
1

GPU Parallel Implementation of Dual-Depth

Sparse Probabilistic Latent Semantic Analysis

for Hyperspectral Unmixing

José Antonio Gallardo, Mercedes E. Paoletti, Student Member, IEEE, Juan M. Haut, Student

Member, IEEE, Ruben Fernandez-Beltran, Antonio Plaza, Fellow, IEEE, and Javier Plaza, Senior

Member, IEEE

Abstract—Hyperspectral unmixing (HU) is an important

task for remotely sensed hyperspectral (HS) data exploita-

tion. It comprises the identification of pure spectral sig-

natures (endmembers) and their corresponding fractional

abundances in each pixel of the HS data cube. Several

methods have been developed for (semi-) supervised and

automatic identification of endmembers and abundances.

Recently, the statistical dual-depth sparse probabilistic

latent semantic analysis (DEpLSA) method has been de-

This work has been supported by the Spanish Education Ministry

(FPU14/02012, FPU15/02090), EU FEDER (ESP2016-79503-C2-2-

P) and the Spanish MINECO (TIN 2015-65277-R) and Generalitat

Valenciana (APOSTD/2017/007). This work has also been supported

by Junta de Extremadura (Decreto 14/2018, de 6 de febrero, por el que

se establecen las bases reguladoras de las ayudas para la realizacin de

actividades de investigacin y desarrollo tecnolgico, de divulgacin y

de transferencia de conocimiento por los Grupos de Investigacin de

Extremadura, Ref. GR18060) and the European Union’s Horizon 2020

research and innovation programme under grant agreement No. 734541

(EOXPOSURE).

J. A. Gallardo, M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza

are with the Hyperspectral Computing Laboratory, Department of

Technology of Computers and Communications, Escuela Politécnica,

University of Extremadura, PC-10003 Cáceres, Spain. (e-mail: jgal-

lardst@alumnos.unex.es; mpaoletti@unex.es; juanmariohaut@unex.es;

aplaza@unex.es; jplaza@unex.es). R. Fernandez-Beltran is with the

Institute of New Imaging Technologies, University Jaume I, 12071

Castellón de la Plana, Spain. (e-mail: rufernan@uji.es).

veloped to tackle the HU problem as a latent topic-based

approach in which both endmembers and abundances can

be simultaneously estimated according to the semantics

encapsulated by the latent topic space. However, statis-

tical models usually lead to computationally demanding

algorithms and the computational time of DEpLSA is

often too high for practical use, in particular when the

dimensionality of the HS data cube is large. In order to

mitigate this limitation, this paper resorts to graphical

processing units (GPUs) to provide a new parallel version

of DEpLSA, developed using the NVidia Compute Device

Unified Architecture (CUDA). Our experimental results,

conducted using four well-known HS datasets and two

different GPU architectures (GTX 1080 and Tesla P100)

show that our parallel versions of DEpLSA and the tradi-

tional pLSA approach can provide accurate HU results fast

enough for practical use, accelerating the corresponding

serial versions in at least 30x in the GTX 1080 and up to

147x in the Tesla P100 GPU, which are quite significant

acceleration factors that increase with image size, thus

allowing for the possibility of fast processing of massive

HS data repositories.

Index Terms—Graphics Processing Unit (GPU), Hyper-

spectral Unmixing (HU), probabilistic generative models,

probabilistic Latent Semantic Analysis (pLSA). Dual-Depth

Sparse pLSA (DEpLSA).

November 7, 2019 DRAFT

2

I. INTRODUCTION

Over the past years, hyperspectral (HS) imaging has

shown to be an excellent tool to deal with many different

remote sensing problems [1], [2]. From detailed Earth

surface classification [3]–[5], through fine-grained land

cover mapping [6], [7], to precise material identification

and analysis [8], [9], there are multiple domains within

the remote sensing field where the spectral-spatial pre-

cision of air-borne and space-borne HS data becomes

particularly useful. In particular, one of the most relevant

research areas to uncover sub-pixel information from HS

images is the so-called Hyperspectral unmixing (HU)

task [10], [11]. Specifically, HU pursues the objective

of decomposing a HS remotely sensed scene into two

main constitutive components: (i) endmembers and (ii)

abundances. On the one hand, endmembers represent

the spectral signatures of the most spectrally pure com-

ponents contained in the scene. On the other hand,

fractional abundances provide the corresponding amount

of each spectrally pure component that is present at each

image pixel.

In the literature, extensive research work has been con-

ducted to effectively deal with the ill-posed nature of the

HU problem [10]. One of the most popular types of HU

techniques is the geometrical approach, which makes use

of the own data geometry to estimate both endmembers

and abundances. In this regard, the vertex component

analysis (VCA) [12] considers that spectral signatures

describe a minimum volume simplex that contains the

data, hence the HU task can be efficiently carried out

using the convex geometry discipline. Other geometrical

methods, such as the minimum volume simplex analysis

(MVSA) [13], introduce some additional constraints on

this convex scheme to improve the model robustness.

Another relevant group of HU techniques is the statistical

approach. More specifically, this kind of methods deal

with the unmixing problem considering endmembers and

abundances as probability distributions. In the literature,

it is possible to find different statistical methods, such as

[14] and [15] which model the HU task using Dirichlet

and Gaussian distributions, respectively. Additionally,

there are other unmixing techniques available that cope

with the HU problem from a matrix decomposition

perspective, such as the non-negative matrix factorization

(NMF) [16] and the robust collaborative non-negative

matrix factorization (R-CoNMF) [17].

To some extent, all these methodologies have shown

to be effective to unmix HS remote sensing data un-

der specific conditions [11]. Whereas geometrical ap-

proaches struggle at uncovering spectral signatures on

highly mixed scenarios, statistical and decomposition

techniques provide a more powerful HU scheme since

the HS data can be managed from a more general

perspective [10]. Furthermore, some recent research lines

show the advantages of using the so-called semantic

representations when processing HS data [18], being

probabilistic topic models an emerging statistical tech-

nology within the remote sensing field [19]–[21]. In

general, topic models are a kind of probabilistic genera-

tive models that become particularly useful to represent

visual data at a higher abstraction level by means of their

hidden semantic patterns [22]. As a result, these models

have been recently used to uncover complex spectral

relationships while providing competitive advantages in

the HU domain [23].

More specifically, the work presented in [23] defines

a novel probabilistic topic model, called Dual-Depth

Sparse probabilistic Semantic Analysis (DEpLSA) –

inspired by the traditional pLSA [24]– which is specifi-

cally designed to effectively uncover spectral signatures

and fractional abundances from real HS remotely sensed

data. In fact, this seminal work shows the potential of

probabilistic generative models and also the advantages

November 7, 2019 DRAFT

3

of DEpLSA with respect other state-of-the-art unmixing

techniques. However, there is a key factor that may limit

its practical usage in actual remote sensing operational

environments: the computational cost. Note that proba-

bilistic generative models, in general, and DEpLSA, in

particular, have a high computational complexity due

to the NP-complete nature of the Bayesian learning

process [25], [26]. As a result, more research work is

still required to study the viability of integrating these

kinds of procedures in actual remote sensing production

enviroments.

Despite the fact that some works in the literature try

to exploit different parallel techniques for some related

probabilistic generative architectures [24], [27], [28], the

specific DEpLSA nature together with the especial com-

plexity of the HU field generate particular demands that

cannot be addressed from a general purpose perspective.

Concretely, the advances in the systems used to capture

hyperspectral images have increased their complexity.

Such complexity makes traditional methods based on

single and multi-core CPUs outdated, as they cannot

cope with the required computational needs in order

to process large volumes of data. In this situation, our

implementation becomes a reliable alternative, capable

of processing large volumes of data in a reasonable

amount of time. Note that processing remotely sensed

data using parallel architectures faces some technical

challenges which are not present in other fields [29],

besides the inherent spatial-spectral intricacy of the HS

domain make necessary to develop and test target-based

efficient implementations. Precisely, this is the gap that

motivates this work.

In this scenario, the work presented here proposes a

new graphic processing unit (GPU)-based parallel imple-

mentation of the HU method defined in [23], in order to

enable the use of the newly DEpLSA unmixig model

in actual operational environments of different Earth

Observation programs and missions. Specifically, we

take advantage of the Expectation-Maximization (EM)

optimization algorithm employed in [23] to integrate

different parallel optimizations based on the Compute

Unified Device Architecture (CUDA)1 platform for GPU

hardware devices. Our work is largely driven by the

success of several available CUDA implementations of

HS processing algorithms on GPU devices. For instance,

in [30], an automatic target detection and classification

algorithm is accelerated. In [31], a highly parallel GPU

architecture for lossy hyperspectral image compression

is presented. The work in [32] presents a multi-GPU

implementation of the MVSA algorithm for spectral

unmixing purposes. A massively parallel GPU design

is discussed in [33] for target detection purposes. Other

advanced algorithms for HS data exploitation have been

successfully accelerated on GPUs using the CUDA ar-

chitecture, including composite kernels [34], iterative-

constrained endmember extraction [35], support vector

machines [36], real-time unmixing [37], [38], HS sub-

space identification [39], spatial-spectral preprocessing

[40], segmentation [41], linear unmixing chains [42],

isometric mapping [43], registration [44] or spatially

adaptive classification [45], among many others [46].

Note the wide acceptance of GPU-based implementa-

tions of HS unmixing algorithms [47], which led us

to consider GPUs as a potentially efficient solution for

accelerating our DEpLSA algorithm.

In the experimental part of the work, we compare

the proposed GPU DEpLSA implementation for HS un-

mixing purposes with a baseline single-core version and

also a parallel multi-core implementation of the DEpLSA

model. The obtained quantitative and qualitative results,

using four real HS datasets, reveal the performance

advantages of the proposed approach for real-life remote

1https://developer.nvidia.com/cuda-zone

November 7, 2019 DRAFT

4

sensing production chains.

The remainder of the paper is organized as follows.

Section II describes the background behind the DEpLSA

unmixing model. Section III presents in detail the pro-

posed GPU-based parallel implementation. Section IV

provides the experimental results and discussion. Finally,

section V concludes the work with some remarks and

hints at plausible future research lines.

II. HU DEPLSA-BASED MODEL

The DEpLSA approach [23] can be considered a sta-

tistical HU method based on the concept of latent topics

[48], where the unmixing problem is faced as a latent

topic-based approach, aiming at estimating endmembers

and their corresponding fractional abundances, according

to the semantics encapsulated by the latent topic space.

In particular, it defines a semi-generative HU model by

considering two latent context variables, i.e. z and z′, as-

sociated to different abstraction levels when conducting

the unmixing process over the input HS image. As it can

be ssen in the DEpLSA model graphical representation

(Fig. 1a), image pixels are represented by the observable

random variable d, the dual-hierarchy of spectral patterns

are described by the hidden variables z′ (deep-topics,

used to generate the semantic representation of the input

spectral data) and z (restricted-topics, used to learn

endmembers and abundances in the semantic space), and

the input pixel spectra are encapsulated by the observable

random variable w. In addition, M is the total number of

input pixels and Nd represents the number of reflectance

activations within each pixel spectra. Considering that rd

and rz are two diverging regularization factors to guar-

antee a certain sparsity constraint, fractional abundances

are described by the conditional probability p(z|d) and

spectral signatures correspond to the p(w|z) probability

distribution.

(a) DEpLSA

(b) DEpLSA-1

(c) DEpLSA-2

Fig. 1. Original DEpLSA model (a) and two-phase model relaxation

(b)-(c).

From a practical point of view, the main advantage

of DEpLSA unmixing model is the utilization on the

deep-topic space (z′) to generate a high-dimensional

semantic characterization of the original data using K ′

components. Then, the restricted-topics (z) are applied

to effectively infer the K endmembers and the corre-

sponding fractional abundance maps over this semantic

space. However, this dual-depth architecture implies an

important computational cost since an additional degree

of freedom is introduced when capturing the relation-

ships between z and z′ random variables. Therefore, it

is necessary to apply the DEpLSA unmixing model using

the following two-step model relaxation:

• DEpLSA-1 (Fig. 1b) where the deep-topic prob-

ability distributions with K ′ components, λ′ ∼

p(z′|d) and θ′ ∼ p(w|z′), are estimated using the

input HS data.

• DEpLSA-2 (Fig. 1c) where the deep-topic ran-

November 7, 2019 DRAFT

5

dom variable (z′) becomes observable being ap-

proximated by the previous λ′ distribution. In this

way, the fractional abundances can be inferred as

λ′ ∼ p(z′|d) and the K spectral signatures can be

computed using both θ′ and θ.

Note that this model relaxation reduces the original

DEpLSA unmixing model complexity since the dual-

hierarchy of patterns is unfolded in two sequential

steps by assuming an uniform prior probability over

deep-topics. Specifically, both steps are estimated by

maximizing the complete log-likelihood using the EM

algorithm [49]. After applying the Jensen’s inequality

to the log-likelihood term, inserting the appropriate

Lagrange multipliers, computing the partial derivatives

and isolating the corresponding model parameters, it is

possible to derive the following equations for the EM-

based optimization,

p(z′|w, d) =
p(w|z′)p(z′|d)∑

z′

p(w|z′)p(z′|d)
(1)

θ′ ∼ p(w|z′) =

∑

d

n(w, d)p(d)p(z′|w, d)

∑

w

∑

d

n(w, d)p(d)p(z′|w, d)
(2)

λ′ ∼ p(z′|d) =

∑

w

n(w, d)p(z′|w, d)

∑

z′

∑

w

n(w, d)p(z′|w, d)
(3)

p(z|z′, d) =
p(z′|z)p(z|d)∑

z

p(z′|z)p(z|d)
(4)

θ ∼ p(z′|z) =

∑

d

n(z′, d)p(d)p(z|z′, d)− δz/K
′

∑

z′

∑

d

n(z′, d)p(d)p(z|z′, d)
(5)

λ ∼ p(z|d) =

∑

z′

n(z′, d)p(z|z′, d)− δd/K

∑

z

∑

z′

n(z′, d)p(z|z′, d)
(6)

where Eqs. (1)-(3) correspond to the E-step and M-

step of DEpLSA-1, and Eqs. (4)-(6) are the ones for

DEpLSA-2. Additionally, K is the number of endmem-

bers, K ′ represents the number of component of the

deep-topic space (K ′ >> K), n(w, d) are the original

reflectance pixel activations and n(z′, d) is approximated

by λ′. Regarding the EM procedure itself, it is performed

as follows. Initially, the corresponding model parameters

are initialized. Then, E-step and M-step are alternated

until the model converges, whether using a 10−6 sta-

bility threshold in log-likelihood or a maximum of 103

EM iterations. Algorithms 1-2 show a more detailed

description of the procedures, summarizing their main

computations.

Algorithm 1 EM-based proceduce for DEpLSA-1

Input n(w, d): Input reflectance pixel activations

Input K ′: High-dimensional semantic space com-

ponents

Output θ′: p(w|z′)

Output λ′: p(z′|d)

1: procedure DEPLSA1(n(w, d), K ′)

2: I = 0

3: T =∞

4: L = 0

5: λ′ ← Random initialization

6: θ′ ← Random initialization

7: while (I < 103) & (T > 10−6) do

8: p(z′|w, d)← Eq.1

9: p(w|z′)← Eq.2

10: p(z′|d)← Eq.3

11: ℓc ← Compute log-likelihood

12: T = ℓc − L

13: L = ℓc

14: I ++

15: end while

16: end procedure

After DEpLSA-1 and DEpLSA-2 models have been

November 7, 2019 DRAFT

6

Algorithm 2 EM-based proceduce for DEpLSA-2

Input n(z′, d): λ′

Input K: Number of endmembers

Input rd: Sparsity constraint for d

Input rz: Sparsity constraint for z

Output θ: p(z′|z)

Output λ: p(z|d)

1: procedure DEPLSA2(n(z′, d), K, rd, rz)

2: I = 0

3: T =∞

4: L = 0

5: λ′ ← Uniform initialization

6: θ′ ← Random initialization

7: while (I < 103) & (T > 10−6) do

8: p(z|z′, d)← Eq.4

9: p(z′|z)← Eq.5

10: p(z|d)← Eq.6

11: ℓc ← Compute log-likelihood

12: T = ℓc − L

13: L = ℓc

14: I ++

15: end while

16: end procedure

sequentially applied and successfully converged, the final

estimation for the fractional abundances corresponds to

parameter λ ∼ p(z|d) and the endmembers can be

factorized as shown in Eq. (7).

p(w|z) =
∑

z′

DEpLSA-1

p(w|z′)

DEpLSA-2

p(z′|z) = Θ′Θ. (7)

III. GPU PARALLEL IMPLEMENTATION FOR

HYPERSPECTRAL UNMIXING BASED ON CUDA

In this section we provide a detailed description of

the developed parallel implementation of proposed algo-

rithm. In particular, we will focus on providing a parallel

implementation of the most time consuming operations

of the DEpLSA algorithm. The memory allocation and

I/O transfer between the host (CPU) and the devices

(GPU) will also be optimized.

In this context, we will focus on EM algorithm

which, as mentioned above, can be considered as the

basis of dpLSA algorithm and represents its most com-

putationally intensive part. All the operations of this

algorithm are computations on probability matrices and,

therefore, a simple yet efficient strategy to parallelize

this algorithm is to partition matrix operations across

different cores of a many-core device, which will also

enable the redistribution of workloads at execution time.

Such runtime redistributions are possible thanks to the

way CUDA manages the computing threads. Specifi-

cally, CUDA creates a two-layer hierarchy, where the

first one contains a grid that holds a per-kernel fixed

number of blocks in a one-dimensional (1-D), 2-D or

3-D way. Inside of each block, there is a pool of threads

whose dimensionality can also be from one to three

dimensions; such dimensionality is also parametrized

per-kernel. Since those dimensions are parameters of

each kernel call, they can be adjusted to fit the output

matrix dimensionality, guaranteeing per-thread complete

atomicity. A visual example of the hierarchical strategy

adopted by CUDA to manage threads is provided in Fig.

2

A. Optimization of the Memory Allocation and I/O

Transfer

In DEpLSA, the data computed across the EM algo-

rithm is stored inside three matrices: θ (endmembers),

λ (abundances), and the original pixel vectors. These

matrices need to be allocated inside the GPU (device). In

this regard, there are two possibilities: i) making constant

input/output (I/O) transfers by holding only the necessary

matrices inside the device memory, or ii) storing all data

in video memory across the entire computing process.

November 7, 2019 DRAFT

7

Fig. 2. Graphical illustration of CUDA 2-D grid and block hierarchy.

While the first alternative is intended to optimize mem-

ory management in massive data scenarios, it can suffer

from significant bottlenecks as a result of massive data

transfers, so strategy ii) has been adopted in order to

minimize the transfer time in our implementation.

It is also important to emphasize that our implementa-

tion may face challenges when handling extremely large

hyperspectral images that need to be stored in the device

(GPU) memory. Alternatively, there are some techniques

that can alleviate this situation, e.g. by keeping the I/0

transfers constant during the analysis. This sacrifices

some efficiency in terms of time, but also allows larger

data sets to be processed. Specifically, this can be done

by storing in device memory just the matrices that

are strictly required for the actual step executed by

the kernel. Another possibility is to use a batch-based

procedure, in which each iteration is split in terms of

data and only a subset of pixels are loaded in memory

and processed at a given moment. As said before, all

these methods also have a cost in terms of performance.

B. Parallel Optimization of the Expectation Step

As explained above, the main goal of this step is to

generate a new probabilistic latent space, which is com-

puted based on the actual probabilities carried out by the

matrices λ (abundances) and θ (endmembers) and stored

into a 3-D structure called p, as shown in Eq. 1. Since

this structure conveys the computing results, atomicity

over each index needs to be guarantee. To achieve this,

the kernel’s dimensions are set to ensure each thread is

in charge of processing always the same p value and

store denominators in the per-block shared memory, as

Fig. 3 shows. Algorithm 3 shows the pseudocode of our

parallel implementation of the Expectation step. As it

can be seen, the thread index references the value of

matrices processed by this particular thread, and block

index references the per-block shared denominator.

Fig. 3. Device state while executing the kernel corresponding to the

Expectation step. Grid hierarchy and memory states are shown in this

diagram.

November 7, 2019 DRAFT

8

Algorithm 3 Expectation step kernel

1: procedure KERNEL

2: for Block in Grid[X,Y] do ⊲ In parallel

3: den← 0 ⊲ Per-block shared

4: for Thread in Block[Z] do ⊲ In parallel

5: P [thread]← λ[thread]× θ[thread]

6: den[block]← den[block] + P [thread] ⊲

Atomic

7: P [thread]← P [thread]/den[block]

8: end for

9: end for

10: end procedure

As seen above, the parallelization of the Expectation

step highly relies on computing each value of P matrix

in parallel. In order to achieve this task, we use a

simple kernel structure that relies on the per-block shared

memory to handle the common block denominators that

will divide the per-core computed value of the P , based

on λ and θ. This shared value is atomically increased

and computed as the sum of computed core, P .

C. Parallel Optimization of the Maximization Step

Instead of a single step in the sequenatial implemen-

tation, our CUDA implementation of the maximization

step partitions the entire process into a subset of kernels

in order to change the grid dimensions as needed to

preserve atomicity at runtime.

First, the endmember matrix (θ) is updated by chain-

ing a subset of kernels, dividing Eq. (2) into three main

steps:

1) The first step updates the fraction numerator (this

is performed by the kernel described in Algorithm

4). As this value is computed using the full pixel

information, and the number of pixels exceeds the

maximum number of per-block cores, there needs

to be a for loop inside the kernel in order to

compute theta.

2) The second step performs the sums on the de-

nominator (this is accomplished by the kernel in

Algorithm 5). This kernel just computes the de-

nominator as a subset of the per-column θ values.

3) The last step performs the division and assigns it

into θ (this is done by the kernel in Algorithm 6).

The last step of this process consists of dividing

the outputs of the first two kernels atomically into

each core.

In this case, the dependencies among the operands

of the denominator summatory happen above block-

level, thus making the use of shared memory impossible.

In addition, the block dimension is directly related to

the total amount of pixels, which is greater than the

maximum number of available threads per block that

can be allocated (1024). Therefore, a for-loop inside

the kernel is needed, which has a slight effect on

the final performance of the algorithm. For illustrative

purposes, Fig. 4 shows an overview diagram illustrating

this process.

November 7, 2019 DRAFT

9

Algorithm 4 Endmembers (θ) numerator computing

kernel
1: procedure KERNEL

2: for Block in Grid[M,K] do ⊲ In parallel

3: for Thread in Block[1024] do ⊲ In

parallel

4: θ[block]← 0

5: for step in steps] do

6: aux ← (X[step] × P [step]) −

regularizer

7: if aux > 0 then

8: θ[block]← aux ⊲ Atomic

9: end if

10: end for

11: end for

12: end for

13: end procedure

Algorithm 5 Endmembers (θ) denominator computing

kernel
1: procedure KERNEL

2: for Block in Grid[K] do ⊲ In parallel

3: for Thread in Block[M] do ⊲ In parallel

4: den[block.z]← den[block.z]+θ[thread]

5: end for

6: end for

7: end procedure

Algorithm 6 Endmembers (θ) division computing kernel

1: procedure KERNEL

2: for Block in Grid[M, K] do ⊲ In parallel

3: if den[block.z] 6= 0 then

4: θ[thread]← θ[thread]/den[block.z]

5: else

6: θ[thread]← 1/M

7: end if

8: end for

9: end procedure

Algorithm 7 Abundances (λ) computing kernel

1: procedure KERNEL

2: for Block in Grid[X,Z] do ⊲ In parallel

3: den← 0 ⊲ Per-block shared

4: for Thread in Block[Y] do ⊲ In parallel

5: aux ← (X[step] × P [step]) −

regularizer

6: if aux > 0 then

7: λ[block]← aux ⊲ Atomic

8: end if

9: den← den+X[thread] ⊲ Atomic

10: if den 6= 0 then

11: λ[thread]← θ[thread]/den

12: else

13: λ[thread]← 1/K

14: end if

15: end for

16: end for

17: end procedure

After the endmember-related computations are com-

pleted, the Maximization step tries to find the best

abundances from the latent space computed in the Ex-

pectation step, in a very similar way as the calculation

for the endmembers. However, as the kernel block size

in charge of computing the abundances depends on the

November 7, 2019 DRAFT

10

Fig. 4. Full pipeline describing the endmember-related computations on the Maximization step. This diagram covers the entire process for

computing the values of the endmember matrix (θ) in Grid #3 by dividing the returned values from Grids #1 and #2.

number of bands of the input image, it is easier to

ensure atomicity in this case, creating a kernel stack

that performs the calculation of the whole Eq. (3). In

this case, each block is considered as a matrix with

dimensions N × K, containing a vector of M threads

per block, as shown in Fig. 5. A pseudocode for the

kernel that implements this step is given in Algorithm

7. As it can be seen, the operations are similar to those

performed by Algorithms 4-6. Here, as it was already

the case for the computation of the Expectation kernel,

we rely on the per-block shared memory to compute the

new abundances. A subset of image pixels is used to

divide the newly computed λ values among the cores,

based on the iteration latent space. .

IV. EXPERIMENTS

A. Enviroment

In order to evaluate the computational performance

of the DEpLSA-GPU implementation (and also of a

Fig. 5. Full pipeline describing the abundance-related computations

on the Maximization. This diagram covers the entire process from

computing the λ values based on the input image data and the predicted

latent space from the Expectation step.

November 7, 2019 DRAFT

11

GPU implementation of the traditional pLSA), serial

versions (that will be used as a baseline for the speedup

calculations) have been implemented and executed in

a host hardware environment with a 6th Generation

Intel® Core™i7-6700K processor with 8M of Cache and

up to 4.20GHz (4 cores/8 way multi-task processing),

installed over an ASUS Z170 pro-gaming motherboard.

The available memory is divided into 40GB of DDR4

RAM with a serial speed of 2400MHz and a Toshiba

DT01ACA HDD with 7200RPM and 2TB of storage

capacity. The paralellel implementations of pLSA-GPU

and DDpLSA-GPU have been executed in two different

GPUs:

1) An NVIDIA GeForce GTX 1080, composed by

2560 CUDA cores, with 8GB GDDR5X of video

memory and 10 Gbps of memory frequency (re-

ferred to hereinafter as GPU1).

2) A Tesla P100 GPU, with 3584 CUDA cores, 16GB

HBM2 video memory and 12 Gbps of memory

frequency (referred to hereinafter as GPU2).

In order to compare our GPU versions with a common

CPU implementation, experiments have been conducted

against the serial baselines, which run on top of a

C++ library that allows tensor work called xtensor.

This library optimizes all matrix-related computations

and assignment tasks. On this version, the kernels in

Algorithms 3-7 are implemented in a very similar way,

being the only difference that the tasks does not run in

parallel.

Two different serial versions have been carried out,

both of them compiled with the GNU C++ (g++) com-

piler. The first one is a pure serial version, without

any kind of optimization and can be considered as the

baseline implementation, while the second one has been

compiled using −O3 and −xAV X in order to pro-

vide automatic vectorization. We refer to this optimized

version hereinafter as OP-DEpLSA (with the optimized

pLSA-based version being referred to as OP-pLSA). By

running experiments against this full set of versions, we

are able to provide results for non-parallel, data-parallel

and massively-parallel versions of our algorithms.

B. Datasets

In this work, the following four real hyperspectral

images have been used in the experimental validation

(Fig. 6):

• Samson (Fig. 6.a) [50] is a popular hyperspectral

dataset which contains 952 × 952 pixels and 156

bands, ranging from 380 nm to 2500 nm wave-

lengths. In particular, a region of interest with

95×95 pixels has been selected from the (252,332)-

th coordinate, resulting in a final size of 95× 95×

156. The Samson image includes three different

endmembers: soil, tree and water.

• Jasper Ridge (Fig. 6.b) [50] is another common

hyperspectral image with 512 × 614 pixels and

224 channels, covering the spectral range from 380

nm to 2500 nm. Specifically, we have considered

a region of 100 × 100 pixels starting from the

(105,269)-th coordinate. Additionally, channels 1-3,

108-112, 154-166 and 220-224 have been removed

due to atmospheric effects, obtaining a final size of

100× 100× 198. The Jasper dataset contains four

different spectrally pure signatures: road, soil, water

and tree.

• Urban (Fig. 6.c) [50] is hyperspectral dataset which

comprises 307×307 pixels and a total of 210 bands

from the 400 nm to the 2500 nm wavelength. In

order to avoid atmospheric effects, bands 1-4, 76,

87, 101-111, 136-153 and 198-210 bands have been

removed, obtaining a final size of 307× 307× 162.

The considered Urban scene includes four different

pure materials: asphalt, grass, tree and roof.

November 7, 2019 DRAFT

12

• Cuprite (Fig. 6.d) [50] is probably one of the

most popular and challenging images in the area

of hyperspectral unmixing. The original dataset

contains 224 spectral channels. However, a total

of 188 bands have been considered in this work,

after removing the noisy channels (1-2 and 221-

224) and the water absorption ones (104-113 and

148-167). In addition, the considered region of

interest includes 250 × 190 pixels, for a final size

of 250×190×188. The number of endmembers in

the considered region of interest is twelve: Alunite,

Andradite, Buddingtonite, Dumortierite, Kaolinite1,

Kaolinite2, Muscovite, Montmorillonite, Nontron-

ite, Pyrope, Sphene and Chalcedony.

(a) Samson (b) Jasper Ridge (c) Urban (d) Cuprite

Fig. 6. Hyperspectral datasets considered in the experiments.

C. Experimental Assessment

In order to asses and quantify the accuracy of the pro-

posed hyperspectral unmixing technique, two different

widely adopted metrics have been considered: Spectral

Angle Distance (SAD) and Root Mean Squared Error

(RMSE). Whereas SAD (Eq. 8) aims at quantitatively

asses the K spectral signatures by computing the average

spectral angle between the estimated endmembers (θ̃)

and the ground-truth ones (θ), RMSE (Eq. 9) evaluates

the quality of the fractional abundance maps by cal-

culating the absolute difference between the estimated

abundances (λ̃) and the ground-truth ones (λ).

SAD(θ̃, θ) =
1

K

K∑

i

arccos
θ̃i · θi

||θ̃i|| ||θi||
. (8)

RMSE(λ̃, λ) =

√√√√ 1

M

M∑

i

(λ̃i − λi)2. (9)

D. Results and Discussion

In this subsection we evaluate the performance of our

implementations from the viewpoing of both unmixing

accuracy and computational performance. Fig. 7 shows

the obtained spectral signatures of the endmembers in

the four considered datasets, employing the proposed

method. These signatures will be considered as the

ground-truth endmembers (θ) in the SAD calculations,

while their corresponding abundance maps (λ) will be

used as the ground-truth abundance maps for the RMSE

calculations.

Table I shows the SAD-based and RMSE-based scores

obtained after comparing the true versus estimated

endmembers and abundance maps for each considered

scene, respectively. For each dataset, we report the scores

obtained by the original versions (pLSA, DEpLSA) and

the GPU implementations (GPUpLSA, GPUDEpLSA).

As it can be seen in the table, the value of the metrics

depends on the complexity of the scenes (given by the

number of endmembers K). In all cases, the SAD and

RMSE values obtained by the original methods and

their corresponding GPU versions is very similar, which

indicates that the GPU versions provide almost the same

results as the original counterparts. It should be noted

that, for the Cuprite scene, the RMSE scores could

not be computed as this scene only has ground-truth

endmembers available (obtained from the well-known

USGS library of mineral signatures), but there are no

ground-truth fractional abundance maps that can be used

for the calculation of the RMSE scores in this particular

case.

November 7, 2019 DRAFT

13

(a) Samson (b) Jasper Ridge (c) Urban (d) Cuprite

Fig. 7. Obtained spectral signatures of the available endmembers in the four considered datasets: (a) Samson, (b) Jasper Ridge, (c) Urban and

(d) Cuprite.

TABLE I

ACCURACY EVALUATION OF THE SERIAL AND PARALLEL VERSIONS OF PLSA AND DEPLSA IN TERMS OF SPECTRAL ANGLE DISTANCE

(SAD) AND ROOT MEAN SQUARED ERROR (RMSE) ABUNDANCE ASSESSMENT (DIFFERENT DATASETS ARE SHOWN IN ROWS AND

UNMIXING METHODS IN COLUMNS).

Datasets Members (K)

Spectral Angle Distance - SAD (×10
−2) Root Mean Squared Error - RMSE (×10

−2)

(A) State of art methods (B) GPU parallel versions (C) State of art methods (D) GPU parallel versions

pLSA DEpLSA GPUpLSA GPUDEpLSA pLSA DEpLSA GPUpLSA GPUDEpLSA

Real data

Samson 3 19.27 ±13.1 4.27 ±1.09 12.72 ±0.39 5.22 ±0.54 19.51 ±6.06 5.49 ±1.83 16.12 ±0.65 5.23 ±0.50

Jasper 4 30.41 ±4.68 15.23 ±13.06 32.99 ±1.15 17.55 ±2.36 20.36 ±5.20 15.56 ±4.640 19.85 ±1.03 14.82 ±1.59

Urban 4 33.24 ±18.83 13.84 ±13.41 37.56 ±5.05 14.18 ±1.49 17.48 ±4.79 13.65 ±4.69 18.00 ±1.50 11.64 ±0.76

Cuprite 12 44.57 ±33.56 20.02 ±31.54 45.08 ±1.18 26.71 ±2.03 - - - -

TABLE II

EXECUTION TIMES (IN SECONDS) FOR THE SERIAL (WITH AND WITHOUT OPTIMIZATION FLAGS) AND PARALLEL (EXECUTED ON THE TWO

CONSIDERED GPUS) VERSIONS OF PLSA AND DEPLSA (DIFFERENT DATASETS ARE SHOWN IN ROWS).

Dataset K pLSA OP-pLSA GPU1-pLSA GPU2-pLSA Speedup Optimized Speedup GPU1 Speedup GPU2

Samson 3 160.43 105.95 4.70 2.94 1.51 34.14 54.61

Jasper 4 264.44 198.87 8.15 4.61 1.33 32.45 57.43

Urban 4 3167.61 2643.43 88.96 39.76 1.20 35.61 79.68

Cuprite 12 5584.27 4622.68 163.66 55.51 1.21 34.12 100.60

Dataset K DEpLSA OP-DEpLSA GPU1-DEpLSA GPU2-DEpLSA Speedup Optimized Speedup GPU1 Speedup GPU2

Samson 3 2440.85 3404.03 61.23 21.89 1.03 39.86 111.51

Jasper 4 2377.21 3331.28 90.09 31.17 1.02 37.78 109.21

Urban 4 41282.36 40158.00 - 280.01 1.03 - 147.43

Cuprite 12 26990.26 26791.35 - 198.68 1.01 - 135.85

For illustrative purposes, Fig. 9 shows the abundace

maps and the absolute distance scores obtained for one

particular dataset: the Samson scene in Fig. 6(a). Specif-

ically, Figs. 9(a)-(c) show the ground truth abundances

corresponding to the three endmembers in Fig. 7(a). Figs.

9(d)-(f) show the fractional abundance maps obtained

by the DEpLSA algorithm (executed on the Tesla P100

GPU). Finally, Figs. 9(g)-(i) show the absolute distance

between the estimated and real abundances for each of

the three considered endmembers, where dark colors

indicate lower errors. As it can be seen, the distances

between the true and estimated abundances are very low,

being demonstrated quantitatively in the Table I where

the RMSE scores are also very low, indicating that the

DEpLSA algorithm (executed in the GPU) does a very

good job in the task of estimating abundances that are

November 7, 2019 DRAFT

14

TABLE III

PER-KERNEL EXECUTION TIME FOR BOTH PLSA AND DEPLSA IMPLEMENTATIONS ON THE TWO CONSIDERED GPUS

Dataset Algorithm

Runtime (×10
−5 seconds)

GPU1 (GTX 1080) GPU2 (TESLA P100)

CPU→GPU Expectation Theta Lambda GPU→CPU CPU→GPU Expectation Theta Lambda GPU→CPU

Samson
pLSA 63.90 26.91 11.36 12.25 1.26 42.22 24.02 5.22 4.13 2.23

DEpLSA 93.82 38.38 24.60 16.17 1.27 69.19 34.75 8.07 5.00 2.00

Jasper
pLSA 104.39 35.45 33.51 15.15 1.48 54.50 34.57 10.62 5.11 2.37

DEpLSA 129.46 45.15 40.79 23.73 1.41 74.9 39.61 12.25 7.02 2.49

Urban
pLSA 726.08 323.28 530.55 129.90 4.97 253.84 232.65 126.93 31.92 6.65

DEpLSA - - - - - 444.63 352.73 214.05 60.04 3.39

Cuprite
pLSA 1114.99 317.66 1073.79 256.09 6.40 358.89 155.13 299.21 95.62 8.70

DEpLSA - - - - - 511.04 205.22 414.34 120.51 3.92

Fig. 8. Graphic diagram showing the percentage of time that each of

the executed kernels consume on NVIDIA GeForce GTX 1080 (left)

and NVIDIA Tesla P100 (right) when processing the Cuprite dataset.

Is important to remark that I/O transfers are executed once, meanwhile

kernels are executed iteratively, so the times in the diagrams have been

weighted accordingly.

TABLE IV

PER-KERNEL OCCUPANCY (TOTAL CORES USAGE) WHEN

ANALYZING THE CUPRITE DATASET ON GPU1.

Kernel name Occupancy (%)

Theta 100

Lambda 94

Expectation 50

very close to the true ones in this particular scene.

In order to evaluate the computational performance

of the GPU implementations, Table II shows the exe-

cution times (in seconds) for the serial versions (DE-

pLSA, pLSA), the optimized versions (OP-DEpLSA,

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Fractional abundance maps for the Samson dataset. (a)-(c)

Ground truth abundances for each of the three endmembers. (d)-(f)

Fractional abundance estimation for each of the three endmembers

obtained by the DEpLSA algorithm (executed on the Tesla P100

GPU). (g)-(i) Absolute distances between estimated and real fractional

abundances for each of the three considered endmembers, where dark

colors indicate lower errors.

OP-pLSA), and the parallel versions (implemented in

both GPU1 and GPU2 architectures). The speedups

achieved in these two GPU architectures are also dis-

played, together with the speedup obtained by the flag-

November 7, 2019 DRAFT

15

optimized versions with regards to the standard ones.

As shown by Table II, the optimization via flags already

provides some improvements in terms of computational

time. However, it is the use of GPU architectures that

leads to highly accelerated performance in all the cases.

While the speedups obtained in the GPU1 architecture

are around 30x (meaning that the code can be executed in

the GPU at least 30 times faster), the speedups obtained

in the GPU2 architecture can be up to 147x. These

are quite significant acceleration factors. At this point,

it is important to note that the times for DEpLSA in

the GPU1 architecture could not be recorded for the

Urban and Cuprite scenes, due to limitations in the video

memory of the GPU.

For illustrative purposes, Fig. 10 displays graphically

the speedups achieved by the GPU versions of pLSA and

DEpLSA in the two considered GPU architectures: GTX

1080 (GPU1) and Tesla P100 (GPU2), for the different

datasets considered in the experiments. As Fig. 10 shows,

the achieved speedups are higher in the Tesla P100

architecture. This observation is related to the number of

available cores (3584 in GPU2 versus 2560 in GPU1) as

well as to the available video memory (16 GB in GPU2

versus 8 GB in GPU1). The fact that the Urban and

Cuprite scenes cannot be processed in the GTX 1080 is

also related to this difference in video memory between

the two considered GPU architectures (8 GB vs 16 GB).

By looking at the results in the Tesla P100 GPU, one

can infer that the speedup increases with image size,

which is a highly desirable feature given the increasing

size and dimensionality of remotely sensed hyperspectral

data repositories.

Also, to provide a visual and in-depth assessment of

kernel performance, Table III illustrates how the kernels

perform individually. It is important to emphasize that

the transfers from the GPU to the CPU take more time

in the GPU2 environment (due to a CPU bottleneck),

since those CPUs are ARM-based and exhibit smaller

bandwidth as compared with the GPU1 environment.

In order to test the robustness of our GPU imple-

mentation, it is also important to provide some in-depth

performance indicators extracted from NVidia Visual

Profiler. The obtained profiler data (see Fig. 8) confirm

our introspection, explained in section III, that (due to the

use of 3D computations instead of matrix computations),

the Expectation kernel consumes most of the computing

time, meanwhile the kernels devoted to computing the

endmembers (#2 and #3) have minimal impact (i.e.,

kernel #1 kernel performs the majority of the compu-

tations). We also note that, as Table IV collects, our

implementation takes advantage of almost all GPU cores

the majority of execution time. It is important to remark

that lower occupancies are not always related with lower

performances.

V. CONCLUSIONS AND FUTURE LINES

In this work, we have introduced a new parallel

version of the pLSA algorithm for efficiently conducting

hyperspectral unmixing using the DepLSA model. Our

newly developed implementation is able to run in a

many-core specific platform (GPU). As a result, the

presented approach provides an efficient and effective

unmixing solution for actual remote sensing production

environments.

Our experiments, conducted over four real hyper-

spectral datasets and two different GPU architectures,

indicate that our many-core implementation takes full

advantage of core-level parallelism, optimizing the heavy

matrix computations involved in the process, achieving

very similar results as the serial counterparts in terms

of unmixing accuracy. It is also important to emphasize

that our pLSA implementation fully exploits all the GPU

capabilities, becoming more efficient with the latest-

generation GPUs.

November 7, 2019 DRAFT

16

(a) (b)

Fig. 10. Speedups achieved by the GPUpLSA (a) and GPUDEpLSA (b) regarding their serial versions (pLSA and DEpLSA, respectively), for

the four different datasets considered in the experiments.

As with any new approach, there are some unresolved

issues that may present challenges over time. In this

sense, future lines will cover some relevant developments

that were not included in the present study. Specifically,

multi-GPU support may allow to decrease even more the

computing time. Besides, considering a larger number

of dimensions in the first step may help to optimize

the DEpLSA results. Another future line worth being

considered is to adopt other specific hardware accel-

erators, such as the Intel Xeon Phi or reconfigurable

solutions like field programmable gate arrays (FPGAs),

which are currently more suitable than GPUs for onboard

exploitation [1], [51].

ACKNOWLEDGEMENT

The authors would like to take this opportunity to

gratefully thank the Associate Editor and the Anonymous

Reviewers for their outstanding comments and sugges-

tions, that greatly helped us to improve the technical

quality and presentation of our manuscript.

REFERENCES

[1] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders,

N. Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing

data analysis and future challenges,” IEEE Geoscience and

remote sensing magazine, vol. 1, no. 2, pp. 6–36, 2013.

[2] P. Ghamisi, N. Yokoya, J. Li, W. Liao, S. Liu, J. Plaza, B. Rasti,

and A. Plaza, “Advances in hyperspectral image and signal

processing: A comprehensive overview of the state of the art,”

IEEE Geoscience and Remote Sensing Magazine, vol. 5, no. 4,

pp. 37–78, 2017.

[3] J. Li, X. Zhao, Y. Li, Q. Du, B. Xi, and J. Hu, “Classification

of hyperspectral imagery using a new fully convolutional neural

network,” IEEE Geoscience and Remote Sensing Letters, vol. 15,

no. 2, pp. 292–296, 2018.

[4] M. Paoletti, J. Haut, J. Plaza, and A. Plaza, “A new deep

convolutional neural network for fast hyperspectral image

classification,” ISPRS Journal of Photogrammetry and Remote

Sensing, vol. 145, pp. 120 – 147, 2018, deep Learning RS

Data. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0924271617303660

[5] M. E. Paoletti, J. M. Haut, R. Fernandez-Beltran, J. Plaza, A. J.

Plaza, J. Li, and F. Pla, “Capsule Networks for Hyperspectral

Image Classification,” IEEE Transactions on Geoscience and

Remote Sensing, no. 99, pp. 1–15, 2018.

[6] A. Ma, Y. Zhong, D. He, and L. Zhang, “Multiobjective subpixel

land-cover mapping,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 56, no. 1, pp. 422–435, 2018.

[7] R. Fernandez-Beltran, J. M. Haut, M. E. Paoletti, J. Plaza,

A. Plaza, and F. Pla, “Multimodal probabilistic latent semantic

November 7, 2019 DRAFT

http://www.sciencedirect.com/science/article/pii/S0924271617303660
http://www.sciencedirect.com/science/article/pii/S0924271617303660

17

analysis for sentinel-1 and sentinel-2 image fusion,” IEEE Geo-

science and Remote Sensing Letters, vol. 15, no. 9, pp. 1347–

1351, 2018.

[8] D. Liu and L. Han, “Spectral curve shape matching using deriva-

tives in hyperspectral images,” IEEE Geoscience and Remote

Sensing Letters, vol. 14, no. 4, pp. 504–508, 2017.

[9] N. Li, X. Huang, H. Zhao, X. Qiu, R. Geng, X. Jia, and

D. Wang, “Multiparameter optimization for mineral mapping

using hyperspectral imagery,” IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, vol. 11, no. 4,

pp. 1348–1357, 2018.

[10] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du,

P. Gader, and J. Chanussot, “Hyperspectral unmixing overview:

Geometrical, statistical, and sparse regression-based approaches,”

IEEE journal of selected topics in applied earth observations and

remote sensing, vol. 5, no. 2, pp. 354–379, 2012.

[11] W.-K. Ma, J. M. Bioucas-Dias, T.-H. Chan, N. Gillis, P. Gader,

A. J. Plaza, A. Ambikapathi, and C.-Y. Chi, “A signal processing

perspective on hyperspectral unmixing: Insights from remote

sensing,” IEEE Signal Processing Magazine, vol. 31, no. 1, pp.

67–81, 2014.

[12] J. M. Nascimento and J. M. Dias, “Vertex component analysis: A

fast algorithm to unmix hyperspectral data,” IEEE transactions

on Geoscience and Remote Sensing, vol. 43, no. 4, pp. 898–910,

2005.

[13] J. Li, A. Agathos, D. Zaharie, J. M. Bioucas-Dias, A. Plaza,

and X. Li, “Minimum volume simplex analysis: A fast algorithm

for linear hyperspectral unmixing,” IEEE Transactions on Geo-

science and Remote Sensing, vol. 53, no. 9, pp. 5067–5082, 2015.

[14] J. M. Nascimento and J. M. Bioucas-Dias, “Hyperspectral un-

mixing based on mixtures of dirichlet components,” IEEE Trans-

actions on Geoscience and Remote Sensing, vol. 50, no. 3, pp.

863–878, 2012.

[15] A. Halimi, N. Dobigeon, J.-Y. Tourneret, and P. Honeine, “A new

bayesian unmixing algorithm for hyperspectral images mitigating

endmember variability,” in 2015 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2015, pp. 2469–2473.

[16] A. Huck and M. Guillaume, “Robust hyperspectral data unmixing

with spatial and spectral regularized nmf,” in 2010 2nd Workshop

on Hyperspectral Image and Signal Processing: Evolution in

Remote Sensing. IEEE, 2010, pp. 1–4.

[17] J. Li, J. M. Bioucas-Dias, A. Plaza, and L. Liu, “Robust col-

laborative nonnegative matrix factorization for hyperspectral un-

mixing,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 54, no. 10, pp. 6076–6090, 2016.

[18] Y. Itoh, S. Feng, M. F. Duarte, and M. Parente, “Semisupervised

endmember identification in nonlinear spectral mixtures via se-

mantic representation,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 55, no. 6, pp. 3272–3286, 2017.

[19] R. Fernandez-Beltran, P. Latorre-Carmona, and F. Pla, “Latent

topic-based super-resolution for remote sensing,” Remote Sensing

Letters, vol. 8, no. 6, pp. 498–507, 2017.

[20] R. Fernandez-Beltran, J. M. Haut, M. E. Paoletti, J. Plaza,

A. Plaza, and F. Pla, “Remote sensing image fusion using

hierarchical multimodal probabilistic latent semantic analysis,”

IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, vol. 11, no. 12, pp. 4982–4993, 2018.

[21] R. Fernandez-Beltran and F. Pla, “Sparse multi-modal probabilis-

tic latent semantic analysis for single-image super-resolution,”

Signal Processing, vol. 152, pp. 227–237, 2018.

[22] ——, “Latent topics-based relevance feedback for video re-

trieval,” Pattern Recognition, vol. 51, pp. 72–84, 2016.

[23] R. Fernandez-Beltran, A. Plaza, J. Plaza, and F. Pla, “Hy-

perspectral unmixing based on dual-depth sparse probabilistic

latent semantic analysis,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 56, no. 11, pp. 6344–6360, 2018.

[24] R. Wan, V. N. Anh, and H. Mamitsuka, “Efficient probabilistic

latent semantic analysis through parallelization,” in AIRS ’09

Proceedings of the 5th Asia Information Retrieval Symposium

on Information Retrieval Technology, 2009, pp. 432–443.

[25] D. M. Chickering, “Learning bayesian networks is np-complete,”

in Learning from data. Springer, 1996, pp. 121–130.

[26] R. Fernandez-Beltran and F. Pla, “Incremental probabilistic latent

semantic analysis for video retrieval,” Image and Vision Comput-

ing, vol. 38, pp. 1–12, 2015.

[27] E. K. Kouassi, T. Amagasa, and H. Kitagawa, “Efficient proba-

bilistic latent semantic indexing using graphics processing unit,”

Procedia Computer Science, vol. 4, pp. 382–391, 2011.

[28] Z. Liang, W. Li, and Y. Li, “A parallel probabilistic latent

semantic analysis method on mapreduce platform,” in IEEE

International Conference on Information and Automation (ICIA),

2013, pp. 1–10.

[29] Y. Ma, H. Wu, L. Wang, B. Huang, R. Ranjan, A. Zomaya, and

W. Jie, “Remote sensing big data computing: Challenges and

opportunities,” Future Generation Computer Systems, vol. 51, pp.

47–60, 2015.

[30] S. Bernabe, S. Lopez, A. Plaza, and R. Sarmiento, “GPU im-

plementation of an automatic target detection and classification

algorithm for hyperspectral image analysis,” IEEE Geoscience

and Remote Sensing Letters, vol. 10, no. 2, pp. 221–225, March

2013.

[31] L. Santos, E. Magli, R. Vitulli, J. F. Lopez, and R. Sarmiento,

“Highly-parallel GPU architecture for lossy hyperspectral image

compression,” IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 6, no. 2, pp. 670–681,

April 2013.

November 7, 2019 DRAFT

18

[32] A. Agathos, J. Li, D. Petcu, and A. Plaza, “Multi-GPU imple-

mentation of the minimum volume simplex analysis algorithm

for hyperspectral unmixing,” IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, vol. 7, no. 6,

pp. 2281–2296, June 2014.

[33] X. Li, B. Huang, and K. Zhao, “Massively parallel GPU design

of automatic target generation process in hyperspectral imagery,”

IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, vol. 8, no. 6, pp. 2862–2869, June 2015.

[34] Z. Wu, J. Liu, A. Plaza, J. Li, and Z. Wei, “GPU implementation

of composite kernels for hyperspectral image classification,”

IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 9,

pp. 1973–1977, Sep. 2015.

[35] E. M. Sigurdsson, A. Plaza, and J. A. Benediktsson, “GPU im-

plementation of iterative-constrained endmember extraction from

remotely sensed hyperspectral images,” IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, vol. 8,

no. 6, pp. 2939–2949, June 2015.

[36] K. Tan, J. Zhang, Q. Du, and X. Wang, “GPU parallel imple-

mentation of support vector machines for hyperspectral image

classification,” IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 8, no. 10, pp. 4647–4656,

Oct 2015.

[37] E. Torti, G. Danese, F. Leporati, and A. Plaza, “A hybrid CPU-

GPU real-time hyperspectral unmixing chain,” IEEE Journal

of Selected Topics in Applied Earth Observations and Remote

Sensing, vol. 9, no. 2, pp. 945–951, Feb 2016.

[38] J. Sevilla, G. Martin, and J. M. P. Nascimento, “Parallel hy-

perspectral unmixing method via split augmented lagrangian on

GPU,” IEEE Geoscience and Remote Sensing Letters, vol. 13,

no. 5, pp. 626–630, May 2016.

[39] X. Wu, B. Huang, L. Wang, and J. Zhang, “GPU-based parallel

design of the hyperspectral signal subspace identification by

minimum error (hysime),” IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, vol. 9, no. 9,

pp. 4400–4406, Sep. 2016.

[40] L. I. Jimenez, G. Martin, S. Sanchez, C. Garcia, S. Bernabe,

J. Plaza, and A. Plaza, “GPU implementation of spatialspectral

preprocessing for hyperspectral unmixing,” IEEE Geoscience and

Remote Sensing Letters, vol. 13, no. 11, pp. 1671–1675, Nov

2016.

[41] J. Lopez-Fandino, B. Priego, D. B. Heras, and F. Arguello, “GPU

projection of ECAS-II segmenter for hyperspectral images based

on cellular automata,” IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, vol. 10, no. 1, pp. 20–

28, Jan 2017.

[42] E. Martel, R. Guerra, S. Lopez, and R. Sarmiento, “A GPU-based

processing chain for linearly unmixing hyperspectral images,”

IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, vol. 10, no. 3, pp. 818–834, March 2017.

[43] W. Li, L. Zhang, L. Zhang, and B. Du, “GPU parallel imple-

mentation of isometric mapping for hyperspectral classification,”

IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 9, pp.

1532–1536, Sep. 2017.

[44] A. Ordonez, F. Arguello, and D. B. Heras, “GPU accelerated

FFT-based registration of hyperspectral scenes,” IEEE Journal

of Selected Topics in Applied Earth Observations and Remote

Sensing, vol. 10, no. 11, pp. 4869–4878, Nov 2017.

[45] Z. Wu, L. Shi, J. Li, Q. Wang, L. Sun, Z. Wei, J. Plaza, and

A. Plaza, “GPU parallel implementation of spatially adaptive

hyperspectral image classification,” IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing,

vol. 11, no. 4, pp. 1131–1143, April 2018.

[46] S. Bernabe, S. Sanchez, A. Plaza, S. Lopez, J. A. Benediktsson,

and R. Sarmiento, “Hyperspectral unmixing on GPUs and multi-

core processors: A comparison,” IEEE Journal of Selected Topics

in Applied Earth Observations and Remote Sensing, vol. 6, no. 3,

pp. 1386–1398, June 2013.

[47] J. M. P. Nascimento, J. M. Bioucas-Dias, J. M. Rodriguez Alves,

V. Silva, and A. Plaza, “Parallel hyperspectral unmixing on

GPUs,” IEEE Geoscience and Remote Sensing Letters, vol. 11,

no. 3, pp. 666–670, March 2014.

[48] D. M. Blei, “Probabilistic topic models,” Communications ACM,

vol. 55, no. 4, pp. 77–84, 2012.

[49] R. Fernandez-Beltran and F. Pla, “Prior-based probabilistic latent

semantic analysis for multimedia retrieval,” Multimedia Tools and

Applications, vol. 77, no. 13, pp. 16 771–16 793, 2018.

[50] F. Zhu, Y. Wang, B. Fan, S. Xiang, G. Meng, and C. Pan,

“Spectral unmixing via data-guided sparsity,” IEEE Transactions

on Image Processing, vol. 23, no. 12, pp. 5412–5427, 2014.

[51] J. M. Haut, S. Bernab, M. E. Paoletti, R. Fernandez-Beltran,

A. Plaza, and J. Plaza, “Low-high-power consumption architec-

tures for deep-learning models applied to hyperspectral image

classification,” IEEE Geoscience and Remote Sensing Letters, pp.

1–5, 2018.

November 7, 2019 DRAFT

	Introduction
	HU DEpLSA-based Model
	GPU Parallel Implementation for Hyperspectral Unmixing Based on CUDA
	Optimization of the Memory Allocation and I/O Transfer
	Parallel Optimization of the Expectation Step
	Parallel Optimization of the Maximization Step

	Experiments
	Enviroment
	Datasets
	Experimental Assessment
	Results and Discussion

	Conclusions and Future Lines
	References

