
GPU-Quicksort: A Practical Quicksort Algorithm

for Graphics Processors

DANIEL CEDERMAN and PHILIPPAS TSIGAS

Chalmers University of Technology

In this paper we describe GPU-Quicksort, an efficient Quicksort algorithm suitable for highly par-
allel multi-core graphics processors. Quicksort has previously been considered an inefficient sorting
solution for graphics processors, but we show that in CUDA, NVIDIA’s programming platform
for general purpose computations on graphical processors, GPU-Quicksort performs better than
the fastest known sorting implementations for graphics processors, such as radix and bitonic sort.
Quicksort can thus be seen as a viable alternative for sorting large quantities of data on graphics
processors.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Sort-
ing and searching; G.4 [MATHEMATICAL SOFTWARE]: Parallel and vector implementa-
tions

General Terms: Algorithms, Design, Experimentation, Performance

Additional Key Words and Phrases: Sorting, Multi-Core, CUDA, Quicksort, GPGPU

1. INTRODUCTION

In this paper, we describe an efficient parallel algorithmic implementation of Quick-
sort, GPU-Quicksort, designed to take advantage of the highly parallel nature of
graphics processors (GPUs) and their limited cache memory. Quicksort has long
been considered one of the fastest sorting algorithms in practice for single processor
systems and is also one of the most studied sorting algorithms, but until now it has
not been considered an efficient sorting solution for GPUs [Sengupta et al. 2007].
We show that GPU-Quicksort presents a viable sorting alternative and that it can
outperform other GPU-based sorting algorithms such as GPUSort and radix sort,
considered by many to be two of the best GPU-sorting algorithms. GPU-Quicksort
is designed to take advantage of the high bandwidth of GPUs by minimizing the
amount of bookkeeping and inter-thread synchronization needed. It achieves this
by i) using a two-pass design to keep the inter-thread synchronization low, ii) coa-
lescing read operations and constraining threads so that memory accesses are kept

Daniel Cederman was supported by Microsoft Research through its European PhD Scholarship
Programme and Philippas Tsigas was partially supported by the Swedish Research Council (VR).
Authors’ addresses: Daniel Cederman and Philippas Tsigas, Department of Computer Sci-
ence and Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden; email:
{cederman,tsigas}@chalmers.se.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–22.

2 · D. Cederman and P. Tsigas

to a minimum. It can also take advantage of the atomic synchronization primitives
found on newer hardware to, when available, further improve its performance.

Today’s graphics processors contain very powerful multi-core processors, for ex-
ample, NVIDIA’s highest-end graphics processor currently boasts 128 cores. These
processors are specialized for compute-intensive, highly parallel computations and
they could be used to assist the CPU in solving problems that can be efficiently
data-parallelized.

Previous work on general purpose computation on GPUs have used the OpenGL
interface, but since it was primarily designed for performing graphics operations it
gives a poor abstraction to the programmer who wishes to use it for non-graphics
related tasks. NVIDIA is attempting to remedy this situation by providing pro-
grammers with CUDA, a programming platform for doing general purpose compu-
tation on their GPUs. A similar initiative to CUDA is OpenCL, which specification
has just recently been released [Khronos Group 2008].

Although CUDA simplifies the programming, one still needs to be aware of the
strengths and limitations of the new platform to be able to take full advantage of
it. Algorithms that work great on standard single processor systems most likely
need to be altered extensively to perform well on GPUs, which have limited cache
memory and instead use massive parallelism to hide memory latency.

This means that directly porting efficient sorting algorithms from the single pro-
cessor domain to the GPU domain would most likely yield very poor performance.
This is unfortunate, since the sorting problem is very well suited to be solved in
parallel and is an important kernel for sequential and multiprocessing computing
and a core part of database systems. Being one of the most basic computing prob-
lems, it also plays a vital role in plenty of algorithms commonly used in graphics
applications, such as visibility ordering or collision detection.

Quicksort was presented by C.A.R. Hoare in 1961 and uses a divide-and-conquer
method to sort data [Hoare 1961]. A sequence is sorted by recursively dividing it
into two subsequences, one with values lower and one with values higher than the
specific pivot value that is selected in each iteration. This is done until all elements
are sorted.

1.1 Related Work

With Quicksort being such a popular sorting algorithm, there have been a lot of
different attempts to create an efficient parallelization of it. The obvious way is to
take advantage of its inherent parallelism by just assigning a new processor to each
new subsequence. This means, however, that there will be very little parallelization
in the beginning, when the sequences are few and large [Evans and Dunbar 1982].

Another approach has been to divide each sequence to be sorted into blocks
that can then be dynamically assigned to available processors [Heidelberger et al.
1990; Tsigas and Zhang 2003]. However, this method requires extensive use of
atomic synchronization instructions which makes it too expensive to use on graphics
processors.

Blelloch suggested using prefix sums to implement Quicksort and recently Sen-
gupta et al. used this method to make an implementation for CUDA [Blelloch
1993; Sengupta et al. 2007]. The implementation was done as a demonstration of
their segmented scan primitive, but it performed quite poorly and was an order of

ACM Journal Name, Vol. V, No. N, Month 20YY.

GPU-Quicksort: A Practical Quicksort Algorithm for Graphics Processors · 3

magnitude slower than their radix-sort implementation in the same paper.
Since most sorting algorithms are memory bandwidth bound, there is no surprise

that there is currently a big interest in sorting on the high bandwidth GPUs. Purcell
et al. [Purcell et al. 2003] have presented an implementation of bitonic merge sort
on GPUs based on an implementation by Kapasi et al. [Kapasi et al. 2000]. Kipfer
et al. [Kipfer et al. 2004; Kipfer and Westermann 2005] have shown an improved
version of the bitonic sort as well as an odd-even merge sort. Greß et al. [Greß
and Zachmann 2006] introduced an approach based on the adaptive bitonic sorting
technique found in the Bilardi et al. paper [Bilardi and Nicolau 1989]. Govindaraju
et al. [Govindaraju et al. 2005] implemented a sorting solution based on the periodic
balanced sorting network method by Dowd et al. [Dowd et al. 1989] and one based
on bitonic sort [Govindaraju et al. 2005]. They later presented a hybrid bitonic-
radix sort that used both the CPU and the GPU to be able to sort vast quantities
of data [Govindaraju et al. 2006]. Sengupta et al. [Sengupta et al. 2007] have
presented a radix-sort and a Quicksort implementation. Recently, Sintorn et al.
[Sintorn and Assarsson 2007] presented a hybrid sorting algorithm which splits the
data with a bucket sort and then uses merge sort on the resulting blocks. The
implementation requires atomic primitives that are currently not available on all
graphics processors.

In the following section, Section 2, we present the system model. In Section 3.1
we give an overview of the algorithm and in Section 3.2 we go through it in detail.
We prove its time and space complexity in Section 4. In Section 5 we show the
results of our experiments and in Section 5.4 and Section 6 we discuss the result
and conclude.

2. THE SYSTEM MODEL

CUDA is NVIDIA’s initiative to bring general purpose computation to their graph-
ics processors. It consists of a compiler for a C-based language which can be used to
create kernels that can be executed on the GPU. Also included are high performance
numerical libraries for FFT and linear algebra.

General Architecture The high range graphics processors from NVIDIA that
supports CUDA currently boasts 16 multiprocessors, each multiprocessor consisting
of 8 processors that all execute the same instruction on different data in lock-step.
Each multiprocessor supports up to 768 threads, has 16KiB of fast local memory
called the shared memory and have a maximum of 8192 available registers that can
be divided between the threads.

Scheduling Threads are logically divided into thread blocks that are assigned to
a specific multiprocessor. Depending on how many registers and how much local
memory the block of threads requires, there could be multiple blocks assigned to a
single multiprocessor. If more blocks are needed than there is room for on any of
the multiprocessors, the leftover blocks will be run sequentially.

The GPU schedules threads depending on which warp they are in. Threads with
id 0..31 are assigned to the first warp, threads with id 32..63 to the next and so
on. When a warp is scheduled for execution, the threads which perform the same
instructions are executed concurrently (limited by the size of the multiprocessor)
whereas threads that deviate are executed sequentially. Hence it is important to

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · D. Cederman and P. Tsigas

Fig. 1: A graphical representation of the CUDA hardware model

try to make all threads in the same warp perform the same instructions most of
the time. See Figure 1 for a graphical description of the way threads are grouped
together and scheduled.

Two warps cannot execute simultaneously on a single multiprocessor, so one
could see the warp as the counter-part of the thread in a conventional SMP system.
All instructions on the GPU are SIMD, so the threads that constitute a warp can
be seen as a way to simplify the usage of these instructions. Instead of each thread
issuing SIMD instructions on 32-word arrays, the threads are divided into 32 sub-
threads that each works on its own word.

Synchronization Threads within a thread block can use the multiprocessors
shared local memory and a special thread barrier-function to communicate with
each other. The barrier-function forces all threads in the same block to synchronize,
that is, a thread calling it will not be allowed to continue until all other threads have
also called it. They will then continue from the same position in the code. There is
however no barrier-function for threads from different blocks. The reason for this is
that when more blocks are executed than there is room for on the multiprocessors,
the scheduler will wait for a thread block to finish executing before it swaps in a
new block. This makes it impossible to implement a barrier function in software
and the only solution is to wait until all blocks have completed.

Newer graphics processors support atomic instructions such as CAS (Compare-
And-Swap) and FAA (Fetch-And-Add). See Figure 2 for the specification of these
synchronization operations.

Memory Data is stored in a large global memory that supports both gather and
scatter operations. There is no caching available automatically when accessing this

ACM Journal Name, Vol. V, No. N, Month 20YY.

GPU-Quicksort: A Practical Quicksort Algorithm for Graphics Processors · 5

function CAS(ptr, oldval, newval)
if ∗ptr = oldval then

∗ptr ← newval;
return oldval;

return ∗ptr;

function FAA(ptr, value)
∗ptr ← ∗ptr + value;
return ∗ptr − value;

Fig. 2: The specification for the Compare-And-Swap and Fetch-And-Add operation. The two
operations are performed atomically.

memory, but each thread block can use its own, very fast, shared local memory
to temporarily store data and use it as a manual cache. By letting each thread
access consecutive memory locations, the hardware can coalesce several read or
write operations into one big read or write operation, which increases performance.

This is in direct contrast with the conventional SMP systems, where one should
try to let each thread access its own part of the memory so as to not thrash the
cache.

Because of the lack of caching, a high number of threads are needed to hide the
memory latency. These threads should preferably have a high ratio of arithmetic
to memory operations to be able to hide the latency well.

The shared memory is divided into memory banks that can be accessed in parallel.
If two threads write to or read from the same memory bank, the accesses will be
serialized. Due to this, one should always try make threads in the same warp write
to different banks. If all threads read from the same memory bank, a broadcasting
mechanism will be used, making it just as fast as a single read. A normal access to
the shared memory takes the same amount of time as accessing a register.

3. THE ALGORITHM

The following subsection gives an overview of GPU-Quicksort. Section 3.2 will then
go into the algorithm in more details.

3.1 Overview

As in the original Quicksort algorithm, the method used is to recursively partition

the sequence to be sorted, i.e. to move all elements that are lower than a specific
pivot value to a position to the left of the pivot and to move all elements with a
higher value to the right of the pivot. This is done until the entire sequence has
been sorted.

In each partition iteration a new pivot value is picked and as a result two new
subsequences are created that can be sorted independently. In our experiments we
use a deterministic pivot selection that is described in Section 5, but a randomized
method could also be used. After a while there will be enough subsequences avail-
able that each thread block can be assigned one. But before that point is reached,
the thread blocks need to work together on the same sequences. For this reason,
we have divided up the algorithm into two, albeit rather similar, phases.

First Phase In the first phase, several thread blocks might be working on differ-
ent parts of the same sequence of elements to be sorted. This requires appropriate
synchronization between the thread blocks, since the results of the different blocks
needs to be merged together to form the two resulting subsequences.

Newer graphics processors provide access to atomic primitives that can aid some-
what in this synchronization, but they are not yet available on the high-end graphics

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · D. Cederman and P. Tsigas

processors and there is still the need to have a thread block barrier-function be-
tween the partition iterations, something that cannot be implemented using the
available atomic primitives.

The reason for this is that the blocks might be executed sequentially and we have
no way of knowing in which order they will be run. So the only way to synchronize
thread blocks is to wait until all blocks have finished executing. Then one can
assign new sequences to them. Exiting and reentering the GPU is not expensive,
but it is also not delay-free since parameters needs to be copied from the CPU to
the GPU, which means that we want to minimize the number of times we have to
do that.

When there are enough subsequences so that each thread block can be assigned
its own, we enter the second phase.

Second Phase In the second phase, each thread block is assigned its own subse-
quence of input data, eliminating the need for thread block synchronization. This
means that the second phase can run entirely on the graphics processor. By using
an explicit stack and always recurse on the smallest subsequence, we minimize the
shared memory required for bookkeeping.

Hoare suggested in his paper [Hoare 1962] that it would be more efficient to
use another sorting method when the subsequences are relatively small, since the
overhead of the partitioning gets too large when dealing with small sequences.
We decided to follow that suggestion and sort all subsequences that can fit in
the available local shared memory using an alternative sorting method. For the
experiments we decided to use bitonic sort, but other sorting algorithms could also
be used.

In-place On conventional SMP systems it is favorable to perform the sorting
in-place, since that gives good cache behavior. But on the GPUs with their limited
cache memory and the expensive thread synchronization that is required when
hundreds of threads need to communicate with each other, the advantages of sorting
in-place quickly fade. Here it is better to aim for reads and writes to be coalesced to
increase performance, something that is not possible on conventional SMP systems.
For these reasons it is better, performance-wise, to use an auxiliary buffer instead
of sorting in-place.

So, in each partition iteration, data is read from the primary buffer and the
result is written to the auxiliary buffer. Then the two buffers switch places and the
primary becomes the auxiliary and vice versa.

3.1.1 Partitioning. The principle of two phase partitioning is outlined in Figure
3. A sequence to be partitioned is selected and it is then logically divided into m
equally sized sections (Step a), where m is the number of thread blocks available.
Each thread block is then assigned a section of the sequence (Step b).

The thread block goes through its assigned data, with all threads in the block
accessing consecutive memory so that the reads can be coalesced. This is important,
since reads being coalesced will significantly lower the memory access time.

Synchronization The objective is to partition the sequence, i.e. to move all
elements that are lower than the pivot to a position to the left of the pivot in the
auxiliary buffer and to move the elements with a higher value to the right of the
pivot. The problem here is how to synchronize this in an efficient way. How do

ACM Journal Name, Vol. V, No. N, Month 20YY.

GPU-Quicksort: A Practical Quicksort Algorithm for Graphics Processors · 7

Fig. 3: Partitioning a sequence

we make sure that each thread knows where to write in the auxiliary buffer? It
should also be noted that it is important to minimize the amount of synchronization
communication between threads since it will be quite expensive as we have so many
threads.

Cumulative Sum A possible solution is to let each thread read an element and
then synchronize the threads using a barrier function. By calculating a cumulative
sum1 of the number of threads that want to write to the left and that wants to
write to the right of the pivot, each thread would know that x threads with a lower
thread id than its own are going to write to the left and that y threads are going to
write to the right. Each thread then knows that it can write its element to either
bufx+1 or bufn−(y+1), depending on if the element is higher or lower than the pivot.

A Two-Pass Solution But calculating a cumulative sum is not free, so to
improve performance we go through the sequence two times. In the first pass each

1The terms prefix sum or sum scan are also used in the literature.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · D. Cederman and P. Tsigas

Algorithm 1 GPU-Quicksort (CPU Part)

procedure gpuqsort(size, d, d̂) ⊲ d contains the sequence to be sorted.

startpivot ←median(d0, dsize/2, dsize) ⊲ dx is the value at index x.
work ← {(d0→size, startpivot)} ⊲ dx→y is the sequence from index x to y.
done ← ∅
while work 6= ∅ ∧ |work| + |done| < maxseq do ⊲ Divide into maxseq subsequences.

blocksize ←
∑

(seq,pivot)∈work
||seq||

maxseq ⊲ ||seq|| is the length of sequence seq.

blocks ← ∅
for all (seqstart→end, pivot) ∈ work do ⊲ Divide sequences into blocks.

blockcount ← ⌈ ||seq||
blocksize ⌉ ⊲ Number of blocks to create for this sequence.

parent ← (seq, seq, blockcount) ⊲ Shared variables for all blocks of this sequence.

for i ← 0, i < blockcount − 1, i ← i + 1 do

bstart ← start + blocksize · i
blocks ← blocks ∪ {(seqbstart→bstart+blocksize, pivot, parent)}

blocks ← blocks ∪ {(seqstart+blocksize·(blockcount−1)→end, pivot, parent)}

news ← gqsort≪ |blocks| ≫ (blocks, d, d̂) ⊲ Start |blocks| thread blocks.
work ← ∅
for all (seq, pivot) ∈ news do ⊲ If the new sequences are too long; partition them further.

if ||seq|| < size/maxseq then

done ← done ∪ {(seq, pivot)}
else

work ← work ∪ {(seq, pivot)}

done ← done ∪ work ⊲ Merge the sets done and work.

lqsort≪ |done| ≫ (done, d, d̂) ⊲ Do final sort.

thread just counts the number of elements it has seen that have a value higher (or
lower) than the pivot (Step c). Then when the block has finished going through
its assigned data, we use these sums instead to calculate the cumulative sum (Step
d). Now each thread knows how much memory the threads with a lower id than its
own needs in total, turning it into an implicit memory-allocation scheme that only
needs to run once for every thread block, in each iteration.

In the first phase, were we have several thread blocks accessing the same sequence,
an additional cumulative sum need to be calculated for the total memory used by
each thread block (Step e).

Now when each thread knows where to store its elements, we go through the
data in a second pass (Step g), storing the elements at their new position in the
auxiliary buffer. As a final step, we store the pivot value at the gap between the
two resulting subsequences (Step h). The pivot value is now at its final position
which is why it does not need to be included in any of the two subsequences.

3.2 Detailed Description

The following subsection describes the algorithm in more detail.

3.2.1 The First Phase. The goal of the first phase is to divide the data into a
large enough number of subsequences that can be sorted independently.

Work Assignment In the ideal case, each subsequence should be of the same
size, but that is often not possible, so it is better to have some extra sequences
and let the scheduler balance the workload. Based on that observation, a good way
to partition is to only partition subsequences that are longer than minlength =
n/maxseq, where n is the total number of elements to sort, and to stop when
we have maxseq number of sequences. We discuss how to select a good value for

ACM Journal Name, Vol. V, No. N, Month 20YY.

GPU-Quicksort: A Practical Quicksort Algorithm for Graphics Processors · 9

Algorithm 2 GPU-Quicksort (First Phase GPU Kernel)

function gqsort(blocks, d, d̂)

var global sstart, send, oldstart, oldend, blockcount
var block local lt, gt, pivot, start, end, s
var thread local i, lfrom, gfrom, lpivot, gpivot

(sstart→end, pivot, parent) ← blocksblockid ⊲ Get the sequence block assigned to this thread block.
ltthreadid, gtthreadid ← 0, 0 ⊲ Set thread local counters to zero.

i ← start + threadid ⊲ Align thread accesses for coalesced reads.
for i < end, i ← i + threadcount do ⊲ Go through the data...

if si < pivot then ⊲ counting elements that are smaller...
ltthreadid ← ltthreadid + 1

if si > pivot then ⊲ or larger compared to the pivot.
gtthreadid ← gtthreadid + 1

lt0, lt1, lt2, ..., ltsum ← 0, lt0, lt0 + lt1, ...,
∑ threadcount

i=0 lti ⊲ Calculate the cumulative sum.

gt0, gt1, gt2, ..., gtsum ← 0, gt0, gt0 + gt1, ...,
∑ threadcount

i=0 gti

if threadid = 0 then ⊲ Allocate memory in the sequence this block is a part of.
(seqsstart→send, oseqoldstart→oldend, blockcount) ← parent ⊲ Get shared variables.
lbeg ← FAA(sstart, ltsum) ⊲ Atomic increment allocates memory to write to.
gbeg ← FAA(send,−gtsum) − gtsum ⊲ Atomic is necessary since multiple blocks access this

variable.

lfrom = lbeg + ltthreadid

gfrom = gbeg + gtthreadid

i ← start + threadid
for i < end, i ← i + threadcount do ⊲ Go through data again writing elements

if si < pivot then ⊲ to the their correct position.
¬slfrom ← si ⊲ If s is a sequence in d, ¬s denotes the corresponding

lfrom ← lfrom + 1 ⊲ sequence in d̂ (and vice versa).

if si > pivot then

¬sgfrom ← si

gfrom ← gfrom + 1

if threadid = 0 then

if FAA(blockcount,−1) = 0 then ⊲ Check if this is the last block in the sequence to finish.
for i ← sstart, i < send, i ← i + 1 do ⊲ Fill in pivot value.

di ← pivot

lpivot ← median(¬seqoldstart,¬seq(oldstart+sstart)/2,¬seqsstart)
gpivot ← median(¬seqsend,¬seq(send+oldend)/2,¬seqoldend)
result ← result ∪{(¬seqoldstart→sstart, lpivot)}
result ← result ∪{(¬seqsend→oldend, gpivot)}

maxseq in Section 5.
In the beginning of each iteration, all sequences that are larger than minlength

are assigned thread blocks relative to their size. In the first iteration, the original
sequence will be assigned all available thread blocks. The sequences are divided
so that each thread block gets an equally large section to sort, as can be seen in
Figure 3 (Step a and b).

First Pass When a thread block is executed on the GPU, it will iterate through
all the data in its assigned sequence. Each thread in the block will keep track of
the number of elements that are greater than the pivot and the number of elements
that are smaller than the pivot. This information is stored in two arrays in the
shared local memory; with each thread in a half warp (a warp being 32 consecutive
threads that are always scheduled together) accessing different memory banks to
increase performance.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · D. Cederman and P. Tsigas

Algorithm 3 GPU-Quicksort (Second Phase GPU Kernel)

procedure lqsort(seqs, d, d̂)

var block local lt, gt, pivot, workstack, start, end, s, newseq1, newseq2, longseq, shortseq
var thread local i, lfrom, gfrom

push seqsblockid on workstack ⊲ Get the sequence assigned to this thread block.

while workstack 6= ∅ do

pop sstart→end from workstack ⊲ Get the shortest sequence from set.

pivot ← median(sstart, s(end+start)/2), send) ⊲ Pick a pivot.
ltthreadid, gtthreadid ← 0, 0 ⊲ Set thread local counters to zero.

i ← start + threadid ⊲ Align thread accesses for coalesced reads.
for i < end, i ← i + threadcount do ⊲ Go through the data...

if si < pivot then ⊲ counting elements that are smaller...
ltthreadid ← ltthreadid + 1

if si > pivot then ⊲ or larger compared to the pivot.
gtthreadid ← gtthreadid + 1

lt0, lt1, lt2, ..., ltsum ← 0, lt0, lt0 + lt1, ...,
∑ threadcount

i=0 lti ⊲ Calculate the cumulative sum.

gt0, gt1, gt2, ..., gtsum ← 0, gt0, gt0 + gt1, ...,
∑ threadcount

i=0 gti

lfrom ← start + ltthreadid ⊲ Allocate locations for threads.
gfrom ← end − gtthreadid+1

i ← start + threadid ⊲ Go through the data again, storing everything at its correct position.
for i < end, i ← i + threadcount do

if si < pivot then

¬slfrom ← si

lfrom ← lfrom + 1

if si > pivot then

¬sgfrom ← si

gfrom ← gfrom + 1

i ← start + ltsum + threadid ⊲ Store the pivot value between the new sequences.
for i < end − gtsum, i ← i + threadcount do

di ← pivot

newseq1 ← ¬sstart→start+ltsum
newseq2 ← ¬send−gtsum→end

longseq, shortseq ← max(newseq1, newseq2), min(newseq1, newseq2)
if ||longseq|| <MINSIZE then ⊲ If the sequence is shorter than MINSIZE

altsort(longseq, d) ⊲ sort it using an alternative sort and place result in d.
else

push longseq on workstack

if ||shortseq|| <MINSIZE then

altsort(shortseq, d)
else

push shortseq on workstack

The data is read in chunks of T words, where T is the number of threads in each
thread block. The threads read consecutive words so that the reads coalesce as
much as possible.

Space Allocation Once we have gone through all the assigned data, we calculate
the cumulative sum of the two arrays. We then use the atomic FAA-function
to calculate the cumulative sum for all blocks that have completed so far. This
information is used to give each thread a place to store its result, as can be seen in
Figure 3 (Step c-f).

FAA is as of the time of writing not available on all GPUs. An alternative if

ACM Journal Name, Vol. V, No. N, Month 20YY.

GPU-Quicksort: A Practical Quicksort Algorithm for Graphics Processors · 11

one wants to run the algorithm on the older, high-end graphics processors, is to
divide the kernel up into two kernels and do the block cumulative sum on the CPU
instead. This would make the code more generic, but also slightly slower on new
hardware.

Second Pass Using the cumulative sum, each thread knows where to write
elements that are greater or smaller than the pivot. Each block goes through its
assigned data again and writes it to the correct position in the current auxiliary
array. It then fills the gap between the elements that are greater or smaller than
the pivot with the pivot value. We now know that the pivot values are in their
correct final position, so there is no need to sort them anymore. They are therefore
not included in any of the newly created subsequences.

Are We Done? If the subsequences that arise from the partitioning are longer
than minlength, they will be partitioned again in the next iteration, provided we
do not already have more than maxseq sequences. If we do, the next phase begins.
Otherwise we go through another iteration. (See Algorithm 1).

3.2.2 The Second Phase. When we have acquired enough independent subse-
quences, there is no longer any need for synchronization between blocks. Because
of this, the entire phase two can be run on the GPU entirely. There is however
still the need for synchronization between threads, which means that we will use
the same method as in phase one to partition the data. That is, we will count the
number of elements that are greater or smaller than the pivot, do a cumulative sum
so that each thread has its own location to write to and then move all elements to
their correct position in the auxiliary buffer.

Stack To minimize the amount of fast local memory used, there being a very
limited supply of it, we always recurse on the smallest subsequence. By doing that,
Hoare has shown [Hoare 1962] that the maximum recursive depth can never go
below log2(n). We use an explicit stack as suggested by Hoare and implemented
by Sedgewick in [Sedgewick 1978], always storing the smallest subsequence at the
top.

Overhead When a subsequence’s size goes below a certain threshold, we use an
alternative sorting method on it. This was suggested by Hoare since the overhead of
Quicksort gets too big when sorting small sequences of data. When a subsequence
is small enough to be sorted entirely in the fast local memory, we could use any
sorting method that can be made to sort in-place, does not require much expensive
thread synchronization and performs well when the number of threads approaches
the length of the sequence to be sorted. See Section 5.2 for more information about
algorithm used.

3.2.3 Cumulative sum. When calculating the cumulative sum, it would be pos-
sible to use a simple sequential implementation, since the sequences are so short
(≤ 512). But it is calculated so often that every performance increase counts, so
we decided to use the parallel cumulative sum implementation described in [Har-
ris et al. 2007] which is based on [Blelloch 1993]. Their implementation was an
exclusive cumulative sum so we had to modify it to include the total sum. We
also modified it so that it accumulated two arrays at the same time. By using this
method, the speed of the calculation of the cumulative sum was increased by 20%

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · D. Cederman and P. Tsigas

compared to using a sequential implementation.
Another alternative would have been to let each thread use FAA to create a cu-

mulative sum, but that would have been way too expensive, since all the threads
would have been writing to the same variable, leading to all additions being serial-
ized. Measurements done using 128 threads show that it would be more than ten
times slower than the method we decided to use.

4. COMPLEXITY

THEOREM 1. The average time complexity for GPU-Quicksort is O(n
p log(n))

on a CRCW PRAM.

Proof. For the analysis we combine phase one and two since there is no differ-
ence between them from a complexity perspective. We assume a p-process arbi-
trary CRCW PRAM [Jaja 1992]. Each partition iteration requires going through
the data, calculating the cumulative sum and going through the data again writing
the result to its correct position. Going through the data twice takes O(n

p) steps,
where n is the length of the sequence to sort and p is the number of processors.

The accumulate function has a time complexity of O(log(T)) [Blelloch 1993],
where T is the number of threads per thread block. Since T does not vary with
n or p, it is a constant cost. The alternative sort only needs to sort sequences
that are smaller than q, where q is dependent on the amount of available shared
memory on the graphics processor. This means that the worst case complexity of
the alternative sort is not dependent on n or p and is thus constant.

Assuming that all elements are equally likely to be picked as a pivot, we get an
average running time of

T (n) =

{

O(n
p) + 2

n

∑n−1
i=0 T (i) n > q,

O(1) n ≤ q.

Assuming that q ≪ n we can set q = 1 which gives us the standard Quicksort
recurrence relation, which is proved to be O(n

p log(n)).

THEOREM 2. The space complexity for GPU-Quicksort is 2n + c, where c is

a constant.

Proof. Phase one is bounded in that it only needs to keep track of a maximum
of maxseq subsequences. Phase two always recurses on the smaller sequence, giv-
ing a bound of log2(keysize) subsequences that needs to be stored. maxseq and
log2(keysize) do not depend on the size of the sequence and can thus be seen as
constants. The memory complexity then becomes 2n + c, the size of the sequence
to be sorted plus an equally large auxiliary buffer and a constant needed for the
bookkeeping of maxseq and B log2(keysize) sequences, where B is the amount of
thread blocks used.

ACM Journal Name, Vol. V, No. N, Month 20YY.

GPU-Quicksort: A Practical Quicksort Algorithm for Graphics Processors · 13

 1

 10

 100

 1000 Uniform

GPU-
Quicksort

Global
Radix

GPUSort Radix-
Merge

STL

 1

 10

 100

 1000 Sorted

 1

 10

 100

 1000 Zero

 1

 10

 100

 1000 Bucket

T
im

e
in

 m
ill

is
ec

on
ds

 -
 L

og
ar

ith
m

ic
 s

ca
le

 1

 10

 100

 1000 Gaussian

 1

 10

 100

 1000

1 2 4 8 16

Elements (millions)

Staggered

Fig. 4: Results on the 8800GTX

 1

 10

 100

 1000 Uniform

GPU-
Quicksort

Global
Radix

GPUSort Radix-
Merge

STL Hybrid

 1

 10

 100

 1000 Sorted

 1

 10

 100

 1000

 10000
Zero

 1

 10

 100

 1000 Bucket

T
im

e
in

 m
ill

is
ec

on
ds

 -
 L

og
ar

ith
m

ic
 s

ca
le

 1

 10

 100

 1000 Gaussian

 1

 10

 100

 1000

1 2 4 8

Elements (millions)

Staggered

Fig. 5: Results on the 8600GTS

5. EXPERIMENTAL EVALUATION

5.1 Hardware

We ran the experiments on a dual-processor dual-core AMD Opteron 1.8 GHz ma-
chine. Two different graphics processors were used, the low-end NVIDIA 8600GTS
256MiB with 4 multiprocessors and the high-end NVIDIA 8800GTX 768 MiB with
16 multiprocessors, each multiprocessor having 8 processors each.

The 8800GTX provides no support for atomic operations. Because of this,
we used an implementation of the algorithm that exits to the CPU for block-
synchronization, instead of using FAA.

5.2 Algorithms used

We compared GPU-Quicksort to the following state-of-the-art GPU sorting algo-
rithms:

GPUSort Uses bitonic merge sort [Govindaraju et al. 2005].

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · D. Cederman and P. Tsigas

Radix-Merge Uses radix sort to sort blocks that are then merged [Harris et al.
2007].

Global Radix Uses radix sort on the entire sequence [Sengupta et al. 2007].
Hybridsort Splits the data with a bucket sort and uses merge sort on the re-

sulting blocks [Sintorn and Assarsson 2007].
STL-Introsort This is the Introsort implementation found in the C++ Standard

Library [Musser 1997]. Introsort is based on Quicksort, but switches to heap-
sort when the recursion depth gets too large. Since it is highly dependent on the
computer system and compiler used, we only included it to give a hint as to what
could be gained by sorting on the GPU instead of on the CPU.

We could not find an implementation of the Quicksort algorithm used by Sen-
gupta et al., but they claim in their paper that it took over 2 seconds to sort 4M
uniformly distributed elements on an 8800GTX, which makes it much slower than
STL sort [Sengupta et al. 2007].

We only measured the actual sorting phase, we did not include in the result the
time it took to setup the data structures and to transfer the data on and off the
graphics memory. The reason for this is the different methods used to transfer
data which wouldn’t give a fair comparison between the GPU-based algorithms.
Transfer times are also irrelevant if the data to be sorted is already available on the
GPU. Because of those reasons, this way of measuring has become a standard in
the literature.

We used different pivot selection schemes for the two phases. In the first phase
we took the average of the minimum and maximum element in the sequence and in
the second we picked the median of the first, middle and last element as the pivot,
a method suggested by Singleton[Singleton 1969].

We used the more computationally expensive method in the first phase to try to
have a more even size of the subsequences that are assigned to each thread block
in the next phase. This method works perfectly well with numbers, but for generic
key types it has to be replaced with e.g. picking a random element or using the
same method as in phase two.

The source code of GPU-Quicksort is available for non-commercial use [Cederman
and Tsigas 2007].

5.3 Input Distributions

For benchmarking we used the following distributions which are commonly used
yardsticks in the literature to compare the performance of different sorting al-
gorithms [Helman et al. 1998]. The source of the random uniform values is the
Mersenne Twister [Matsumoto and Nishimura 1998].

(a) Uniform (b) Sorted (c) Zero (d) Bucket (e) Gaussian (f) Staggered
Fig. 6: Visualization of sequences generated with different distributions.

Uniform Values are picked randomly from 0 − 231.

ACM Journal Name, Vol. V, No. N, Month 20YY.

GPU-Quicksort: A Practical Quicksort Algorithm for Graphics Processors · 15

Phase Registers Shared Memory (32-bit words)

Phase one 14 4T + 14
Phase two 14 max(2T, S) + 98

Table I: Registers and shared memory per block required by each phase. T is the number of
threads per block and S is the minimum sequence sorted by Quicksort.

Sorted Sorted uniformly distributed values.
Zero A constant value is used. The actual value is picked at random.
Bucket The data set is divided into p blocks, where p ∈ Z

+, which are then each
divided into p sections. Section 1 in each block contains randomly selected values

between 0 and 231

p − 1. Section 2 contains values between 231

p and 232

p − 1 and so
on.

Gaussian The Gaussian distribution is created by always taking the average of
four randomly picked values from the uniform distribution.

Staggered The data set is divided into p blocks, where p ∈ Z
+. The staggered

distribution is then created by assigning values for block i, where i ≤ ⌊p
2⌋, so that

they all lie between (2i + 1) 231

p and (2i + 2) 231

p − 1. For blocks where i > ⌊p
2⌋, the

values all lie between (2i − p) 231

p and (2i − p + 1) 231

p − 1. We decided to use a p
value of 128.

The results presented in Figure 4 and 5 are based on experiments sorting se-
quences of integers. We have done experiments using floats instead, but found no
difference in performance.

To get an understanding of how GPU-Quicksort performs when faced with real-
world data we have evaluated it on the task of visibility ordering, i.e. sorting a
set of vertices in a model according to their distance from a point in 3D-space.
The 3D-models have been taken from The Stanford 3D Scanning Repository which
is a resource commonly used in the literature [Stanford 2008]. By calculating the
distance from the viewer (in the experiments we placed the viewer at origin (0,0,0)
), we get a set of floats that needs to be sorted to know in which order the vertices
and accompanying faces should be drawn. Figure 7 shows the result from these
experiments on the two different graphics processors. The size of the models ranges
from 5 × 106 elements to 5 × 107 elements.

GPUSort can only sort sequences that have a length which is a power of two,
due to the use of a bitonic sorting network. In Figure 8a we have visualized the
amount of data that is sorted on the GPU versus the CPU. In Figure 8b we also
show the relative amount of time spent on the GPU versus the CPU.

Table I shows the number of registers and amount of shared memory needed by
each phase. The higher the number of registers used the fewer the threads that
can be used per block and the higher the amount of shared memory used the fewer
number of blocks can be run concurrently.

The GPU-Quicksort algorithms can be seen as having three parameters, the max-
imum number of subsequences created in the first phase, maxseq, the number of
threads per block, threads, and the minimum size of sequence to sort with Quicksort
before switching to the alternative sort, sbsize. In Figure 9 we have tried several
different combinations of these parameters on the task of sorting a uniformly dis-
tributed sequence with 8 million elements. The figure shows the five best and the
five worst results divided into how much time each phase takes.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · D. Cederman and P. Tsigas

GPU-Quicksort
Global Radix

GPUSort
Radix/Merge

STL
Hybrid

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90
a) Dragon

 0

 20

 40

 60

 80

 100

 120 b) Happy

 0

 100

 200

 300

 400

 500

T
i
m
e

(
m
s
)

c) Manuscript

 0

 100

 200

 300

 400

 500

 600

 700

 800

8800GTX 8600GTS

d) RGBDragon

 0

 200

 400

 600

 800

 1000

 1200

8800GTX 8600GTS

e) Statuette

Model Elements

a) Dragon 437645
b) Happy 543652
c) Manuscript 2155617
d) RGBDragon 3609600
e) Statuette 4999996

Fig. 7: Shows the time taken to sort the distances between origin (0,0,0) and each vertice in five
different 3D-models. a) Dragon, b) Happy, c) Manuscript, d) RGBDragon and e) Statuette. Also
shown is a table with the number of vertices in each figure, i.e. the size of the sequence to sort.

 0

 20

 40

 60

 80

 100

dragon happy manuscript rgbdragon statuette

%
 o

f t
ot

al

GPU CPU

(a) Percentage of data sorted on the GPU vs
CPU when using GPUSort.

 0

 20

 40

 60

 80

 100

dragon happy manuscript rgbdragon statuette

%
 o

f t
ot

al

GPU-Time CPU-Time

(b) Percentage of time spent sorting on the
GPU vs CPU when using GPUSort.

Fig. 8: GPUSort on 8600GTS.

Figure 10 shows how the performance changes when we vary one parameter and
then pick the best, the worst and the average result among all other combinations
of the two other parameters.

The optimal selection of these parameters varies with the size of the sequence.
Figure 11 shows how the values that gives the best result changes when we run
larger sequences. All variables seems to increase with the size of the sequence.

ACM Journal Name, Vol. V, No. N, Month 20YY.

GPU-Quicksort: A Practical Quicksort Algorithm for Graphics Processors · 17

 0

 200

 400

 600

 800

 1000

 1200

3
2
/
2
5
6
/
2
0
4
8

2
5
6
/
3
2
/
6
4

3
2
/
5
1
2
/
2
0
4
8

3
2
/
3
2
/
6
4

3
2
/
1
2
8
/
2
0
4
8

1
2
8
/
1
0
2
4
/
5
1
2

1
2
8
/
1
0
2
4
/
1
0
2
4

2
5
6
/
5
1
2
/
1
0
2
4

1
2
8
/
1
0
2
4
/
2
5
6

2
5
6
/
5
1
2
/
5
1
2

T
i
m
e

(
m
s
)

Phase one

Phase two

Bitonic

(a) 8800GTX.

 0

 500

 1000

 1500

 2000

 2500

 3000

3
2
/
3
2
/
2
0
4
8

3
2
/
6
4
/
2
0
4
8

3
2
/
1
2
8
/
2
0
4
8

3
2
/
2
5
6
/
2
0
4
8

3
2
/
5
1
2
/
2
0
4
8

6
4
/
1
0
2
4
/
5
1
2

6
4
/
1
0
2
4
/
2
5
6

1
2
8
/
1
0
2
4
/
5
1
2

1
2
8
/
5
1
2
/
5
1
2

1
2
8
/
5
1
2
/
1
0
2
4

T
i
m
e

(
m
s
)

Phase one

Phase two

Bitonic

(b) 8600GTS.
Fig. 9: The five best and worst combinations of threads per block/maximum number of subse-
quences created in phase one/minimum size of sequence to sort using Quicksort.

GPU Threads per Block Max Blocks in Phase One Min Sequence to Sort

8800GTX optp(s, 0.00001172, 53) optp(s, 0.00003748, 476) optp(s, 0.00004685, 211)
8600GTS optp(s, 0, 64) optp(s, 0.00009516, 203) optp(s, 0.00003216, 203)
Table II: Shows the constants used to select suitable parameters for a given sequence length s.

To get the best parameters for any given sequence length we use a linear function
for each parameter to calculate its value.

optp(s, k,m) := 2⌊log2(sk+m)+0.5⌋

The parameters for this function are presented in Table II. They were calculated
by doing a linear regression using the measured values presented in Figure 11.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · D. Cederman and P. Tsigas

 0

 200

 400

 600

 800

 1000

 1200

 1400

32 64 128 256

T
i
m
e

(
m
s
)

Threads per Block

Worst
Average

Best

32 64 128 256 512 1024

Max Sequences in Phase One

64 128 256 512 1024 2048

Min Sequence Length

(a) 8800GTX.

 0

 500

 1000

 1500

 2000

 2500

 3000

32 64 128 256

T
i
m
e

(
m
s
)

Threads per Block

Worst
Average

Best

32 64 128 256 512 1024

Max Sequences in Phase One

64 128 256 512 1024 2048

Min Sequence Length

(b) 8600GTS.
Fig. 10: Varying one parameter, picking the best, worst and average result from all possible
combination of the others parameters.

5.4 Discussion

In this section we discuss GPU sorting in the light of the experimental result.
Since sorting on GPUs has received a lot of attention it might be reasonable to

start with the following question; is there really a point in sorting on the

GPU? If we take a look at the radix-merge sort in Figure 5 we see that it performs
comparable to the CPU reference implementation. Considering that we can run the
algorithm concurrently with other operations on the CPU, it makes perfect sense
to sort on the GPU.

If we look at the other algorithms we see that they perform at twice the speed or
more compared to Introsort, the CPU reference. On the higher-end GPU in Figure
4, the difference in speed can be up to 10 times the speed of the reference! Even
if one includes the time it takes to transfer data back and forth to the GPU, less
than 8ms per 1M element, it is still a massive performance gain that can be made
by sorting on the GPU. Clearly there are good reasons to use the GPU as a general
purpose co-processor.

But why should one use Quicksort? Quicksort has a worst case scenario
complexity of O(n2), but in practice, and on average when using a random pivot,
it tends to be close to O(n log(n)), which is the lower bound for comparison sorts.
In all our experiments GPU-Quicksort has shown the best performance or been

ACM Journal Name, Vol. V, No. N, Month 20YY.

GPU-Quicksort: A Practical Quicksort Algorithm for Graphics Processors · 19

 0

 50

 100

 150

 200

 250

 300

0.5M 1M 2M 4M 8M 16M

T
hr

ea
ds

/B
lo

ck

Sequence Length

Measured
optp

 0

 200

 400

 600

 800

 1000

 1200

0.5M 1M 2M 4M 8M 16M

M
ax

 B
lo

ck
s

Sequence Length

Measured
optp

 0

 200

 400

 600

 800

 1000

 1200

0.5M 1M 2M 4M 8M 16M

M
in

im
um

 S
eq

ue
nc

e
Le

ng
th

Sequence Length

Measured
optp

(a) 8800GTX.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0.5M 1M 2M 4M 8M

T
hr

ea
ds

/B
lo

ck

Sequence Length

Measured
optp

 0

 500

 1000

 1500

 2000

 2500

0.5M 1M 2M 4M 8M

M
ax

 B
lo

ck
s

Sequence Length

Measured
optp

 0

 200

 400

 600

 800

 1000

 1200

0.5M 1M 2M 4M 8M

M
in

im
um

 S
eq

ue
nc

e
Le

ng
th

Sequence Length

Measured
optp

(b) 8600GTS.
Fig. 11: The parameters vary with the length of the sequence to sort.

among the best. There was no distribution that caused problems to the performance
of GPU-Quicksort. As can be seen when comparing the performance on the two
GPUs, GPU-Quicksort shows a speedup by around 3 times on the higher-end GPU.
The higher-end GPU has a memory bandwidth that is 2.7 times higher but has a
slightly slower clock speed, indicating that the algorithm is bandwidth bound and
not computation bound, which was the case with the Quicksort in the paper by
Sengupta et al. [Sengupta et al. 2007].

Is it better than radix? On the CPU, Quicksort is normally seen as a faster
algorithm as it can potentially pick better pivot points and does not need an extra
check to determine when the sequence is fully sorted. The time complexity of radix
sort is O(n), but that hides a potentially high constant which is dependent on
the key size. Optimizations are possible to lower this constant, such as constantly
checking if the sequence has been sorted, but when dealing with longer keys that
can be expensive. Quicksort being a comparison sort also means that it is easier to
modify it to handle different key types.

Is the hybrid approach better? The hybrid approach uses atomic instructions
that were only available on the 8600GTS. We can see that it performs very well on
the uniform, bucket and gaussian distribution, but it loses speed on the staggered
distributions and becomes immensely slow on the zero and sorted distribution.
In the paper by Sintorn and Assarsson they state that the algorithm drops in
performance when faced with already sorted data, so they suggest randomizing the
data first [Sintorn and Assarsson 2007]. This however lowers the performance and
wouldn’t affect the result in the zero distribution.

How are the algorithms affected by the higher-end GPU? GPUSort
does not increase as much in performance as the other algorithms when run on the
higher-end GPU. This is an indication that the algorithm is more computationally

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · D. Cederman and P. Tsigas

bound than the other algorithms. It goes from being much faster than the slow
radix-merge to perform on par and even a bit slower than it.

The global radix sort showed a 3x speed improvement, as did GPU-Quicksort.
As mentioned earlier, this shows that the algorithms most likely are bandwidth
bound.

How are the algorithms affected by the different distributions? All
algorithms showed about the same performance on the uniform, bucket and gaussian
distributions. GPUSort takes the same amount of time for all of the distribution
since it is a sorting network, which means it always performs the same number of
operations regardless of the distribution.

The zero distribution, which can be seen as an already sorted sequence, affected
the algorithms to different extent. The STL reference implementation increased
dramatically in performance since its two-way partitioning function always returned
even partitions regardless of the pivot chosen. GPUSort performs the same number
of operations regardless of the distribution, so there was no change there. The
hybrid sort placed all elements in the same bucket which caused it to show much
worse performance than the others. GPU-Quicksort shows the best performance
since it will pick the only value that is available in the distribution as the pivot
value, which will then be marked as already sorted. This means that it just has to
do two passes through the data and can sort the zero distribution in O(n) time.

On the sorted distribution all algorithms gain in speed except GPUSort and the
hybrid. The CPU reference becomes faster than GPUSort and radix-merge on
the high-end graphics processor and is actually the fastest when compared to the
algorithms run on the low-end graphics processor.

On the real-world data experiments, Figure 7, we can see that GPU-Quicksort
performs well on all models. It seems that the relative differences between the
algorithms are much the same as they were with the artificial distributions. One
interesting thing though is the inconsistency in GPUSort. It is much faster on the
larger manuscript and statuette models than it is on the smaller dragon models.
This has nothing to do with the distribution since bitonic sort is not affected by
it, so this is purely due to the fact that GPUSort needs to sort part of the data
on the CPU since sequences needs to have a length that is a power of two to be
sorted with bitonic sort. In Figure 8a we can see that for the two dragon-models
40% is spent sorting on the CPU instead of on the GPU. Looking at Figure 8b we
see that this translates to 90% of the actual sorting time. This explains the strange
variations in the experiments.

6. CONCLUSIONS

In this paper we present GPU-Quicksort, a parallel Quicksort algorithm designed
to take advantage of the high bandwidth of GPUs by minimizing the amount of
bookkeeping and inter-thread synchronization needed.

The bookkeeping is minimized by constraining all thread blocks to work with
only one (or part of a) sequence of data at a time. This way pivot values do not
need to be distributed to all thread blocks and thus no extra information needs to
be written to the global memory.

The two-pass design of GPU-Quicksort has been introduced to keep the inter-

ACM Journal Name, Vol. V, No. N, Month 20YY.

GPU-Quicksort: A Practical Quicksort Algorithm for Graphics Processors · 21

thread synchronization low. First the algorithm traverses the sequence to sort,
counting the number of elements that each thread sees that have a higher (or lower)
value than the pivot. By calculating a cumulative sum of these sums, in the second
phase, each thread will know where to write its assigned elements without any extra
synchronization. The small amount of inter-block synchronization that is required
between the two passes of the algorithm can be reduced further by taking advantage
of the atomic synchronization primitives that are available on newer hardware.

A previous implementation of Quicksort for GPUs by Sengupta et al. turned
out not to be competitive enough in comparison to radix sort or even CPU based
sorting algorithms [Sengupta et al. 2007]. According to the authors this was due
to it being more dependent on the processor speed than on the bandwidth.

In experiments we compared GPU-Quicksort with some of the fastest known
sorting algorithms for GPUs, as well as with the C++ Standard Library sorting
algorithm, Introsort, for reference. We used several input distributions and two
different graphics processors, the low-end 8600GTS with 32 cores and the high-end
8800GTX with 128 cores, both from NVIDIA. What we could observe was that
GPU-Quicksort performed better on all distributions on the high-end processor
and on par with or better on the low-end processor.

A significant conclusion, we think, that can be drawn from this work, is that
Quicksort is a practical alternative for sorting large quantities of data on graphics
processors.

ACKNOWLEDGMENTS

We would like to thank Georgios Georgiadis and Marina Papatriantafilou for their
valuable comments during the writing of this paper. We would also like to thank
Ulf Assarsson and Erik Sintorn for insightful discussions regarding CUDA and for
providing us with the source code to their hybrid sort. Last but not least, we would
like to thank the anonymous reviewers for their comments that helped us improve
the presentation of the algorithm significantly.

REFERENCES

Bilardi, G. and Nicolau, A. 1989. Adaptive Bitonic Sorting. An Optimal Parallel Algorithm
for Shared Memory Machines. SIAM Journal on Computing 18, 2, 216–228.

Blelloch, G. E. 1993. Prefix Sums and Their Applications. In Synthesis of Parallel Algorithms,
J. H. Reif, Ed. Morgan Kaufmann.

Cederman, D. and Tsigas, P. December 2007. GPU Quicksort Library. www.cs.chalmers.se/

~dcs/gpuqsortdcs.html.

Dowd, M., Perl, Y., Rudolph, L., and Saks, M. 1989. The Periodic Balanced Sorting Network.
Journal of the ACM 36, 4, 738–757.

Evans, D. J. and Dunbar, R. C. 1982. The Parallel Quicksort Algorithm Part 1 - Run Time
Analysis. International Journal of Computer Mathematics 12, 19–55.

Govindaraju, N., Raghuvanshi, N., Henson, M., and Manocha, D. 2005. A Cache-Efficient
Sorting Algorithm for Database and Data Mining Computations using Graphics Processors.
Tech. rep., University of North Carolina-Chapel Hill.

Govindaraju, N. K., Gray, J., Kumar, R., and Manocha, D. 2006. GPUTeraSort: High
Performance Graphics Coprocessor Sorting for Large Database Management. In Proceedings of
the 2006 ACM SIGMOD International Conference on Management of Data. 325–336.

Govindaraju, N. K., Raghuvanshi, N., and Manocha, D. 2005. Fast and Approximate Stream

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · D. Cederman and P. Tsigas

Mining of Quantiles and Frequencies Using Graphics Processors. In Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data. 611–622.

Greß, A. and Zachmann, G. 2006. GPU-ABiSort: Optimal Parallel Sorting on Stream Archi-
tectures. In Proceedings of the 20th IEEE International Parallel and Distributed Processing
Symposium.

Harris, M., Sengupta, S., and Owens, J. D. 2007. Parallel Prefix Sum (Scan) with CUDA. In
GPU Gems 3, H. Nguyen, Ed. Addison Wesley, Chapter 39.

Heidelberger, P., Norton, A., and Robinson, J. T. 1990. Parallel Quicksort Using Fetch-And-
Add. IEEE Transactions on Computers 39, 1, 133–138.

Helman, D. R., Bader, D. A., and JáJá, J. 1998. A Randomized Parallel Sorting Algorithm
with an Experimental Study. Journal of Parallel and Distributed Computing 52, 1, 1–23.

Hoare, C. A. R. 1961. Algorithm 64: Quicksort. Communications of the ACM 4, 7, 321.

Hoare, C. A. R. 1962. Quicksort. Computer Journal 5, 4, 10–15.

Jaja, J. 1992. Introduction to Parallel Algorithms. Addison-Wesley.

Kapasi, U. J., Dally, W. J., Rixner, S., Mattson, P. R., Owens, J. D., and Khailany, B.

2000. Efficient Conditional Operations for Data-parallel Architectures. In Proceedings of the
33rd annual ACM/IEEE International Symposium on Microarchitecture. 159–170.

Khronos Group. 2008. OpenCL (Open Computing Language). http://www.khronos.org/

opencl/.

Kipfer, P., Segal, M., and Westermann, R. 2004. UberFlow: A GPU-based Particle Engine. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware.
115–122.

Kipfer, P. and Westermann, R. 2005. Improved GPU Sorting. In GPUGems 2, M. Pharr, Ed.
Addison-Wesley, Chapter 46, 733–746.

Matsumoto, M. and Nishimura, T. 1998. Mersenne Twister: a 623-Dimensionally Equidis-
tributed Uniform Pseudo-Random Number Generator. Transactions on Modeling and Com-
puter Simulation 8, 1, 3–30.

Musser, D. R. 1997. Introspective Sorting and Selection Algorithms. Software - Practice and
Experience 27, 8, 983–993.

Purcell, T. J., Donner, C., Cammarano, M., Jensen, H. W., and Hanrahan, P. 2003. Photon
Mapping on Programmable Graphics Hardware. In Proceedings of the ACM SIGGRAPH/Eu-
rographics Symposium on Graphics Hardware. 41–50.

Sedgewick, R. 1978. Implementing Quicksort Programs. Communications of the ACM 21, 10,
847–857.

Sengupta, S., Harris, M., Zhang, Y., and Owens, J. D. 2007. Scan Primitives for GPU
Computing. In Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on
Graphics Hardware. 97–106.

Singleton, R. C. 1969. Algorithm 347: an Efficient Algorithm for Sorting with Minimal Storage.
Communications of the ACM 12, 3, 185–186.

Sintorn, E. and Assarsson, U. 2007. Fast Parallel GPU-Sorting Using a Hybrid Algorithm. In
Workshop on General Purpose Processing on Graphics Processing Units.

Stanford. 2008. The Stanford 3D Scanning Repository. graphics.stanford.edu/data/

3Dscanrep.

Tsigas, P. and Zhang, Y. 2003. A Simple, Fast Parallel Implementation of Quicksort and
its Performance Evaluation on SUN Enterprise 10000. In Proceedings of the 11th Euromicro
Conference on Parallel Distributed and Network-based Processing. 372–381.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, Month 20YY.

