
Magnoux and Ozell Adv. Model. and Simul.
in Eng. Sci. (2021) 8:7
https://doi.org/10.1186/s40323-021-00192-7

RESEARCH ART ICLE Open Access

GPU-friendly data structures for real time
simulation
Vincent Magnoux and Benoît Ozell∗

*Correspondence:
benoit.ozell@polymtl.ca
Department of Computer
Engineering and Software
Engineering, Polytechnique
Montréal, Chemin de
Polytechnique, Montréal, Canada

Abstract

Simulators for virtual surgery training need to perform complex calculations very
quickly to provide realistic haptic and visual interactions with a user. The complexity is
further increased by the addition of cuts to virtual organs, such as would be needed for
performing tumor resection. A common method for achieving large performance
improvements is to make use of the graphics hardware (GPU) available on most
general-use computers. Programming GPUs requires data structures that are more rigid
than on conventional processors (CPU), making that data more difficult to update. We
propose a new method for structuring graph data, which is commonly used for
physically based simulation of soft tissue during surgery, and deformable objects in
general. Our method aligns all nodes of the graph in memory, independently from the
number of edges they contain, allowing for local modifications that do not affect the
rest of the structure. Our method also groups memory transfers so as to avoid updating
the entire graph every time a small cut is introduced in a simulated organ. We
implemented our data structure as part of a simulator based on a meshless method.
Our tests show that the new GPU implementation, making use of the new graph
structure, achieves a 10 times improvement in computation times compared to the
previous CPU implementation. The grouping of data transfers into batches allows for a
80–90% reduction in the amount of data transferred for each graph update, but
accounts only for a small improvement in performance. The data structure itself is
simple to implement and allows simulating increasingly complex models that can be
cut at interactive rates.
Keywords: Surgery simulation, GPU computing, Cutting simulation, Physically-based
simulation

Introduction
Despite decades of progress, realistic real-time surgery simulation remains computation-
ally challenging. Calculating the deformation and behavior of organs according to physical
models is complex and needs to be done very fast to produce a virtual environment that
is responsive to user actions, especially when haptic feedback is desired. The calculations
become even more demanding when cutting operations need to be performed, such as
the resection of a tumor, while the organ and surrounding tissue are being deformed. The
behavior of soft tissue is itself non-trivial to simulate, but adding cuts and other topology-

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1186/s40323-021-00192-7&domain=pdf
http://orcid.org/0000-0002-7157-7726
http://creativecommons.org/licenses/by/4.0/

Magnoux and Ozell Adv. Model. and Simul. in Eng. Sci. (2021) 8:7 Page 2 of 14

changing operations means that many acceleration structures that allow increased per-
formance can no longer be precomputed.
One approach to improve the resolution and realism of simulations consists in making

better use of the constantly increasing capacity of common computer hardware, such as
multi-core processors (CPU) and graphics processors (GPU).
In general, multi-threaded CPUs allow performing multiple different tasks in parallel,

usually 4 to 16, or subdivide a task and execute its parts concurrently. In contrast, a GPU
may achieve a high level of parallelism, on the order of thousands of concurrent threads,
as long as they all perform the same computation.
Physically based simulation lends itself relatively well to GPU processing when the

problem is reduced to solving a sparse set of linear equations at every step. However,
when introducing topology changes in the simulated object, the coupling between these
linear equations changes and the precomputed data that allows solving them quicklymust
be updated.
In order tominimize the cost of such updates caused by a cutting operation, we propose

a new data structure that avoids any sort of reallocation of GPUmemory and that reduces
the amount of data that needs to be copied after many small changes are made to it.

Background

Before discussing GPUs specifically, we first summarize the main methods used for per-
forming physical computations for surgery simulation. The simplest method is with a
mass-spring system (MSS), where a set of points—themasses, or particles—are connected
through springs, which introduce axial forces between the points when they are stretched
or compressed [1]. While MSS are easy to implement, it is difficult to choose the right
spring stiffness parameters that will accurately simulate the behavior of soft tissue. Finite
element methods (FEM) provide a more realistic model of deformable bodies by solving
the continuum elasticity equations over a domain divided into elements [2]. They are also
referred to as mesh-based methods, since the elements form a mesh. In contrast to FEM,
meshlessmethods solve these equations with amore diffuse discretization of space, where
the “elements” are less geometrically defined and may overlap each other [3]. They are
also called particle-based methods. Position-based dynamics (PBD) is another success-
ful approach that may offer the accuracy of FEM or the flexibility of MSS and meshless
methods, depending on how the particles are connected together through constraints [4].
These methods ultimately all depend on solving a system of equations. Assembling and

solving that system are often themost computationally intensive aspects of the simulation,
and therefore the ones that must be targeted for GPU acceleration to achieve the best
performance improvement.
Two aspects of GPUs that make them notoriously difficult to use efficiently will be

discussed in this paper:

• Operations must be structured in a way that allows hundreds of threads to simulta-
neously read from memory and perform the same set of computations on the data.
This is referred to as the single instruction, multiple threads (SIMT) executionmodel
[5].

Magnoux and Ozell Adv. Model. and Simul. in Eng. Sci. (2021) 8:7 Page 3 of 14

• On a GPU, the memory space is different and not shared with that of the CPU. Data
must be transferred between the two sets ofmemory whenever the host or GPUmake
a change that must be read by the other.

Early implementations of solvers were made using a graphics API [6,7]. It however
came with severe restrictions on how the data is structured—using textures rather than
arrays—and on the available precision—only 24-bit floating points could be used. The
development of general purpose GPU computing (GPGPU) platforms such as CUDA [5]
allowed for much more flexibility and complexity in the kinds of solvers that could be
implemented.
In the most general sense, a system solver gathers data about a system, such as forces or

constraints, and based on this information, determines in what state the system will next
be, usually referring to the positions of various nodes forming an object. In our case, the
system consists of deformable organs, a surgical tool and any other simulation element
that may interact with them.
The simplest solvers are usually explicit ones, which only require to evaluate nodal forces

and accelerations at or before the current time, allowing to find the velocities and positions
at the end of the time step. They have been used on the GPU in surgery simulation with
MSS [8,9], FEM [10–12] and meshless methods [13]. Since it requires a low amount of
computations, it can relatively easily be combined with a haptic device [12,14], which
requires a high refresh rate, or with expensive computations like cutting, other physical
phenomena like melting [13], or direct volume rendering [15].
The main downside to explicit solvers is their stability. Even if they are very fast, they

require a certain small time step size that depends on the size of the smallest element in
the simulated object and on its rigidity.
Implicit solvers provide a much higher stability, at the cost of having to solve a non-

linear system, which requires more computations. They however allow arbitrarily long
time steps. Surgery simulators using that integration scheme usually solve the system
using a matrix-free, iterative solver, which requires less memory than a direct one while
allowing for topology changes between frames. These solvers have been used to simulate
non-linear behavior [16], cutting a tesselated surface embedded in a meshless model
[17], in combination with a compliance method for resolving interactions [18] or with
constraints to model permanent deformation and cutting [19].
Position-based dynamics offers a way to combine many aspects of a simulation such

as deformation, phase changes, liquids et collision detection and response into a single
method. It uses a two-phase process—also called prediction-correction scheme—to first
move particles freely in time, based on their current speed, then correct their position
directly based on a set of constraints. The constraints are solved using a highly paralleliz-
able Gauss-Seidel method. Organ deformation has been simulated using shape-matching
constraints [20] or energy constraints [21]. The latter offer a more physically realistic
behavior and provide a simple way to cut the object, by removing and adding constraints.
Other methods have been used to simulate deformations on the GPU, like a multigrid

iterative solver [22], a direct static solver [23], or an iterative static solver [24]. However,
these methods introduce new levels of complexity or rigidity that make them more chal-
lenging to use for cutting simulation and, in the case of static solvers, prone to sudden
reactions when a user interacts with the simulated objects.

Magnoux and Ozell Adv. Model. and Simul. in Eng. Sci. (2021) 8:7 Page 4 of 14

Contributions

In this paper, we propose a simple way to store the graph data describing the relationship
between the nodes of an object that is both efficient to access on the GPU and easy to
modify from the CPU and to update. We describe it as part of a simulator based on the
Element Free Galerkin (EFG) method [3] using an implicit solver, but it is extendable to
other methods such as FEM and may be of benefit when using other solvers.

Method
Wefirst describe the computations needed for determining how a simulated objectmoves
and gets deformed before explaining howwe structure the data to efficiently perform these
computations on the GPU while allowing for topology changes. While the discussion
focuses on an elasticity problem, our solution can be applied to other simulations that
make use of a graph-like structure.

Deformation

We wish to solve the continuum equations of elasticity for a dynamic system:

ρü = ∇ · σ + f ext , (1)

where ρ represents mass density, u the displacement field, σ the stress and f ext any
external forces. Note that since we use a linear elasticity model, σ only depends on u.
After discretization into a set of nodes and linearization, we obtain a system of equations

Mü = Ku + f , (2)

withM as the mass matrix, K as the stiffness matrix, u the vector of nodal displacements
and f the vector of external nodal forces.
For a surgery simulation with haptic interactions, stability is essential. We thus choose

to use an implicit dynamic solver, which remains stable for large time steps. Additionally,
unlike explicit solvers, the time step is not constrained by the smallest element size, which
is difficult to control when arbitrary cutting is allowed. Following the method of [25], we
obtain

(M − �t2K)
�u̇ = �t

(
f elastic0 + f ext0

)
, (3)

where �t is the length of the time step, �u̇ the change in velocity during that time step –
the quantity we are trying to determine – and f 0 = f elastic0 + f ext0 the total forces on the
object nodes at the beginning of the time step. From the solution to eq. 3, we can compute
the new nodal displacements as

u = u0 + �t(u̇0 + �u̇), (4)

where u0 and u̇0 are respectively the nodal displacement and velocities at the beginning
of the time step.
The entries in K are determined by the relationships between nodes, whether they

are connected through elements in mesh-based methods or through their influence in
meshless methods. Since we are constantly changing these connections by cutting, K
also changes constantly, making the use of a precomputed system matrix impossible.
Additionally, because the computation of K is expensive, we prefer to use a matrix-free
method, such as conjugate gradient (CG), for solving the linear system. In that case, the

Magnoux and Ozell Adv. Model. and Simul. in Eng. Sci. (2021) 8:7 Page 5 of 14

main computation becomes the multiplication of K with an arbitrary vector of nodal
displacements (or corrections) at each iteration of the solver (see Algorithm 1).
As for the mass matrix term M, we lump the object’s mass on the nodes, resulting

in a diagonal matrix. Its product with a vector can thus be reduced to an element-wise
multiplication that can be added to the left-hand side of Eq. 3.

Algorithm 1 Conjugate gradient algorithm
This algorithm solves the system Ax = b for x. In our case, A = K · k + M · m and b is the
vector of nodal forces at the beginning of the time step. Two thresholds are also given as criteria
for deciding when to stop iterating. Once the while loop terminates, x holds the (approximate)
solution.
Initialization: x ← 0, p ← b, r ← b, ρ ← r · r, e ← ∞, d ← ∞
while e > threshold1 and d > threshold2 do

e ← ‖r‖
‖b‖

Ap ← Kp · k + Mp · m
d ← p · Ap
α ← ρ

d
x ← x + αp
r ← r − αAp
β ← r·r

ρ

p ← r + βp
ρ ← r · r

end while

The computation of the matrix-vector product in Algorithm 1, in particular the Kp
product, is driven by the structure that connects the nodes together. For example, with
finite elements, the domain may be subdivided into tetrahedra, where each tetrahedron
connects four nodes.With the EFGmethod, which we use in the present work, each cubic
integration element combines a set of about eight nodes. However, the computation
method is the same regardless of how the elements are formed. Algorithm 2 describes
how we compute Kp by looping over the elements, compute their force density, and
distribute it to their nodes.

Algorithm 2 Computing the Ku product
This algorithm computes the Kp product using p = u. Other inputs are the set of elements E,
each with a volume Ve and a neighborhood Ne, the shape functions φe

n for each element e and
node n, and the Lamé parameters λ and μ of the simulated material. In that specific case, the
result of the multiplication is a vector of nodal elastic forces F (with nodal values f n).
for e ∈ E do

∇ue ← ∑
n∈Ne un · ∇φe

n

εe ← ∇ue+∇uTe
2

σe ← 2με + λtr(ε)I
for n ∈ Ne do

f en ← −Veσe∇φe
n

f n ← f n + f en
end for

end for

Magnoux and Ozell Adv. Model. and Simul. in Eng. Sci. (2021) 8:7 Page 6 of 14

Fig. 1 Connectivity arrays. Illustration of what the four large 2D data arrays needed for updating an object’s
state represent. Red crosses are the center of elements, green circles the simulation nodes and blue square
are surface vertices. The connectivity links elements to nodes, with shape function values and derivatives
associated with each pair. The surface mapping links vertices to nodes, with a weight associated with each
pair

The rest of the conjugate gradient consists of relatively simple vector operations, such
as additions and scalar products, which can easily be carried out on the GPU. As pointed
out and implemented by [18], for each iteration, only two scalars need to be transmitted
to the CPU to determine whether to continue iterating.
The operations presented in this section represent the most intensive part of the simu-

lation and are thus the ones that need to be targeted for a GPU implementation. However,
they depend on data structures that are modified every time a topology change occurs in
the simulated model and must be implemented in a way that is not overly penalized by
these changes.

Changing connectivity data

Wenow describe how the element connectivity data is encoded so that it can be efficiently
modified on the GPU. As a general rule for GPU computing (also for optimal cache access
on the CPU), we want pieces of data that will be accessed together to be located close to
each other in memory.
We perform topology changes using the method presented in [26] and map the surface

onto the physical model as in [27]. There are four sets of data, illustrated in Fig. 1, that are
very large and need to be updated every frame:

1. The connectivity graph that assigns a set of nodes to each element; for example,
element I would be

{
i
∣
∣i ∈ a, b, d, e

}

2. The shape function value for each element-node pair;
I =

{
φI
i
∣∣i ∈ a, b, d, e

}

3. The shape function derivative for each element-node pair;
I =

{∇φI
i
∣∣i ∈ a, b, d, e

}

4. The weights of the mapping between surface vertices and nodes; for example, vertex
3 would be

{
w3
i
∣∣i ∈ d, e

}
.

They are represented in the diagram of Fig. 1. The connectivity between nodes and surface
vertices actually uses the same graph as the connectivity between nodes and elements, and
thus requires little additional data to update.

Magnoux and Ozell Adv. Model. and Simul. in Eng. Sci. (2021) 8:7 Page 7 of 14

Fig. 2 Execution flow. Execution steps and data flow of the main simulation loop highlighting which
operations are performed on the CPU and on the GPU. Boldface data are the large 2D structures described in
this paper

Figure 2 illustrates which operations of the simulation are performed on the CPU and
which are performed on the GPU. It also shows what data need to be transferred for each
of these operations. Names in bold are the 2D arrays discussed in this section.
Two considerations guided our choice of data structure for storing the connectivity

and shape functions and mapping: avoid constantly reallocating memory on the GPU
and group many small memory transfers into a larger batch—to avoid the relatively large
latency associated with each transfer.
These fourdata setsmaybeviewedas two-dimensional arrays. For example, the element-

node connectivity has a row for each element, containing the identifier of the nodes that
are connected to that element. Unlike mesh-based methods, the number of nodes per
element may vary, so the rows have uneven lengths.
A memory-efficient way to store such a 2D array, as done for example by [16], would

be to have a linear array containing all rows contiguously, with a second array indicating
where each row starts in the larger one, and a optionally a third one to store the length of
each row. However, with such a structure, if a row increases in length from one frame to
the next, all subsequent values in the larger array would need to be shifted. That would be
almost equivalent to updating the entire data structure, in addition to having to reallocate
memory for it. The cost of a new allocation as well as en entire copy would be noticeable
in an application where fast update rates are required.
To avoid having to reallocate memory, even after a change in size for some rows, our

solution is to set a maximum row size and allocate a single block that is overall slightly
larger than what is strictly needed. To keep track of the actual number of items in each
row, we also add a vector that lists the current size of each row. This two-array structure

Magnoux and Ozell Adv. Model. and Simul. in Eng. Sci. (2021) 8:7 Page 8 of 14

Fig. 3 Custom data structure. Data structure used for major 2D arrays—connectivity data is illustrated here.
In the first, large array, rows all occupy the same amount of memory, regardless of the number of elements in
them. A secondary array contains the number of elements (length) in every row

Fig. 4 Snapshots of the test case. Snapshots of the torus used as a test model, with a low element and
triangle count to better display the geometry

is illustrated in Fig. 3. Since no elements are added during the simulation, the row size
and data block arrays will never need to be resized or reallocated.
This structure is somewhat less flexible than the compact array, because the number of

nodes attached to an element can never exceed the allocatedmaximumrow size.However,
the criterion that determines whether we need to add nodes in the neighborhood of an
element is whether these nodes are coplanar (see [26] for details). The cases where this
condition cannot be satisfied when choosing at least 8 neighbors are theoretically rare and
will be discussed further in “Limitations” section.
During a single time step, only a small fraction of all elements will have a new set of

neighbor nodes. Similarly for surface changes, only a relatively small number of vertices
will need a new mapping onto the volume. To avoid copying the entire data structure
and the overhead of many small memory transfers, we divide the data arrays into batches,
which can be copied one at a time to GPU memory. The batches are all part of the same
memory allocation, only memory transfers are affected by this division. This reduces the
total amount of data to be copied every time step while keeping the number of memory
transfers low.

Magnoux and Ozell Adv. Model. and Simul. in Eng. Sci. (2021) 8:7 Page 9 of 14

Fig. 5 Update time per element. Total update time (in ms) for different configurations, with respect to
number of elements in physical model

Results and discussion
To examine whether the particular data structure described in “Method” section allows
for an efficient simulation on theGPU and how the performance evolves in different situa-
tions, we have implemented the method described in [26] using CUDA and incorporating
that structure. Themodel used to demonstrate cutting is a torusmade of a varying number
of elements (from 1.5k to 80 k) and surface mesh size (from 1.5 k to 50 k triangles). It
was cut using a virtual tool made of several segments and animated as described in [26].
The tool followed a predetermined trajectory, and the torus would deform under gravity
before, during and after the cutting procedure. Figure 4 and the accompanying videos
demonstrate the execution of this test case with a low number of elements and surface
triangles to show details of the geometry. All tests whose results are presented in this
section were run on a 6-core Intel Core i5-9400F CPU and an Nvidia RTX 2060 GPU.

Performance comparisons

We first compared the execution time of each simulation update—or time step—of the
simulation when run on the CPU only and when using the GPU for computing defor-
mation, in each case using both single and double precision floating-point arithmetic.
Figure 5 displays the evolution of each update execution time with respect to the number
of elements in the simulated model. The scene only contains a torus being partially cut
at various volumetric resolutions, with a surface of approximately 50k triangles. The total
time displayed includes every aspect of the simulation, which can be categorized into cut
detection, cut application, deformation computation and surface position update, as in
Fig. 2.
We can observe in Fig. 5 that the GPU version is faster at all problem sizes, and that

the difference only grows larger as the number of elements increases. The relatively worse
performance of the GPU version for smaller problem sizes is due to the fact that the
2k-core GPU itself is not used to its full capacity.

Magnoux and Ozell Adv. Model. and Simul. in Eng. Sci. (2021) 8:7 Page 10 of 14

Fig. 6 Update time per triangle. Total update time as a function of the number of triangles in the surface
mesh. The volumetric model used for these tests has 20k elements, which was the approximate size limit to
obtain an interactive update rate on the CPU

Using single precision arithmetic, the GPU version maintains a rate of 60 frames per
second while cutting a model containing 80k elements, whereas the CPU version reaches
that rate at about only 6k elements. When modeling an entire human brain or liver, these
numbers translate to element sizes of approximately 2 mm and 6 mm respectively. The
60 frames per second criterion is used as the reference for which we can have a fully
interactive simulation where the physics behavior update rate is the same as the visual
update rate. This number may be relaxed somewhat depending on the requirements of
the simulator regarding interactivity, user immersion or hardware capacity.
CPU performance is only shown for double precision computations, since it was slightly

better than single precision performance. At larger sizes, the single-precisionGPU version
is approximately 45% faster than the double-precision version. This speedup could be
improved slightly further by also using the GPU to detect which edges are cut, for both
volume and surface. The cutting and surface mapping algorithm however does not lend
itself well to a parallel implementation [27].
Todeterminehowthe sizeof the surfacemeshaffects theperformanceof theGPU imple-

mentation, we also examined how the total computation time evolves with an increasing
surface mesh resolution. The results are shown in Fig. 6, using a physical model of 20k
elements that allowed for interactive refresh rates on the CPU. It shows that the surface
mesh size barely affects simulation time. This result indicates that the growth of simula-
tion time related to surface operations (cut detection, cut application and position update)
is much smaller than that of the time related to volume operations, which is taken mostly
by deformation computation, and to a lesser extent by volume cutting.
Figure 7 displays the proportion of execution time taken by each major step of the main

simulation loop. The deformation step, even when running on the GPU, takes the largest
proportion with 75% of the update time. Magnoux et al. [26] showed that this proportion
increaseswith the number of volume elements, but decreases slightly with a larger number
of surface triangles.

Magnoux and Ozell Adv. Model. and Simul. in Eng. Sci. (2021) 8:7 Page 11 of 14

Fig. 7 Total update proportions. Proportion of execution time taken by each major step of the main
simulation loop, for the case using single precision floating points on the GPU, with 20k volume elements

Fig. 8 Update time with batches. Comparison of total update times for the GPU version of the simulation
with and without splitting 2D arrays of data into batches, both in single and double precision

Figure 8 displays the running times of the same set of simulations as Fig. 5, for the GPU
versions where the splitting of 2D arrays into batches was either activated or not. It shows
a regular performance improvement of approximately 7% in single precision and 11% in
double precision for all volumetric model sizes. The speed gain is however proportional
to the size of the surface mesh (which was of 50k triangles in this test). This indicates
that the savings engendered by splitting the 2D arrays are more important for the surface
mapping data, which happen to form the largest of all arrays in almost all tested cases—the
exception being very refined volumes displayed in very coarse surfaces. In our test cases,

Magnoux and Ozell Adv. Model. and Simul. in Eng. Sci. (2021) 8:7 Page 12 of 14

Fig. 9 Deformation time proportions. Proportion of execution time taken by different aspects of the
deformation step, using single precision. Computations take most of the time, mainly on the GPU, while
memory transfer and CUDA overhead remain low

Table 1 Summary of method and reported performance for other GPU-based surgery
simulators, compared to our method

Paper Solver type Cutting 1000’s of nodes Update rate Method

Pan [13] Explicit Yes 4.9 43 Meshless

Bosman [16] Implicit No 12.7 31 Meshless

Pietroni [17] Implicit Yes 0.6 15 Meshless

Courtecuisse [18] Implicit Yes 0.7 45 FEM

Hou [19] Implicit Yes 13 31 FEM

Camara [20] Gauss-Seidel No 5.5 79 PBD

Pan [21] Gauss-Seidel Yes 1.5 50 PBD

Dick [22] Multigrid No 38 62 FEM

Fenz [23] Static No 11 20 FEM

Our method Implicit Yes 25 60 Meshless

splitting the arrays into batches resulted in a reduction of 80 to 90% in the amount of data
transferred during each simulation update.
The better gains shownwith double precision suggest that amore important proportion

of the simulation is spent copying data between RAM and GPU in that case. However,
when looking at the distribution of execution time for the deformation step only, shown
in Fig. 9, we can see that making CUDA API calls incurs a relatively large overhead. The
overhead remains constant for each kernel launch andmemory transfer – regardless of the
amount of data—with the memory transfers being responsible for most of that overhead.

Comparison with other GPU-basedmethods

Table 1 presents an informal comparison of our method with other GPU-based surgery
simulators. We achieve a large overall improvement in reported performance among
all methods that allow cutting operations that we found in the literature. However, a
direct comparison is made difficult by the fact that other reported results come from
experiments run on older hardware. Furthermore, every other simulator that we found in
the literature implements a different set of features, sometimes with more restrictions on
cutting than our technique [19], sometimes with additionnal capabilities, such as a stable
contact resolutionmethod [18] or a heat transfer simulation as a criterion for cutting [13].

Magnoux and Ozell Adv. Model. and Simul. in Eng. Sci. (2021) 8:7 Page 13 of 14

Limitations

One obvious limitation of our data structure is that an element may not be connected to
more nodes than the maximum allocated. While it has not occurred in any of our test
cases, the possibility cannot be ruled out. Allocating more space would mean that a large
portion of the structure would simply be empty. A better solution would be to guarantee
that a situation requiringmore than themaximumnumber of neighboringnodes cannever
occur. An approach that could achieve this would be to carefully choose the placement of
nodes so that they cannot be coplanar.
Another potential issue is that the use of single precision arithmetic might result in a

difference in the elastic behavior of simulated objects. This would be of particular interest
when simulating a large number of elements, which could generate large position values
with very small deformations, and very small corrections during individual CG iterations.
More specific tests need to be performed to determine whether that is the case.

Conclusion and future work
We have presented a data structure that can be used to describe graph structures in a
way that can be read efficiently on graphics hardware, that is modified on the CPU and
efficiently updated on the GPUwith as little transferred data as possible. Our results show
that this structure allows cutting objects simulated with a large number of elements at a
sustained high update rate.
Future work will focus on integrating this method into an existing surgery simulator

that enables a user to interact with virtual objects through a haptic device and provides
highly detailed 3D visual feedback.

Abbreviations
API: Application programming interface; CPU: multi-core processors; EFG: Element Free Galerkin; FEM: Finite element
methods; GPGPU: GPU computing; GPU: graphics processors; MSS: mass-spring system; PBD: Position-based dynamics;
RAM: Random access memory; SIMT: Single instruction, multiple threads.

Acknowledgements
Not applicable.

Authors’ contributions
VM designed and implemented the data structure and performed the tests. Both authors have drafted and revised the
paper. Both authors read and approved the final manuscript.

Funding
This work was supported by the Natural Sciences and Engineering Research Council (NSERC) [Grant Number 501444-16],
in collaboration with OSSimTech.

Availability of data andmaterials
The torus dataset model used in this study is available at “https://www.polymtl.ca/rv/torus.txt”. The
datasets generated during the current study are available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Authors’ information
Vincent Magnoux is a Ph.D. graduate from the department of Computer Engineering and Software Engineering at
Polytechnique Montréal. His research focuses on real time physically based simulation in virtual reality, with a particular
interest in high performance and parallel computing. Benoît Ozell is an associate professor in the department of
Computer Engineering and Software Engineering at Polytechnique Montréal. His research interests include Computer
Graphics, Scientific Visualization, Virtual Reality, Augmented Reality, Healthcare Simulations. https://www.polymtl.ca/rv/

Received: 13 October 2020 Accepted: 16 February 2021

https://www.polymtl.ca/rv/

Magnoux and Ozell Adv. Model. and Simul. in Eng. Sci. (2021) 8:7 Page 14 of 14

References
1. Bianchi G, Harders M, Székely G. Mesh topology identification for mass-spring models. In: International Conference

on Medical Image Computing and Computer-Assisted Intervention. Springer; 2003. p. 50–8.
2. Cotin S, Delingette H, Ayache N. A hybrid elastic model for real-time cutting, deformations, and force feedback for

surgery training and simulation. Visual Computer. 2000;16(8):437–52.
3. Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. Int J Numer Methods Eng. 1994;37(2):229–56.
4. Müller M, Heidelberger B, Hennix M, Ratcliff J. Position based dynamics. J Visual Commun Image Represent.

2007;18(2):109–18.
5. Lindholm E, Nickolls J, Oberman S, Montrym J. NVIDIA Tesla: A Unified Graphics and Computing Architecture. IEEE

Micro. 2008;28(2):39–55.
6. Georgii J, Westermann R. Mass-spring systems on the GPU. Simul Modelling Practice Theory. 2005;13(8):693–702.
7. WuW, Heng PA. A hybrid condensed finite elementmodel with GPU acceleration for interactive 3D soft tissue cutting.

Computer Anim Virtual Worlds. 2004;15(3–4):219–27.
8. Yuan ZY, Ding YH, Zhang YY, Zhao JH. Real-time simulation of tissue cutting with CUDA based on GPGPU. Adv Mater

Res. 2010;121–122:154–61.
9. Zerbato D, Baschirotto D, Baschirotto D, Botturi D, Fiorini P. GPU-based physical cut in interactive haptic simulations.

Int J Computer Assisted Radiol Surg. 2011;6(2):265–72.
10. Comas O, Taylor ZA, Allard J, Ourselin S, Cotin S, Passenger J. Efficient Nonlinear FEM for Soft Tissue Modelling and

Its GPU Implementation within the Open Source Framework SOFA. In: Simulation Biomedical, editor. Simulation
biomedical. Berlin: Springer; 2008. p. 28–39.

11. Taylor ZA, Comas O, Cheng M, Passenger J, Hawkes DJ, Atkinson D, et al. Modelling anisotropic viscoelasticity for
real-time soft tissue simulation. In: International Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer; 2008. p. 703–710.

12. Yibo S, Hui X, Dehai Y. Improvements of GPU Implementation of Nonlinear Soft Tissue Deformation with CHAI 3D. In:
3rd International Conference on Multimedia Technology (ICMT-13). Atlantis Press; 2013. p. 1196–1203.

13. Pan J, Yang Y, Gao Y, Qin H, Si Y. Real-time simulation of electrocautery procedure using meshfree methods in
laparoscopic cholecystectomy. Visual Computer. 2019;35(6–8):861–72.

14. Lapeer RJ, Gasson PD, Karri V. A Hyperelastic Finite-Element Model of Human Skin for Interactive Real-Time Surgical
Simulation. IEEE Trans Biomed Eng. 2011;58(4):1013–22.

15. Li S, Zhao Q, Wang S, Hao A, Qin H. Interactive deformation and cutting simulation directly using patient-specific
volumetric images. Computer Anim Virtual Worlds. 2014;25(2):155–69.

16. Bosman J, Duriez C, Cotin S. Connective tissues simulation on GPU. In: VRIPHYS 13: 10th Workshop on Virtual Reality
Interaction and Physical Simulation. Eurographics Association; 2013. p. 41–50.

17. Pietroni N, Ganovelli F, Cignoni P, Scopigno R. Splitting cubes: a fast and robust technique for virtual cutting. Visual
Computer. 2009;25(3):227–39.

18. Courtecuisse H, Jung H, Allard J, Duriez C, Lee DY, Cotin S. GPU-based real-time soft tissue deformation with cutting
and haptic feedback. Progr Biophys Mol Biol. 2010;103(2–3):159–68.

19. Hou W, Liu PX, Zheng M. A new model of soft tissue with constraints for interactive surgical simulation. Computer
Methods Progr Biomed. 2019;175:35–43.

20. Camara M, Mayer E, Darzi A, Pratt P. Soft tissue deformation for surgical simulation: a position-based dynamics
approach. Int J Computer Assisted Radiol Surg. 2016;11(6):919–28.

21. Pan J, Bai J, Zhao X, Hao A, Qin H. Real-time haptic manipulation and cutting of hybrid soft tissuemodels by extended
position-based dynamics. Computer Animation Virtual Worlds. 2015;26(3–4):321–35.

22. Dick C, Georgii J, Westermann R. A real-time multigrid finite hexahedra method for elasticity simulation using CUDA.
Simul Modelling Practice Theory. 2011;19(2):801–16.

23. Fenz W, Dirnberger J. Real-time surgery simulation of intracranial aneurysm clipping with patient-specific geometries
and haptic feedback. In: SPIE Medical Imaging. vol. 9415. International Society for Optics and Photonics; 2015. p.
94150H–94150H–10.

24. Joldes GR, Wittek A, Miller K. An adaptive dynamic relaxation method for solving nonlinear finite element problems.
Application to brain shift estimation. Int J Numer Methods Biomed Eng. 2011;27(2):173–85.

25. Baraff D, Witkin A. Large steps in cloth simulation. In: Proceedings of the 25th annual conference on Computer
graphics and interactive techniques. ACM; 1998. p. 43–54.

26. Magnoux V, Ozell B. Real-time visual and physical cutting of a meshless model deformed on a background grid.
Computer Animation and Virtual Worlds. 2020; p. e1929.

27. Magnoux V, Ozell B. Dynamic Cutting of a Meshless Model for Interactive Surgery Simulation (in press). In: Salento
AVR 2020: 7th International Conference on Augmented Reality, Virtual Reality and Computer Graphics; 2020.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	GPU-friendly data structures for real time simulation
	Introduction

	Method
	Deformation
	Changing connectivity data
	Results and discussion
	Performance comparisons
	Comparison with other GPU-based methods
	Conclusion and future work

	References

