulette which appears to be more adapted to the GPU
architecture. With their approach, they achieved a speedup of 30 with a Tesla
C1060 GPU and Computational tests are carried out on a system with an
Intel i7 3.3GHz processor and a NVIDIA Tesla C1060 GPU instances of the
literature with up to 1,002 cities. They also show that the solution obtained
is close to the one provided by their sequential algorithm.

More recently, Delévacq et al. (2013) present a MMAS for the parallel ant
and the multiple colony approaches. In this paper, the authors discuss ex-
tensively about the drawbacks encountered in such an implementation and
propose some solutions based on previous works. In particular, they use the
Linear Congruential Generator as proposed by Yu et al. (2005) and a GPU
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3-opt local search to improve solution quality. Furthermore, the authors com-
pare different GPU implementations where ants are associated to one GPU
thread or to one GPU block of threads, also when considering multiple colonies
distributed among the GPU block. Experiments conducted with two GPUs of
a NVIDIA Fermi C2050 server on instances taken from the literature up to
2,396 cities show not only a maximum speedup of 24 but also a conservation of
the quality of the reported solution. These results are obtained when multiple
colonies are considered combined with a local search strategy.

4.3 Tabu Search

As we can see in Table 8, Tabu Search (TS) approaches have been also ex-
tensively used for the solution of scheduling problems. TS, created by Glover
(1989, 1990), uses local search approaches to find a good solution for a prob-
lem. From an initial solution, it iteratively selects a new solution from a defined
neighborhood. The neighborhood is updated according to the information pro-
vided by the new solution. Furthermore, in order to filter the search space, a
tabu list is maintained, which corresponds to forbidden moves, such as, for
instance, the set of solutions recently explored.

Algorithm Problem Reference
Tabu Search Resource Constrained

Project Scheduling
Problem

Bukata et al. (2015)

Bukata and S̆ucha (2013)

Tabu Search Permutation Flow
Shop Scheduling
Problem

Czapiński and Barnes (2011)

Tabu Search Traveling Salesman
Problem / Flow Shop
Scheduling Problem

Janiak et al. (2008)

Table 8 Tabu Search on GPU

The first reported GPU implementation of a TS algorithm is due to Janiak
et al. (2008) in 2008. This paper deals with the solution of the TSP and the
Permutation Flow Shop Scheduling Problem (PFSP), in which the sequence
of operations at each machine should be the same. The authors define a neigh-
borhood on swap move, i.e. interchanging the position of two customers or two
jobs in the current solution. A table of two dimensions (Neighborhood texture)
is created on the GPU which computes in each cell of coordinates (i, j) the new
solution, resulting from the swapping position i with j. All possible swap moves
are then covered and the CPU selects the best solution from the neighborhood
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according to the tabu list which contains forbidden swap moves from previous
iterations. This new solution is used to generate the new neighborhood, and so
on, until the maximum number of iterations is reached. They use commercial
GPUs (GeForce 7300 GT, GeForce 8600 GT and GeForce 8800 GT) for their
experimental tests and, with randomly generated instances, achieve a speedup
of 4 with the PFSP and almost no speedup with the TSP.

Based on the results of Janiak et al. (2008), who showed that 90% of
the processing time is spent in the evaluation function, Czapiński and Barnes
(2011) designed an improved parallelization of TS for the PFSP. They use
a limited parallelization of evaluations as proposed by Bożejko (2009). They
propose to reorder the way a solution is coded in the GPU to ensure a coalesced
memory access. Furthermore, the evaluation of the starting time of each job
on each machine is done through the use of the shared memory, in an iterative
manner in order to not saturate this memory. The matrix of processing time
of the jobs on each machine is also stored on the constant memory for faster
memory access. Czapiński and Barnes (2011) reach a maximum speedup of
89 with a Tesla C1060 on instances from the literature and show that their
implementation outperforms the one of Janiak et al. (2008).

Bukata et al. (2015) and Bukata and S̆ucha (2013) subsequently present a
parallel TS method for the Resource Constrained Project Scheduling Problem
(RCPSP). In this variant of the FSP, each job in order to be executed uses a
renewable resource that is available in limited quantity. The used resource of
a job is released at the end of its execution. Swap moves are used to define
a new neighborhood, however at each iteration a preprocessing is done to
eliminate unfeasible swaps, i.e. swaps that violate the precedence constraints
on the jobs. Moreover, only a subset of the swaps is performed in order to
limit the neighborhood size. The tabu list is represented by a two dimensional
table where position (i, j) contains the value false if swapping position i with
position j is permitted, or true otherwise. The authors also proposed some
algorithmic optimization in order to update the starting time of each job and
the resources consumed after a swap.

Bukata et al. (2015) propose to concurrently run a TS in each GPU block
which manages its own incumbent solution. A list of incumbent solutions is
maintained on the global memory that each block access through atomic op-
erations. Hence, blocks can co-operate through the exchange of solutions and
a diversification technique is processed when a solution has not been improved
after a certain number of iterations. Experiments are carried out on a server
with a GTX 650 with benchmark from the literature with up to 600 projects
and 120 activities. The results are compared with a sequential and a parallel
CPU version of their algorithm. They show that the GPU version achieved
a speedup of almost 2 compared to the parallel one without degrading the
solution quality.



20 Vincent Boyer et al.

4.4 Other Metaheuristics

Aside from the metaheuristics presented in the last sections which have been
widely studied by different authors, other metaheuristics have been given less
attention in the literature on GPU computing. In this subsection we present
these approaches. Table 9 gives an overview of the literature which is detailed
in this subsection.

Algorithm Problem Reference
Constructive
Heuristic

Nurse Rerostering
Problem

Zdeněk et al. (2013)

Multiobjective
Local Search

Multi-Objective Flow
Shop Scheduling
Problem

Luong et al. (2011)
Luong (2011a)

Deep Greedy
Switching

Linear Sum
Assignment Problem

Roverso et al. (2011)

Table 9 Other Metaheuristics on GPU

4.4.1 Deep Greedy Switching

The Deep Greedy Switching (DGS) heuristic (see Naiem and El-Beltagy (2009))
starts from a random initial solution and moves to better solutions by consid-
ering a neighborhood resulting from a restricted 2-exchange approach. This
algorithm has been implemented on GPU by Roverso et al. (2011) for the
solution of the Linear Sum Assignment Problem. This problem consists in as-
signing to a set of agents a set of jobs. An agent can only perform one job and
when it is performed a specific profit is collected. The objective is to maximize
the sum of the collected profits.

The authors focus on the neighborhood exploration which is generated by
swapping jobs between agents (2-exchange operator). Hence, the evaluation of
the new solution obtained after a swap is processed in parallel on the GPU.
Computational experiments are carried out on a system with a NVIDIA GTX
295 GPU wit randomly generated instances with up to 9744 jobs. The authors
report a reduction of computation time by a factor of 27.

4.4.2 Multiobjective Local Search

Luong et al. (2011) and Luong (2011a) study the implementation on GPU of
a Multiobjective Local Search for the multiobjective FSP. The neighborhood
exploration is done on GPU and they consider different algorithms for the
Pareto frontier estimation: an aggregated Tabu Search, where the objectives
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are aggregated in order to obtain a mono-objective problem; and a Pareto
Local Search Algorithms from Paquete and Stützle (2006). Furthermore, in
order to overcome the non-coalesced accesses to the memory, they propose to
use the texture memory of the GPU.

They carry out their experimental tests on problems range from 20 jobs
and 10 machines to 200 jobs and 20 machines. They consider three objectives:
the makespan, total tardiness, and number of jobs delayed with regards to
their due date. With a GTX 480, they observe a maximum speedup of 16
times with the aggregated Tabu Search and 15.7 times with the Pareto local
search algorithm.

4.4.3 Constructive Heuristic

Zdeněk et al. (2013) present an implementation of the Constructive Heuristic
of Moz and Pato (2007) who proposed this heuristic to initialize their genetic
algorithm for the solution of the Nurse Rerostering Problem. This Construc-
tive Heuristic proceeds as follows: from an original roster, a randomly ordered
shift list is generated; then, the current roster is cleared and the shifts are as-
signed back to the modified roster one by one according to some rules. In their
heterogeneous model, the GPU is used to do the shift assignment and the rest
of the algorithm is performed on the CPU. Furthermore, multiple randomly
ordered shift lists are generated, in order to explore in parallel multiple shift
reassignment and to take advantage of the GPU.

Experimental tests are carried out with a GTX 650 on the instances from
Moz and Pato (2007), considering up to 32 nurses with a planning horizon
of 28 days. They achieve a maximum speedup of 2.51 with an optimality gap
between 4% and 18%.

5 Conclusions

The domain of OR is rich in difficult problems. In this chapter, we have concen-
trated on GPU computing in the field of OR. In particular, we have surveyed
the major contributions to Integer Programming and Linear Programming. In
many cases, significant reduction in computing time have been observed for
OR problems. Nevertheless, it is difficult to establish a quantitative compari-
son between the different approaches quoted in this paper since the reported
results have been obtained via different GPUs architectures. Therefore, it is
not possible to identify the best implementation for a given algorithm. Met-
rics that facilitate comparisons between the various parallel algorithms have
still to be designed and commonly accepted. Issues related to the quality of
solutions have also to be taken into account accordingly.

As shown in this chapter, most of the classic OR algorithms have been
implemented on GPU. Exact methods have received less attention than meta-
heuristics, essentially because of their lack of flexibility. In order to achieve
consequent speedup, the operators of the different metaheuristics have to be
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adapted to fit in the GPU architecture. We note for instance that important
acceleration in GA and ACO were achieved by modifying the roulette wheel
selection. Besides, the solution coding and the way it is stored in the GPU
memory play a major role in the performance of the algorithms. The main
drawbacks of implementation come from the fact that we try to fit in a par-
allel architecture algorithms that are sequential by nature. Dedicated parallel
OR algorithms need to be designed.

For many applications including OR problems, the future of GPU com-
puting seems very promising. New feature like dynamic parallelism, i.e., the
possibility for GPU threads to automatically spawn new threads simplifies
parallel programming and seems particularly suited to Integer Programming
applications. The new NVIDIA Pascal architecture should feature more mem-
ory, one terabyte per second memory bandwidth and twice as much FLOPS
as current Maxwell architecture. NVLink technology should also permit data
to move five to ten times faster than PCI-Express technology.

CUDA updates and OpenCL updates (or the recent OpenACC http:

//www.openacc-standard.org/) always tend to facilitate programming and
improve efficiency of accelerators by hiding programming difficulties. We note
in particular that OpenACC is a set of high-level pragmas that enables C/C++
and Fortran programmers to exploit highly parallel processors with much of
the convenience of OpenMP.

In the future, OR industrial codes will be able to take benefit of acceler-
ators like GPUs that are widely available and to propose attractive and fast
solutions to customers. Nevertheles, an important challenge remains in the
exact solution of industrial problems of significant size via GPUs.
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Bukata, L., Š̊ucha, P., Hanzálek, Z., 2015. Solving the resource constrained
project scheduling problem using the parallel tabu search designed for the
{CUDA} platform. Journal of Parallel and Distributed Computing 77 (0),
58 – 68.

Bukata, L., S̆ucha, P., 2013. A GPU algorithm design for resource con-
strained scheduling problem. In: 21st Conference on Parallel, Distributed
and networked-based Processing (PDP). pp. 367–374.

Carneiro, T., Muritiba, A. E., Negreiros, M., Lima de Campos, G. A., 2011.
A new parallel schema for branch-and-bound algorithms using gpgpu. In:
Computer Architecture and High Performance Computing (SBAC-PAD),
2011 23rd International Symposium on. IEEE, pp. 41–47.

Catala, A., Jaen, J., Modioli, J., sept. 2007. Strategies for accelerating ant
colony optimization algorithms on graphical processing units. In: 2007 IEEE
Congress on Evolutionary Computation (CEC 2007). pp. 492–500.

Cecilia, J., Garcia, J., Ujaldon, M., Nisbet, A., Amos, M., may 2011. Paral-
lelization strategies for ant colony optimisation on GPUs. In: 25th IEEE
International Parallel and Distributed Processing Symposium, Workshops
and Phd Forum (IPDPSW 2011). pp. 339–346.

Chakroun, I., Melab, N., 2012. An adaptative multi-GPU based branch-and-
bound. a case study: the flow-shop scheduling problem. In: IEEE 14th Inter-
national Conference on High Performance Computing and Communication
and 2012 IEEE 9th International Conference on Embedded Software and
Systems (HPCC-ICESS). pp. 389 – 395.



24 Vincent Boyer et al.

Chakroun, I., Melab, N., Mezmaz, M., Tuyttens, D., 2013. Combining multi-
core and gpu computing for solving combinatorial optimization problems.
Journal of Parallel and Distributed Computing 73 (12), 1563–1577.

Chakroun, I., Mezmaz, M., Melab, N., Bendjoudi, A., 2012. Reducing thread
divergence in a GPU-accelerated branch-and-bound algorithm. Concurrency
and Computation: Practice and Experience 25 (8), 1121–1136.

Chen, S., Davis, S., Jiang, H., A., N., 2011. CUDA-based genetic algorithm on
traveling salesman problem. In: Lee, R. (Ed.), Computers and Information
Science. Springer Berlin Heidelberg, pp. 241–252.

Czapiński, M., Barnes, S., 2011. Tabu Search with two approaches to parallel
flow shop evaluation on CUDA platform. Journal of Parallel and Distributed
Computing 71, 802 – 811.

Dantzig, G., 1951. Maximization of a linear function of variables subject to
linear inequalities. In: Activity Analysis of Production and Allocation. Wiley
and Chapman-Hall, pp. 339–347.

Dantzig, G. B., Orchard-Hays, W., 1954. The product form for the inverse in
the simplex method. Mathematical Tables and Other Aids to Computation,
64–67.
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