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1 Abstract

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive brain imaging technique for studying the

brain’s functional activities. Pearson’s Correlation Coefficient is an important measure for capturing dynamic

behaviors and functional connectivity between brain components. One bottleneck in computing Correlation

Coefficients is the time it takes to process big fMRI data. In this paper, we propose GPU-PCC, a GPU based

algorithm based on vector dot product, which is able to compute pairwise Pearson’s Correlation Coefficients

while performing computation once for each pair. Our method is able to compute Correlation Coefficients

in an ordered fashion without the need to do post-processing reordering of coefficients. We evaluated GPU-

PCC using synthetic and real fMRI data and compared it with sequential version of computing Correlation

Coefficient on CPU and existing state-of-the-art GPU method. We show that our GPU-PCC runs 94.62×
faster as compared to the CPU version and 4.28× faster than the existing GPU based technique on a real

fMRI dataset of size 90k voxels. The implemented code is available as GPL license on GitHub portal of our

lab at https://github.com/pcdslab/GPU-PCC.

2 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive brain imaging technique for studying the

brain functional activities [1]. This technology helps researchers and physiologists to find the facts related to

human behavior and psychology and is based on Blood Oxygen Level Dependent (BOLD) contrast. fMRI

data includes a sequence of images taken by a scanner through time while subject performs one or more

tasks. The data acquired from an fMRI experiment includes a number of cubic elements called voxels.

Changes in voxel intensity across time reveals the hemodynamics change in the brain [2]. A time series data

set is extracted from each voxel and used for further analysis. Pearson’s Correlation Coefficient has become

popular in fMRI study to analyze functional connectivity of different regions in the brain [3, 4]. This measure

reveals linear dependency between pairs of elements. For a pair of variables (x, y), Pearson’s Correlation

∗*To whom correspondence should be addressed



Coefficient is calculated using the following equation:

ρxy =
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i=1(xi − x̄)(yi − ȳ)
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In this equation x and y are two T dimensional variables. In case of fMRI data, x and y corresponds to two

individual voxels and T shows the length of time series of each voxel. Pearson’s Correlation Coefficient ρxy
is a real value in range −1 and 1 [5]. Absolute value of 1 indicates strong perfect linear relationship among

variables while value 0 indicates no linear relationship and −1 shows perfect negative linear relationship

among them. Computing pairwise correlations is computationally expensive for large number of data (like

fMRI data), so multiple approaches have been proposed based on parallel computing techniques to accelerate

the computations.

Gembris et al. [6] proposed a GPU based method that computes pairwise Correlation Coefficients among

elements by reformulating the Pearson’s correlation equation to minimize the number of necessary divisions:
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Wang et al.[4] proposed a parallel method for computing pairwise Correlation Coefficients over multiple time

windows. They used a controller worker method with Message Passing Interface (MPI). In another work, Liu

et al. developed a general framework for computing all pairwise Correlation Coefficients on Intel Xeon Phi

clusters [7]. Based on the symmetric property of Pearson’s Correlation Coefficient (corr(x, y) = corr(y, x)),

pairwise Correlation Coefficients among N elements can be presented by an array containing N(N-1)/2

elements which corresponds to the upper triangle above the main diagonal part of the correlation matrix.

The main diagonal is disregarded since it shows the correlation of each element with itself which is always

one. Fig. 1 shows an example of the desired elements of the correlation matrix and their orders in the

array. In this order, the first N − 1 elements of the array show the Pearson’s Correlations between the

first variable and all other variables, the next N − 2 elements show the correlation of the second variable

with all others and so on. Liang et al [8] developed a tool using GPU for constructing gene co-expression

networks based on computing N(N-1)/2 Pearson Correlation Coefficients. The order of resulting correlation

coefficients in that approach is different from Figure 1; also they applied a different strategy for distributing

work among threads. Based on the symmetric property, a hybrid CPU-GPU framework for computing

Correlation Coefficient using General Matrix-Matrix Multiplication (GEMM) is proposed by Wang et al [9].

In this approach, they normalize the time series of each voxel v using the following equation1

ui =
vi − v̄i

‖vi − v̄i‖ 2

(3)

and U = (u1, u2, ..., un) aggregates all normalized vectors. The correlation matrix can be constructed by

multiplying matrix U to its transpose (U × UT ). Since the size of correlation matrix may be larger than

GPU memory, they divide matrix U into smaller blocks and compute matrix multiplication of each block

with others. Using this strategy, this approach can handle correlation matrices of any size. If data contains

N vectors and each block contains d vectors, there will be B =
⌈

N
d

⌉

blocks. Considering the symmetric

property, two blocks are multiplied to each other once which results in B(B+1)/2 block multiplications. The

number of computed elements is greater than N(N-1)/2 and their order is different than what we showed

in Fig. 1. A post processing step is needed in their implementation to eliminate redundant elements and

1
ui =

vi−v̄i

|vi − v̄i|
is the equation that is mentioned in their paper [9] but we found that equation 3 is used in their implemen-

tation



Figure 1: The order of desired Correlation Coefficients of a 5×5 correlation matrix

reorder the elements. The post processing part runs on CPU.

In this paper, we first perform a preliminary experiment for computing vector of Correlation Coefficients

by performing Matrix-Vector multiplication using CUDA built-in functions. In order to exploit fine-grained

thread level parallelism, we proposed an approach called GPU-PCC in which we designed our own kernel

to compute Pearson’s Correlation Coefficients without using built-in functions. Our proposed technique

normalizes the data and computes their multiplications using massive number of GPU cores. The design

of our parallel strategy allows us to compute the Correlation Coefficients in the desired order and without

redundancies; eliminating the needs for post-processing strategies. This results in highly scalable parallel

strategy with increasing number of elements.

2.1 GPU architecture, CUDA programming model and cuBLAS library

Graphics Processing Unit (GPU) were originally designed to satisfy the demand for higher quality graphics

in video games to create more realistic 3D environment [10]. Recently GPU’s have found multitude of high

performance applications which can exploit high latency and high throughput of enormous number of GPU

cores [11, 12]. A GPU is made up of an array of streaming multiprocessors (SMs). Each SM contains multiple

streaming processors or cores. Hundreds of threads run on the same core concurrently based on SIMT (Single

Instruction Multiple Threads) strategy. A warp is a group of 32 threads which execute the same instruction at

the same time on the SM. Compute Unified Device Architecture (CUDA) is a programming model interface

created by NVIDIA for programming graphic cards. CUDA programmers define functions called kernel which

is executed on device. A kernel is defined using a number of GPU threads which execute the kernel’s code in

parallel. Parallel invocations of kernel are grouped into blocks which are distributed among available SMs.

Each block has up to three dimensions and contains maximum 1024 threads. A grid consists of multiple

blocks in one or two dimensions. The NVIDIA CUDA Basic Linear Algebra Subroutines (cuBLAS) library

is the GPU version implementation of BLAS (Basic Linear Algebra Subprograms) library which performs

vector and matrix operations like Matrix-Vector multiplication and Matrix-Matrix multiplication [13].

3 Proposed Methods

As stated earlier, after normalizing the data, Pearson’s Correlation Coefficient among two variables can be

computed by multiplying their corresponding normalized vectors. It worth mentioning that the normalization

step is performed much faster than the multiplication step so we leave this step to be performed on CPU.

Assume that data is stored in an N ×M matrix called U , which N corresponds to the number of data points

and M corresponds to the length of each data point. In case of fMRI data, N is the number of voxels and M



Figure 2: Example of performing Matrix-Vector multiplication, step i computes n − i elements of the final

result

is to the length of time series. In this section we present our preliminary experiment and proposed method

to compute the ordered array of Correlation Coefficients without the need of post-processing re-ordering of

elements.

3.1 Preliminary experiment of performing Matrix-Vector multiplication using

CUDA built-in function

In order to obtain the desired order of Correlation Coefficients, this approach first computes the Correlation

Coefficient between the first element and all other elements. This can be performed by multiplying the first

row of matrix U to all other rows. We consider the transpose of all the rows except the first row as another

matrix, so correlation between the first element and rest of elements can be computed by performing Matrix-

Vector multiplication. Similarly, the correlation between the second element and the rest of elements can be

computed in the same way, but this time we multiply the second row with a matrix containing all rows except

the first two rows. We don’t consider the first row because correlation between the first and second elements

has been computed in previous step. In step i, row i of matrix U is multiplied to the matrix consisting of

column i+1 to column N of matrix UT . We continue performing this procedure until multiplying (N −2)th

vector to (N − 1)th vector. The procedure of this method is illustrated using an example in Fig. 2.

Algorithm 1 shows the pseudocode of this method.



Algorithm 1: Matrix-Vector multiplication

1: Input: Matrix U containing N elements each of length M

2: output: Array R containing N(N − 1)/2 Correlation Coefficients

3: Normalize each vector of matrix U using equation 3

4: for i = 1 to N − 1

5: Multiply row i of matrix U to the matrix containing column

i+ 1 to N of UT

6: Add the N − i computed elements to array R

7: Return R

Matrix-Vector multiplication is implemented efficiently in cuBLAS library and we used that in our imple-

mentation (cublasSgemv function [13]). In order to minimize the latency of transferring data between host

and device, instead of copying the N−i computed elements back to the CPU in each iteration, we store them

in a GPU array until there is not enough space in GPU memory. Once there is no more space all computed

elements are transferred to the CPU and next iteration starts. This approach is successful in computing the

Correlation Coefficients in order. To exploit fine-grained thread level parallelism, we propose an approach

called GPU-PCC in which we designed our own kernel to compute Pearson’s Correlation Coefficients.

3.2 GPU-PCC method

In this method normalized data is initially copied to GPU global memory in row-major order. We launch

blocks of 512 threads and consider multiple groups per block. Each group of threads is responsible to

perform a vector dot product in order to compute a Correlation Coefficient between two vectors. We used

vectorized load by using float2 data type for reading data from global memory to increase bandwidth and

decrease latency [14]. In order to access global memory efficiently and have coalesced memory access, we

considered 16 consecutive threads in each block as a group. Threads of each group request consecutive values

from memory which causes loading 128 bytes aligned data in one transaction. Since each block contains 512

threads and each 16 threads belong to one group, there are 512
16 = 32 groups per block which causes computing

32 Correlation Coefficients simultaneously. After each group finishes performing dot product of two vectors

(we explain about the dot product process soon), it stores the result at index k of resulting vector R. Index

k is computed based on the following equation:

k = blockIdx.x× 32 + threadIdx.x/16 (4)

Based on value of k, threads of each group can compute the index of vectors that they should multiply to

each other (i and j) using the following equations:

i = n− 2−
⌊

√

−8× k + 4× n× (n− 1)− 7

2
− 0.5

⌋

(5)

j = k + i+ 1− n× (n− 1)

2
+

(n− i)× ((n− i)− 1)

2
(6)

Equations 5 and 6 guarantee that for any index k of the resulting array, we pick the right vectors to compute

their correlations and in this way the resulting array will have the correct order. Starting from the beginning

of vectors i and j, each thread multiplies two corresponding consecutive values of vector i and j which results

in 32 simultaneous multiplications per group. This process continuous to the next 32 elements of the vectors

until all of their elements are multiplied to each other. A local variable in each thread stores the sum of

products performed by that thread. In order to compute the result of dot product, the partial sums of 16

threads in each group should be added to each other. Since we have to add the values of 16 consecutive



threads and these values are in thread’s registers, we used shuffle warp reduce technique introduced in [15]

for computing global sum. This technique allows exchanging data among threads in the same warp without

needing to use shared memory. After computing the global sum, the result of dot product will be stored at

index k of vector R. Fig. 4 shows the process of vector dot product and Algorithm 2 shows the pseudo code

of the kernel. Since we use float2 data type in our implementation and it needs M/2 load instructions, in

cases that M is not even, we add a zero element at the end of each vector. This does not change the result of

dot product (we don’t consider these additional zeros in normalization step because it will change the result

of correlation).

If the size of resulting array R is larger than GPU memory, we call the kernel multiple times. Each kernel

call continues the computation until there is not enough space in global memory of the GPU to store the

results. Otherwise, the computed elements are copied to host and new kernel call starts to continue the

computation. Fig. 3 shows the work flow of GPU-PCC.

Empirical analysis of the implemented code showed that time-efficiency improved when L1 cache was

enabled. Usually L1 cache can be enabled at compile time depending on the device properties.

Algorithm 2: GPU-PCC kernel

1: Input: Array U containing N ×M normalized elements

located in GPU memory

2: output: Array R containing N(N − 1)/2 Correlation Coefficients

3: thread_groupId = threadIdx.x/16

4: thread_local_offset = threadIdx.x%16

5: k = blockIdx.x× 32 + thread_groupId

6: i = n− 2− ⌊
√

−8×k+4×n×(n−1)−7

2 − 0.5⌋
7: j = k + i+ 1− n×(n−1)

2 + (n−i)×((n−i)−1)

2
8: iter = m/32

9: local_sum = 0

10: float2 data1, data2

11: for l = 1 to iter

12: data1 = U [i×m/2 + l ∗ 16 + thread_local_offset]

13: data2 = U [j ×m/2 + l ∗ 16 + thread_local_offset]

14: local_sum + = data1.x× data2.x+ data1.y × data2.y

15: if m%32 != 0

16: continue the multiplication for the rest of elements

17: sum = adding up local_sum of threads in a group using shuffle

instruction

18: if thread_local_offset = 0

19: R[k] = sum

4 Performance Evaluation

All the experiments reported in this section are performed on a linux server with Ubuntu Operating System

version 14.01. The server consists of two Intel Xeon E5 2620 processors with clock speed 2.4 GHz, 48 GBs

RAM and NVIDIA Tesla K40c Graphic Processing Unit. This GPU contains 15 Streaming Multiprocessors

each consists of 192 CUDA cores and 11520 MBytes global memory.

We evaluated the performance of GPU-PCC by comparing it with three other approaches. The first approach

is the experiment we performed using Matrix-Vector multiplication; second one is the sequential version of

Pearson’s Correlation Coefficient computation on CPU. We used the code that is implemented by Wang et



Figure 3: The work flow of GPU-PCC algorithm



Figure 4: Example of performing vector dot product of two normalized rows (i and j) of matrix U. Multipli-

cation of i and j is performed by a group of 16 threads. Each thread multiplies two consecutive corresponding

elements of i and j, adds the results and stores it in its register. Elements that are processed with the same

thread are shown using the same pattern in figure. Part A shows the multiplication of first chunk of two

vectors each chunk containing 32 elements (since there are 16 threads in group each working on two ele-

ments). Part B shows the same process for the last chunk of the vectors. After multiplying the first chunk,

each thread needs to update its register value by adding the new result to it. In part C, all the elements in

thread registers are summed using warp shuffling technique and stored at index k (equation 4).

al [9]2. In this implementation after normalizing data using equation 3, N(N-1)/2 vector dot products are

computed on CPU. No math library is used in this implementation. We compiled the sequential code using

g++ compiler version 4.8.4. The third approach that we compared our method was implemented by Wang

et al [9]2. This approach computes Correlation Coefficients by performing Matrix-Matrix multiplication on

GPU (refer to section I for more details of this approach). To reorder computed elements and eliminate

redundant ones, the results are post processed on CPU. So for comparing the running time of other methods

with this approach, we considered both matrix multiplication and post processing steps. All reported running

times in this section measure the execution time of pairwise Pearson Correlation Coefficients in desired order.

The execution starts from normalizing data to performing last multiplication (For our proposed approaches

to finish copying the last chunk from GPU to CPU and for Wang’s approach after finishing the postprocessing

to reorder computed coefficients). All the experiments for each dataset are repeated multiple times and the

minimum running time is reported. We performed our experiments using synthetic and real fRMI data sets.

Synthetic data sets were created with N = 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000

and M = 300. For each vector, we generated uniformly random floating point numbers in range −2 and 2 as

intensity of each voxel. For real data set, we used Orangeburg dataset (www.nitrc.org/projects/fcon_1000/).

The dataset contains resting state fMRI data of 20 healthy subjects, 15 female and 5 male with age range 20-

55. The data were acquired using 1.5 Tesla scanner. Subject were asked to close their eyes during acquisition.

We picked one of the subjects randomly for our experiments. Table 1, Fig. 5 and Fig. 6 compare the running

2https://github.com/BNAplatform-organization/PAGANI-toolkit/tree/master/src/BNAPlatform-win64-cuda7.0-

20151118/src/CorMat



Figure 5: Running time comparison of our proposed methods and Wang’s method

Figure 6: Running time comparison of our proposed methods and CPU version

time of different approaches. Based on the results shown in Table 1 and Fig. 5, GPU-PCC and Matrix-Vector

multiplication using CUDA built-in functions show better performance than the other two approaches and

GPU-PCC shows superior results. Fig. 7 shows the achieved speedups of these two methods on synthetic

data. Based on the results, the achieved speedup over Wang’s method for the Matrix-Vector multiplication

using CUDA built-in functions is around 2 and for GPU-PCC is around 2.7. The speedups are around 70

and 100 over CPU version respectively. Table 2 shows the running time comparisons on real data. On real

dataset, Matrix-Vector Multiplication using CUDA built-in functions runs 65.12× faster than CPU version

and 2.95× faster than Wang’s technique. Our GPU-PCC runs 94.62× faster as compared to the CPU version

and 4.28× faster than the Wang’s method. It worth mentioning that we didn’t find specific optimization in

the sequential and the postprocessing codes and we used the default CPU optimizations without using any

optimization flags. Optimization of those codes could result in better running time.



Figure 7: Speedup gained by our proposed methods over Wang’s method and CPU version

Table 2: Comparing running time (Seconds) of different approaches on real fMRI data

Size of N GPU Mat-vec mult GPU-PCC Wang et al[9] CPU version

90112 30.31 20.86 89.45 1973.85

Table 1: Comparing running time (Seconds) of different approaches on synthetic fMRI data

Size of N Mat-Vec mult GPU-PCC Wang et al[9] CPU version

20000 2.5 1.69 4.83 172.412

30000 5.37 3.76 10.45 387.89

40000 9.26 6.62 18.39 689.49

50000 14.45 10.28 28.35 1077.28

60000 20.49 14.8 40.49 1554.23

70000 27.55 20.11 54.61 2140.32

80000 35.64 26.22 71.68 2787.92

90000 44.63 33.14 90.06 3553.47

100000 54.89 40.88 111.47 4415.22

5 Conclusion

Pearson’s Correlation Coefficient is a well-known technique that measures the functional connectivity between

brain voxels. Since there are thousands of voxels in one fMRI experiment, using traditional CPU based

methods are very time consuming. Parallel computing techniques will be essential for processing data-

and compute-intensive operations for big brain research especially in the context of precision and personal

medicine. Exploiting the symmetric property of the Pearson’s Correlation, we can reduce the number

of coefficients that need computation from N2 to N(N-1)/2. Thereafter, we first did an experiment by

performing Matrix-Vector multiplication using CUDA built-in function and then proposed a method called

GPU-PCC which can compute ordered correlations and do not require further post-processing. We compared

our implemented methods with a sequential C++ implementation and also with a GPU based technique

based on General Matrix-Matrix Multiplication (GEMM). Both real and synthetic fMRI data sets were used



in evaluation. We show that our proposed HPC method outperforms existing state-of-art methods and is

around 94× faster than the CPU versions and 4.28× faster than the GPU based techniques for similar GPU

devices and data set.
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