
GPU-RMAP: Accelerating Short-Read Mapping on Graphics Processors

Ashwin M. Aji, Liqing Zhang and Wu-chun Feng

Department of Computer Science

Virginia Tech

Blacksburg, Virginia 24060, U.S.A

{aaji, lqzhang, feng}@cs.vt.edu

Abstract—Next-generation, high-throughput sequencers are
now capable of producing hundreds of billions of short
sequences (reads) in a single day. The task of accurately
mapping the reads back to a reference genome is of particular
importance because it is used in several other biological
applications, e.g., genome re-sequencing, DNA methylation, and
ChiP sequencing. On a personal computer (PC), the computa-
tionally intensive short-read mapping task currently requires
several hours to execute while working on very large sets of
reads and genomes. Accelerating this task requires parallel
computing. Among the current parallel computing platforms,
the graphics processing unit (GPU) provides massively parallel
computational prowess that holds the promise of accelerating
scientific applications at low cost.

In this paper, we propose GPU-RMAP, a massively par-
allel version of the RMAP short-read mapping tool that is
highly optimized for the NVIDIA family of GPUs. We then
evaluate GPU-RMAP by mapping millions of synthetic and
real reads of varying widths on the mosquito (Aedes aegypti)
and human genomes. We also discuss the effects of various
input parameters, such as read width, number of reads,
and chromosome size, on the performance of GPU-RMAP.
We then show that despite using the conventionally “slower”
but GPU-compatible binary search algorithm, GPU-RMAP
outperforms the sequential RMAP implementation, which uses
the “faster” hashing technique on a PC. Our data-parallel
GPU implementation results in impressive speedups of up to
14.5-times for the mapping kernel and up to 9.6-times for
the overall program execution time over the sequential RMAP
implementation on a traditional PC.

Keywords-short-read mapping; sequence analysis; graphics
processing unit (GPU); RMAP; CUDA.

I. INTRODUCTION

Next-generation high-throughput sequencing instruments,

like Illumina’s Solexa IG sequencer, Applied Biosystem’s

SOLiD system, and Roche’s (454) GS FLX Genome Ana-

lyzer, are capable of producing billions of short sequence

data (about 25-100 bases each) within a single day. In the

field of genomics, a very important problem is to map these

short sequences, or reads, to a reference genome. This highly

compute-intensive mapping phase forms an integral link

in the computational pipeline of several applications, such

as genome re-sequencing, DNA methylation, transcriptome

sequencing, and ChiP sequencing [1], [2]. Mapping billions

of reads to huge reference genomes, like the human genome

that has about 3-billion bases, may take several hours if

executed sequentially on a personal computer (PC). While

traditional local sequence alignment tools, e.g., BLAST [3]

and PatternHunter [4], can be used to map reads, they are

not optimized to align a large number of very short reads.

Many specialized tools have been developed to solve the

short-read mapping problem [2], [5]–[7], but the rate of

data analysis is much slower than the unprecedented rate

at which the sequence data is being generated. This has led

to the development of accelerated parallel versions of the

short-read mapping tools on a multitude of high-performance

computing platforms [1], [8], [9].

Today, gains in computational horsepower are no longer

driven by increases in clock speeds. Instead, the gains are

increasingly achieved through parallelism, both in traditional

multi-core architectures as well as the many-core archi-

tectures of the graphics processing unit (GPU). Amongst

the most prominent many-core architectures are the GPUs

from NVIDIA and AMD/ATI, which can support general-

purpose computation on the GPU (GPGPU). Thus, GPUs

have evolved from their traditional roots of graphics pipeline

models into programmable devices that are suited for accel-

erating scientific applications, such as sequence alignment

and fast N-body simulations [8], [10]–[12], at very afford-

able prices. Further speedups can be achieved by adding the

GPU to an existing personal computer (PC).

In this paper, we introduce and evaluate GPU-RMAP, a

massively parallel version of the RMAP short-read mapping

tool [2] that we have designed and optimized for the GPU

thread and memory architecture of NVIDIA Tesla via CUDA

programming platform [13]. In this design, each GPU thread

efficiently maps the given set of reads to a unique genome

segment and collectively returns all the chosen reads and the

mapped genome sites. Race conditions arise when multiple

GPU threads update the map results simultaneously, but we

explain how our multi-staged algorithm prevents this classic

problem from occurring. In addition, we show that despite

using the conventionally “slower” binary search method

at the core of the GPU mapping algorithm, GPU-RMAP

outperforms the sequential RMAP implementation, which

uses the “faster” hashing technique for mapping reads on

a PC. We also present further optimizations, where we

explicitly cache the repeatedly accessed data elements in

the faster on-chip memory of the GPU.

2010 13th IEEE International Conference on Computational Science and Engineering

978-0-7695-4323-9/10 $26.00 © 2010 IEEE

DOI 10.1109/CSE.2010.29

168

We evaluate GPU-RMAP by performing a wide range

of experiments, followed by rigorous data analysis. We

map millions of real and artificially generated reads of

varying widths onto the mosquito (Aedes aegypti) and

human genomes. We then profile the GPU-RMAP code and

discuss the effects of the chosen optimization techniques

on the different phases of the RMAP algorithm. Next, we

present the effects of RMAP’s various input parameters (e.g.,

read width, number of reads, and chromosome size) on

the performance of GPU-RMAP. Finally, we show that all

the efficient design considerations of GPU-RMAP result in

impressive speedups of up to 14.5× for the mapping kernel

and up to 9.6× for the overall program execution time over

the sequential RMAP implementation on a traditional PC.

The rest of the paper is organized as follows: Section II

presents the related work. Section III describes the NVIDIA

Tesla C1060 architecture and the CUDA programming

model. Section IV introduces the sequential RMAP algo-

rithm. Techniques to accelerate RMAP on the GPU using

CUDA are described in Section V. Section VI compares and

analyzes the performance of the GPU-RMAP. Section VII

concludes the paper.

II. RELATED WORK

Recent parallel short-sequence mapping has been carried

out on 64-node clusters [1], where the authors have ana-

lyzed the difference in the performances between multiple

parallelization techniques, including partitioning the reads,

partitioning the genome, and partitioning both the reads and

the genome. While their performance results demonstrate

good scalability of their code, the hardware is expensive

and not largely available to the bioinformatics community.

Moreover, they have parallelized their own SOLiD algorithm

that performs short sequence mapping by using covering

designs. In contrast, we have improved the performance of

the RMAP algorithm, which claims to be more useful than

other short sequence-mapping tools because of its ability to

map paired-end reads and bisulfite-treated reads [2]. Also,

we have implemented GPU-RMAP on commodity hardware,

i.e., a desktop PC with a graphics card (containing a GPU),

thus providing a very inexpensive and massively parallel

computing platform for the short-read mapping problem.

MUMmerGPU v1.0 [8] and v2.0 [14] parallelize the

MUMmer short sequence-mapping program on the CUDA

programming platform and report total application speedups

of 3.5× and 13×, respectively, over a CPU implementa-

tion. MUMmer represents the target genome as a suffix

tree and maps the incoming input reads, while RMAP

uses a hash table of the reads to quickly match various

genome segments. The authors of MUMmer and RMAP

claim several advantages of one tool over another, and

clearly, both of these tools are very much relevant to the

bioinformatics community. To the best of our knowledge,

no other literature presents the parallelization of RMAP on

commodity graphics processors.

CloudBurst [9] is a parallel implementation of RMAP

on distributed memory architectures that uses Google’s

MapReduce [15] framework. This program achieves more

than 100× speedup by executing on a remote compute

cloud with 96 cores. As previously mentioned, our program

just uses a single commodity GPU for accelerating RMAP,

and therefore, we achieve a much better performance-cost

ratio. Moreover, CloudBurst parallelizes an older version of

RMAP, where the reads are partitioned into multiple seeds

corresponding to the number of allowed mismatches. We

have chosen to accelerate a newer version of RMAP, where

layered seeds are used for maximum search sensitivity, while

maintaining good execution times [16].

III. NVIDIA GPU ARCHITECTURE AND THE CUDA

PROGRAMMING MODEL

The NVIDIA Tesla C1060 GPU (or device) consists of a

set of 30 single-instruction, multiple-data (SIMD) streaming

multiprocessors (SMs), where each SM consists of eight

scalar processor (SP) cores running at 1.2 GHz with 16-

KB on-chip shared memory (cache), and a multi-threaded

instruction unit. The SMs on the GPU can simultaneously

access the device memory, which consists of 4 GB read-write

global memory, 64 KB of read-only constant memory, and

read-only texture memory. However, all the device memory

modules can be read or written to by the host processor. Each

SM has on-chip memory, which can be accessed by all the

SPs within the SM and will be one of the following four

types: a set of registers; 16 KB of ‘shared memory’, which

is a software-managed data cache; a read-only constant

memory cache; and a read-only texture memory cache. The

global memory space is not cached by the device.

CUDA (Compute Unified Device Architecture) [13] is

the parallel programming model and software environment

provided by NVIDIA to run applications on their GPUs. It

abstracts the architecture to parallel programmers via simple

extensions to the C programming language. CUDA follows

a code off-loading model, where compute-intensive portions

of applications that normally run on the host processor are

off-loaded onto the GPU device. The kernel is the portion

of the program that is compiled to the instruction set of the

device and then off-loaded to the device before execution.

IV. THE RMAP PACKAGE

The RMAP program accurately maps reads from next-

generation sequencing technology. Although RMAP was

originally designed for mapping Illumina reads, it can also

be used to map Roche/454 and ABI SOLiD reads [2]. The

typical inputs to the RMAP program are (1) a set of millions

of short reads and (2) the target genome or a file containing

the path to a set of target genomes (FASTA format). The

reads have to be quickly mapped onto different regions of

169

the target genomes. The output of the program is a set of

mapped reads, the sites on the target genome at which each

of them is best mapped, and the strand (forward / reverse)

of the genome. RMAP also allows the end user to configure

some execution parameters, including the maximum read

width, number of mismatches, and number of non-unique

(ambiguous) reads. In addition, there are no limitations on

any of the parameters. Currently, the RMAP package (v2.02)

contains three mapping programs, where each program pre-

processes the set of reads and creates a hash structure, and

then scans the genome to find potential high-scoring maps

by doing a hash table lookup. Apart from the basic rmap

program, the RMAP package contains the rmappe and

the rmapbs programs for mapping ‘paired-end’ reads and

bisulfite-treated reads, respectively.

The reads for each of the above programs can be specified

in their entirety (FASTA format) or can be specified as a set

of quality scores for each position within the read. These

quality scores are derived from some probabilistic model,

which allots a certain confidence level for finding a particular

base-pair in the corresponding position of the read.

In this paper, we parallelize the basic rmap program and

choose the FASTA format as the input for the reads and

the genomes. We note that our design principles can also be

directly applied to the other programs in the RMAP package.

A. The Sequential Algorithm

The RMAP algorithm can be broadly thought of as a

methodology to match a set of patterns (reads) onto a

large text (genome). The algorithm first indexes the reads

by creating a hash table.1 Collisions in the hash table are

resolved by chaining, where the chain indicates the set of

reads that have resolved to the same hash key. Then, the

genome is scanned at every site to check for any match in the

hash table. If there is a match, then the genome segment is

scored against all the reads that correspond to the respective

hash table entry. If the score is within a certain threshold

(constrained by the number of allowed mismatches and non-

unique mappings), the read, along with the mapped genome

site and the genome strand (forward / reverse) are added to

the final map (i.e., results).

To make this process more efficient, RMAP v2.02 em-

ploys the concept of layered seed structures [16] for con-

structing the hash table. Seed structures specify sets of

locations in the reads that are required to match the genome

exactly at any site where the read can map. In other words,

the seeds can be considered to be bit masks that have to be

applied (i.e., bitwise AND’ed) to the reads before adding

them as keys to the hash table. The result of applying the

seed to the read will be a 64-bit unsigned integer, with

1Reads are indexed, and not the genome, probably because the genome
index structure would have been a few orders of magnitude larger than
that of the reads. The RMAP authors have also likely chosen to optimize
memory in the “memory vs. time” tradeoff.

the bases of the read corresponding to 1′s in the seed.

Multiple reads can therefore produce the same hash key,

and collisions in the hash table are resolved by chaining,

where the chain indicates the set of reads that have the same

bases at the positions determined by the seed structure. The

same seed (bit mask) must then be applied to all the sites

of the genome, when scanning them for matches in the hash

table. If we choose more seeds, then the sensitivity of the

algorithm will be higher, but too many seeds or a bad choice

of seed structures can potentially hurt the execution time of

the program. However, the seeds are designed to be more

accurate in RMAP, and therefore, there will be fewer full

comparisons while scanning the genome [16].

In summary, the execution of rmap can be broadly

characterized to consist of the following phases:

• Initialization – read all the input reads and genome data

from disk, process the command line parameters, ini-

tialize the seed structures and the final result structures.

• Hash table construction – apply the seed structure to

the set of reads before creating the hash table.

• Genome mapping – scan the genome and lookup the

hash table for matches, calculate the scores and choose

the highest scoring reads.

• Best maps reporting – collect and present the final

mapped reads and the respective mapped sites, chro-

mosome strands and the scores.

The hash table construction and genome mapping steps are

carried out for every seed in the seed structures. In this paper,

we accelerate the genome mapping step because it consumes

more than 98% of the total execution time, and hence, the

code section to be parallelized.

V. GPU-RMAP: DESIGN AND IMPLEMENTATION

In this section, we describe the techniques used to acceler-

ate the RMAP algorithm on the NVIDIA Tesla C1060 GPU

by using the CUDA programming platform. As discussed

in the previous section, we focus on parallelizing only the

genome mapping part of the algorithm because it is the most

computationally expensive portion of the program. Genome

mapping includes the following phases: (1) Scanning and

hash table lookup: The entire genome and the hash (lookup)

table for the reads are transferred from the CPU memory

to the device memory of the GPU. Next, all the segments

of the genome are inspected by the GPU threads and the

potential matches in the hash table are found; (2) Scoring:

The number of mismatches (score) between the genome

segment and the corresponding matched reads is computed

by the GPU threads; and (3) Selection: For every read, the

best set of mapped genome sites, the corresponding scores,

and the strand information are added to the final map result

structure on the GPU (filtered by a pre-determined score

threshold). The final map results are transferred back to the

CPU memory for further processing or reporting.

170

A. High-Level Mapping of RMAP onto the GPU

Figure 1 depicts the high-level design of GPU-RMAP.

After the genome and the lookup table data is transferred

to the GPU’s device memory, the genome is partitioned into

several independent segments that marginally overlap each

other. These segments are then distributed for processing

among all the threads on the GPU so that each thread can

independently (i.e., in parallel) map the complete set of reads

onto a unique portion of the genome.

However, given that each thread independently processes

a unique portion of the genome, the set of reads is common

to all the GPU threads. Consequently, different threads may

map their genome segments to the same read at the same

time, and thus, may produce different ‘best’ scoring sites

for the same set of reads. The selection of the best-scoring

genome sites for each read will therefore depend on the order

in which the threads execute, thus leading to a classic race

condition, as shown in Figure 1. Moreover, CUDA does not

yet fully support global inter-thread communication [13],2

which could have potentially solved this problem.

Thread Synchronization / Re-assignment

Intermediate Map Results

Assign threads to Genome Assign threads to Genome

Race Condition Thread Synchronization / Re-assignment

Best Map ResultsBest Map Results

Assign threads to

Intermediate Map Results

Race Condition

Solution: Design of GPU-RMAPProblem

Figure 1. GPU-RMAP: High-Level Design.

To address the race condition, we divide the algorithm

into two stages, where the first stage performs the parallel

genome scanning and scoring and the second stage does the

selection. At the end of the first stage, each read entry has a

list of potential ’best map’ genome sites, which represent the

the intermediate map results. Next, we synchronize all the

threads, followed by re-distributing the intermediate results

among the GPU threads for the second stage, i.e. the final

selection phase, as shown on the right-hand side of Figure 1.

The thread “synchronization / re-assignment” step solves

the race condition problem because we have decoupled the

dependency of the final selection phase from the execution

2CUDA only supports a basic set of atomic operations, which we have
used in our design.

order of the GPU threads in the parallel genome scanning

and scoring phase.

Global thread synchronization can be implicitly imple-

mented in CUDA by launching a new CUDA kernel. So,

in GPU-RMAP, we launch two CUDA kernels, as shown in

Figure 2.

As shown in Figure 2a, Kernel 1 executes the scanning,

table lookup, and scoring phases. Each thread independently

chooses the set of reads that could be potentially mapped to

the genome segment that is assigned to the thread. It then

appends the score and mapped site information to the list of

potential best maps, corresponding to each chosen read. The

atomicAdd instruction, which is provided by the CUDA

SDK, allows each thread to calculate the next available index

of the list in a thread-safe manner, where the intermediate

scores and potential mapped genome sites of the respective

reads can be stored. Each read still needs to inspect its

intermediate list of potential best maps and make a final

selection of the best-mapped genome sites. The termination

of the first kernel acts as an implicit synchronization point

for all the GPU threads, and further processing can be safely

done by the second kernel without any race conditions.

���������	

���	��������	�

Genome

CPU

GPU

GPU Threads

Keys (Device Memory & Fast Cache)

Lookup Table

�����	����	��	��	��

�	������������������	�

����������	����

Keys (Device Memory & Fast Cache)

Matched Reads Locations

Reads

Potential Best

Maps

��	
Intermediate Map of the Reads

 ���	

(a) Kernel 1

GPU Threads

Reads

������

Potential Best

Maps

Intermediate Map of the Reads

GPU

CPU

Best Maps

(Mapped Genome

ID, Site,

Score, and Strand)

������

Final Map of the Reads

���	
���������	�����
�

���
��������
�������

�����

(b) Kernel 2

Figure 2. GPU-RMAP: Detailed Design.

171

Figure 2b shows that the second kernel performs the

selection phase by distributing all the reads among the

GPU threads for processing. Each thread independently

inspects (i.e., in parallel) the list of potential sites (obtained

from Kernel 1), corresponding to the respective reads, and

chooses the best-mapped sites and scores. There cannot be

any race conditions with this approach because the best-

map results for each read are collected independently by a

different thread.

B. Lookup Table Optimization: Hashing vs. Binary Search

The sequential RMAP algorithm uses the C++ Standard

Template Library’s (STL) unordered_multimap data

structure, which implements a hash table to store and lookup

the keys. The hash table of the unordered_multimap

allows multiple keys to be grouped together without sorting

them. STL also implements a very efficient hash algorithm

for the quick insertion and retrieval of the key-value pairs

into the hash table. While there exist hashing implementa-

tions designed for the GPU [17], [18], they aim to accelerate

a single instance of the hashing problem, i.e., they use

all the threads on the GPU to lookup a single key in the

hash table efficiently. On the other hand, our design targets

enhancing the throughput of search by performing a coarse-

grained parallel execution, where each thread on the GPU

should independently search for a different key in the table.

Moreover, an inefficient hashing function will result in a

worst-case key insertion or retrieval time of O(n), where n

is the number of keys in the hash table, thus resulting in

larger number of memory accesses on the GPU, which in

turn, results in terrible performance if the access patterns do

not follow a set of alignment rules [13].

In GPU-RMAP, we modified RMAP and replaced the

unordered_multimap with the multimap data struc-

ture, where the keys are all sorted and similar keys are

obviously grouped. Adding the keys to an ordered map

is marginally more expensive than adding the keys to an

unordered map on the CPU. However, upon transferring the

keys to the GPU’s device memory, the lookup operation

on the keys can be done by using a simple binary-search

algorithm, where the lookup time will always be logarithmic

to the table size. In section VI, we show that this initial

optimization of GPU-RMAP, which uses binary search,

produces an impressive mapping speedup of 7× to 10.5×
over the sequential RMAP implementation on PC, which

uses hashing as its primary search algorithm. While binary

search (O(log n)) is a slower search algorithm on the CPU

than the conventional hashing technique (O(1)), we show

that the binary-search algorithm is a much better choice for

the GPU.

Further Optimization using Faster Cache Memory.:

All the GPU threads perform binary search repeatedly over

the same binary search tree of the keys. So, the top few

levels of the binary search tree will be accessed multiple

times throughout the execution of table lookup kernel, (i.e.,

Kernel 1). We used this knowledge and made an additional

optimization by moving the top few levels of the search tree

to the faster cache (shared) memory of each processing unit

on the GPU, as explained in Figure 3. However, the current

NVIDIA GPUs only have a cache capacity of 16 KB, and

therefore, we could transfer only about 10 to 15 levels of

the search tree to fit into the cache.

Accessing the GPU cache consumes approximately the

same number of clock cycles as accessing a register, whereas

an access to the device memory takes 400 to 600 GPU clock

cycles. Our optimization method reduces several slower

device memory accesses and produces a mapping speedup

of up to 14.5× over the sequential RMAP implementation

on the CPU. Additional details are provided in Section VI.

Before Lookup Search Tree Optimization:

Device Memory (Slow)

Device Memory (Slow)

On-chip cache (Fast)

After Lookup Search Tree Optimization:

Figure 3. GPU-RMAP: Optimization of the keys’ Lookup Table (search
tree) using the Faster Cache.

VI. PERFORMANCE ANALYSIS AND DISCUSSION

We first explain our experimental setup, followed by a

detailed discussion about the performance of GPU-RMAP.

A. Experimental Setup

For our experiments, we chose a simulated set of reads

that were generated by taking random segments of pre-

defined widths from existing human chromosomes and ran-

domly modifying some of the bases within them. We used

read widths of 32, 48 and 64 base-pairs (bp) and generated

sets of 1, 2, 4 and 8 million reads for each read width,

resulting in a total of twelve sets of reads as input data.

We also used a real set of reads for our experiments but

found that the trends and results were similar to the synthetic

reads. Hence, we do not present those results in this paper

for brevity.

For the target genomes, we chose to map all these

reads onto (1) the human genome, which is made

up of 23 chromosomes, totaling around 3 billion bp,

and (2) the available mosquito genome (Aedes ae-

gypti), which currently has around 1.4 million bp se-

quenced. We downloaded the human genome from

172

http://hgdownload.cse.ucsc.edu and approxi-

mately 4800 supercontigs of the Aedes aegypti genome

assembly from http://aaegypti.vectorbase.org.

Because the complete mosquito genome is not available and

contains three chromosomes, we concatenated the super-

contigs and generated three chromosomes of fairly equal

sizes. Our experimental genome data thus included 23

chromosomes from the human genome and 3 chromosomes

from the mosquito genome. Moreover, to analyze the ef-

fect of the chromosome size / length on the performance

of GPU-RMAP, we performed additional experiments and

mapped the same set of reads on the following chromosomes

of the human genome: chromosome 1 (chr1), which

has about 250 million bp, chromosome 12 (chr12),

which has about 135 million bp and chromosome 22

(chr22), which has about 50 million bp. These chromo-

somes display the required variety in size / length.

RMAP maps only nucleotide reads, which can be repre-

sented by the alphabet set {A, C, G, T, N3}. The RMAP

tool encodes each nucleotide base by using a structure of

3 bits (for the 5 characters). So, any read with the width

up to 64 bp will be stored in the computer as a structure

of three 64-bit words. This storage mechanism proves to be

very efficient for the scoring phase (to count the number

of mismatches between the chromosome segment and the

read), where the score can be computed in time logarithmic

to the read length by using a series of bitwise operations,

as described by [19]. However, if the read width is greater

than 64, each read should be represented by a list of 64-

bit words. This means that more computation is needed to

convert each read into this format, and hence, the overall

speedup may be reduced. For all our experiments, we have

chosen to map the reads with width not greater than 64

because we can easily store each read as only three 64-

bit words on the GPU. Maintaining a list of 64-bit words

on the GPU to represent larger read widths proves to be

computationally expensive on the GPU.

Our parallel execution environment for running all of the

above experiments was the NVIDIA Tesla C1060 GPU with

CUDA v2.3 as our programming interface to the GPU. Our

results are shown for the best possible CUDA execution

configuration, where the mapping kernels have 480 blocks

of 256 threads running across the entire GPU. The Tesla

GPU card has 4-GB global device memory and each of its

cores runs at 1.2 GHz. The above GPU was placed in a

PC that contained an AMD quad-core processor (each core

running at 1.2 GHz) as the host CPU. The host CPU had 8-

GB RAM. All the chosen sets of reads and genomes fit well

into both the host and device memory. We ran the sequential

implementation of RMAP, with which we compared the

results of GPU-RMAP, on one of the cores of the host AMD

processor.

3‘N’ stands for an unknown base or error.

B. Results and Discussion

1) Analysis of Speedup: Figure 4 shows the RMAP

execution time being partitioned into its different phases and

compared to the sequential RMAP algorithm. This figure

shows a couple of our several experimental runs, where we

map 1-million reads on the entire mosquito genome and map

8-million reads on the complete human genome. Also, we

compare performance by varying the read widths with 32,

48 and 64 bp. Although we have run this experiment for

all the reads-genomes combinations, we present only the

above results in this paper due to space constraints. In the

examples shown, we show that the mapping phase has been

accelerated by about 9.2× – 14.5×, and the total execution

time has been improved by 5.5× – 9.6×, when compared

to the sequential RMAP.

32 bp

32 bp

48 bp

48 bp

64 bp

64 bp

0

1000

2000

3000

4000

Sequential RMAP on PC GPU-RMAP
E

xe
cu

ti
o

n
 T

im
e

 (
se

co
n

d
s)

Human Genome Vs. 8 Million Reads

Initialization Lookup Table Construction Mapping Output

32 bp

32 bp

48 bp

48 bp

64 bp

64 bp

0

500

1000

1500

2000

2500

Sequential RMAP on PC GPU-RMAP

E
xe

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Mosquito Genome Vs. 1 Million Reads

Initialization Lookup Table Construction Mapping Output

Figure 4. GPU-RMAP vs. Sequential RMAP: Analysis of Speedup.
Note: The Lookup Table Construction and the Output generation times are
negligible when compared to the overall execution time of the program,
and hence, they may not visible in the chart.

Effect of the Fast Cache Memory Optimization: Fig-

ure 5 presents the partition of the execution times of the

sequential RMAP on PC, along with GPU-RMAP with and

without the faster cache memory optimization (section V-B).

This particular experiment maps 1-million 64-wide reads

on the chromosome 1 of the human genome. The figure

shows that the mapping speedup increases from 10.53×
to 13.82×, and the total program execution improves from

5.93× to 6.77× over the sequential RMAP execution on

PC. The initialization phase of RMAP (reading the reads

and the chromosome from the disk, and allocating the

required memory) is unavoidable and cannot be parallelized.

Moreover, the initialization phase takes a substantial chunk

of the overall execution time in all the versions of RMAP

and GPU-RMAP, and therefore, the total program speedup

is measurably less than the mapping speedup alone. The

figure also shows that the design of GPU-RMAP is highly

efficient, because the most significant amount of the map-

ping time is taken up by the execution of the CUDA kernels,

173

10.53

13.82

5.93

6.77
8

10

12

14

16

300

400

500

600

S
p

e
e

d
u

p

ti
o

n
 T

im
e

 (
se

co
n

d
s)

Post-Processing (CPU)

Post-Processing (GPU)

Kernels (1 and 2) Execution

(GPU)

Memory Initialization (GPU)

5.93

0

2

4

6

0

100

200

Sequential

RMAP on PC

GPU-RMAP

(without

cache)

GPU-RMAP

(with cache)

E
xe

cu
ti

o
n

Hash Table Construction

(CPU)

Initialization (CPU)

GPU Mapping Speedup

Total Program Speedup

Figure 5. Code Profile of GPU-RMAP: Effect of Fast Cache Memory
Optimization (chromosome 1 Vs. 1 million 64-wide Reads).

while the GPU memory initialization, GPU-to-CPU memory

transfers, and the miscellaneous post-processing phases are

quite negligible.

2) Effect of Read Width: All the charts in the Figure 6

show the impact of the read width on the mapping phase

and the overall execution speedup of GPU-RMAP. The

speedup values do not change when the width of the reads

changes because the computational overhead for scoring the

chromosome segments against the reads will be not change if

the read width is < 64 bp. If we had used larger-sized reads,

then we could expect a decrease in performance because

of the more complicated storage overhead, as explained in

Section VI-A. However, since the reads generated by the

modern sequencing instruments are very short (typically 25-

100 bases each), we believe that the above limitation is a

reasonable one.

3) Effect of Chromosome Size: Figure 6a shows the

impact of the chromosome size on the mapping speedup

of GPU-RMAP. The speedup remains almost the same for

all the chromosome sizes but is less for chr22 (smallest

in size) and the entire human genome (largest in size). The

chr22 is very small to keep all the GPU threads busy,

i.e., GPU resources are wasted when trying to map smaller

chromosomes. On the other hand, the entire human genome

contains several chromosomes. The additional overhead of

repeatedly moving different chromosomes to and from the

GPU device memory thwarts the performance of GPU-

RMAP when we map the reads against the whole human

genome.

4) Effect of Number of Reads: Figures 6b and 6c show

the impact of the number of reads on the mapping speedup

of GPU-RMAP on the complete human genome and the

mosquito genome, respectively. While the execution time

increases for larger number of reads (data not shown for

brevity), the speedup factor decreases for larger number of

reads. This means that when the number of reads increases,

the table lookup time (binary search) in the GPU-RMAP

code increases at a higher rate than the table lookup time

(hashing) in the sequential RMAP code. While the above

results may indicate that the binary search implementation

on the GPU is a potential bottleneck for larger sets of input

data, GPU-RMAP (using binary search) shows speedups

of up to 14.5× over the sequential RMAP implementation

(using hashing) on a PC.

VII. CONCLUSIONS

In this paper, we accelerated an extremely popular short-

read mapping application called RMAP onto the GPU.

To demonstrate how we achieved up to 14.5× mapping

speedup and 9.6× total program execution speedup over the

sequential RMAP implementation on a traditional PC, we

presented a detailed design of GPU-RMAP, along with an

efficient fast cache memory optimization.

We then performed a detailed experimental analysis by

mapping millions of reads of different widths on the

mosquito and the human genomes. We discussed in detail

about the effects of various input parameters on the perfor-

mance, like the read width, genome size, and number of

reads. Next, we presented and discussed the profiled code

and the speedups achieved by the different phases of the

GPU-RMAP algorithm and show that our design decisions

are very efficient. In addition, we presented our idea of

dividing the RMAP algorithm into two stages to avoid

the classic race condition problem, so that correctness is

ensured. We also show that despite using the conventionally

slower binary search algorithm, GPU-RMAP out-performs

the sequential RMAP implementation, which uses the faster

hashing technique on a PC.

As future work, we would like to develop detailed per-

formance models for the GPUs and evaluate the actual

performance of GPU-RMAP against the model. We also

hope to implement other sequence search or sequence align-

ment algorithms that use hashing as a core computational

component (e.g., BLAST) on the GPU and evaluate them

against the techniques used in GPU-RMAP.

ACKNOWLEDGMENTS

We would like to thank Heshan Lin for the inception of

this project, the immense technical support in the project’s

initial design stages, and the detailed feedback on this

manuscript. This work is supported in part by NSF grants

IIP-0804155 and IIS-0710945 and an NVIDIA Professor

Partnership Award.

REFERENCES

[1] D. Bozdag, C. C. Barbacioru, and U. V. Catalyurek, “Parallel
Short Sequence Mapping for High Throughput Genome Se-
quencing,” in IPDPS ’09: Proceedings of the 2009 IEEE In-
ternational Symposium on Parallel&Distributed Processing.
Washington, DC, USA: IEEE Computer Society, 2009, pp.
1–10.

174

6

8

10

12

14

16

S
p

e
e

d
u

p

Mapping Speedup (1M Reads)

Read Width = 64

0

2

4

6

Complete

Human

Genome

Complete

Mosquito

Genome

chr1 chr12 chr22

S
p

Chromosome (Decreasing order of length / size)

Read Width = 48

Read Width = 32

(a) Effect of Chromosome Size on Speedup

6

8

10

12

e
e

d
u

p

Mapping Speedup

(Complete Human Genome)

Read Width = 64

0

2

4

6

1 2 4 8

S
p

e
e

d

Millions of Reads

Read Width = 64

Read Width = 48

Read Width = 32

(b) Effect of number of reads on Speedup
(Human Genome)

8

10

12

14

16

e
e

d
u

p

Mapping Speedup

(Complete Mosquito Genome)

0

2

4

6

8

1 2 4 8

S
p

e
e

d

Millions of Reads

Read Width = 64

Read Width = 48

Read Width = 32

(c) Effect of number of reads on Speedup
(Mosquito Genome)

Figure 6. GPU-RMAP: Summary of Results.

[2] A. Smith, Z. Xuan, and M. Zhang, “Using Quality Scores and
Longer Reads Improves Accuracy of Solexa Read Mapping,”
BMC Bioinformatics, vol. 9, no. 1, p. 128, 2008. [Online].
Available: http://www.biomedcentral.com/1471-2105/9/128

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers,
and D. J. Lipman, “Basic Local Alignment Search
Tool,” Journal of Molecular Biology, vol. 215, no. 3,
pp. 403–410, October 1990. [Online]. Available: http:
//dx.doi.org/10.1006/jmbi.1990.9999

[4] B. Ma, J. Tromp, and M. Li, “PatternHunter: Faster and
more Sensitive Homology Search,” 2002. [Online]. Available:
citeseer.ist.psu.edu/ma02patternhunter.html

[5] J. W. Kent, “BLAT–the BLAST-like Alignment Tool,”
Genome Res, vol. 12, no. 4, pp. 656–664, April 2002.

[6] H. Li and R. Durbin, “Maq: Mapping and Assembly with
Qualities.” [Online]. Available: http://maq.sourceforge.net/

[7] S. M. Rumble, P. Lacroute, A. V. Dalca, M. Fiume,
A. Sidow, and M. Brudno, “SHRiMP: Accurate Mapping
of Short Color-space Reads,” PLoS Comput Biol, vol. 5,
no. 5, pp. e1 000 386+, May 2009. [Online]. Available:
http://dx.doi.org/10.1371/journal.pcbi.1000386

[8] M. Schatz, C. Trapnell, A. Delcher, and A. Varshney,
“High-Throughput Sequence Alignment Using Graphics
Processing Units,” BMC Bioinformatics, vol. 8, no. 1, p.
474, 2007. [Online]. Available: http://www.biomedcentral.
com/1471-2105/8/474

[9] M. C. Schatz, “CloudBurst: Highly Sensitive Read Mapping
with MapReduce,” Bioinformatics, vol. 25, no. 11, pp.
1363–1369, June 2009. [Online]. Available: http://dx.doi.org/
10.1093/bioinformatics/btp236

[10] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy,
L. G. Trabuco, and K. Schulten, “Accelerating Molecular
Modeling Applications with Graphics Processors,” Journal of
Computational Chemistry, vol. 28, pp. 2618–2640, 2007.

[11] L. Nyland, M. Harris, and J. Prins, “Fast N-Body Simulation
with CUDA,” GPU Gems, vol. 3, pp. 677–695, 2007.

[12] S. Xiao, A. M. Aji, and W. Feng, “On the Robust Mapping of
Dynamic Programming nto a Graphics Processing Unit,” in
15th International Conference on Parallel aond Distributed
Systems (ICPADS), Shenzhen, China, December 2009.

[13] NVIDIA, “NVIDIA CUDA Programming Guide-2.3.1,”
2009, http://developer.download.nvidia.com/compute/cuda/
2 3/toolkit/docs/NVIDIA CUDA Programming Guide 2.3.
pdf.

[14] C. Trapnell and M. C. Schatz, “Optimizing Data Intensive
GPGPU Computations for DNA Sequence Alignment,” Par-
allel Computing, vol. 35, no. 8-9, pp. 429 – 440, 2009. [On-
line]. Available: http://www.sciencedirect.com/science/article/
B6V12-4WK485P-1/2/da460c952ad271ff7aba6d40ad6734b9

[15] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” in OSDI’04: Proceedings of
the 6th conference on Symposium on Opearting Systems
Design & Implementation. Berkeley, CA, USA: USENIX
Association, 2004, pp. 10–10.

[16] A. D. Smith, W.-Y. Chung, E. Hodges, J. Kendall, G. Hannon,
J. Hicks, Z. Xuan, and M. Q. Zhang, “Updates to the RMAP
Short-Read Mapping Software,” Bioinformatics, vol. 25,
no. 21, pp. 2841–2842, November 2009. [Online]. Available:
http://dx.doi.org/10.1093/bioinformatics/btp533

[17] L. J. Gosink, K. Wu, E. W. Bethel, J. D. Owens, and K. I.
Joy, “Bin-Hash Indexing: A Parallel Method For Fast Query
Processing,” Laurence Berkeley National Laboratories, Tech.
Rep. LBNL-729E, 2008.

[18] D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta,
M. Mitzenmacher, J. D. Owens, and N. Amenta, “Real-
Time Parallel Hashing on the GPU,” ACM Transactions
on Graphics (Proceedings of ACM SIGGRAPH Asia 2009),
vol. 28, no. 5, Dec. 2009. [Online]. Available: http:
//idav.ucdavis.edu/∼dfalcant/research/hashing.php

[19] Henry S. Warren, Hacker’s Delight. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002.

175

