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Abstract—While graphics processing units (GPUs) have gained
wide adoption as accelerators for general-purpose applications
(GPGPU), the end-to-end reliability implications of their use
have not been quantified. Fault injection is a widely used method
for evaluating the reliability of applications. However, building
a fault injector for GPGPU applications is challenging due to
their massive parallelism, which makes it difficult to achieve
representativeness while being time-efficient.

This paper makes three key contributions. First, it presents
the design of a fault-injection methodology to evaluate end-to-end
reliability properties of application kernels running on GPUs.
Second, it introduces a fault-injection tool that uses real GPU
hardware and offers a good balance between the representative-
ness and the efficiency of the fault injection experiments. Third,
this paper characterizes the error resilience characteristics of
twelve GPGPU applications.

I. INTRODUCTION

GPUs were designed originally applications that were in-
trinsically fault-tolerant (e.g., image rendering, in which a few
wrong pixels might not be noticeable by human eyes). Today,
however, GPUs are widely used to accelerate general purpose
applications such as DNA sequencing and linear algebra.
It therefore becomes critical to understand the behavior of
these applications in the presence of hardware faults. This is
especially important as the rate of hardware faults increases
due to the effects of technology scaling and manufacturing
variations [1]. For example, Haque et al. reported [2] that two-
thirds of more than 50,000 GPUs available on Folding@Home,
a popular volunteer computing platform, exhibited ”pattern-
sensitive susceptibility to soft errors in GPU memory or logic.”

GPU manufacturers have invested significant effort to im-
prove GPU reliability. For instance, starting with Fermi mod-
els, NVIDIA GPUs support error-correcting code (ECC) to
protect register files, DRAM, cache, and on-chip memory
space from transient faults. However, transient hardware faults
can also occur in the computational or control data paths,
and can propagate to registers and/or memory. Such faults
would not be detected by ECC, because they would cause the
correct ECC in registers and/or memory to be calculated on
faulty data. As a result, in spite of these mechanisms, GPU
applications still can be affected by transient hardware faults.
Further, hardware-protection techniques such as ECC can incur
performance and energy overheads, and hence may not be
enabled by users.

The long-term goal of our work is to develop application-
specific, software-based fault-tolerance mechanisms for
GPGPU applications. As a first step towards this goal, we
aim to investigate the error-resilience characteristics of these
applications by performing fault-injection experiments. Fault-
injection is the act of perturbing an application to emulate
faults, then studying the effects of those faults on the appli-
cation outcome [3]. While there has been substantial work
in the realm of fault injection for CPU applications [4],
[5], there have been relatively few studies have explored the
reliability properties of GPGPU applications and proposed
methodologies and tools to support this exploration. The major
challenge for fault-injecting GPGPU applications is that, due
to the massive parallelism of the platform, it is difficult to
achieve a representative coverage of the application execution
paths while still being time-efficient.

Prior work [6] performed fault injections at the source-
code level (i.e., mutating the source code of a program).
Unfortunately, injecting faults at this level is coarse-grained,
and does not represent accurately hardware faults that occur
at the granularity of micro-architectural units and instructions.
To inject hardware faults, the standard approaches are to inject
faults into a register transfer language (RTL) model or a
microarchitectural simulator [7]. However, these approaches
often are considerably slower than execution on the real hard-
ware, and can be a significant bottleneck when performing the
thousands of fault-injection experiments, needed for adequate
coverage. One way to alleviate the performance bottleneck is
to execute only a small section of the application. However,
we would not be able to obtain insights into the end-to-end
behavior of the application under faults using this approach.

We perform fault injections at the assembly-language level
of GPGPU applications using a GPU-based debugger. While
not as detailed as fault injections at the microarchitectural
level, this approach allows us to model faults at the granularity
of individual instructions, and thus is more precise than
injecting at the high-level language level. Compared to the
micro-architectural level injectors, our approach is much more
efficient and scalable, all the more so because we natively
execute the application on the GPU hardware. To the best
of our knowledge, we are the first to propose an efficient
instruction-level fault-injection tool, GPU-Qin, for GPGPU



applications executing on actual GPU hardware.
This paper makes the following contributions:
1) Proposes a methodology to evaluate the resilience of

GPGPU applications and describes the design decisions
and the corresponding trade-offs between injection cov-
erage and efficiency (Section III),

2) Builds a fault-injection tool, GPU-Qin, that is able to
inject faults into applications running on the actual GPU
hardware (Section III),

3) Demonstrates the use of the fault injector by performing
an end-to-end error-resilience characterization of twelve
different GPGPU applications (Section IV), and

4) Provides initial insights that explain the error resilience
of these applications. (Section V)

II. BACKGROUND AND FAULT MODEL

This section offers background information on the depend-
ability metrics associated with this work, our fault model, and
the NVIDIA GPU architecture and programming model.

A. Dependability Metrics: Error Resilience and Vulnerability

The error resilience of a system is defined as its ability to
withstand errors should they occur. An error in the program
may or may not result in a failure. Errors that do not cause
failures are known as benign outcomes. Program failures can
be further classified into crashes (i.e., hardware exceptions),
hangs, and silent data corruptions (SDCs) (i.e., incorrect
outputs). In the context of our work, we define error resilience
as the probability that the application does not have a failure
outcome (i.e., crash, hang or SDC) after a hardware fault
occurs. Thus, error resilience is both a property of the platform
and the application. Since our evaluation is performed on
the same hardware platform, i.e. NVIDIA GPGPUs, error
resilience in our context becomes a property of the application
alone.

Vulnerability, is the probability that the system experiences
a fault that causes a failure (e.g., an SDC). Note that vul-
nerability is different from error resilience: error resilience is
the conditional probability of the program not experiencing
a failure given that a fault has occurred. We focus on error
resilience in this paper, because we are interested in develop-
ing and evaluating application-specific, software-based fault-
tolerance mechanisms for GPGPU applications.

B. Characterizing Error Resilience

There are two commonly used methods to evaluate error
resilience:

Beam Testing: This method refers to the use of neutron
source devices (i.e., neutron beams) to shower neutrons on
the targets (e.g., systems, boards or components) [8] to
trigger radiation-induced faults. Targets exposed to the neutron
beam experience higher rates of faults than in operation,
thus enabling accelerated testing. The main advantage of this
method is that it represents realistic faults. However, the costs
associated are high because it requires a neutron source, and
it has low controllability. Further, neutron beam time is often

limited, which means that the experiment can be run only for
a limited time.

Fault Injection: This is a procedure to introduce faults in a
systematic, controlled manner and study the system’s behavior.
Fault-injection techniques typically emulate the effects of
hardware faults on the software by perturbing the values of se-
lected data/instructions in the program. Fault injection’s main
limitation is that it can be difficult to obtain sufficient coverage
and representativeness. However, the method is relatively low-
cost because it requires no special equipment. It also offers a
high level of controllability and can be repeated as many times
as desired. Therefore, we choose fault injection in this work.

As mentioned before, fault injection can be performed at
the RTL or micro-architectural levels. However, these methods
are not scalable because they require detailed RTL or micro-
architectural simulators. For this reason, we perform fault
injection at a higher level, namely at the level of assembly
code instructions. Our goal is to obtain sufficient coverage
in terms of number of instructions executed, rather than the
proportion of hardware state covered by the injections, as is
typical of RTL/micro-architectural fault injections.

C. The Fault Model

Hardware faults can be broadly classified as transient or
permanent. Transient faults usually are ”one-off” events and
occur non-deterministically, while permanent faults persist
at a given location. Further, transient faults are caused by
external events such as cosmic rays and over-heated compo-
nents, while permanent hardware faults are usually caused by
manufacturing or design faults. Transient fault rates have been
increasing due to diminishing noise margins, smaller voltages,
and shrinking microprocessor feature sizes [9]. We focus on
transient faults in our study.

We consider transient faults in the functional units of the
GPU processor. Examples are faults in the arithmatic and logic
unit(ALU) and the load-store unit(LSU). We do not consider
faults in cache, memory, and register files because we assume
that they are protected by ECC. This is the case for recent
GPUs such as the NVIDIA Fermi GPU.

We use the single-bit-flip model in this study because it
is the de-facto fault model adopted in studies of transient
faults [6], [10], [11]. However, our fault injector can support
both single- and multiple-bit flips. We will consider multiple
bit errors in future work.

D. GPU Architecture and Programming Model

We focus on GPGPU applications implemented on top
of NVIDIA compute unified device architecture(CUDA), a
widely adopted programming model and toolset for GPUs.
The CUDA programming model defines a GPU application
as a control program that runs on the host and a computation
program (i.e., the kernel) that runs on GPU devices without
interfering with the CPU. The kernel is implemented as a
collection of functions in a language that is similar to C, but
has annotations for identifying GPU code and for delineating
different types of memory spaces on the GPU.



CUDA kernels use a single instruction/multiple
thread(SIMT) model that exploits the massive parallelism of
GPU devices. From a software perspective, CUDA abstracts
the SIMT model in the following hierarchy: kernels, blocks
and threads. A CUDA kernel consists of blocks, and a
block consists of threads. Fine-grained data parallelism,
thread parallelism, coarse-grained data parallelism, and task
parallelism can all be provided through this hierarchy. From
a hardware perspective, blocks of threads run on hardware
units named streaming multiprocessors (SMs) that feature
a shared memory space for threads inside the same block.
Inside a block, threads are scheduled in a fixed groups of 32
threads called warps. All the threads in a warp execute the
same instructions, but with different data values.

In the CUDA programming model, there are four kinds of
memory: (1) global, (2) constant, (3) texture, and (4) shared.
Global, constant, and texture memory accesses are served from
the slower large device memory. Shared memory space is a
much smaller and faster ”on chip” software-managed cache.
CUDA applications need to be aware of the memory hierarchy
to access GPU memory efficiently.

III. METHODOLOGY

This section outlines our methodology to characterize the
error resilience of GPGPU applications and the tradeoffs we
make to balance coverage and efficiency. To support it, we
develop the GPU-Qin, a profiler and fault injector.

Any fault-injection methodology should satisfy the follow-
ing three requirements:

1) Representativeness: The faults injected should be rep-
resentative of the actual hardware faults that occur at
runtime. In particular, the faults should be injected
uniformly over the set of all instructions executed by
the application.This is a different criterion than used
by RTL-level and micro-architectural fault injections, as
discussed in Section II.

2) Efficiency: Fault-injection experiments should be fast
enough to allow the application to be executed to com-
pletion in reasonable time. The reason is that thousands
of faults-injection experiments need to be performed
to obtain statistically significant estimates of error re-
silience.

3) Minimum Interference: The tools supporting the fault-
injection experiments should interfere minimally with
the original application so that they do not modify its
resilience characteristics. In particular, the fault injector
should not change either the code or the data of the
application other than for the objective of injecting the
faults themselves.

We implement our methodology based on the CUDA GPU
debugging tool namely cuda-gdb 1. The cuda-gdb interface
provides an external method to control the application, and to
trace/modify it without making any changes to the application
code or data. This makes it possible to satisfy the minimum

1https://developer.nvidia.com/cuda-gdb

interference goal. cuda-gdb introduces timing delays in the ap-
plication; however, we have not seen any cases in which there
is considerable deviation in the behavior of the application due
to such delays, because our focus is not graphics applications
but general-purpose applications.
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Fig. 1: Overview of our fault-injection methodology

Figure 1 shows an overview of our methodology. The
process consists of four main phases. In the first phase, we
group threads based on similarity of their behaviors (and we
use the number of instructions executed as a proxy, because
threads executing a different number of instructions likely
execute different control-flow paths, and hence have divergent
behaviors). We then choose one thread from each group to
profile in the next phase. To balance coverage and efficiency,
in some cases we use only the most popular groups, as we
detail in Section III-A.

In the second phase, GPU-Qin profiles the threads selected
in the first phase and obtains the execution trace of the GPU
portion of the application. This information is used to map
the source lines to the executed assembly instructions. This
information is necessary in the next phase to locate at runtime
the instruction at which to stop execution and inject the fault.

In the third phase, for each injection run, GPU-Qin ran-
domly chooses one executed instruction from one of the
traces obtained in the second phase. The choice of the trace
is biased proportionally with the popularity of the group it
represents. The choice of the instruction is done uniformly
over the space of the instructions of the profile; thus, GPU-
Qin simulates the occurrence of a transient error that occurs
uniformly over time (in other words, we assume that all
instructions take approximately the same time to execute).
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Fig. 2: Percentage of number of threads in each group to the total number of
thread. Left: LBM Right: Monte Carlo

GPU-Qin also randomly picks a thread from the entire set
of application run-time threads for each injection run. This
satisfies the representativeness requirement.

Finally, the last phase aggregates the results. The rest of this
section presents each phase in detail.

A. Phase I: Grouping

GPU applications often have a massive number of threads 2,
and it would be infeasible to obtain the execution traces for
all threads in an application for the purpose of fault injection.
Therefore, the main challenge is to identify a fraction of
threads that are representative of the workload behavior for
tracing. To this end, we consider instruction counts as a proxy
for thread behavior.

Because GPUs don’t have built-in instruction counters, we
gather the instruction counts of all threads in a benchmark by
executing the program in an instruction-level GPU simulator,
GPGPU-Sim (version 3.2.0) [7]. GPGPU-Sim simulates the
execution of GPGPU programs from both functional and per-
formance perspectives, and hence the number of instructions
executed by it matches the number of instructions executed
in the real hardware. We perform the group identification
operation only once per application, so it is acceptable for
this phase to be slower than the fault- injection phase, which
is performed thousands of times. We then group the threads
executing the same number of dynamic instructions.

We find that our benchmarks (presented in detail in Sec-
tion IV) can be categorized into three categories based on the
results of the group identification process (Table I). In the first
category, all threads execute the same number of instructions,
and hence there is only one group. In the second category,
there is a limited amount of divergence among the threads,
which leads to only a few groups (2 to 10). Finally, in the
third category, there is significant divergence leading to tens
of groups or more.

Because profiling a thread is time-consuming, to balance
coverage and efficiency, we propose the following heuristic:
For applications in which there is only one group, we randomly
choose a single thread in the group to profile. For applications
with a small number of groups, we select the groups that

2A GPU thread is identified by a thread coordinate (blockIdx.x, block-
Idx.y,blockIdx.z), (threadIdx.x, threadIdx.y, threadIdx.z).

TABLE I: The group identification process leads to classifying the bench-
marks in three categories.

Category Benchmarks Groups Groups
to
profile

%
threads
in
picked
groups

Category I AES, MRI-Q, MAT,
MergeSort-k0, Transpose

1 1 100%

Category II SCAN, Stencil, Monte
Carlo, SAD, LBM,
HashGPU

2 - 10 1 - 4 95% -
100%

Categroy III BFS 79 2 >60%

constitute the majority of the threads and randomly pick
one thread from each selected group to profile. Figure 2
shows two examples of how we pick such major groups.
For example, LBM has two groups: one has 84% and the
other has 16%, of the total number of threads. To satisfy the
representativeness requirement, we need to pick both groups.
However, in other cases, we ignore some less popular groups.
For example, Monte Carlo has five groups, but one of the
groups is responsible only for 0.4% of total number of threads,
and hence we ignore that group.
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Fig. 3: Cumulative Distribution Function(CDF) of groups of BFS

For applications that have a large number of groups (in our
benchmark set, only BFS (Table I)), we again use group
popularity to make informed choices. For BFS, around 60%
of threads fall into the same group (shown as a vertical line in
Figure 3), while all the other 78 groups are equally popular;
therefore, we pick a random thread from the large group and
another random thread from the other groups. Given enough
resources, more groups can be sampled to increase coverage.

B. Phase II: Profiling

The goal of the profiling phase is to map the instructions
executed by a thread (chosen during the grouping phase) to
their corresponding CUDA source-code line. This will enable
GPU-Qin which uses conditional breakpoints to inject faults.
The reason is that cuda-gdb, on which GPU-Qin is built,
requires the source line number for setting a conditional
breakpoint. Mapping a source line to assembly instructions
is one-to-many. (i.e., a single source line may correspond to
multiple instructions). We will explain later how GPU-Qin
locates the specific instruction we want to inject.



The profiling phase consists of single-stepping the program
using cuda-gdb for the thread(s) selected in the first phase.
At each step, the program counter value of the instruction
is recorded, along with the instructions corresponding to the
source line. The output of the profiling step is an instruction
trace consisting of the program counter values and the source
line associated with each instruction.

C. Phase III: Fault Injection

The third phase of the process is to inject faults into the
application at runtime and monitor the outcomes. Figure 4
briefly illustrates this process. GPU-Qin has instruction traces
from the second phase and it obtains the associated source
code line for each instruction from each trace. In each injection
run, GPU-Qin chooses a profile from the profiling phase and
uniformly chooses an instruction; to inject a fault, it sets up a
conditional breakpoint in the program at the instruction using
cuda-gdb. The conditional breakpoint is triggered only when
the chosen thread reaches the chosen source line. When the
breakpoint is triggered and the chosen instruction is reached,
a fault is injected into the application. The application is then
monitored to determine if the fault is activated (i.e., read
by the application). To ensure representativeness, the thread
coordinate is chosen randomly from the set of all threads
used by the program, rather than only from the ones chosen
during the grouping phase. The application runs natively on
the hardware until the breakpoint is triggered and after the
fault is injected (except for a short window of time when it
is single-stepped to monitor fault activation). This satisfies the
efficiency requirement. The fault injection is repeated until the
95% confidence interval is reached for the results.

The rest of this section presents the details of this process.
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Fig. 4: Phase III - The fault-injection process

Reaching the target instruction: After the breakpoint is set,
the program is launched under cuda-gdb, and it runs na-
tively until the conditional breakpoint is hit. Because multiple
dynamic instructions can map to the same source line, the
breakpoint being hit does not mean that the target instruction
is reached. To reach the target instruction, GPU-Qin performs
two steps:

1) GPU-Qin estimates in which iteration of a loop does
the instruction occur in (if it belongs to a loop). It can
perform this estimate based on the information gathered
in the profiling phase. If the current loop iteration is
less than the estimated iteration, GPU-Qin increments

the iteration count and continues the program natively
until the next time the conditional breakpoint is reached.
To optimize the injection process, GPU-Qin bounds the
loop iteration estimate at 64. In other words, if the
iteration that needs to be injected exceeds 64, GPU-Qin
generates a random number between 0 and 64 and injects
a fault at the corresponding loop iteration. We examine
the implications of this heuristic in the next section.

2) Once the current loop iteration matches the estimated
iteration, GPU-Qin single-steps the program from the
breakpoint until the program counter matches the in-
struction we want to inject. For performance reasons,
GPU-Qin uses a fixed window to limit the number of
times the single-stepping is invoked. If this window has
been exceeded and the target instruction has not been
reached, GPU-Qin abandons the run. Currently, GPU-
Qin uses 300 instructions as the window size because
we find that most source lines correspond to at most
a few tens of instructions. This window’s size can be
configured by the user.

The locations to inject: The locations to inject depend on
the instruction executed. GPU-Qin considers three types of
instructions:

Arithmetic instruction: GPU-Qin injects faults into the des-
tination register of instructions to simulate an error in the ALU
and floating-point (FP) unit. For vector instructions that have
multiple destination registers, GPU-Qin randomly chooses a
destination register to inject.

Memory instructions: GPU-Qin simulates faults in the LSU
by injecting faults into either the destination register or the
address register in LD/ST instructions.

Control-flow instruction: NVIDIA ISA uses predicate regis-
ters to control the branches of the program. Instructions such
as ”ISETP” are used to set values to the predicate registers and
an optional predicate guard is used to control the conditional
execution. Unfortunately, cuda-gdb does not let us modify the
predicate registers, so GPU-Qin injects faults into the source
operands of the control-flow instructions, instead of directly
manipulating the predicate registers.

The fault: A fault is injected by flipping a randomly chosen
single bit in the result of the instruction’s destination register.
Only one fault is injected in each run because hardware faults
are relatively rare events compared to the execution time of a
typical application.

Successful fault injections: A fault might not be injected in a
run even when the instruction is reached. This can occur either
because cuda-gdb will not allow us to modify the instruction,
or because the thread GPU-Qin randomly picks does not
execute the corresponding instruction (because choosing the
thread for injection is based on all threads but the profile
comes from a particular group of threads). GPU-Qin discards
the executions that do not lead to fault injections.

Activated fault: Once a fault is injected, GPU-Qin checks if
the faulty location is read by the program (and not overwrit-
ten). Such faults are said to be activated. Only activated faults
are considered in the evaluation because our goal is to measure



the application’s resilience (the conditional probability that
given a fault, the program is able to work correctly). To track
the activation of a fault, GPU-Qin single-steps the program
after injection to check if there is another instruction that
reads registers modified by the fault. To ensure that this
process terminates in a reasonable amount of time, GPU-
Qin picks a threshold: the activation window. If the fault is
not activated within the activation window instructions after
injection, GPU-Qin lets the program continue and consider the
fault unactivated. We set the window to be 1600 instructions
for our experiments. We explore the implications of this choice
in the next section.

Execution Outcome: If the fault is activated, the application
execution has one of the following outcomes: (1) Throws an
exception (crash), (2) Times out by going into an infinite loop
(hang), (3) Completes with incorrect output (SDCs) 3, or (4)
Completes with correct output (benign). These four outcomes
are mutually exclusive and exhaustive.

IV. CHARACTERIZATION STUDY

This section uses 15 GPU kernels of 12 distinct applications
(presented in Section IV-A) to validate the design choices that
we made (Section IV-B) and to demonstrate the use of our
methodology to characterize the application’s error resilience
(Section IV-C). All of our experiments are conducted on
NVIDIA Tesla C series GPUs.

A. Benchmarks

We use a variety of benchmarks from the Parboil benchmark
suite [12], NVIDIA CUDA SDK package, Rodinia benchmark
suite [13], and other well-known GPGPU applications. A short
description of each benchmark is given below, along with
the inputs used in our evaluation. Table II summarizes the
characteristics of each benchmark and its kernels.

AES encryption (AES): AES supports both encryption and
decryption. We encrypt a 256-KB file with a 256-bit key.

Matrix Multiplication (MAT): Matrix multiplication is a
common building block widely used in many linear algebra
algorithms. We modify the code so MAT launches the CUDA
kernel code only once, to ensure that subsequent runs do not
overwrite the results. We multiply two 192*128 FP matrices.

Matrix Transpose: Matrix transpose is a common building
block for many linear algebra algorithms. We use the diagonal
kernel optimized for the biggest memory bandwidth. We
transpose a 512*512 floating-point matrix.

Monte Carlo (MONTE): MONTE simulates the price of
an underlying asset using the Monteo Carlo method. We let it
simulate 262,144 paths for 256 options.

GPUs as Storage System Accelerators (HashGPU):
HashGPU [14] is a library that accelerates a number of hash-
based primitives. We use both SHA1 and MD5.

3We define an SDC as an outcome that fails the correctness check of
the benchmark (if one is provided), or output mismatch between fault-free
and fault-injected runs if a correctness check is not provided. Thus, we take
application-specific characteristics into account in our definition of an SDC.

Breadth-First Search (BFS): BFS applies a breadth-first
search on a graph. We perform BFS on a random graph with
4096 nodes.

Magnetic Resonance Imaging - Q (MRI-Q): MRI-Q
computes a matrix, representing the scanner configuration for
calibration, used in a 3D MRI reconstruction algorithms in
non-Cartesian space. We use 32*32*32 as the size of the 3D
matrix.

3-D Stencil Operation (Stencil): Stencil performs an iter-
ative Jacobi stencil operation on a regular 3-D grid. We use a
128*128*32 3D FP matrix and iterate the operation five times
to make it converge.

Sum of Absolute Differences (SAD): SAD computes the
sum of absolute differences, used in MPEG video encoders. It
is based on a full-pixel motion-estimation algorithm found in
the JM reference H.264 video encoder. There are three kernels
in this benchmark and each kernel uses the previous kernel’s
output. We use the default data frame as the initial input.

CUDA Parallel Prefix Sum (SCAN): SCAN [15] demon-
strates an efficient CUDA implementation of a parallel prefix
sum. Given an array of numbers, SCAN computes a new array
in which each element is the sum of all the elements before
it in the input array. We include SCAN-block, which works
with any length of arrays.

Merge Sort (MS): MergeSort [16] implements a merge-
sort, representing a use case of GPUs for sorting batches of
short- to mid-sized (key, value) array pairs.

Lattice-Boltzman Method Simulation (LBM): LBM im-
plements a solution of the system of partial differential
equations for fluid simulation, which can be derived for the
propagation and collision of fictitious particles. The input
file is a discrete representation of immobile flow obstructions
(120,120,150) in the simulated volume.

B. Design Decision Validation

This section offers empirical support for the three heuristics
used in Section III. All these heuristics represent choices in the
trade-off space between coverage (either in terms of distinct
code paths profiled or used for fault injection) and efficiency
(run-time to execute an application characterization). The
heuristics are:

1) Threads are partitioned into different groups, then pro-
filing and fault injection is based on the most popular
groups.

2) To control runtime, we limit the number of loop itera-
tions explored. That is, if the instruction to be injected
belongs to a loop iteration that exceeds a threshold of
64, we generate a random number between 0 and 64 and
inject a fault at the corresponding loop iteration.

3) If the injected fault is not activated within an activation
window of 1,600 dynamic instructions, we consider it
unactivated.

To validate the first heuristic, we compare the fault-injection
results of applications in categories II and III (see Table I). We
find that crash rates vary considerably for different groups of
threads in Stencil, LBM, SCAN and BFS. The differences



TABLE II: Benchmarks properties. LOC: lines of code. Scale: number of blocks in a grid and number of threads in a block (generally a 3D*3D space).
Launch times: the number of iterations that the kernel is launched.

Benchmark Benchmark Suite Kernel properties
Name Approximate LOC Scale Launch Times

SAD Parboil
mb sad calc 220 (44,36,1)*(61,1,1) 1
larger sad calc 8 60 (44,36,1)*(61,1,1) 1
larger sad calc 16 50 (11,9,1)*(32,4,1) 1

Stencil Parboil block2D hybrid coarsen x 100 (2,32,1)*(32,4,1) 5
MRI-Q Parboil ComputeQ GPU 50 (128,1,1)*(256,1,1) 3
LBMa Parboil performStreamCollide 150 (120,150,1)*(120,1,1) 100
MAT CUDA SDK matrixMul 110 (4,6,1)*(32,32,1) 1
SCAN-block CUDA SDK scanExclusiveShared 70 (6656,1,1)*(256,32,1) 1
MONTE CUDA SDK MonteCarloOneBlockPerOption 40 (32,1,1)*(256,1,1) 1
Transposea CUDA SDK transposeDiagonal 40 (64,64,1)*(16,16,1) 1
MergeSort CUDA SDK mergeSortSharedKernel 50 (4096,1,1)*(512,1,1) 1

BFS Rodinia Kernel 20 (8,1,1)*(512,1,1) 8
Kernel2 15 (8,1,1)*(512,1,1) 8

AES Other [17] aesEncrypt256 400 (257,1,1)*(256,1,1) 1

HashGPU Other [14] sha1 kernel overlap 1000 (64,1,1)*(64,1,1) 1
md5 kernel overlap 1000 (64,1,1)*(64,1,1) 1

a Randomly picking blocks to inject faults takes too long for LBM and Transpose becauses cuda-gdb launches the application block-by-
block; thus, in practice, we only inject into the first 256 blocks of them

in Stencil, SCAN-block and BFS are 5%, 10%, and 25%
respectively. This shows the potential impact of this design
decision and demonstrates the value of considering different
groups in our profiling strategy.

To validate the second heuristic, we first measure the total
number of iterations executed by each loop of each kernel,
and then consider the loop with the maximum iterations. The
results are shown in Figure 5. We disregard applications that
execute fewer than 64 iterations (in all loops) because they
fall within the chosen threshold already. Among the four
applications that have loops that exceed the threshold, we pick
MRI-Q, which has the largest number of iterations, and MAT,
which has the smallest number of iterations still greater than
the threshold, and vary the threshold from 64 to 32 and 128
and repeat the characterization experiments.

Figure 6 presents the SDC rates and crash rates for MAT and
MRI-Q for threshold values of 32, 64, and 128. We find that
varying this threshold does not affect the resulting SDC rate
and crash rate for these benchmarks. This indicates that our
choice does not affect the overall error resilience estimation.
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Fig. 5: The number of loop iterations executed by each benchmark kernel.

To validate the third decision, we count the number of
instances when the activation window threshold is exceeded.
We find that for only three benchmarks (HashGPU-sha1,
MAT and MRI-Q) are there fault-injection runs in which the
activation window is exceeded: two cases in HashGPU-sha1,
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Fig. 6: Comparison of SDC and crash rate for different iteration threshold.
Left: SDC. Right: Crash

36 in MAT, and 29 in MRI-Q. However, the proportion of these
is negligible, compared to the thousands of fault-injected runs
executed. Thus our choice of the activation window size leads
to only minimal inaccuracy in evaluating error resilience.

C. Characterization of Error Resilience

We characterize the error resilience of the 15 kernels men-
tioned. We run enough experiments to obtain 95% confidence,
with a 1% to 2% (depending on the benchmark) confidence
interval for the SDC rate and crash rate.

Table III presents, for each benchmark, the total number
of injected runs, the overall activation rate, and the average
time for a fault-injection run. The total number of injected
runs includes runs when the fault was injected successfully
and was either: activated, overwritten, or ignored by exceeding
the activation window.

The average time of each fault-injection run varies across
benchmarks from 11 seconds to 710 seconds, and is directly
proportional to the scale of the block size of the benchmark
(shown in Table II). We observe that our worst-case benchmark
SCAN, which takes 710 seconds on average, is still 10X
faster with GPU-Qin than running with GPGPU-Sim. Other
benchmarks show speedups as high as 100x. Moreover, the
simulator needs days to finish for some applications and
hence the speedups for those applications are definitely greater
than 100x; however, we did not measure these speedups. The
average speedup across benchmarks (that the simulator is able
to finish within a couple of hours) is 22x. This demonstrates
the efficiency of GPU-Qin.

Figure 7 presents the SDC rate and crash rate of the



TABLE III: Fault-injection experiments information

Kernels Injected
runs

Activated
runs

Activation
rate

Average time
per run
(seconds)

AES 2,351 2,042 87% 84
HashGPU-md5 2,699 2,683 99% 13
HashGPU-sha1 2,400 2,305 96% 27
MRI-Q 2,830 2,475 87% 123
MAT 2,575 2,186 85% 82
Transpose 2,395 2,160 90% 44
SAD-k0 2,671 2,435 91% 76
SAD-k1 2,208 2,195 99% 26
SAD-k2 2,627 2,618 100% 12
Stencil 2,426 2,148 89% 31
SCAN-block 1,083 1,080 99% 710
MonteCarlo 3,744 2,723 73% 66
MergeSort-k0 1,930 1,884 98% 359
BFS 2,334 2,330 100% 22
LBM 1,895 1,845 97% 165
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Fig. 7: SDC (top) and crash (bottom) rates with error bars representing 95%
confidence interval for each kernel

benchmark kernels. We do not show the hang rates because
they are uniformly lower than 1%. Fault injections in CPUs
exhibit similar hang rates [10] because hangs occur when the
number of loop iterations is increased so significantly that the
benchmark times out. This case is relatively uncommon in
practice.

At a first glance, both the SDC rate and the crash rate vary
widely across benchmarks. In particular, the SDC rate ranges
from 0.5% to nearly 38%. This observation suggests that it
is important to take into account the inherent error resilience
characteristics of an application when protecting it from SDC-
causing errors. For example, the SDC rate for MONTE is less
than 1%, likely because the result of simulating each path
will eventually be aggregated, which potentially mitigates the
effect of faults. We note that similar applications in terms of
application behaivor, (e.g., HashGPU-sha1 and HashGPU-md5
as well as SAD-k1 and SAD-k2) exhibit similar SDC rates. On
the other hand, crash rates vary even more than the SDC rates,
from 6% to 71%. We discuss the possible reasons behind these
variations in the next section. In total, across all benchmarks,
failure rates (crash+SDC+hang) range from 24% (MONTE) to

TABLE IV: Description of CUDA hardware exceptions

Exception type Descrption
Lane user stack overflow Occurs when a thread exceeds its stack

memory limit
Warp out-of-range address Occurs when a thread within a warp ac-

cesses an out-of-bounds local or shared
memory address

Warp misaligned address Occurs when a thread within a warp ac-
cesses an incorrectly aligned local or shared
memory address

Device illegal address Occurs when a thread accesses an out-of-
bounds global memory address
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Fig. 8: Root-cause breakdown of crashes for AES and MAT. Left: AES. Right:
MAT.

93% (SCAN), and the average failure rate is 67%.

D. Crash Causes and Latency

GPU-Qin can be used to gain a deeper understanding of
the error-resilience characteristics of GPGPU applications.
Here, we attempt to understand the reasons for the crashes
observed in the characterization study, and characterize the
crash latency. These metrics are important for two reasons.
First, crashes are a form of error detection performed by the
GPU, and understanding the reasons for crashes can help
understand the effectiveness of the existing error- detection
mechanisms. Second, it is important to detect the crashes
early to contain the errors. Due to space constraints, we report
results for only two benchmarks, AES and MAT: however, the
observations generalize to all the benchmarks.

When a hardware exception occurs, the application crashes
and the crash cause is reported to cuda-gdb. GPU-Qin traps
these exceptions and logs them. Overall, we observe four types
of hardware exceptions: lane user stack overflow, warp out-
of-range address, warp misaligned address and device illegal
address. These exceptions and their causes are presented in
Table IV.

Figure 8 shows the root causes for crashes in the ap-
plications. The two most common causes are warp out-of-
range addresses and device illegal address. We find that warp
misaligned address also plays an important role in crashes in
the MAT benchmark.

Crash latency measures the time interval between the mo-
ment a fault is activated and the moment a crash occurs.
We measure crash latency for each exception type above,
to understand how quickly the crash is detected. Figure 9
shows the crash latency for each exception type for AES
and MAT. In AES, 90% of the warp out-of-range address
exceptions occur within around 500 milliseconds, compared
to 70% of warp misaligned address exceptions and 60% of
device illegal address. In MAT, warp out-of-range address
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Fig. 9: Crash latency analysis for AES and MAT. Top: AES Down: MAT

exceptions occur faster compared to warp misaligned address
exceptions. Only in the Stencil benchmark does the device
illegal address exception occur faster than the other three
exception types. In all other benchmarks, the warp out-of-
range address exceptions have lower crash latency than the
other three exception types.

V. DISCUSSION

The fault-injection study presented in the previous section
finds that the SDC rate varies widely across different bench-
marks. For example, Monte Carlo has nearly no SDCs while
HashGPU-sha1 and HashGPU-md5 have SDC rates of about
40%. In this section, we ask if there are fundamental reasons
that some applications experience fewer SDCs than others. We
focus on SDCs as these are considered the most severe failures:
when an SDC occurs, there is no indication that something
went wrong, yet an application produces incorrect output.

We believe that the reason for the variability in the SDC
rate is related to the applications’ characteristics. For instance,
applications based on search algorithms are likely to have
lower SDCs than applications that perform computations such
as linear algebra. This is because a fault affecting the search
in a part of the space that will not lead to a match is
unlikely to produce an incorrect result and the result will
still be a mismatch. MergeSort in CUDA SDK implements
parallel sorting based on binary search [16], and we observe
a relatively low SDC rate (6%).

Another type of applications that has a low SDC rate is what
we call an “average out” algorithm, such as Stencil (SDC rate:
5%) and MONTE (SDC rate: 1%). These include computations
in which the final state is a product of multiple temporary
states, either in space or time. The core pattern here is that the
product of all states is likely to be obtained via operations that
average those states. If a fault happens in one of the temporary
states, it is likely that it would be averaged out in the final state.

These observations suggest that it might be useful to cluster
the benchmarks based on both the SDC rate and the high-
level operations they perform. We categorize the benchmarks
into five resilience categories, shown in Table V. Asanovic
et al. [18] defines “thirteen dwarfs of parallelism” to design
and evaluate the parallel computing applications. Each of these
dwarfs captures a pattern of computation common to a class of
parallel applications. We find that the resilience categories we
consider map well to one or more of the dwarfs, as Table V
shows. We did not start out trying to find such a mapping, and
hence may not cover all dwarfs in our application categories.
We will explore this mapping systematically in future work.

VI. RELATED WORK

This section provides an overview of related work in the
areas of software-based error resilience techniques and and
GPU vulnerability studies, and how our work differs.

Fault injection has been well-explored on CPUs using run-
time debuggers. Examples are GOOFI [5] and NFTAPE [4].
However, neither of these injectors work on GPUs. Further,
they do not consider multi-threaded programs, nor do they
concern themselves with choosing representative parts of the
program for injection. Other work [19] attempted to inject
faults in scientific applications using the PIN tool from Intel,
a dynamic binary instrumentation framework. However, this
work has not been applied on GPUs to the best of our
knowledge.

Several studies [20], [21] have attempted to characterize
the vulnerability of different micro-architectural structures in
GPUs to soft errors through architecture vulnerability factor
(AVF) analysis [22]. However, these approaches do not con-
sider the end-to-end impact of faults in applications, nor do
they attempt to understand the behavior of the application
under errors. In contrast, our work is from the applications’
perspective, and focuses on understanding the behavior of
GPGPU applications under errors. Program Vulnerability Fac-
tor (PVF) is a metric proposed by Sridharan et al. [23] to
apply AVF analysis at the application layer. While this takes
application properties into account, it still does not consider
the end-to-end impact of faults on the application.

Dimitrov et al. [24] proposed three approaches for GPGPU
reliability that leverage both instruction-level parallelism and
thread-level parallelism to replicate the application code. Their
approach incurs performance overheads of 85 to 100%, and
they conclude that understanding both the application charac-
teristics and the hardware platform is necessary for efficient
protection. They do not characterize the reliability of GPGPU
applications however.

Finally, Yim et al. [6] proposed a technique to detect errors
through data duplication at the programming-language level
(loop code and non-loop code) for GPGPU applications. This
is different from our focus which is to understand the inherent
error-resilience characteristics of an application in order to
find the most efficient protection. Further, they perform fault
injections at the source-code level, and it is unclear how
representative of hardware faults are their injections.



TABLE V: Benchmark categories and the mapping to the dwarfs of parallelism

Resilience Category Benchmarks Measured SDC Dwarfs
Search-based MergeSort 6% Backtrack and Branch+Bound
Bit-wise Operation HashGPU, AES 25 ∼ 37% Combinational Logic
Average-out Effect Stencil, MONTE 1% ∼ 5% Structured Grids, Monte Carlo
Graph Processing BFS 10% Graph Traversal
Linear Algebra Transpose, MAT, MRI-Q, SCAN-block, LBM, SAD 15% ∼ 25% Dense Linear Algebra, Sparse Linear Algebra, Structured Grids

VII. SUMMARY

This paper presents a methodology to investigate the end-
to-end error resilience characteristics of GPGPU applications
through fault injection. One of the main challenges in build-
ing a fault injector for GPGPU applications is balancing
representativeness with time efficiency, due to their massive
parallelism. We first build a fault-injection tool, GPU-Qin, to
efficiently inject faults on real GPU hardware, while maintain-
ing representativeness of the faults injected. Using GPU-Qin,
we study the error resilience characteristics of twelve GPGPU
applications comprised of fifteen kernels. The investigation
showed that 0.3% to 38% of the faults result in SDCs and 6%
to 71% of the results in crashes. Our fault injector enables the
opportunity to study various reliability characteristics of appli-
cations, such as crash latency. Finally, we find that algorithmic
characteristics of the application can help us understand the
variation in the SDC rates among different applications.
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