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Abstract
The development of detailed, coherent, models of complex biological systems is recognized as a key requirement for
integrating the increasing amount of experimental data. In addition, in-silico simulation of bio-chemical models pro-
vides an easy way to test different experimental conditions, helping in the discovery of the dynamics that regulate
biological systems. However, the computational power required by these simulations often exceeds that available
on common desktop computers and thus expensive high performance computing solutions are required. An emer-
ging alternative is represented by general-purpose scientific computing on graphics processing units (GPGPU),
which offers the power of a small computer cluster at a cost of �$400. Computing with a GPU requires the devel-
opment of specific algorithms, since the programming paradigm substantially differs from traditional CPU-based
computing. In this paper, we review some recent efforts in exploiting the processing power of GPUs for the simula-
tion of biological systems.
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INTRODUCTION
Data collected by high-throughput tools and

genome sequencing give precise information on

the basic constituents of life; this large amount of

data calls for a shift from a reductionist approach to

a systematic view of biological systems. An accurate

description of the components and of the interac-

tions among them, supported by the use of compu-

tational methods, can lead to a better understanding

of living systems [1]. Modelling, simulation and ana-

lysis are the tools of a new kind of multidisciplinary

scientist, working in the field between biology,

mathematics, computer science and engineering.

This new kind of science needs computationally

intensive applications. The high parallelism expressed

by the biochemical reactions underlying life leads to

the idea of using parallel computing techniques to

tackle the complexity of biological systems (see

ref. [2] for a review). Parallel computing techniques

require dedicated architectures. Multiple instruction

multiple data (MIMD) architectures consist of mul-

tiple independent processors simultaneously execut-

ing different instructions on different data. Examples

of MIMD platforms are clusters of computers and

GRIDcomputing. The main drawback of MIMD plat-

forms is the cost: the expense of MIMD architecture

is such that only large institutions can offered it.

Therefore, MIMD platforms look unlikely to be a

practical solution for everyday research in systems

biology. An alternative to MIMD platforms are

single instruction multiple data (SIMD) architectures.

SIMD is a type of architecture in which many

processing units execute the same instruction on dif-

ferent data elements. Supercomputers built �70s and

80s were based on the SIMD paradigm. The 90s saw

the advent of cheaper and more powerful MIMD

platforms, i.e. clusters and GRIDs, with the conse-

quent abandonment of SIMD architectures. Only

recently, with the increase of the computational

power and the low costs of the new processing

architectures, has the attention of the scientific com-

munity moved back to SIMD platforms [3]. In par-

ticular, an interesting alternative is represented by

general-purpose scientific computing on graphics

processing units (GPGPUs [4]). A graphic processing

unit (GPU) [5] is a processing unit developed for
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accelerating graphic applications. It provides a large

level of parallelism using a fraction of the budget

required by usual MIMD architectures. GPU

computing requires the development of specific

algorithms, since the programming paradigm sub-

stantially differs from the traditional CPU-based

computing, and therefore specific programming

skills are needed.

The literature about modelling, simulation and

analysis of biological systems covers a wide spectrum

of different issues. In this work we mainly focus on

the simulation of the dynamics of biochemical

systems. Even with this simplification, a variety of

models of biological systems can be identified. We

roughly classify biological models into species and

individual based. Species-based models group the

representations of biological systems in which the

identity of any single entity is not considered. An

example of such a model is a system of chemical

reactions in the form AþB!CþD, where only

the amount of each chemical is represented.

Individual-based models cover those cases where

more details, such as the position and the mass of

each element of the model, are needed. The struc-

ture of the article is based on this classification.

In the next section, we briefly introduce the GPU

architecture and the main ideas behind general pur-

pose programming on GPUs. Then, species- and

individual-based systems are introduced, together

with a survey of the more recent and interesting

GPGPU applications. The article concludes with a

discussion about performance improvements of

GPUs over conventional architectures.

GPU
A GPU is a processor designed to accelerate the

computation of graphics operations. The term

GPU is often used in contrast or comparison with

central processing unit (CPU), the main general pur-

pose processor at the core of every computer.

Specifically, GPUs are placed on graphics boards

where they are used to speed up 3D graphics rasteri-
zation, the task of taking an image described as a

series of shapes and converting it into a raster

image for output on a video display. This process

can be controlled using small programs called shaders.
The shader instruction set has evolved over the years

to the point that it is now possible to use GPUs for

general purpose computations.

GPU computing started as an effort by the scien-

tific community to exploit the raw processing power

of GPUs to make intensive computations. In fact,

the power of the most recent GPUs is comparable

to the computational power of a cluster with hun-

dreds of CPU cores. However, due to their archi-

tecture, this power can be exploited by only a few

specialized algorithms.

In general, the architecture of a GPU is tailored to

3D graphics computations. The characteristics of

graphics computations (highly parallel, very high

arithmetic intensity,1 simple stream of mathematical

instructions executed on the same data types) dic-

tated the design of GPUs: little or no cache at all,

a cluster of SIMD cores and a memory with high

bandwidth. Overall, compared to CPUs, GPUs are

relatively simple: CPUs are designed to run a very

wide variety of programs, even purely serial pro-

grams, as quick as possible, and therefore they

include very complex logic and large caches. GPUs

instead are very specialized: most of their silicon is

used to perform arithmetic computations.

The architecture details vary from vendor to

vendor, and sometimes even from one model to

another. In this survey we will focus on the

NVIDIA GPU architecture, as it is the most used

for GPU computing. NVIDIA was the first manu-

facturer to address GPU computing specifically, with

the introduction of compute unified device architec-

ture (CUDA) [6]. CUDA GPUs are organized in

multiprocessors, which group multiple streaming proces-
sors, the basic execution units (Figures 1 and 2).

CUDA executes the same program on all the multi-
processors: the code for the program (kernel) is the

same but both the data and the execution flow can

be different and diverge. CUDA launches multiple

instances of the same kernel, called threads. Threads

are grouped in warps (Table 1) for execution on a

multiprocessor. Threads are runtime instances of the

same kernel, and therefore they execute the same

program code; furthermore, all the threads in a

warp are executed by one multiprocessor in an

SIMD fashion, and therefore they must execute

exactly the same instruction at the same time,

although on different data. If threads diverge

(taking, for example, different branches of an if state-

ment), they will be split into different warps, leading

possibly to under-utilization of the multiprocessors.

These restrictions help in keeping the architecture

simple but powerful: thanks to the big amount

of silicon allocated to arithmetic operations, the
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raw power of GPUs is enormous, but this power can

be exploited only by programs that are well-suited to

this architecture.

Those applications that process large amounts of

data or objects, and perform the same operations on

all of them, will fit well on a GPU: to keep all the

streaming processors busy, and therefore to obtain good

performances, tensof thousands threads need to be exe-

cuted concurrently. Therefore, the applications based

on the execution of disparate, short tasks will cause

the fragmentation of warps and lead to the

under-utilization of multiprocessors. Similarly, the

applications that process a small subset of data at

each time will fail in feeding the streaming processors
with enough data. Finally, applications requiring

double precision floating point numbers are cur-

rently severely limited: the support for double pre-

cision has been added only in the latest generation of

Figure 1: The structure and computing resources of a NVIDIA GT200 chip. Notice the 10 processor clusters,
each containing three multiprocessors.

Figure 2: The GT200 multiprocessor, with its own
instruction unit and eight streaming processors.

GPU computing for systems biology 325
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/3/323/226244 by guest on 16 August 2022



GPUs, and in a reduced way. For example, on

NVIDIA GPUs only one streaming processor for

each multiprocessor is capable of operating in

double precision; this leads to performances that

are at best one eighth of the single precision perfor-

mances. Double precision is very important in some

scenarios; in Monte-Carlo simulations and in numer-

ical integration single precision is sometimes not

enough.

PROGRAMMING GPUS
The first GPUs where programmed by submitting a

string containing the shader program to the GPU

driver through a graphics API like DirectX or

OpenGL. Later, C-like higher level languages

(HLSL and GLSL) were introduced, making the

overall programming easier. However, these lan-

guages were still targeted at 3D graphics applications:

the code had still to be submitted explicitly to the

GPU via graphics API calls, data had to be mapped

to graphics concepts and moved explicitly

(sometimes inefficiently) back and forth from the

GPU to the central memory, again using

counter-intuitive graphics APIs. With the advent of

GPU computing, several other languages or libraries

were introduced: the latest example are Brook [7],

OpenCL [8] and CUDA [6].

The term CUDA usually refers to both an archi-

tecture and its associated programming model. The

CUDA GPUs are programmed through an API and

a set of C language extensions. CUDA embeds the

GPU code inside Cþþ code, using the language

extensions to indicate whether a function should

be executed on the CPU (called ‘host’) or on the

GPU (‘device’). It is therefore independent of graph-

ics libraries.

All the architectural details (threads, warps, multi-

processor, etc.) are hidden to the end user; CUDA

instead exposes the notions of blocks, grids and threads
(see Table 1) to ease the decomposition of the prob-

lem domain. As depicted in Figure 3, threads are

both the ‘physical’ and ‘logical’ basic units of execu-

tion; the GPU groups and schedules threads in

Figure 3: Physical and logical allocation of a thread.

Table 1: CUDA terminology

Device/host GPU/CPU

Kernel Function called from the host and executed on device Kernels are executed one at time, by many threads.
Thread Instruction stream flowing into a single execution unit. Note that they are not like CPU threads, since, (e.g.) they are free

of context switch.
Warp Set of threads (currently 32). The Warp is the scheduling unit (one warp is scheduled on one multiprocessor).
Block Set of threads that can cooperate via shared memory and synchronize to each other.
Grid The ‘structure’ on which blocks of threads are launched (only a facility for decomposing your domain, for having threads that

access different parts of your data).
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warps, while CUDA offers a higher level view of

grids and blocks. Grids and blocks can be used by

the programmer to map the subdivisions inherent in

the problem domain (in particular, spatial subdivi-

sions) in a convenient way. Each thread is then pro-

vided with variables representing the block and grid

coordinates on which it needs to operate; using these

coordinates, a thread can access and process a single

item or subset of the problem domain.

As an example, consider the simple and common

scenario of porting computationally intensive loops

to the GPU. In order to enable efficient execution,

loops have to be transformed, strip-mining or unrolling
them. After unrolling each thread executes a single,

distinct iteration of the original loop. For instance,

Table 2 shows a simple algorithm that takes a vector

‘a’ of length ‘N’ and a value ‘b’ and increments each

value of ‘a’ by ‘b’. As expected, the sequential algo-

rithm on the left accesses the elements of ‘a’ one by

one. Instead, the kernel code on the right spawns ‘N’

parallel threads, each of them incrementing a single

value of ‘a’. The position in the array ‘a’ that the

thread T has to increment is obtained using a

common pattern to compute a linear index: multiply

the block index of T (blockIdx.x) by the number

of threads per block (blockDim.x) and finally add

the current index of T within the block

(threadIdx.x).

SPECIES-BASED SYSTEMS
Species-based systems organize biological entities

into classes where the elements of each class cannot

be distinguished. The quantity of a molecule in a

class could be represented as either a continuous or a

discrete variable.

In the continuous case, molecules are modelled

as time-dependent variables representing con-

centrations. Interactions are rendered as differential

relations between variables. This enables the use of

the OrdinaryDifferential Equation (ODE) machinery. In

particular, a reaction-rateequation is used to describe the

rate of change of the concentration of a molecule as a

function f of the concentrations of the other com-

ponents. Usually, the function f is not linear and the

common way to work around analytical intractabil-

ity is to exploit numerical techniques. Numerical

methods involve the use of linear algebra tools,

both when performing matrix–matrix/matrix–

vector calculations, and when implementing meth-

ods that require the solution of a system of linear

equations. The basic linear algebra subprogram

(BLAS) is the de facto standard API that provides

basic building blocks for performing linear algebra

operations. The CUBLAS library [9] and the

MAGMA project [10] are implementations of

BLAS on GPU architectures. These offer the basic

routines on top of which ODE solvers are designed.

GPU power is also exploited to speed up the simu-

lation of specific ODE systems. In ref. [11], the

authors optimize to run on a GPU the MATLAB

code of two typical systems biology applications,

namely, Heart Wall Tracking and Cardiac Myocyte

Simulation, obtaining good performances. The

application presented in ref. [12] is more general:

an SBML [13] model is automatically compiled

into the CUDA code; the code is simulated with a

large number of varying parameters to understand

the available parameter space of the underlying

ODEs.

In a discrete setting, the evolution of a biological

system could be characterized as a stochastic process,

where components are present in an enumerable

quantity. A system is represented as a vector X of

discrete random variables: the integer amount of a

molecule i at time t is expressed as a random variable

Xi(t). The stochastic simulation algorithm (SSA) [14]

generates a trajectory, i.e. a possible evolution history

Table 2: Plain C code versus CUDA code for implementing a simple algorithm

void increment_cpu(float *a, float 
b,    
   int N)
{
   for (int idx = 0; idx<N; idx++)
      a[idx] = a[idx] + b;
}

__device__ 
void increment_gpu(float *a, float 
b, 
   int N) 
{
   int idx = blockIdx.x * 
blockDim.x +            

threadIdx.x;
   if (idx < N)
      a[idx] = a[idx] + b;
}

Notice how the loop is unrolled; calling the kernel on the right will require spawning N threads, each of them
incrementing a single item.
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of the considered system, relying on Monte Carlo

methods. The key tool of SSA is the definition of a

propensity function for each reaction j in the system:

the likelihood that a reaction j fires in the next infi-

nitesimal interval is a function of the number of mol-

ecules involved in reaction j and of a constant

specific to j. For instance, given a reaction

X1 þ X2 �!
c

X3, the propensity function is

c� X1j j � X2j j, where Xj j represents the number

of molecules of X. SSA implementations [15]

follow a common template:

(1) Data structure initialization.

(2) Random selection of a reaction according to the

propensity function.

(3) Execution of the selected reaction.

(4) Update of the data structures.

(5) Return to step 2 or Terminate.

SSA is structurally a sequential algorithm and

therefore hard to parallelize. However, GPUs can

impact significantly on the time simulation process.

First of all, SSA requires generating a large quantity

of random numbers, a time consuming task. Using

GPUs as a fast random number generator [16]

reduces the time needed for a run [17]. Moreover,

SSA is used to collect statistics on a certain system by

generating a large collection of stochastic realizations;

the streaming architecture of GPUs is well suited for

this kind of parallelism2 as shown in refs. [17, 18].

Finally, a promising attempt to parallelize a single

instance of SSA exists [19]: the authors reorganize

the structure of SSA in order to reduce the complex-

ity in space of the algorithm. In this way it is possible

to split the reaction set among blocks and to obtain a

certain level of parallelism inside a single simulation.

COMPARTIMENTIZED SYSTEMS
The models presented above share the view of

biological systems as boxes containing all the mole-

cules without physical barriers. However, it may be

important to represent compartments, as in the case

where translocation of proteins from the cytosol to

the nucleus is essential in the model. Compartments

can be managed either implicitly or explicitly. In the

first case a variable, continuous or discrete, which

represents an entity which may exist in two different

compartments, is split into two different variables.

This results in a larger model, since an entity gives

rise to more than one variable. However, the

techniques presented in the previous section can be

exploited. In the second case, there are many differ-

ent representations of compartments. Here, we focus

on P systems [20] because they are quite general and

many GPU implementations are available.

A P system is a computational model inspired by

the structure of the cell. The use of P systems to

model biological processes is pioneered in ref. [20]

and has received increasing attention since, because it

offers a suitable abstraction for many biological com-

partimentized systems. A P system configuration is

made up of three components: (i) a set of membranes
(a membrane may contain other membranes); (ii) a

set of chemicals inside each membrane; (iii) a set of

evolutionrules (i.e. chemical reactions). A computation

is given by a sequence of transitions between con-

figurations performed by applying evolution rules to

the chemicals placed inside membranes. Starting

from this common definition, a number of different

models were derived, varying, for instance, the order

of application of the evolution rules, or the capability

of membranes to divide. P systems express two

levels of parallelism, one among membranes and

other among the chemicals inside a membrane; this

model fits very nicely on CUDA, where there are

two levels as well: a grid organizes on a first level

several blocks; on a second level, concurrent execu-

tion among threads takes place inside a block. The

double parallel nature expressed by both CUDA and

P systems suggests that a GPU implementation of P

systems would be effective. A valuable example is

given by P-Lingua [21], a programming language

for specifying membrane systems that can be com-

piled and executed directly on a GPU without

requiring specific skills of the user [22].

INDIVIDUAL-BASED SYSTEMS
Many biological processes take place in a

non-homogeneous, crowded environment in

which spatially localized fluctuations of inorganic

catalysts and slow intracellular diffusion have an

important role. In these cases it is important to con-

sider each molecule in the system as an individual
entity. To deal with such processes it is mandatory

to explicitly consider the cell geometry, and in gen-

eral the spatial conformations and the diffusion

processes. Available simulation algorithms work at

different levels of abstraction, which influence both

accuracy and performances.
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Molecular dynamics (MD) works at the level of the

atoms. Methods that simulate quantum mechanical

and molecular mechanical dynamics have been

applied to a wide range of problems of biological

interest (see ref. [23] for a review): these simulations

explicitly represent every detail of the considered

chemical reaction, such as the position and the

energy of every atom in the system. MD methods

map well on GPUs, and many solutions are pro-

posed. Here, it is worth mentioning the pioneering

work on Namd [24], VMD [25] and HOOMD [26].

Brownian dynamics (BD) [27] methods operate at a

slightly coarser level of detail, where molecules have

an identity and an exact position in a continuous

space, but no volume, shape or inertia. Each mole-

cule of interest is represented as an individual point.

Brownian dynamics simulation generally adopts a

stochastic simulation approach based on the solution

of the Smoluchowski equation, which describes the

diffusive encounter of the molecules in the solution.

An alternative approach, proposed by ref. [28], is to

represent the dynamics of globally interacting

Brownian particles with the Kuramoto model; in

this way, the simulation is reduced to the numerical

solution of some stochastic differential equations.

The integration is performed using a stochastic

scheme of the second order. Time steps are discrete;

at each step the equations are computed and the

positions of all particles are updated.

LATTICE-BASEDMETHODS
At a coarse level of detail we present some lattice-based
methods. The simulated space is divided into three

dimensional elements. Particularly interesting for

GPU computing are cellular automata (CA) based

methods. Here, space and time are discrete, and

the evolution in time of the system is governed

only by local information, instead of obeying a

global equation. Therefore, CA models fit nicely

on the GPU model of computation (see ref. [29]

for a survey on CA simulation algorithm and a

CPU/GPU comparison). Two methods are of nota-

ble interest for systems biology applications: coupled
maplattices (CML) [30] and the multiparticlemodel [31].

CML is an extension of a CA where the discrete

state values of the CA cells are replaced by continu-

ous real values. Efficient implementation of the

Gray-Scott model [32] and of the Turing pattern

models [33] are obtained running CML on GPUs.

They are usually implemented as partial differential

equations that describe the concentrations of chem-

ical reactants at each lattice site over time; their GPU

implementation consists of a single data stream where

the concentrations of the chemical species are stored

in different channels of a single texture that repre-

sents the discrete spatial grid. This stream serves as

input to a kernel, which implements the partial

differential equations in a discrete form.

The multiparticle diffusion model is more com-

plex and more realistic. In this model, multiple par-

ticles per lattice site are permitted; particles move in a

stochastic way by following independent random

walks between positions in the lattice. Brownian dif-

fusion is therefore modelled as a series of indepen-

dent random choices for the movement of particles

on a regular, uniform grid. The algorithm described

in ref. [31] implements a multiparticle model on

GPU in an efficient way using a novel data structure;

the authors apply the method to a 3D model of

in-vivo diffusion inside the Escherichia coli cell.

AGENT-BASEDMODELS
The Agent-based model (ABM) generalizes the CA

model. ABMs are computational representations of

dynamic systems where a number of individual,

autonomous constituent entities (called Agents) inter-

act locally in order to recreate a higher level, group

behaviour. This ability to simulate the emergent

behaviour of complex systems from local interactions

makes agents attractive for systems biology. Indeed,

ABMs have been used to model and simulate inflam-

matory cell tracking, tumour growth, intracellular

processes, wound healing, morphogenesis, microvas-

cular patterning, pharmacodynamics and tuberculosis

(see ref. [34] for a survey).

Even if Agents are concurrent, independent

objects, historically only sequential simulation algo-

rithms have been implemented. One of the first par-

allel implementations running on graphics hardware

was performed by De Chiara et al. [35]. Notably,

they studied the distributed behaviour of a flock,

a widely-known problem in systems biology.

Recently, several research efforts concentrated on

ABM simulation on GPUs. Perumalla et al. [36],

for example, used an extended cellular automata

approach to simulate ABMs on the GPU.

However, being based on CA and therefore on lat-

tice sites, they have limitations in the number of

agents and on replications. Two groups, in particular,

pushed the state of art in large-scale ABM
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simulation, by extending existing ABM frameworks

with rich and complete support for simulation on

a GPU: Richmond et al. [37] with FLAME and

D’Souza et al. [38] with SugarScape. They rely on

existing agent frameworks supporting a number of

key ABM features, such as, e.g. birth and death allo-

cation, agent replacement and movement, pollution

formation and diffusion, collision detection. Of par-

ticular relevance for systems biology application is

the application of SugarScape to the 3D simulation

of granuloma formation in TB infection [39]. The

authors demonstrated that ABM frameworks running

on GPUs are flexible and mature enough to run com-

plex simulations, with a speed that is three orders of

magnitude faster than the sequential algorithm.

DISCUSSION
The advent of systems biology calls for an urgent

development of new techniques to tackle the time

required by the simulation of biological systems. The

kind of parallelism expressed by biological systems

fits well with the streaming programming paradigm,

making GPUs appealing as hardware dedicated to

their simulation. Moreover, a GPU combines high

performance parallel computing with low budget

requirements, making GPGPU a valuable tool for

systems biology. However, not all applications are

well suited for a GPU implementation and per-

formances vary considerably depending on the

considered biological system. In Table 3 we relate

biological systems and GPU speed-up; the table

reports the improvements of combining GPUs and

CPUs in comparison to CPUs alone, together

with the GPU and the software package used.

The column ‘speed-up’ refers to the simulation

execution time; for instance, a 10� speed-up

means that the simulation time required by a

CPU-only system is 10 times greater than that of

a CPU/GPU configuration. These data have to

be considered carefully, since the way in which

performance measurements are taken varies greatly;

furthermore, GPU performances vary greatly from

one model to another; Figure 4 reports a comparison

of the GPUs listed in Table 3 in terms of GFLOPS,

i.e. billion of floating point operations per second, a

common measure of performance. For instance,

looking at the Table 3 in the light of Figure 4, it

emerges that the 2� speedup of MAGMA [10] and

of single SSA simulation [19] have not the same

value, since GXT280 outperforms 8600M GS by

three orders of magnitude. For this reason Table 3

has to be considered only as a sketch of GPU com-

puting power, without any intention of comparing

algorithms or implementations.

We first examined those systems where the iden-

tity of a single entity is not considered, namely

species-based systems. In this context we distin-

guished between continuous and discrete represen-

tation. The first is characterized by ODE systems that

are well suited for an implementation on the GPUs

because ODE solvers are based on linear algebra.

The performances of MAGMA are quite disappoint-

ing in this context, but it has to be considered that

the project is new3 and the speedup is computed

against a powerful quad core server processor. The

report in ref. [40] also considers a dual core processor

and, in this case, the speed-up is �5�. CUBLAS [9],

the more mature NVIDIA implementation of BLAS,

shows slightly better performance, especially when

dealing with single precision floating point operations.
Table 3: GPU performances

Species based
ODE CUBLAS GTX280 4.1^10� Measured

MAGMA GTX280 2� [40]
SBML based GTX280 59� [40]

SSA Multiple
simulations

8800GTX 50� [17]

Single
simulation

8600M GS 2� [19]

P systems P-lingua Tesla C1060 1000� [22]

Individual based
MD Namd 8800GTX 10� [30]

VMD n.a. 125� [40]
HOOMD n.a. 15� [40]

BD SDE Tesla C1060 675� [40]
CA CML Xenos 25� [33]
ABM FLAME 9800 GX2 250� [40]

Figure 4: Peak performance for different GPUS.
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We measured CUBLAS performances using the

widely used GEMM and SYMM operations; a

more detailed analysis of CUBLAS performances

and how to tune them is available in ref. [41]. The

results of ref. [12] are particularly interesting for the

systems biology community; the system described

offers a 59� speed-up for the simulation of a

system of ODEs expressed as SBML code. The appli-

cation offers useful performance, while at the same

time being accessible to researchers without skills in

GPGPU programming. Conversely, discrete repre-

sentations of biological systems do not offer such

impressive performance improvements, mainly

because the stochastic simulation algorithm (SSA) is

hard to parallelize. The situation is better in the

(common) case of multiple simulations [17], where,

for example, 50 simulations of a GPU require the

same time of a single simulation performed with a

CPU. A particular note of praise was deserved by

discrete systems with compartments; in particular,

P Systems parallelism resembles GPUs architecture,

offering a natural high performance platform for the

simulation of systems with membranes. The 1000�

speedup reported in Table 3 is impressive, but the

datum may not be representative of the average case:

the value is obtained using of an optimized mapping

between the number of membranes/objects and the

number of blocks/threads on the GPU, therefore the

GPU is fully utilized.

Individual-based systems offer specific tools to

describe those models where many details, such as

the position and the mass of each element in the

model, are needed. We first examined molecular

dynamics methods that map naturally on GPUs.

The methods presented offer good performances,

especially the VMD software. The field of MD on

GPUs is receiving great attention from the commu-

nity and new applications are released every month.

In contrast, it is quite surprising that Brownian

dynamics methods are not supported; as we men-

tioned earlier in the text, algorithms with a good

amount of loop level parallelism fit well with the

streaming programming paradigm. A notable excep-

tion is ref. [28], which achieves an impressive 675�;

even if the speed-up was obtained on a very specific

application, it calls for more investigations about

GPGPU for BD. Finally, we considered lattice-based

methods and agent-based models. GPU implemen-

tations of these methods have reached a mature state.

As in the case of ODEs and SBML, a key feature of

these implementations is the possibility of using the

GPU’s computing power without having specific

programming skills. For instance, the FLAME frame-

work uses an XML specification language for Agents

that is automatically compiled into CUDA code.

This makes the 250� speedup more interesting,

because this computing power is available to all the

ABM community; in this case the value is a little

overstated since the 9800 GX2 consists of two

paired GPUs.

In conclusion, general purpose scientific comput-

ing on GPUs is promising but also challenging.

Currently, the main bottleneck is in the program-

ming skills required. Even if the release of

CUDA-like programming languages makes pro-

gramming easier, the development of new applica-

tions requires the consideration of many specific

details, like memory usage or communication band-

width between the CPU and the GPU, that are not

necessarily related to the application domain. This

makes simulation of biological systems on GPUs a

small niche for specialists. In our opinion, two ingre-

dients are critical for spreading GPU computing to a

larger portion of the systems biology community:

abstractions and architectures.
With abstraction we mean that a user has to be

able to access GPU power without knowing the

details of the underlying hardware. The definition

of suitable abstractions would attract more scientists

in order to reach a critical mass of users. The SBML

interface to ODE, the P-lingua language, and the

FLAME framework are good examples. Fermi [42],

the next generation of NVIDIA GPGPU architec-

ture and the associated programming APIs, promises

ease of use with more power.

The successes of NVIDIA CUDA and the

increasing interest of the scientific community

invite other big hardware vendors to invest in

GPGPU architectures; an example is the ATI

FireStream processor, which currently uses the

Brookþ language [43]. The hardware limitations,

such as the support for double precision, will prob-

ably benefit from the competition between GPU

vendors. Indeed, the Fermi architecture already

promises to solve the double precision issue.

Finally, we would like to report a success story on

the combination of GPU computing with cluster or

GRID architectures. Folding@Home is a project

designed to perform computationally intensive sim-

ulations of MD using a grid of voluntary, heteroge-

neous computing devices. GPU devices attached to

the GRID account for roughly 67% of the project
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processing power, despite being only 7% of the total

active clients [44].

Key Points

� Simulation of biological systems calls for high performance
computing.

� GPUs combine high performance computing with lowbudget.
� GPU streaming programming fits well with biological

parallelism.
� The application ofGPUcomputing to the simulation of biological

systems is promising.

Notes
1The ratio of computation to bandwidth, or more formally arith-

metic intensity ¼ operations / words transferred.
2Named parallelism across the simulation [2].
3At the moment, the released version is the 0.2.
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