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GPU Virtualization and Scheduling Methods: A Comprehensive
Survey

CHEOL-HO HONG, Queen’s University Belfast
IVOR SPENCE, Queen’s University Belfast
DIMITRIOS S. NIKOLOPOULOS, Queen’s University Belfast

The integration of graphics processing units (GPUs) on high-end compute nodes has established a new
accelerator-based heterogeneous computing model, which now permeates high performance computing. The
same paradigm nevertheless has limited adoption in cloud computing or other large-scale distributed com-
puting paradigms. Heterogeneous computing with GPUs can benefit the Cloud by reducing operational costs
and improving resource and energy efficiency. However, such a paradigm shift would require effective meth-
ods for virtualizing GPUs, as well as other accelerators. In this survey paper, we present an extensive and
in-depth survey of GPU virtualization techniques and their scheduling methods. We review a wide range
of virtualization techniques implemented at the GPU library, driver, and hardware levels. Furthermore, we
review GPU scheduling methods that address performance and fairness issues between multiple virtual ma-
chines sharing GPUs. We believe that our survey delivers a perspective on the challenges and opportunities
for virtualization of heterogeneous computing environments.

CCS Concepts: rGeneral and reference → Surveys and overviews; rNetworks → Cloud computing;rComputer systems organization→Heterogeneous (hybrid) systems; rSoftware and its engineer-
ing→ Scheduling;

General Terms: Design, Management, Performance
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1. INTRODUCTION
For more than a decade, high performance computing (HPC) programmers and re-
searchers have adopted a new computing paradigm that combines two architectures:
namely multi-core processors with powerful and general-purpose cores, and many-core
accelerators, the leading example of which is graphics processing units (GPUs), with a
massive number of simple cores that accelerate algorithms with a high degree of data
parallelism. Despite an increasing number of cores, multi-core processor designs still
aim at reducing latency in sequential programs by using sophisticated control logic
and large cache memories. Conversely, GPUs seek to boost the execution throughput
of parallel applications with thousands of simple cores and a high memory bandwidth
architecture. Heterogeneous systems combining multi-core processors and GPUs can
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meet the diverse requirements of a wide range of high performance computing appli-
cations with both control-intensive components and highly data-parallel components.
The success of heterogeneous computing systems with GPUs is evident in the latest
Top500 list [Top500 2016] where more than 19% of supercomputers adopt both CPUs
and GPUs.

Cloud computing platforms can leverage heterogeneous compute nodes to reduce the
total cost of ownership and achieve higher performance and energy-efficiency [Crago
et al. 2011; Schadt et al. 2011]. A cloud with heterogeneous compute nodes would al-
low users to deploy computationally intensive applications without the need to acquire
and maintain large-scale clusters. In addition to this benefit, heterogeneous comput-
ing can offer better performance within the same power budget compared to systems
based on homogeneous processors, as computational tasks can be placed on either con-
ventional processors or GPUs depending on the degree of parallelism. These combined
benefits have been motivating cloud service providers to equip their offerings with
GPUs and heterogeneous programming environments [Lee and Katz 2011; Expósito
et al. 2013; NVIDIA 2016b]. A number of HPC applications can benefit from execution
on heterogeneous cloud environments. These include particle simulation [Green 2010],
molecular dynamics simulation [Glaser et al. 2015], and computational finance [Dixon
et al. 2014], as well as 2D and 3D graphics acceleration workloads, which exhibit high
efficiency when exploiting GPUs.

System virtualization is a key enabling technology for the Cloud. The virtualization
software creates an elastic virtual computing environment, which is essential for im-
proving resource utilization and reducing cost of ownership. Virtualization systems are
invariably underpinned by methods of multiplexing system resources. Most of system
resources including processors and peripheral devices can be completely virtualized
nowadays and there is ample research in this field dating from the early 1960s [Gold-
berg 1974]. However, virtualizing GPUs is a relatively new area of study and remains
a challenging endeavor. A key barrier to this has been the implementations of GPU
drivers, which are not open for modification due to intellectual property protection rea-
sons. Furthermore, GPU architectures are not standardized and GPU vendors have
been offering architectures with vastly different levels of support for virtualization.
For these reasons, conventional virtualization techniques are not directly applicable to
virtualizing GPUs.

Contributions: In this paper, we present an extensive and in-depth survey of GPU
virtualization techniques and their scheduling methods. We first review background
research related to GPU virtualization techniques in Section 2. We then classify GPU
virtualization techniques according to their implementation methods in Section 3. We
further compare the different GPU virtualization approaches in Table II of Section 3.
We proceed to introduce the most relevant advances in the GPU virtualization litera-
ture based on our classification. First, we study methods using API remoting, which
virtualizes GPUs at the library level, in Section 4. Next, we study approaches that
adopt para & full virtualization techniques in Section 5. These methods enable virtu-
alization at the driver level. Finally, we review hardware-assisted GPU virtualization
in Section 6. To address performance and fairness issues between multiple tenants
in cloud computing, fair and effective GPU scheduling is essentially required in con-
junction with the virtualization techniques. Section 7 provides a classification of GPU
scheduling methods in the literature and discusses the detailed scheduling algorithms.
Section 8 suggests remaining challenges and future work that advance the state of
practice in GPU virtualization. We conclude the paper in Section 9.

Scope of the paper: Our survey excludes papers of yet unimplemented micro-
architectural techniques for GPU virtualization, but includes papers that analyze the
performance of current hardware extensions for GPU virtualization such as NVIDIA
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Fig. 1. Architecture of a heterogeneous system equipping a discrete GPU.

GRID [Herrera 2014]. When surveying GPU scheduling methods, we include work per-
formed in a single OS environment because the same studies can be applied to virtu-
alized environments without significant changes to the underlying GPU virtualization
layer.

2. BACKGROUND
We introduce background research related to GPU virtualization. This section explores
GPU architectures, GPU APIs and programming models, common GPU benchmarking
applications, and the concept of system virtualization, all of which cover basic knowl-
edge from hardware to applications in the GPU virtualization stack.

2.1. GPU Architecture
GPUs adopt a fundamentally different design for executing parallel applications com-
pared to conventional multi-core processors [Kirk and Wen-mei 2012]. GPUs are based
on a throughput-oriented design and offer thousands of simple cores and a high band-
width memory architecture. This design enables maximizing the execution throughput
of applications with a high degree of data parallelism, which are expected to be decom-
posable into a large number of threads operating on different points in the program
data space. In this design, when some threads are waiting for the completion of arith-
metic operations or memory accesses with long latency, other threads can be scheduled
by the hardware scheduler in order to hide the latency [Patterson 2009]. This mech-
anism may lengthen the respective execution time of individual threads, but improve
total execution throughput. On the contrary, the design of conventional processors is
optimized for reducing the execution time of sequential code on each core, thus adding
complexity to each core at the cost of offering fewer cores in the processor package. Con-
ventional processors typically use sophisticated control logic and large cache memories
in order to efficiently deal with conditional branches, pipeline stalls, and poor data lo-
cality. Modern GPUs also handle complex control flows, have large SRAM-based local
memories, and adopt some additional features of conventional processors, but preserve
the fundamental properties of offering a higher degree of thread-level parallelism and
higher memory bandwidth.

Figure 1 shows the architecture of a traditional heterogeneous system equipping a
discrete GPU. The GPU part is based on the Fermi architecture of NVIDIA [Witten-
brink et al. 2011], but is not limited to NVIDIA architectures as recent GPUs adopt a
similar high-level design. A GPU has several streaming multiprocessors (SMs), each
of which has 32 computing cores. Each SM also has an L1 data cache and a low latency
shared memory. Each core has local registers, an integer arithmetic logic unit (ALU),
a floating point unit (FPU), and several special function units (SFUs) that execute
transcendental instructions such as sine and cosine operations. A GPU memory man-

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: May 2017.



1:4 C.-H. HONG et al.

agement unit (MMU) provides virtual address spaces for GPU applications. A GPU
memory reference by an application is resolved into a physical address by the MMU
using the application’s own page table. Memory accesses from each application there-
fore cannot refer to other applications’ address spaces.

The host connects the discrete GPU using the PCI Express (PCIe) interface. The
CPU in the host interacts with the GPU via MMIO (memory mapped input/output).
The GPU registers and device memory can be accessed by the CPU through the MMIO
interface. The MMIO region is configured at boot time based on the PCI base address
registers (BARs), which are memory windows that can be used by the host for com-
munication. GPU operations issued by an application are submitted into a ring buffer
associated with the application’s command submission channel, which is a GPU hard-
ware unit and visible to the CPU via MMIO. Large data can be transferred between
the host memory and the GPU device memory by the direct memory access (DMA)
engine.

The discrete GPU architecture shown in Figure 1 can cause data transfer overhead
over the PCIe interface because the maximum bandwidth that current PCIe can of-
fer is low (i.e. 16 GB/s) compared to the internal memory bandwidth of the GPU (i.e.
hundreds of GB/s). Furthermore, the architecture incurs large programming effort to
manage data manipulated by both the CPU and the GPU. To address these issues,
GPUs have been integrated into the CPU chip. Intel’s GPU architecture [Hammarlund
et al. 2014] and AMD’s HSA architecture [Kyriazis 2012] integrate the two processors
on the same bus with shared system memory. These architectures enable a unified
virtual address space and eliminate data copying between the devices. They can also
reduce a programmer’s burden to manage the separate data address spaces.

2.2. GPU APIs and Programming Models
We introduce OpenGL, Direct3D, CUDA, and OpenCL as GPU APIs and program-
ming models because the API remoting and other GPU virtualization approaches have
mainly focused on virtualizing the aforementioned libraries and models.

OpenGL [Woo et al. 1999] is a library for accessing GPU hardware to accel-
erate graphics. The library is specialized for implementing video games, image
processing, and visualization tasks for scientific applications. OpenGL provides a
hardware-independent application programming interface (API) implemented on dif-
ferent graphics cards, regardless of their underlying system software.

Direct3D [Blythe 2006] is a proprietary graphics API for Microsoft Windows. Di-
rect3D is a low-level API used to render 3D graphics for performance intensive appli-
cations such as games. Direct3D provides a coherent and general abstraction in front
of specific GPU hardware implementations, exposing advanced graphics capabilities
such as Z-buffering, W-buffering, stencil buffering, and spatial anti-aliasing.

CUDA [Nvidia 2007b] is a programming model developed by NVIDIA for parallel
computing platforms. It allows software developers to exploit CUDA-enabled GPUs
to perform general-purpose data parallel computation, thus converting graphics cards
into general purpose graphics processing units (GPGPU). CUDA is tightly coupled
with programming languages such as C and C++ and extends these languages with a
small set of primitives for device memory allocation, data transfer, GPU kernel execu-
tion, event handling, and atomic and synchronization operations.

OpenCL [Group et al. 2008] is a framework for parallel applications that execute
on heterogeneous platforms. OpenCL specifies a C-like programming language called
OpenCL C for writing compute kernels. It also defines APIs to launch kernels into an
OpenCL device and to manage memory transfer between the host and the device. The
key difference between CUDA and OpenCL is that CUDA can be run only on NVIDIA
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GPUs, but OpenCL applications can be executed on both CPUs and accelerators re-
gardless of the manufactures.

2.3. GPU Applications
GPU programs are categorized into graphics acceleration and general purpose com-
puting workloads. The former category includes 2D and 3D graphics workloads. The
latter includes a wide range of general-purpose data parallel computations.

Graphics acceleration workloads: 3DMark [Futuremark 1998] is a GPU bench-
mark test application developed by Futuremark Corporation for measuring the per-
formance of 3D graphics rendering capabilities. 3DMark evaluates various Direct3D
features including tessellation, compute shaders, and multi-threading.

The Phoronix Test Suite (PTS) [Larabel and Tippett 2011] is a set of open-source
benchmark applications developed by Phoronix Media. Phoronix performs comprehen-
sive evaluation for measuring the performance of computing systems. GPU software
developers usually utilize Phoronix for testing the performance of OpenGL games such
as Doom 3, Nexuiz, and Enemy Territory.

General purpose computing workloads: Rodinia [Che et al. 2009] is a bench-
mark suite focusing on the performance evaluation of compute-intensive applications
implemented by CUDA, OpenMP, and OpenCL. Each application or kernel covers dif-
ferent types of behavior of compute-intensive applications, and the suite broadly covers
the features of the Berkeley Seven Dwarfs [Asanovic et al. 2006].

The Scalable HeterOgeneous Computing (SHOC) Benchmark Suite [Danalis et al.
2010] is a set of benchmark programs evaluating the performance and stability of
GPGPU computing systems using CUDA and OpenCL applications. The suite supports
the evaluation of both cluster-level parallelism with the Message Passing Interface
(MPI) [Gropp et al. 1996] and node-level parallelism using multiple GPUs in a single
node. The application scope of SHOC includes the Fast Fourier Transform (FFT), linear
algebra, and molecular dynamics among others.

Parboil [Stratton et al. 2012] is a collection of compute-intensive applications im-
plemented by CUDA, OpenMP, and OpenCL to measure the throughput of CPU and
GPU architectures. Parboil provides collected benchmark applications from diverse sci-
entific and commercial fields. They include bio-molecular simulation, fluid dynamics,
image processing, and astronomy.

The CUDA SDK benchmark suite [Nvidia 2007a] is released as a part of CUDA
Toolkit. It covers a diverse range of GPGPU applications performing data-parallel al-
gorithms used in linear algebra operations, computational fluid dynamics (CFD), im-
age convolution, and Black-Scholes & binomial option pricing.

2.4. System Virtualization
System virtualization allows several operating systems (OSs) to run simultaneously
on a single physical machine, thus achieving effective sharing of system resources in
personal and shared (e.g. cloud) computing platforms. The software for system vir-
tualization includes a hypervisor, also known as a virtual machine monitor (VMM),
and virtual machines (VMs). A hypervisor virtualizes physical resources in the system
such as the CPU, memory, and I/O devices. A VM is composed of these virtualized re-
sources and is provided to a guest OS. The guest OS can run on the VM as though
the VM were a real physical machine. Popular hypervisors used widely for personal
and cloud computing include VMware ESXi [Chaubal 2008], KVM [Kivity et al. 2007],
Hyper-V [Velte and Velte 2009], and Xen [Barham et al. 2003].

System virtualization can be categorized into three major classes: full, para and
hardware-supported virtualization. Full virtualization completely emulates the CPU,
memory, and I/O devices in order to provide a guest OS with an environment iden-
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Table I. Classification of GPU virtualization techniques based on the implementation manners

Classification References

API remoting

[Becchi et al. 2012; Castelló et al. 2015; Duato et al. 2009; Duato et al.
2010a; Duato et al. 2010b; 2011; Duato et al. 2011; Giunta et al. 2010;
Giunta et al. 2011; Gupta et al. 2009; Gupta et al. 2011; Hansen 2007;
Humphreys et al. 2002; Jang et al. 2013; Kato et al. 2012; Kuzkin and
Tormasov 2011; Laccetti et al. 2013; Lagar-Cavilla et al. 2007; Lama et al.
2013; Lee et al. 2016; Li et al. 2011; Li et al. 2012; Liang and Chang 2011;
Merritt et al. 2011; Montella et al. 2011; Montella et al. 2014; Montella
et al. 2016a; Montella et al. 2016b; Niederauer et al. 2003; Oikawa et al.
2012; Peña et al. 2014; Pérez et al. 2016; Prades et al. 2016; Qi et al. 2014;
Ravi et al. 2011; Reaño et al. 2012; Reaño et al. 2013; Reaño et al. 2015a;
Reaño et al. 2015b; Reaño and Silla 2015; Rossbach et al. 2011; Sengupta
et al. 2013; Sengupta et al. 2014; Shi et al. 2009; Shi et al. 2011; Shi et al.
2012; Tien and You 2014; Vinaya et al. 2012; Xiao et al. 2012; You et al.
2015; Zhang et al. 2016]

Para & full virtualization

[Dalton et al. 2009; Dong et al. 2015; Dowty and Sugerman 2009;
Gottschlag et al. 2013; Guan et al. 2015; Huang et al. 2016; Qi et al. 2014;
Shan et al. 2013; Song et al. 2014; Suzuki et al. 2014; 2016; Tian et al.
2014; Wang et al. 2016; Xue et al. 2016; Zhang et al. 2014]

Hardware virtualization

[Abramson et al. 2006; Amazon 2010; Expósito et al. 2013; Herrera 2014;
Hong et al. 2014; Jo et al. 2013a; Jo et al. 2013b; Ou et al. 2012; Shainer
et al. 2011; Shea and Liu 2013; Vu et al. 2014; Walters et al. 2014; Yang
et al. 2012a; Yang et al. 2012b; Yang et al. 2014; Yeh et al. 2013; Younge
and Fox 2014; Younge et al. 2014; 2015]

tical to the underlying hardware. Privileged instructions of a guest OS that modify
the system state are trapped into the hypervisor, by a binary translation technique
that automatically inserts trapping operations in the binary code of the guest OS. The
advantage of this approach is that guest OSs run in the virtualization environment
without modification. However, full virtualization usually exhibits high performance
penalties due to the cost for emulation of the underlying hardware.

Para virtualization addresses the performance limitations of full system virtualiza-
tion by modifying the guest OS code to support more efficient virtualization. Privileged
instructions of a guest OS are replaced with hypercalls, which provide a communica-
tion channel between the guest OS and the hypervisor. This optimization eliminates
the need for binary translation. Para virtualization offers a guest OS an environment
similar but not identical to the underlying hardware. The advantage of this approach
is that it has lower virtualization overhead than full virtualization. The limitation is
that it requires modification to guest OSs, which can be tedious when new versions of
an OS kernel or device driver are released.

Hardware-supported virtualization requires hardware capabilities such as Intel VT-
x [Uhlig et al. 2005] in order to trap privileged instructions from guest OSs. These
capabilities typically introduce two operating modes for virtualization: guest (for an
OS) and root (for the hypervisor). When a guest OS executes a privileged instruction,
the processor intervenes and transfers the control to the hypervisor executing in the
root mode. The hypervisor then emulates the privileged instruction and returns the
control to guest mode. The mode change from guest to root is called a VM Exit. The
reverse action is called a VM Entry. The advantage of this approach is that it does not
have to modify a guest OS and that it exhibits higher performance than full virtual-
ization.

3. CLASSIFICATION OF GPU VIRTUALIZATION TECHNIQUES
Table I classifies GPU virtualization techniques in terms of their implementation. We
classify the techniques based on three approaches:
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• API remoting: This approach virtualizes GPUs at a higher level in the GPU exe-
cution stack. As GPU vendors do not provide the source code of their GPU drivers,
it is difficult to virtualize GPUs at the driver level; other devices such as disks are
often virtualized at this level. To address this issue, API remoting provides a GPU
wrapper library to a guest OS in order to intercept GPU calls. The intercepted calls
are forwarded to the host OS or a remote machine with GPUs. The requests are
processed remotely and the results are returned to the guest OS. This approach can
overcome the limitation that black-box GPU drivers incur, by virtualizing GPUs at
the library level.

• Para & full virtualization: Para and full virtualization offer GPU virtualization at
the driver level in the GPU stack. Recently, architecture documentation has been
made available for some GPU models by vendors [AMD 2009] or via reverse engi-
neering [X.OrgFoundation 2011; PathScale 2012; Menychtas et al. 2013]. This ap-
proach uses a custom GPU driver based on the available documentation in order to
realize GPU virtualization at the driver level. Para virtualization slightly modifies
the custom driver in the guest for delivering sensitive operations directly to the host
driver for improving performance whereas full virtualization does not require this
modification because it fully emulates GPUs.

• Hardware-supported virtualization: In this approach, a guest OS is given direct
access to GPUs with hardware extension features provided by either motherboard
chipset or GPU manufacturers. This GPU pass-through access is enabled by remap-
ping DMAs and interrupts to each guest OS. Intel VT-d [Abramson et al. 2006]
and AMD-Vi [Van Doorn 2006] chipsets support this mechanism, but they cannot
support sharing of a single GPU between multiple guest OSs. Recently, NVIDIA
GRID [Herrera 2014] addressed this limitation and allows multiplexing in recent
NVIDIA GPUs targeting cloud environments.

Table II shows a comparison of representative GPU virtualization solutions in the
literature. We identify the techniques based on the following factors:

• Category: This denotes which implementation method the solution adopts, between
API remoting, para & full virtualization, and hardware-supported virtualization.

• Acceleration target: This part indicates the target of acceleration of the solution
between graphics acceleration and GPGPU computing.

• Hypervisor: This indicates which hypervisor the solution is building on for GPU
virtualization.

• Remote acceleration: Some solutions offload GPU tasks to a remote machine to im-
plement a virtual GPU device. This indicates whether the solution supports remote
offloading.

• Programming model: This property refers to the GPU programming language and
model that the solution supports.

• Open source: This property indicates whether the solution adopts an open-source
policy.

• GPU hardware: This property indicates the GPU hardware where the solution is
evaluated or the hardware architecture that the solution can support.

• Multiplexing: This indicates whether the solution can support sharing of a single
GPU between multiple VMs.

• GPU scheduling: This indicates whether the solution provides GPU scheduling for
fair or SLA-based sharing on GPUs. Details about GPU scheduling are discussed in
Section 7.

The introduced solutions will be discussed in depth in the following sections.
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Table II. Comparison of GPU virtualization techniques

KVM Xen VMware Parallels Others OpenGL Direct3D CUDA OpenCL NVIDIA AMD Intel Others
Chromium

[Humphreys et al. 2002] API remoting Graphics O O GeForce 3
(Kelvin) O

VMGL
[Lagar-Cavilla et al. 2007] API remoting Graphics O O O O Radeon X600 O

Blink
[Hansen 2007] API remoting Graphics O O Radeon 9600SE O

Parallels Desktop
[Kuzkin and Tormasov 2011] API remoting Graphics O O O O O

VADI
[Lee et al. 2016] API remoting Graphics SASP O Vivante 

GC2000 O

GViM
[Gupta et al. 2009] API remoting GPGPU O O GeForce 8800, 9800 

GTX  (Tesla) O O

vCUDA (1*)
[Shi et al. 2009] API remoting GPGPU O O O GeForce 8600 GT

(Tesla) O

rCUDA
[Duato et al. 2010b] API remoting GPGPU O O       O (2*) Tesla C1060 (3*)

(Tesla 2.0) O

GVirtuS
[Giunta et al. 2010] API remoting GPGPU O O O O O O Tesla C1060 (3*)

(Tesla 2.0) O

GVM
[Li et al. 2011] API remoting GPGPU Proprietary 

hypervisor O Tesla C2070
(Fermi) O

Pegasus
[Gupta et al. 2011] API remoting GPGPU O O GeForce 9800 GTX

(Tesla) O O

Shadowfax
[Merritt et al. 2011] API remoting GPGPU O O O GeForce 8800, 9800 

GTX  (Tesla) O O

VOCL
[Xiao et al. 2012] API remoting GPGPU O O Tesla M2070

(Fermi) O

DS-CUDA
[Oikawa et al. 2012] API remoting GPGPU O O O GeForce GTX 560 Ti

(Fermi) O

VMware SVGA II
[Dowty and Sugerman 2009] Para virtualization Graphics O O O Radeon HD2600

(TeraScale) O

LoGV 
[Gottschlag et al. 2013] Para virtualization GPGPU O O O GeForce GTX 480

(Fermi) O

VGRIS
[Qi et al. 2014] Para virtualization Graphics O O Radeon  HD6750

(TeraScale 2) O O

[Huang et al. 2016] Para virtualization GPGPU O O Radeon R7
(GCN 1.1) O

GPUvm 
[Suzuki et al. 2014] Full and para virtualization GPGPU O O O Quadro 6000

(Fermi) O O

gVirt
[Tian et al. 2014] Full virtualization Graphics O O O O O HD Graphics 4600 (4*)

(4th generation) O O

KVMGT
[Song et al. 2014] Full virtualization Graphics O O O O O HD Graphics 4600 (4*)

(4th generation) O O

gHyvi
[Dong et al. 2015] Full virtualization Graphics O O O O O HD Graphics 4600 (4*)

(4th generation) O O

gScale
[Xue et al. 2016] Full virtualization Graphics O O O O O HD Graphics P4700 (4*)

(4th generation) O O

GPU pass-through
[Abramson et al. 2006] Hardware virtualization Graphics 

and GPGPU O O O O O O O O

vmCUDA
[Vu et al. 2014]

Hardware virtualization 
with API remoting GPGPU O O Quadro 4000

(Fermi) O

NVIDIA GRID
[Herrera 2014] Hardware virtualization Graphics 

and GPGPU O O O O O O O O O

(1*) The final version of vCUDA only supports KVM.
(2*) Currently, rCUDA is distributed in a binary format.
(3*) Current GVirtuS and rCUDA can support all NVIDIA GPUs beyond the Tesla architecture.
(4*) Current gVirt, KVMGT, gHyvi, and gScale can support all Intel GPUs beyond the 4th generation. 

GPUs that support GPU pass-through
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Fig. 2. Architecture of the API remoting approach.

4. API REMOTING
Virtualizing GPUs has been regarded as more difficult than virtualizing I/O devices
such as network cards or disks. Several reasons add complexity to multiplexing and
sharing GPU resources between VMs. First, GPU vendors tend not to reveal the source
code and implementation details of their GPU drivers for commercial reasons. Such
technical specifications are essential for virtualizing GPUs at the driver level. Second,
even when driver implementations are unveiled, e.g. by reverse engineering meth-
ods [X.OrgFoundation 2011; Menychtas et al. 2014], GPU vendors still introduce sig-
nificant changes with every new generation of GPUs to improve performance. As a
consequence, specifications revealed by reverse engineering become unusable. Finally,
some OS vendors provide proprietary GPU drivers for virtualization, but the propri-
etary drivers cannot be used across all OSs. In summary, there are no standard inter-
faces for accessing GPUs, which are required for virtualizing these devices.

The API remoting approach overcomes the aforementioned limitations and is now
the most prevalent approach to GPU virtualization. The premise of API remoting is to
provide a guest OS with a wrapper library that has the same API as the original GPU
library. The wrapper library intercepts GPU calls (e.g. OpenGL, Direct3D, CUDA, and
OpenCL calls) from an application, before the calls reach the GPU driver in the guest
OS. The intercepted calls are redirected to the host OS in the same machine through
shared memory or a remote machine with available GPUs. The redirected calls are
processed remotely and only the results are delivered to the application through the
wrapper library. The API remoting approach can emulate a GPU execution environ-
ment without exposing physical GPU devices in the guest OS.

Figure 2 illustrates an example of a system that adopts the API remoting approach,
which forwards GPU calls in the guest to the host in the same machine. The architec-
ture adopts a split device model where the frontend and backend drivers are placed
in the guest and host OSs respectively. The wrapper library installed in the guest OS
intercepts a GPU call from the application and delivers it to the frontend driver. The
frontend packs the GPU operation with its parameters into a transferable message
and sends the message to the backend in the host OS via shared memory. In the host
OS, the backend driver parses the message and converts it into the original GPU call.
The call handler executes the requested operation on the GPU through the GPU driver.
The call handler returns the result back to the application via the reverse path.

The key advantage of this approach is that it can support applications using GPUs
without recompilation in most cases. The wrapper library can be dynamically linked
to existing applications at runtime. In addition, it incurs negligible virtualization
overhead as the virtualization architecture is simple and bypasses the hypervisor
layer [Gupta et al. 2011]. Finally, as the virtualization layer is usually implemented
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in user space, this approach can be agnostic on underlying hypervisors [Giunta et al.
2010], specifically if it does not use hypervisor-specific inter-VM communication meth-
ods. The limitation is that keeping the wrapper libraries updated can be a daunting
task as new functions are gradually added to vendor GPU libraries [Menychtas et al.
2014]. In addition, as GPU requests bypass the hypervisor, it is difficult to implement
basic virtualization features such as execution checkpointing, live migration, and fault-
tolerance [Dowty and Sugerman 2009].

4.1. Methods for Graphics Acceleration
Chromium [Humphreys et al. 2002] is an early example of API remoting. In the past,
graphics processors could not be fully utilized by a number of applications in the same
machine because the hosts were using slow serial interfaces to the graphic cards. The
goal of Chromium is to aggregate GPU calls from different machines and to process
them in a powerful cluster rendering system with multiple graphics accelerators. For
this purpose, Chromium provides four OpenGL wrapper libraries that encapsulate fre-
quently used operations: stream packing, stream unpacking, point-to-point connection-
based networking abstractions, and complete OpenGL state tracker libraries. These
libraries intercept OpenGL operations and transfer them to a rendering cluster.

VMGL [Lagar-Cavilla et al. 2007] implements the API remoting approach for ac-
celerating OpenGL applications in recent hypervisors including Xen and VMware. It
provides hardware accelerated rendering abilities to OpenGL applications in each VM.
VMGL consists of the following three modules: the VMGL library, the VMGL stub, and
the VMGL X server extension. The VMGL library is an OpenGL wrapper library that
replaces standard implementations. The VMGL stub is created in the host for each
VMGL library instance to receive and process GPU requests from the library. OpenGL
commands are delivered by a network transport, which makes VMGL agnostic of un-
derlying hypervisors. The VMGL X server extension runs in the guest OS side and is
used to register the size and visibility of OpenGL-enabled windows. Through the reg-
istered information, the VMGL stub only processes a region that can be visible in the
guest OS’s desktop. VMGL additionally supports suspend and resume functionalities
by keeping track of the entire OpenGL state in the guest and restoring the state in a
new stub.

Blink [Hansen 2007] offers accelerated OpenGL rendering abilities to applications
inside a VM similarly to VMGL, but focuses more on performance optimization. Blink
provides the BlinkGL wrapper library for guest OSs, which is a superset of OpenGL.
The wrapper library provides stored procedures, each of which is a sequence of serial-
ized BlinkGL commands, in order to eliminate the performance overhead of addition-
ally (de-)serializing GL command streams during communication between the guest
and the host. The Blink Server in the host interprets the transferred stored proce-
dure by using a Just-In-Time (JIT) compiler. The host and the guest OSs communicate
with each other through shared memory to reduce the overhead of using a network
transport on large texture or frame buffer objects.

The Parallels Desktop [Kuzkin and Tormasov 2011] offers a proprietary GPU driver
for guest OSs to offload their OpenGL and Direct3D operations onto remote devices
with GPUs. The proprietary GPU driver can be installed only on Parallels products
such as Parallels Desktop and Parallels Workstation. The server module in the remote
device receives access requests from a number of remote VMs and chooses a next VM
to use the GPU. The module then sends a token to the selected guest and allows it
to occupy the GPU for a specific time interval. The guest OS and the remote OS use
a remote procedure call (RPC) protocol for delivering GPU commands and the corre-
sponding results.
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VADI [Lee et al. 2016] implements GPU virtualization for vehicles by multiplexing
a GPU device used by the digital cluster of a car. VADI works on a proprietary hyper-
visor for vehicles called the Secure Automotive Software Platform (SASP) [Kim et al.
2013]. This hypervisor exploits the ARM TrustZone technology [Winter 2008], which
can accommodate two guest OSs in the secure and normal “worlds” respectively. VADI
implements the GL wrapper library and the V-Bridge-normal in the normal world, and
the GL stub and the V-Bridge-secure in the secure one. GPU commands executed in
the normal world are intercepted by the wrapper library and processed in the secure
world by the GL stub. Each V-Bridge is connected by shared memory and is responsible
for communication between the two worlds.

4.2. Methods for GPGPU Computing
Following NVIDIA’s launch of CUDA in 2006, general-purpose computing on GPUs
(GPGPU) became more popular and practical. NVIDIA’s CUDA conceals the underly-
ing graphics hardware architecture from developers and allows programmers to write
scalable programs without learning new programming languages. Research on GPU
virtualization has focused more on GPGPUs since the introduction of CUDA, in order
to accelerate compute-intensive applications running in the Cloud.

GViM [Gupta et al. 2009] implements GPU virtualization at the CUDA API level
in the Xen hypervisor [Barham et al. 2003]. To enable a guest VM to access the GPU
located in the host, GViM implements the Interposer CUDA Library for guest OSs,
and the frontend and backend drivers for communication between the host and the
guest. GViM focuses on efficient sharing of large data volumes between the guest and
the host when a GPU application is data-intensive. For this purpose, GViM furnishes
shared memory allocated by Xenstore [Cho and Jeon 2007] between the frontend and
backend, instead of using a network transport. It further develops the one-copy mech-
anism that maps the shared memory into the address space of the GPU application.
This removes data copying from user space to kernel space in the guest OS and im-
proves communication performance.

vCUDA [Shi et al. 2009] also implements GPU virtualization in the Xen hypervisor.
vCUDA provides a CUDA wrapper library and virtual GPUs (vGPUs) in the guest,
and the vCUDA stub in the host. The wrapper library intercepts and redirects API
calls from the guest to the host. vGPUs are created per application by the wrapper
library and give a complete view of the underlying GPUs to applications. The vCUDA
stub creates an execution context for each guest OS and executes remote GPU re-
quests. For communication between VMs, vCUDA adopts XML-RPC [Cerami 2002]
which supports high-level communication between the guest and the host. In the lat-
est version [Shi et al. 2012], vCUDA is ported to KVM using VMRPC [Chen et al.
2010] with VMCHANNEL [Patni et al. 2015]. VMRPC utilizes a shared memory zone
between the host OS and the guest OS to reduce the overhead of using XML-RPC
transmission with TCP/IP. VMCHANNEL enables an asynchronous notification mech-
anism in KVM to reduce the latency of inter-VM communication. vCUDA also develops
Lazy RPC that performs batching specific CUDA calls that can be delayed (e.g. cuda-
ConfigureCall()). This prevents frequent context switching between the guest OS and
the hypervisor occurred by repeated RPCs and improves communication performance.

rCUDA [Duato et al. 2010b] focuses on remote GPU-based acceleration, which of-
floads CUDA computation parts onto GPUs located in a remote host. rCUDA recog-
nizes that prior virtualization research based on emulating local devices is not appro-
priate for HPC applications because of unacceptable virtualization overhead. Instead
of device emulation, rCUDA implements virtual CUDA-compatible devices by adopting
remote GPU-based acceleration without the hypervisor layer. More concretely, rCUDA
provides a CUDA API wrapper library to the client side, which intercepts and forwards
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GPU calls from the client to the GPU server, and the server daemon in the server side,
which receives and executes the remote GPU calls. The client and the server com-
municate with each other using a TCP/IP socket. rCUDA points out network perfor-
mance bottlenecks when several clients concurrently access the remote GPU cluster.
To overcome this issue, rCUDA provides a customized application-level communication
protocol [Duato et al. 2010a]. Current rCUDA supports EDR 100G InfiniBand using
Mellanox adapters for providing higher network bandwidth [Reaño et al. 2015b].

GVirtuS [Giunta et al. 2010] implements a CUDA wrapper library, the frontend and
backend drivers, and communicators supporting various hypervisors including KVM,
Xen, and VMware. The frontend and backend drivers are placed in the guest and the
host respectively. The two drivers communicate with each other by a communicator
specific to each hypervisor. GVirtuS identifies that the performance of GPU virtual-
ization depends on communication throughput between the frontend and the backend.
To address this issue, GVirtuS implements pluggable communication components that
utilize high performance communication channels provided by the hypervisors. The
communicators for KVM, Xen, and VMware employ VMSocket, XenLoop [Wang et al.
2008], and the VMware Communicator Interface (VMCI) [Gebhardt and Tomlinson
2010] as communication channels respectively. In the latest version, the VMShm com-
municator [Di Lauro et al. 2012], which leverages shared memory, was introduced for
better communication performance. It allocates a POSIX shared memory chunk on the
host OS and allows both the backend and frontend to map the memory for commu-
nication. GVirtuS also provides a TCP/IP-based communicator for remote GPU-based
acceleration.

GVM [Li et al. 2011] is based on a model that predicts the performance of GPU appli-
cations. GVM validates this model by introducing its own virtualization infrastructure,
which consists of the user process APIs, the GPU Virtualization Manager (GVM), and
the virtual shared memory. The user process APIs expose virtual GPU resources to
programmers. The source code then needs to be modified to contain the APIs to uti-
lize the virtual GPUs. GVM runs in the host OS and is responsible for initializing the
virtual GPUs, receiving requests from guest OSs, and passing them to physical GPUs.
The virtual shared memory is implemented as POSIX shared memory by which the
guest and host OSs can communicate with each other.

Pegasus [Gupta et al. 2011] advances its predecessor, GViM [Gupta et al. 2009], by
managing virtualized accelerators as first class schedulable and shareable entities. For
this purpose, Pegasus introduces the notion of an accelerator virtual CPU (aVCPU),
which embodies the state of a VM executing GPU calls on accelerators, similarly to
the concept of virtual CPUs (VCPUs). In Pegasus, an aVCPU is a basic schedulable
entity and consists of a shared call buffer per domain, a polling thread in the host OS,
and the CUDA runtime context. GPU requests from a guest OS are stored in the call
buffer shared between the frontend and backend drivers. A polling thread selected by
the GPU scheduler then fetches the GPU requests from the buffer and passes them to
the actual CUDA runtime in the host OS. The scheduling methods Pegasus adopts will
be introduced in Section 7.2.2.

Shadowfax [Merritt et al. 2011] enhances its predecessor, Pegasus [Gupta et al.
2011]. Shadowfax tackles the problem that under Pegasus applications requiring sig-
nificant GPU computational power are limited to using only local GPUs although re-
mote nodes may boast additional GPUs. To address this issue, Shadowfax presents the
concept of GPGPU assemblies, which can configure diverse virtual platforms based on
application demands. This virtual platform concept allows applications to run across
node boundaries. For local GPU execution, Shadowfax adopts the GPU virtualization
architecture of Pegasus. For remote execution, Shadowfax implements a remote server
thread that creates a fake guest VM environment, which consists of a call buffer and
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Fig. 3. Architecture of the full or para virtualization approach.

a polling thread per VM in the remote machine. To reduce remote execution overhead,
Shadowfax additionally does batching of GPU calls and their data.

VOCL [Xiao et al. 2012] presents a GPU virtualization solution for OpenCL applica-
tions. Similarly to rCUDA [Duato et al. 2010b], VOCL adopts remote GPU-based ac-
celeration to provide virtual devices supporting OpenCL. VOCL provides an OpenCL
wrapper library on the client side and a VOCL proxy process on the server side. The
proxy process receives inputs from the library and executes them on remote GPUs. The
wrapper library and the proxy process communicate via MPI [Gropp et al. 1996]. The
authors claim that MPI can provide a rich communication interface and dynamically
establish communication channels compared to other transport methods.

DS-CUDA [Oikawa et al. 2012] provides a remote GPU virtualization platform sim-
ilarly to rCUDA [Duato et al. 2010b]. It is composed of a compiler, which translates
CUDA API calls to respective wrapper functions, and a server, which receives GPU
calls and their data via an InfiniBand IBverb or RPC socket. Compared to other similar
solutions, DS-CUDA implements redundant calculations to improve reliability where
two different GPUs in the cluster perform the same calculation in order to ensure that
the result from the cluster is correct.

5. PARA AND FULL VIRTUALIZATION
The API remoting approach can virtualize GPUs without significant performance
penalty by intercepting and emulating GPU requests with GPU wrapper libraries for
graphics acceleration and GPGPU computing. However, the wrapper libraries should
be updated when new functions are added to vendor GPU libraries, which can be a
daunting task. This means that many API remoting solutions cannot be used cur-
rently on new graphics hardware and the most recent GPU libraries. To overcome this
limitation, full and para virtualization methods where GPUs are virtualized at the
driver level are introduced. Full virtualization uses unmodified GPU drivers whereas
para virtualization makes adjustments to GPU drivers for performance improvement.
Recently, AMD has released open documentation regarding their GPU architectures
for certain models [AMD 2009]. Furthermore, some developers have inferred the in-
terfaces between NVIDIA GPUs and the host by using reverse engineering tech-
niques [X.OrgFoundation 2011; PathScale 2012; Menychtas et al. 2013]. Owing to
these efforts, custom GPU drivers that can control AMD or NVIDIA GPUs have been
released. This movement motivated a number of research on para and full virtualiza-
tion techniques.
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Figure 3 illustrates an example of a system adopting the full or para virtualization
approach. The architecture adopts an unmodified or modified custom GPU driver in
the guest. GPU requests coming from the guest driver are delivered to the QEMU
GPU device in the host through shared memory in the hypervisor. The QEMU device
emulates the underlying GPU hardware while exposing MMIO PCIe BARs (explained
in Section 2.1) to the guest driver; the guest driver therefore regards the QEMU de-
vice as a real GPU. The vGPU control block keeps the state of each virtual GPU and
maintains a queue to buffer GPU requests issued from the QEMU device. The GPU
scheduler selects a next virtual GPU to run and fetches GPU requests from the asso-
ciated queue. The GPU requests are then processed in the GPU, and the results are
returned to the application through the reverse path.

The advantage of this approach is that it can reuse existing GPU libraries and is
prepared to cope with future library changes because the implementation point for
GPU virtualization is relocated to the lower driver layer in the guest OS. In addition,
as GPU requests from a guest OS can be monitored and mediated by the hypervisor,
essential virtualization features such as live migration can be implemented without
difficulty compared to the API remoting approach. The disadvantage is that this ap-
proach is heavily dependent on custom GPU drivers, which in turn rely on reverse
engineering or open documentation. The release of a new GPU microarchitecture may
impose significant burdens on the development of its corresponding custom driver.

5.1. Para Virtualization
VMware SVGA II [Dowty and Sugerman 2009] is a GPU virtualization approach pro-
vided by VMware’s hosted products including VMware Workstation and VMware Fu-
sion. The authors point out that API remoting is straightforward to implement, but
completely surrenders interposition that allows the hypervisor to arbitrate hardware
access between a VM and the physical hardware. This makes it difficult for the hy-
pervisor to implement basic virtualization features such as suspend-to-disk and live
migration. VMware provides the VMware SVGA Driver built based on the open docu-
mentation of AMD GPUs [AMD 2009]. This driver replaces the original GPU driver in
the guest. The SVGA Driver is given access to a virtual GPU called VMware SVGA II
created by the hypervisor. This is not a physical graphics card, but acts like a physical
one by providing three virtual hardware resources: registers, Guest Memory Regions
(GMRs), and a FIFO command queue. The registers are used for hardware manage-
ment such as mode switching and IRQ acknowledgment. The GMRs emulate physical
GPU VRAM and are allocated in the host memory. The FIFO command queue, which
adopts a lock-free data structure to eliminate synchronization overhead, receives GPU
commands from the guest. The backend in the host, called Mouse-Keyboard-Screen
(MKS), then fetches and issues the GPU requests asynchronously from the FIFO
queue. VMware SVGA II focuses on supporting graphics acceleration rather than
GPGPU computing.

LoGV [Gottschlag et al. 2013] implements para virtualization in KVM using a mod-
ified PathScale GPU driver (pscnv) [PathScale 2012] in the guest OS. This is an open
source driver implemented based on reverse engineering of NVIDIA drivers. The key
point of LoGV’s virtualization is to partition the GPU device memory into several
pieces and to grant a guest OS direct access to its own portion. Modern GPUs have
their own memory management unit (MMU) to map the partitioned GPU memory into
the GPU application’s address space. By managing and configuring each GPU page
table referred to by the GPU MMU, LoGV allows each VM to access the mapped re-
gion without involvement from the hypervisor. LoGV only mediates memory allocation
or mapping operations in order to ensure that any VM does not establish mapping to
other VMs’ address spaces. The GPU driver in the guest OS is modified for this purpose
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to send these sensitive operations to the hypervisor. The virtual device in the hyper-
visor is then responsible for validation of these requests. After any necessary checks,
the virtual device delivers the allocation and mapping requests to the GPU driver in
the host, which performs the actual allocation. A command submission channel is vir-
tualized in the same way; GPU applications can send commands to GPUs without in-
tervention from the hypervisor after a request for creating a virtual command channel
is validated.

VGRIS [Qi et al. 2014] adopts the para virtualization technique implemented in
VMware SVGA II [Dowty and Sugerman 2009] for gaming applications in virtualiza-
tion environments. Using VMware player 4.0, VGRIS further develops an agent for
each VM in the host, which is responsible for monitoring the performance of each indi-
vidual VM and sending this information to the GPU scheduler. The scheduling method
will be explained in Section 7.2.2.

Huang et al. [2016] developed a para virtualization solution for the Heterogeneous
System Architecture (HSA) [Kyriazis 2012] proposed by AMD. HSA combines a CPU
and a GPU on the same silicon die to relieve the communication overhead between
them. The authors try to address this architectural change in KVM-based virtualiza-
tion. First, HSA realizes shared virtual memory where the CPU and the GPU share
the same virtual address space. To virtualize this concept, the authors just assign the
page tables used by CPU MMU to GPU IOMMU in order to reuse them as GPU shadow
page tables. Second, HSA generates an interrupt when a GPU memory access gener-
ates a page fault; by this trigger, the CPU can modify the corresponding page table for
the GPU. To virtualize this feature, the authors modify the shadow page table upon the
interrupt and also notify the corresponding guest OS to modify its guest page table.
Shadow page tables are actually used for address translation, but the guest page table
modification is also required for maintaining system integrity. The GPU driver in the
guest OS is modified to deal with this notification. Finally, HSA allows the CPU and
the GPU to have a shared buffer in user space to store GPU commands. To virtualize
this feature, the authors simply let the GPU know the address of a shared buffer in
the guest so that the GPU can fetch GPU commands directly from the guest.

5.2. Full Virtualization
GPUvm [Suzuki et al. 2014] implements both full and para virtualization in the Xen
hypervisor by using a Nouveau driver [X.OrgFoundation 2011] in the guest OS side. To
isolate multiple VMs on a GPU in full virtualization, GPUvm partitions both physical
GPU memory and the MMIO region into several pieces and assigns each portion to
an individual VM. A GPU shadow page table per VM enables access to the partitioned
memory by translating the virtual GPU addresses to the physical GPU addresses of the
partitioned memory. Each shadow page table is updated upon TLB flush. In CPU vir-
tualization, the hypervisor updates shadow page tables when page faults occur. How-
ever, GPUvm cannot deal with page faults from the GPU because of a limitation of
the current NVIDIA GPU design. Therefore, GPUvm should scan the entire page ta-
ble upon every TLB flush. The partitioned MMIO region is configured as read-only so
that every GPU access from a guest can generate a page fault. The OS then intercepts
and emulates the access in the driver domain of Xen. Because the number of com-
mand submission channels (explained in Section 2.1) is limited in hardware, GPUvm
also virtualizes them by creating shadow channels and mapping a virtual channel to
a shadow channel. Actually, this full virtualization technique shows poor performance
because of the following reasons: 1) the interception of every GPU access and 2) the
scanning of the entire page table upon every TLB flush. GPUvm addresses the first
limitation with BAR Remap, which only intercepts GPU calls related to accesses to
GPU channel descriptors. A possible isolation issue caused by passing through other
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GPU accesses is addressed by utilizing shadow page tables, which isolate BAR area
accesses among VMs. For the second limitation, GPUvm suggests a para virtualiza-
tion technique. Similarly to Xen [Barham et al. 2003], GPUvm constructs guest GPU
page tables and allows VMs to use these page tables directly instead of shadow page
tables. The guest driver issues hypercalls to GPUvm when its GPU page table needs
to be updated. GPUvm then validates these requests for isolation between VMs.

gVirt [Tian et al. 2014] is based on its previous work, XenGT [Shan et al. 2013], and
implements full GPU virtualization for Intel on-chip GPUs in the Xen hypervisor. It
focuses on graphics acceleration rather than GPGPU computing. gVirt asserts that the
frame and command buffers are the most performance-critical resources in GPUs. It
allows each VM to access the two buffers directly (pass-through) without intervention
from the hypervisor. For this purpose, the graphics memory resource is partitioned by
the gVirt Mediator so that each VM can have its own frame and command buffers in
the partitioned memory. At the same time, privileged GPU instructions are trapped
and emulated by the gVirt Mediator in the driver domain of Xen. This enables secure
isolation among multiple VMs without significant performance loss. The whole process
is called mediated pass-through. KVMGT [Song et al. 2014] is a ported version of gVirt
for KVM and has been integrated into the mainline Linux kernel since version 4.10.

gHyvi [Dong et al. 2015] points out that its predecessor, gVirt, suffers from severe
performance degradation when a GPU application in a VM performs frequent updates
on guest GPU page tables. This modification causes excessive VM exits [Har’El et al.
2013], which are expensive operations in hardware-based virtualization. This is also
known as the massive update issue. gHyvi introduces relaxed page table shadowing,
which removes the write-protection of the page tables to avoid excessive trapping. The
technique rebuilds the guest page tables at a later point of time when rebuilding is
required. This lazy reconstruction is possible because the modification to the guest
page tables will not take effect before relevant GPU operations are submitted to the
GPU command buffer.

gScale [Xue et al. 2016] solves gVirt’s scalability limitation. gVirt partitions the
global graphics memory (2 GB) into several fixed size regions and allocates them to
vGPUs. Due to the recommended memory allocation for each vGPU (e.g. 448 MB in
Linux), gVirt limits the total number of vGPUs to four. gScale overcomes this limita-
tion by making the GPU memory shareable. For the high graphics memory in Intel
GPUs, gScale allows each vGPU to maintain its own private shadow graphics transla-
tion table (GTT). Each private GTT translates the vGPU’s logical graphics address to
any physical address in the high memory. Upon context switching, gScale copies the
next vGPU’s private GTT to the physical GTT to activate the vGPU’s graphics address
space. For the low memory, which is also accessible by the CPU, gScale introduces
Ladder mapping combined with private shadow GTTs. As virtual CPUs and GPUs are
scheduled asynchronously, a virtual CPU may access illegal memory if it refers to the
current graphics address space. Ladder mapping modifies the Extended Page Table
(EPT) used by the virtual CPU so that it can bypass the graphics memory space. With
these schemes, gScale can host up to 15 vGPUs for Linux VMs and 12 for Windows
VMs. The scheduling method that gScale adopts is discussed in Section 7.2.2.

6. HARDWARE-SUPPORTED VIRTUALIZATION
In the hardware-supported virtualization approach, each VM is given direct access to
the GPU instead of using an API remoting library or an emulated device. This ap-
proach exploits hardware extension features for I/O virtualization provided by chip
manufactures or GPU vendors, which include Intel VT-d [Abramson et al. 2006], AMD-
Vi [Van Doorn 2006], and NVIDIA GRID [Herrera 2014]. The auxiliary features vir-
tualize device transfers and interrupts by using a remapping technology; the DMA

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: May 2017.



GPU Virtualization and Scheduling Methods: A Comprehensive Survey 1:17

Host 
module

GPU driver

Host OS

GPU application

CUDA/OpenCL library

Guest OS

          Hypervisor

GPU

Original GPU 
stack

Additional 
stack

3) request

4) execution

5) GPU access

6) response

7) responseGuest 
module

1) GPU allocation
request

2) GPU allocation

Fig. 4. Architecture of the hardware-supported approach.

channels and interrupts of the device are directly mapped to the guest OS. Therefore,
data can flow from the GPU device to the memory space of the VM without hypervi-
sor involvement while the corresponding interrupts are directly delivered to the VM.
Intel VT-d and AMD-Vi only support a single VM for I/O virtualization; a GPU is dedi-
cated to a designated VM when the VM boots. However, NVIDIA GRID overcomes this
limitation and supports multiplexing of a GPU between VMs.

Figure 4 illustrates a system that adopts hardware-supported virtualization imple-
mented by Intel VT-d or AMD-Vi. In this architecture, the original GPU stack in the
VM can utilize the GPU without any modification to the library or driver. The guest
OS bypasses the hypervisor while communicating with the GPU because data trans-
fers and interrupts are remapped to the VM. Since Intel VT-d or AMD-Vi only support
a single VM for GPU virtualization, a hot plug functionality has been proposed [Jo
et al. 2013a], which can dynamically install or remove a GPU device in the VM, in
order to share the GPU in a coarse-grain manner. In this case, the host and guest
modules interact with each other to process GPU allocation requests from each VM.

The advantage of this approach is that it can realize GPU virtualization without an
additional software layer while achieving near-native performance due to hardware
support. The limitation is that imposing GPU scheduling policies, as discussed further
in Section 7, may be impossible because GPU operations do not pass the host OS or
the hypervisor. In addition, it is difficult to implement execution checkpointing, live
migration, and fault-tolerant execution features as in the API remoting approach.

6.1. Methods Supporting a Single VM
Amazon Elastic Compute Cloud (Amazon EC2) [Amazon 2010] is the first cloud hosting
service that supports GPUs for cloud tenants by using the Intel GPU pass-through
technology [Ou et al. 2012]. In 2010, Amazon EC2 introduced Cluster GPU Instances
(CGIs), which provide two NVIDIA Tesla GPUs per VM [Yeh et al. 2013]. CGIs can
support HPC applications requiring massive parallel processing power by exposing
native GPUs to each guest OS directly.

Expósito et al. [2013] explored the performance of a cluster of 32 CGIs in Ama-
zon EC2. They tested the SHOC and Rodinia benchmark suites as synthetic kernels,
NAMD [Phillips et al. 2005] and MC-GPU [Badal and Badano 2009] as real world
applications in science and engineering, and the HPL benchmark [Petitet 2004] as a
widely used implementation of Linpack [Dongarra et al. 2003]. They measured the
performance both in virtualization using Amazon EC2 CGIs and in a native envi-
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ronment using their own cluster. The authors show that computationally intensive
programs can generally take full advantage of GPUs in the cloud setting. However,
memory-intensive applications can experience a small penalty because Amazon EC2
CGIs enable ECC memory error check features, which can limit memory bandwidth.
Also, network-intensive GPU applications may suffer from virtualized network access,
which reduces scalability.

Yang et al. [2012a; 2012b; 2014] implemented a GPU pass-through system using Xen
and KVM, and performed performance analysis of CUDA applications. The authors
explain how to enable GPU pass-through technically in both hypervisors and evaluate
the performance of the CUDA SDK benchmark suite. The authors claim that the GPU
performance by using the Intel pass-through technology in both hypervisors is similar
to the performance in a native environment.

Shea and Liu [2013] explored the performance of cloud gaming in a GPU pass-
through environment. They found that some gaming applications perform poorly when
they are deployed in a VM using a dedicated GPU. This is because the virtualized en-
vironment cannot secure enough memory bandwidth while transferring data between
the host and the GPU compared with a native environment. The authors identify that
the performance in KVM is less than 59% of that of their bare-metal system. By de-
tailed profiling, some gaming applications are observed to generate frequent context
switching between the VM and the hypervisor in order to process memory access re-
quests during memory transfers, which brings memory bandwidth utilization down.

Younge et al. [Younge and Fox 2014; Younge et al. 2014] evaluated the perfor-
mance of a Xen VM infrastructure using a PCI pass-through technology and the
SHOC benchmark. The authors found that there is only a 1.2% performance penalty
in the worst case in the Kepler K20m GPU-enabled VM whereas the API remoting
approach incurs performance overhead up to 40%. In more recent work [Younge et al.
2015], they evaluated HPC workloads in a virtualized cluster using PCI pass-through
with SR-IOV [Dong et al. 2012] and GPUDirect [Shainer et al. 2011]. SR-IOV is a
hardware-assisted network virtualization technology that provides near-native band-
width on 10Gb connectivity within VMs. GPUDirect reduces the overhead of data
transfers across GPUs by supporting direct RDMA between GPUs on an InfiniBand
interconnect. For evaluation, they used two molecular dynamics (MD) applications:
LAMMPS [Plimpton et al. 2007] and HOOMD [Anderson et al. 2010]. The authors
observe that the MD applications using MPI and CUDA can run at near-native per-
formance with only 1.9% and 1.5% overheads for LAMMPS and HOOMD respectively,
compared to their execution in a non-virtualized environment.

Walters et al. [2014] characterized the performance of VMWare ESXi, KVM, Xen,
and Linux Containers (LXC) using the PCI pass-through mode. They tested the CUDA
SHOC and OpenCL SDK benchmark suites as microbenchmarks, and the LAMMPS
molecular dynamics simulator [Plimpton et al. 2007], GPU-LIBSVM [Athanasopou-
los et al. 2011], and the LULESH shock hydrodynamics simulator [Karlin et al. 2013]
as application benchmarks. The authors observe that KVM consistently yields near-
native performance in all benchmark programs. VMWare ESXi performs well in the
Sandy Bridge microarchitecture [Kanter 2010], but not in the Westmere microarchi-
tecture [Kurd et al. 2010]. The authors speculate that VMWare ESXi is optimized for
more recent microarchitectures. Xen consistently shows average performance among
the hypervisors. Finally, LXC performs closest to the native environment because LXC
guests share a single Linux kernel.

6.2. Methods Supporting Multiplexing
Jo et al. [2013a; 2013b] tried to overcome the inability of GPU pass-through to support
sharing of a single GPU between multiple VMs. In GPU pass-through environments,

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: May 2017.



GPU Virtualization and Scheduling Methods: A Comprehensive Survey 1:19

a GPU can be dedicated only to a single VM when the VM boots. The GPU cannot be
de-allocated until the VM is shutdown. The authors implemented coarse-grain sharing
by utilizing the hot plug functionality of PCIe channels, which can install or remove
GPU devices dynamically. To realize this implementation, a CUDA wrapper library is
provided to VMs to monitor the activity of GPU applications. If an application requires
a GPU, a GPU allocation request is sent to Virtual Machine 0 (VM0), which is the
host OS in KVM or domain 0 in Xen, by the wrapper library. The GPU-Admin in VM0
mediates this request and attaches an available GPU managed by the GPU pool to
the VM. When the application finishes its execution, the wrapper library sends a de-
allocation request to the GPU-Admin. The GPU-Admin then returns the GPU into the
GPU pool.

vmCUDA [Vu et al. 2014] combines the API remoting approach with the hardware-
assisted approach to implement GPU virtualization for an environment where the host
OS does not exist (e.g. VMware ESX hypervisor). In such an environment, only the hy-
pervisor has the right to access the GPU. However, communicating by API remoting
with the hypervisor, which resides in a deep privileged protection level, can impose
significant burdens on the system. To address this issue, vmCUDA launches a man-
agement VM called an appliance VM that can act as a driver domain with a backend
driver. vmCUDA provides a CUDA wrapper library and a frontend driver to a guest
OS, which can intercept and deliver GPU requests to the backend. For communica-
tion between the split drivers, vmCUDA uses VMware VMCI [Burtsev et al. 2009],
VMware vRDMA [Ranadive and Davda 2012], or TCP/IP. The appliance VM adopts a
pass-through technology to process the intercepted calls with little overhead.

NVIDIA GRID [Herrera 2014] overcomes the inter-VM GPU sharing limitations of
GPU pass-through. The NVIDIA GRID architecture implements a new I/O Memory
Management Unit (IOMMU) that can individually map and translate the virtual ad-
dress space of each guest OS to the physical address space of the GPU. In addition,
NVIDIA GRID allows each guest OS to have its own separate input buffer for an
isolated command stream. Through these two architectural changes, NVIDIA GRID-
enabled GPUs can realize GPU sharing and isolate each guest OS’s GPU execution en-
vironment while preserving the performance that a pass-through mechanism would of-
fer. Currently, NVIDIA GPUs targeted for cloud environments, which include NVIDIA
GRID K1, K2, NVIDIA Tesla M6, and M60, support the GRID feature.

Hong et al. [2014] utilized one of NVIDIA GRID-enabled GPUs and re-evaluated
the performance impact of cloud gaming formerly evaluated by Shea and Liu [2013].
The authors observe that the new GPU can outperform traditional pass-through-based
GPUs because of hardware-specific optimizations. In addition, they reveal that fre-
quent context-switching between VMs and the hypervisor does not contribute to the
performance loss, which is a fundamentally different conclusion from Shea and Liu
[2013]. They claim that although the VMs incur more context switches, GRID-enabled
GPUs achieve a net performance gain in terms of frames per second.

7. SCHEDULING METHODS
GPU scheduling methods are required to fairly and effectively distribute GPU re-
sources between tenants in a shared computing environment. However, GPU virtu-
alization software faces several challenges on applying GPU scheduling polices be-
cause of the following reasons. First, GPUs normally do not provide the information
of how long a GPU request occupies the GPU, which creates a task accounting prob-
lem [Dwarakinath 2008; Menychtas et al. 2014]. Second, system software often regards
GPUs as I/O devices rather than full processors, and hides the methods of multiplexing
the GPU in the device driver. This prevents GPU virtualization software from directly
imposing certain scheduling policies on GPUs [Gupta et al. 2011; Panneerselvam and
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Table III. Comparison of scheduling methods based on the scheduling discipline, support for load-balancing, and
software platform.

FCFS Round-robin Priority-
based Fair queuing Credit-based Affinity-based SLA-based Single OS Hypervisor

GERM
[Dwarakinath 2008] O O

GViM
[Gupta et al. 2009] O O O

[Jim ́enez et al. 2009] O O O

TimeGraph
[Kato et al. 2011d] O O

RGEM
[Kato et al. 2011c] O O

PIX
[Kato et al. 2011b] O O

Pegasus
[Gupta et al. 2011] O O O O

[Ravi et al. 2011] O O

PTask
[Rossbach et al. 2011] O O O O

Gdev
[Kato et al. 2012] O O

Rain
[Sengupta et al. 2013] O O O O

Strings
[Sengupta et al. 2014] O O O O

Disengaged scheduling
[Menychtas et al. 2014] O O O

GPUvm
[Suzuki et al. 2014] O O

gVirt
[Tian et al. 2014] O O

VGRIS
[Qi et al. 2014] O O O

VGASA
[Zhang et al. 2014] O O

gScale
[Xue et al. 2016] O O

Libra
[Farooqui et al. 2016] O O O

Software platform
Name Load

balancing

Scheduling discipline

Swift 2012]. Finally, GPUs were non-preemptive until recently, which means a long
running GPU kernel cannot be preempted by software until it finishes. This will cause
unfairness between multiple kernels and severely deteriorate the responsiveness of
latency-critical kernels [Tanasic et al. 2014]. Currently, a new GPU architecture to
support GPU kernel preemption has emerged in the market [NVIDIA 2016a], but it
is expected that existing GPUs will continue to suffer from this issue. In this section,
we introduce representative GPU scheduling polices and mechanisms proposed in the
literature to address these challenges.

7.1. Classification of GPU Scheduling Methods
Table III shows a comparison of representative GPU scheduling methods in the lit-
erature. We classify the methods in terms of the scheduling discipline, support for
load-balancing, and software platform.

Scheduling discipline is an algorithm to distribute GPU resources among processes
or virtual GPUs (vGPUs). We classify the GPU scheduling methods based on a com-
monly used classification [Silberschatz et al. 1998] as follows:

• FCFS: First-come, first-served (FCFS) serves processes or vGPUs in the order that
they arrive.
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• Round-robin: Round-robin is similar to FCFS, but assigns a fixed time unit per
process or vGPU, referred to as a time quantum, then cycles through processes or
vGPUs.

• Priority-based: Priority-based scheduling assigns a priority rank to every process or
vGPU, and the scheduler executes processes or vGPUs in order of their priority.

• Fair queuing: Fair queuing is common in network and disk scheduling to attain
fairness when sharing a limited resource [Demers et al. 1989; Park and Shen 2012].
Fair queuing assigns start tags to processes or vGPUs and schedules them in in-
creasing order of start tags. A start tag denotes the accumulated usage time of a
GPU.

• Credit-based: Credit-based scheduling is a computationally efficient substitute to
fair queuing [Bensaou et al. 2001]. The scheduler periodically distributes credits
to every process or vGPU, and each process or vGPU consumes credits when it is
served on the CPU for exploiting the GPU. The scheduler selects a process or vGPU
with a positive credit value.

• Affinity-based: This scheduling algorithm produces affinity scores for a process or
vGPU in order to predict the performance impact when it is scheduled on a certain
resource.

• SLA-based: SLA (Service Level Agreement) is a contract between a cloud service
provider and a tenant regarding QoS (Quality of Service) and the price. SLA-
based scheduling tries to meet the service requirement when distributing GPU re-
sources [Wu et al. 2011].

Load balancing indicates whether the scheduling method supports the distribution
of workloads across multiple processing units. The software platform denotes whether
the scheduling method is developed in a single OS or hypervisor environment. We
include GPU scheduling research performed in a single OS environment because the
same research can be also applicable to virtualized environments without significant
modifications to the system software.

The GPU scheduling methods in Table III will be discussed in depth from the follow-
ing section.

7.2. Algorithms for Scheduling a Single GPU
7.2.1. Single OS Environment. GERM [Dwarakinath 2008] is a GPU scheduling policy

that utilizes Deficit Round Robin fair queuing [Shreedhar and Varghese 1996], which is
a network scheduler for switching packets with multiple flows. GERM maintains per-
process queues for GPU commands and allows each queue to send commands to the
GPU during a predefined time quantum. A queue’s deficit or surplus time compared to
the time quantum will be compensated or reimbursed in the next round. This scheme
is suitable for non-preemptive GPUs where a GPU request cannot be preempted and
the size of each request can vary significantly. Regarding the accounting of each re-
quest, GERM cannot measure the request size exactly because GPUs generally do not
interrupt the CPU after a request is processed. Therefore, it adopts heuristics to esti-
mate how long a group of commands will occupy the GPU on average. GERM injects a
special GPU command that increases a scratch register containing the number of pro-
cessed requests in the GPU. By reading this register periodically, GERM infers how
much time is taken for a GPU command.

TimeGraph [Kato et al. 2011a; Kato et al. 2011d] focuses on GPU scheduling for soft
real-time multi-tasking environments. It provides two scheduling polices: Predictable-
Response-Time (PRT) and High-Throughput (HT). The PRT policy schedules GPU ap-
plications based on their priorities, so that important tasks can expect predictable
response times. When a group of GPU commands is issued by a process, the group
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is buffered in the wait queue, which resides in kernel space. TimeGraph configures
the GPU to generate an interrupt to the CPU after each group’s execution is com-
pleted. This is enabled by using pscnv [PathScale 2012], an open source NVIDIA GPU
driver. The PRT scheduler is triggered by each interrupt and fetches the highest prior-
ity group from the wait queue. As the scheduler is invoked every time a group of GPU
commands finishes its execution, it incurs non-negligible overhead. The HT scheduler
addresses this issue by allowing the current task occupying the GPU to execute its fol-
lowing groups without buffering into the wait queue, when there are no other higher
priority groups waiting.

RGEM [Kato et al. 2011c] develops a responsive GPGPU execution model for
GPGPU tasks in real-time multi-tasking environments, similarly to TimeGraph [Kato
et al. 2011d]. RGEM introduces two scheduling methods: Memory-Copy Transaction
scheduling and Kernel Launch scheduling. The former policy splits a large memory
copy operation into several small pieces and inserts preemption points between the
separate pieces. This prevents a long running memory copy operation from occupying
the GPU boundlessly, which will block the execution of high priority tasks. The lat-
ter policy follows the scheduling algorithm of the PRT scheduler in TimeGraph except
that Kernel Launch scheduling is implemented in user space.

PIX [Kato et al. 2011b] applies TimeGraph [Kato et al. 2011d] to GPU-accelerated
X Window systems. When employing the PRT scheduler in TimeGraph, PIX solves a
form of the priority inversion problem where the X server task (X) with low priority can
be preempted by a medium priority task (A) on the GPU while rendering the frames of
a high priority task (B) (i.e. PB > PA > PX ). The high priority task is then blocked for
a long time while the X server task deals with the frames of the medium priority task.
PIX suggests a priority inheritance protocol where the X server inherits the priority
of a certain task while rendering the frames of the task. This eliminates the priority
inversion problem raised by the existence of the additional X server task.

Gdev [Kato et al. 2012] introduces a bandwidth-aware non-preemptive device
(BAND) scheduling algorithm. The authors found that the Credit scheduler [Gupta
et al. 2009; Barham et al. 2003] fails to achieve good fairness in GPU scheduling
because the Credit scheduler assumes that it will run preemptive CPU workloads
whereas GPUs do not support hardware-based preemption. To address this issue, Gdev
performs two heuristic modifications to the Credit scheduler. First, the BAND sched-
uler does not degrade the priority of a GPU task after the credit value of the task
becomes zero. The BAND scheduler lowers the priority when the task’s actual utiliza-
tion exceeds the assigned one. This modification compensates for credit errors caused
by non-preemptive executions. Second, the BAND scheduler waits for the completion
of GPU kernels of a task and assigns a credit value to the task based on its GPU usage.
This modification contributes to fairer resource allocations.

Disengaged scheduling [Menychtas et al. 2014] provides a framework for scheduling
GPUs and introduces three algorithms to achieve both high fairness and high utiliza-
tion. The framework endeavors to employ the original NVIDIA driver and the libraries;
it uses neither the API remoting approach nor a custom GPU driver to mediate GPU
calls. The framework makes the GPU MMIO region of each task read-only so that ev-
ery GPU access can generate a page fault. The OS then intercepts and buffers GPU
calls in kernel space. Disengaged scheduling offers three scheduling policies. First, the
Timeslice with Overuse Control scheduling algorithm implements a standard token-
based time slice policy. A token is passed to a certain task and the task can use the
GPU during its time slice. The scheduler accounts for overuse by waiting for all sub-
mitted requests of the token holder to be completed at the end of each time slice. Since
the GPU requests of both the token holder and other tasks generate page faults, this
policy causes significant overhead due to frequent trapping to the OS. In addition, it
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does not implement work-conserving because the GPU can be underutilized if applica-
tions are not GPU-intensive. Second, Disengaged Timeslice reduces this overhead by
allowing the token holder to issue GPU commands without buffering in kernel space.
However, this scheduling is still not work-conserving. Finally, Disengaged Fair Queue-
ing executes several tasks concurrently without trapping in the common case. Only in
the accounting period, the scheduler enables the trapping mechanism and each task
is run sequentially. In this period, the scheduler samples the request size of each task
and feeds this information to fair queuing to approximate each task’s cumulative GPU
usage. The scheduler then selects several tasks that have low start tags in order to
run them without trapping until the next accounting period. The scheduler is work
conserving because several tasks can exploit the GPU simultaneously; from the Ke-
pler microarchitecture, NVIDIA allows multiple GPU kernels from different tasks to
run concurrently [NVIDIA 2012].

7.2.2. Virtualization Environment. GViM [Gupta et al. 2009] uses both simple round-robin
scheduling and Credit scheduling of the Xen hypervisor for scheduling tasks on GPUs.
As GViM operates on top of the driver level, GViM controls the rate of GPU request
submissions for scheduling before the requests reach the driver. GViM implements
Round Robin (RR) and XenoCredit(XC)-based scheduling. RR selects a vGPU sequen-
tially for every fixed time slice and monitors the vGPU’s call buffer during the period.
XC uses the concept of credit, which represents the allocated GPU time of each vGPU.
XC processes the vGPU’s call buffer for a variable time in proportion to the credit
amount, which enables weighted fair-sharing between guest VMs.

Pegasus [Gupta et al. 2011] addresses one of the challenges in GPU scheduling
that a GPU virtualization framework cannot impose a scheduling policy on GPUs
because the method of GPU multiplexing is hidden in the device driver. Pegasus in-
troduces the concept of an accelerator VCPU (aVCPU) to make GPUs basic schedu-
lable entities; the components of an aVCPU are discussed in Section 4.2. Pegasus
focuses on satisfying different application requirements by providing diverse meth-
ods for scheduling GPUs. Pegasus includes FCFS, proportional fair-share (AccCredit),
strict co-scheduling (CoSched), augmented credit-based scheme (AugC), and SLA feed-
back based (SLAF) schedulers. AccCredit adapts the Credit scheduling concept in Xen
for GPU scheduling. CoSched applies co-scheduling for barrier-rich parallel applica-
tions where a VCPU of a VM and its corresponding aVCPU frequently synchronize
with each other. CoSched forces both entities (i.e. the VCPU and its corresponding
aVCPU) to be executed at the same time to address synchronization bottlenecks. How-
ever, this strict co-scheduling policy can hamper fairness between multiple VMs. AugC
conditionally co-schedules both entities to achieve better fairness only when the target
VCPU has enough credits and can lend its credits to its corresponding aVCPU. SLAF
applies feedback-based proportional fair-share scheduling. The scheduler periodically
monitors SLO (Service-Level Objective) violations by the feedback controller and com-
pensates each domain by giving extra time when a violation is detected.

Ravi et al. [2011] tackled the problem that one GPU application sometimes cannot
have enough parallelism to fully utilize a modern GPU. To increase overall GPU uti-
lization, the authors try to consolidate multiple GPU kernels from different VMs in
space and time. Space-sharing co-schedules kernels that do not use all streaming mul-
tiprocessors (SMs) in the GPU. Time-sharing allows more than one kernel to share the
same SM if the cumulative resource requirements do not exceed the capability of the
SM. Because the NVIDIA Fermi-based GPU used in this research only allows a set of
kernels submitted from a single process to be executed concurrently, the authors let
GPU kernels from different VMs be handled by a single thread. The scheduler then
finds an affinity score between every two kernels to predict the performance improve-
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ment when they are space- and time-shared. In addition, the scheduler calculates po-
tential affinity scores when they are space- and time-shared with a different number
of thread blocks and threads. The scheduler then selects n kernels to run based on the
set of affinity scores.

GPUvm [Suzuki et al. 2014] employs the BAND scheduler of Gdev [Kato et al. 2012]
and solves a flaw of Credit scheduling. The original BAND scheduler distributes credits
to each VM based on the assumption that the total utilization of all vGPUs can reach
100%. However, when the GPU scheduler is active, the GPU can temporarily become
idle. This situation causes each vGPU to have unused cumulative credit, which may
lead to inopportune scheduling decisions. To address this issue, GPUvm first trans-
forms the CPU time that the GPU scheduler occupies into a credit value and then
subtracts the value from the total credit value of the current vGPU.

gVirt [Tian et al. 2014] implements a coarse-grain QoS policy. gVirt allows GPU com-
mands from a VM to be submitted into the guest ring buffer during the VM’s time slice.
After the time slice, gVirt waits for the ring buffer to be emptied by the GPU, because
the GPU is non-preemptive. To minimize this wait period, gVirt develops a coarse-
grain flow control method, which ensures that the total length of submitted commands
is within a time slice. gVirt also implements a gang scheduling policy where dependent
graphic engines are scheduled together. The graphic engines in gVirt use semaphores
to synchronize accesses to shared data. To eliminate synchronization bottlenecks, gVirt
schedules the related engines at the same time.

VGRIS [Qi et al. 2014] tries to address GPU scheduling issues for gaming appli-
cations deployed in cloud computing. VGRIS introduces three scheduling policies to
meet different performance requirements. The SLA-aware scheduling policy just pro-
vides minimum GPU resources to each VM to satisfy its SLA requirement. The au-
thors observe that a fair scheduling policy provides resources evenly under contention,
but non-GPU-intensive applications may obtain more resources than necessary while
GPU-intensive ones may not satisfy the requirement. SLA-aware scheduling slows the
execution speed of fast running applications (i.e. non-GPU-intensive applications) so
that other slow applications can get more chances to occupy the GPU. For this purpose,
it inserts a sleep call at the end of the frame computation code of fast running applica-
tions, before the frame is displayed. However, SLA-aware scheduling may lead to low
GPU utilization when only a small number of VMs is available. The Proportional-share
scheduling policy addresses this issue by distributing GPU resources fairly using the
priority-based scheduling policy of TimeGraph [Kato et al. 2011d]. Finally, the Hybrid
scheduling policy combines SLA-aware scheduling and Proportional-share scheduling.
Hybrid scheduling first applies SLA-aware scheduling and switches to Proportional-
share scheduling if a resource surplus is available.

VGASA [Zhang et al. 2014] advances VGRIS [Qi et al. 2014] by providing adap-
tive scheduling algorithms, which employ a dynamic feedback control loop using the
proportional-integral (PI) controller [Ogata 1995]. Similarly to VGRIS, VGASA pro-
vides three scheduling policies. SLA-Aware (SA) receives the frames per second (FPS)
information from the feedback controller and adjusts the length of sleep time in the
frame computation code to meet the predefined SLA requirement (i.e. the rate of 30
FPS). Fair SLA-Aware (FSA) dispossesses fast running applications of their GPU re-
sources and redistributes the resources to slow running ones. Enhanced SLA-Aware
(ESA) allows all VMs to have the same FPS rate under the maximum GPU utiliza-
tion. ESA improves SA by dynamically calculating the SLA requirement during run-
time. ESA can address a trade-off between deploying more applications and providing
smoother experiences.

gScale [Xue et al. 2016] optimizes the GPU scheduler of gVirt. gScale develops pri-
vate shadow GTTs to improve the scalability issue as explained in Section 5.2. How-
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ever, applying private GTTs requires page table copying upon every context switch.
To mitigate this overhead, gScale does not perform context switching for idle vGPUs.
Furthermore, it implements slot sharing, which divides the high graphics memory into
several slots and dedicates a single slot to each vGPU. gScale’s scheduler distributes
busy vGPUs across the slots so that each busy one can monopolize each slot. This
arrangement can decrease the amount of page table entry copying.

The recent NVIDIA Pascal architecture [NVIDIA 2016a] implements hardware-
based preemption to address the problem of long running GPU kernels monopoliz-
ing the GPU. This situation can cause unfairness between multiple kernels and sig-
nificantly deteriorate the system responsiveness. Existing GPU scheduling methods
address this issue by either killing a long running kernel [Menychtas et al. 2014] or
providing a kernel split tool [Basaran and Kang 2012; Zhou et al. 2015; Margiolas
and O’Boyle 2016]. The Pascal architecture allows GPU kernels to be interrupted at
instruction-level granularity by saving and restoring each GPU context to and from
the GPU’s DRAM.

7.3. Algorithms for Load Balancing
Jiménez et al. [2009] introduced several scheduling methods for tasks that can be ex-
ecuted both on a CPU and a GPU. In this approach, a programmer explicitly indicates
that a function can be executed on both processors, and then the compiler generates
both versions of the function code (CPU and GPU). The scheduler decides which pro-
cessing element (PE) is suitable for executing the function. The first-free (FF) algo-
rithm selects the first PE that is not busy in the PE list. However, this policy does
not consider the execution speed of each PE, which may cause load imbalance between
different PEs. The FF Round Robin scheduler addresses this issue by allowing a high
performance PE to have a more amount of workloads. Both algorithms ignore that
a particular function can run more efficiently on a specific PE. Performance History
scheduling forces the first n calls of the same task to be executed on different PEs and
uses this information when finding a suitable PE among non-congested ones. After a
PE is selected, all policies apply a first-come, first-served (FCFS) design in order to
choose a task in the given PE.

PTask [Rossbach et al. 2011] supports a dataflow programming model where a GPU
application is modeled as a directed graph having vertices called ptasks. Each ptask
is a unit of work that can run on a GPU. PTask suggests four policies for scheduling
ptasks: First-available, Fifo, Priority, and Data-aware. The First-available policy does
not maintain a queue for ptasks, allowing threads to compete for available GPUs. In
this policy, when ptasks outnumber available GPUs, access to GPUs is arbitrated by
locks that protect each GPU data structure. The Fifo policy addresses this limitation
with queuing. The Priority scheduler first sorts ptasks in the queue based on their
effective priorities and next assigns a suitable GPU to each task while GPUs are avail-
able. The effective priority reflects several factors including each task’s static priority,
current wait time, average wait time, and average run time. Normally, when a ptask
has waited for a long time, its effective priority will increase, which prevents starva-
tion. To assign a suitable GPU to each task, PTask introduces the concepts of fitness
and strength. The fitness denotes whether a GPU supports the execution environment
required by a ptask while the strength indicates the capability of a GPU including
the number of cores and their clock speed. When both conditions are met, a GPU is
assigned to each task in the queue until GPUs are no more available. Finally, the
Data-aware policy computes effective priority values as the Priority scheduler, but its
GPU selection scheme is based on data-awareness. Since PTask supports for dataflow
programming, this scheduler assigns a certain task a GPU that has input data in the
device memory, which was previously produced by related ptasks.
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Rain [Sengupta et al. 2013] develops a scheduling framework for load-balancing
GPU requests across multiple GPUs existing on distributed machines. Rain proposes
a two-level hierarchical scheduling framework. The top level framework distributes
workloads across multiple GPUs on different servers. The bottom level one applies
device-level scheduling for each GPU. For workload balancing polices in the top level,
Rain suggests five policies. The Global Round Robin (GRR) policy just performs round
robin assignments. The GMin policy extends GRR by maintaining a load level per de-
vice and returning a GPU with a minimum load. The Weighted-GMin policy is based
on GMin and takes into account the capability of each GPU by assigning a relative
weight to each GPU. The Runtime feedback (RTF) policy receives feedback from the
device-level scheduler. The bottom level scheduler monitors the execution time of GPU
requests and provides this information to RTF. RTF selects a GPU with minimum load
in future scheduling points by utilizing the given information. The GPU utilization
feedback (GUF) policy investigates the GPU utilization of each GPU application in or-
der to prevent different applications with high GPU utilization from being placed in
the same GPU. For device-level scheduling polices in the bottom level, Rain provides
two schemes. Least Attained Service (LAS) targets decreasing the stall time of a GPU
application. CPU stalls are caused by synchronization calls such as cudaThreadSyn-
chronize(), which wait until the GPU completes the submitted requests. LAS priori-
tizes GPU applications that attained less GPU time in order to minimize the overall
CPU stall time. True Fair-Share (TFS) distributes GPU resources to each application
in proportion to its weight. When any long running kernel overuses its allocated time
slice, TFS penalizes it in subsequent scheduling points.

Strings [Sengupta et al. 2014] extends its previous work, Rain [Sengupta et al. 2013],
by including more effective scheduling polices. For workload balancing polices, Strings
additionally suggests Data Transfer Feedback (DTF) and Memory Bandwidth Feed-
back (MBF). DTF receives feedback about the time spent on data transfer from the
device level scheduler. This enables collocating a compute-intensive application and
a memory-intensive one together, whose operations can be overlapped. MBF takes
into account the approximate memory bandwidth of each application to prevent ap-
plications with high memory bandwidth from being collocated in the same GPU. For
device-level scheduling, Strings further proposes the Phase Selection (PS) policy. PS
leverages an additional parallelism opportunity that CUDA launch and memory copy
operations from different CUDA streams can be executed concurrently by NVIDIA
GPUs. PS schedules backend threads in different phases simultaneously to overlap
the operations.

Libra [Farooqui et al. 2016] points out that existing work-stealing algorithms are
not efficient in recent integrated CPU-GPU processors such as Intel’s Broadwell and
AMD’s Kaveri. Existing algorithms are agnostic to the characteristics of the CPU
and GPU, and this situation results in performance degradation of OpenCL applica-
tions, which can be run on both processors. To overcome this issue, Libra first applies
lightweight online profiling in order to produce the device affinity scores of a target ap-
plication. The application is assigned to a processor having the highest affinity score.
During its execution, Libra applies hierarchical stealing that minimizes stealing by
other devices that have lower affinity scores. This mechanism reduces cross-device
stealing and thus decreases contention between the CPU and GPU incurred by steal
attempts.

8. CHALLENGES AND FUTURE DIRECTIONS
Through the analysis of existing GPU virtualization techniques, we conclude that tech-
nical challenges of how to virtualize GPUs have been addressed to a significant extent.
However, a number of challenges remain open in terms of performance and capabili-
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ties of GPU virtualization environments. We discuss them in this section, along with
some future research directions to address the challenges.

Lightweight virtualization: Linux-based containers are an emerging cloud tech-
nology that offers process-level lightweight virtualization [Vaughan-Nichols 2006].
Containers do not require additional wrapper libraries or front/backend driver mod-
els to virtualize GPUs because multiple containers are multiplexed by a single Linux
kernel [Haydel et al. 2015]. This feature allows containers to achieve performance
that is close to that of native environments. Unfortunately, current research on GPU
virtualization using containers is at an initial stage. Published work just includes per-
formance comparisons between containers and other virtualization solutions [Walters
et al. 2014]. To utilize GPU-equipped containers in cloud computing, fair and effective
GPU scheduling is required. Most GPU schedulers require API extensions or driver
changes in containers to mediate GPU calls, which will impose non-negligible over-
head on containers. One promising option is to adapt Disengaged scheduling [Meny-
chtas et al. 2014] in the host OS, which needs neither additional wrapper libraries nor
custom drivers for GPU scheduling, as explained in Section 7.2.1.

Scalability: The primary purpose of system virtualization is to increase resource
utilization and reduce cost of ownership. This goal can be attained by consolidating
large numbers of VMs on each physical machine in the datacenter. For example, the
Xen hypervisor is designed to create more than 500 virtual CPUs per host [Xenproject
2016]. Unfortunately, GPU virtualization does not offer such a high degree of consol-
idation capability for VMs that use GPUs. Xue et al. [2016] put significant efforts in
increasing scalability for their gScale framework, but the framework can only host up
to 15 vGPUs for Linux VMs. There is still a significant imbalance between the consol-
idation capabilities of CPUs and GPUs, and bridging the gap remains a challenging
endeavor. The performance impact of deploying a massive number of vGPUs needs
to be investigated in terms of the size of GPU device memory, the frequency of GPU
context switching, and the cache footprint.

Security: A critical function of the hypervisor is to provide secure isolation between
VMs [Garfinkel and Rosenblum 2005]. To fulfill this task, para and full virtualization
frameworks, including LoGV [Gottschlag et al. 2013], GPUvm [Suzuki et al. 2014],
gVirt [Tian et al. 2014], and gScale [Xue et al. 2016], prevent a VM from mapping
the GPU address spaces of other VMs. Despite this protection mechanism, GPU vir-
tualization frameworks remain vulnerable to denial-of-service (DoS) attacks where a
malicious VM uninterruptedly submits a massive number of GPU commands to the
backend and thus jeopardizes the whole system. To address this issue, gVirt resets
hung GPUs and kills suspicious VMs after examining each VM’s execution state. Un-
fortunately, this can cause a service suspension time to normal VMs. To avoid a GPU
reset, a fine-grained access control mechanism is required that can delay the execu-
tion speed of a malicious VM before the VM threatens the system. Methods that adopt
API remoting, including vCUDA [Shi et al. 2009] and VOCL [Xiao et al. 2012], do not
implement isolation mechanisms and their security features need to be reinforced.

Fused CPU-GPU chips: Conventional systems with discrete GPUs have two major
disadvantages: (1) data transfer overhead over the PCIe interface, which offers a low
maximum bandwidth capacity (i.e. 16 GB/s) and (2) programming effort to manage the
separate data address spaces of the CPU and the GPU. To address these issues, fused
CPU-GPU chips furnish shared memory space between the two processors. Examples
include Intel’s integrated CPU-GPU [Hammarlund et al. 2014], AMD’s HSA archi-
tecture [Kyriazis 2012], and NVIDIA’s unified memory coupled with NVLink [Foley
2014]. These new architectures can boost the performance of big data applications that
require a significant communication volume between the two processors. gVirt [Tian
et al. 2014] (Section 5.2) implemented full virtualization for Intel’s GPUs, while Huang
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et al. [2016] (Section 5.1) developed a para virtualization solution for AMD’s fused
chips. However, these frameworks only focus on utilizing GPUs and need to adopt
sophisticated scheduling algorithms that can utilize both processors by partitioning
and load-balancing workloads differently for fused CPU-GPU architectures. Montella
et al. [2016b] explored NVIDIA’s unified memory to simplify memory management in
GPU virtualization. However, the sole use of unified memory incurs non-negligible per-
formance degradation in data-intensive applications [Li et al. 2015] because NVIDIA
maintains its discrete GPU design and automatically migrates data between the host
and the GPU. NVLink enables a high-bandwidth path between the GPU and the CPU
(achieving between 80 and 200 GB/s of bandwidth). A combination of NVIDIA’s uni-
fied memory and NVLink is required to achieve high performance for data-intensive
applications in GPU virtualization.

Power efficiency: Energy efficiency is currently a high research priority for GPU
platforms [Mittal and Vetter 2015; Bridges et al. 2016]. Compared to a significant vol-
ume of research studying GPU power in non-virtualized environments, there is little
work related to power and energy consumption studies in virtualized environments
with GPUs. One example is pVOCL [Lama et al. 2013], which improves the energy
efficiency of a remote GPU cluster by controlling peak power consumption between
GPUs. Besides controlling power consumption of GPUs remotely, power efficiency is
also required at the host side. Runtime systems that monitor different GPU usage
patterns among VMs and dynamically adjust the GPU’s power state according to the
workload are an open area for further research.

Space sharing: Recent GPUs allow multiple processes or VMs to launch GPU ker-
nels on a single GPU simultaneously [NVIDIA 2012]. This space-multiplexing ap-
proach can improve GPU utilization by fully exploiting SMs with multiple kernels.
However, most GPU scheduling methods are based on time-multiplexing where GPU
kernels from different VMs run in sequence on a GPU, which can lead to underutiliza-
tion. A combination of the two approaches is required in order to achieve both high
GPU utilization and fairness in GPU scheduling.

Live migration: The emergence of NVIDIA GRID [Herrera 2014] enables true
hardware-based virtualization on GPUs. NVIDIA GRID allows a GPU device to ex-
pose itself as multiple separate virtual devices at the hardware level. However, as this
technique bypasses the virtualization layer, it imposes challenges on live VM migra-
tion, which is one of the most important virtualization features in cloud computing.
Novel mechanisms that can capture the hardware state and restore it in a remote
machine are required to enable live migration in hardware-based virtualization.

Communication optimization: The API remoting approach offers GPU virtual-
ization through intercepting GPU calls in a guest OS and forwarding them to the host
OS or a remote machine. The API remoting approach has low overhead when appli-
cations are not GPU-intensive. However, a range of recent GPU applications executes
small (e.g. with duration under 100 µs) and repetitive GPU kernels [Menychtas et al.
2014]. These may introduce severe communication bottlenecks while forwarding GPU
calls. With the advance of GPU microarchitectures, the kernel execution time is ex-
pected to drop even further, which will in turn inflate the communication overhead.
Fully optimized communication methods are required to accommodate GPU-intensive
applications in the API remoting approach.

9. CONCLUSION
Over the last few years, heterogeneous computing has gained significant attention as
a new computing paradigm with potential to provide higher performance, higher re-
source utilization, and lower operational costs for HPC and cloud platforms. In cloud
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datacenters with heterogeneous nodes, GPU virtualization is a key enabling technol-
ogy for the effective sharing of GPU devices between multiple tenants.

In this paper, we presented an intensive survey of the research work on GPU vir-
tualization techniques and their scheduling methods. We introduced the key research
contributions in this area with representative studies in GPU virtualization, which
range between API remoting, para & full virtualization, and hardware-assisted vir-
tualization. In addition, we discussed GPU scheduling methods that can realize fair
and effective GPU sharing in heterogeneous cloud computing. Finally, we suggested
some future research directions that can address remaining challenges and advance
the state of practice in GPU virtualization.
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