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Abstract

Graphics Processing Units have emerged as powerful accel-

erators for massively parallel, numerically intensive work-

loads. The two dominant software models for these devices

are NVIDIA’s CUDA and the cross-platform OpenCL stan-

dard. Until now, there has not been a fully open-source com-

piler targeting the CUDA environment, hampering general

compiler and architecture research and making deployment

difficult in datacenter or supercomputer environments.

In this paper, we present gpucc, an LLVM-based, fully

open-source, CUDA compatible compiler for high perfor-

mance computing. It performs various general and CUDA-

specific optimizations to generate high performance code.

The Clang-based frontend supports modern language fea-

tures such as those in C++11 and C++14. Compile time is

8% faster than NVIDIA’s toolchain (nvcc) and it reduces

compile time by up to 2.4x for pathological compilations

(>100 secs), which tend to dominate build times in paral-

lel build environments. Compared to nvcc, gpucc’s runtime

performance is on par for several open-source benchmarks,

such as Rodinia (0.8% faster), SHOC (0.5% slower), or Ten-

sor (3.7% faster). It outperforms nvcc on internal large-scale

end-to-end benchmarks by up to 51.0%, with a geometric

mean of 22.9%.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Processors—Code generation, Compilers, Op-

timization

General Terms Languages, Performance

Keywords GPU, compiler, optimization
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1. Introduction

Graphics Processing Units (GPU), such as NVIDIA’s Tesla

cards or AMD’s FirePro cards, have emerged as power-

ful accelerators for massively parallel, numerically inten-

sive workloads, which are often found in High Performance

Computing (HPC). Recent advances in Machine Learning,

specifically Deep Neural Networks (DNNs) and their appli-

cations, made GPUs appealing for large-scale datacenter op-

erators, such as Google, Microsoft, Facebook, and Amazon.

Similar to HPC codes, DNNs perform very large matrix-

matrix and matrix-vector multiplies, as well as convolutions,

which map well onto GPUs with their enormous computa-

tional power.

The two dominant programming models for GPUs are

NVIDIA’s CUDA [29] and OpenCL [30], which is sup-

ported on many platforms, including NVIDIA’s. Both mod-

els are supported by vendor provided, proprietary develop-

ment environments. While NVIDIA has previously open-

sourced their NVPTX code generator [4] for LLVM, encour-

aging language and compiler development, there is currently

no viable open-source CUDA compiler implementation that

would approach performance and/or functionality of the pro-

prietary CUDA toolchain.

As a result, almost no meaningful, reproducible research

on compiler-based optimizations and productivity work for

CUDA can be found. Many of the benefits that other open-

source toolchains have brought to CPU environments can-

not be materialized for GPU environments. Given the im-

portance of these platforms and the size of the industry and

academic communities, this appears to be a very large lost

opportunity.

But this is not just a problem for general com-

piler research. Datacenter operators also try to avoid

vendor-provided binaries as much as possible, specifically

toolchains with their runtimes, for the following main rea-

sons:

Security. Vendor-provided binaries might contain uninten-

tional or, worst case, intentional security vulnerabilities,

which could lead to leaks of high-value source code or

personal identifiable information. Vendor-provided binaries
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pose these risks for both the build and deployment environ-

ments.

Performance. Compilers are tuned towards a common set

of benchmarks, such as SPEC. However, these benchmarks

might not be representative of important workloads in the

datacenter. Being able to tune the compiler heuristics for

specific workloads will inevitably lead to better perfor-

mance. While these gains might be in the low percentage

range, at the scale of datacenters or supercomputers every

percent matters and can correspond to millions of dollars

saved.

Binary dependencies. Allowing vendor-provided binaries

into the datacenter would lead to massive binary dependen-

cies – updating a core library would require that all depen-

dent vendor binaries would have to be updated as well, all at

the same time. This is intractable in general and impossible

when vendors go out of business.

Bug turnaround times. Vendors serve many customers and

have complicated release processes. Correspondingly, iden-

tifying and fixing a bug in the toolchain typically take from

weeks to months. Having the compiler available in source

can drastically speed up this turnaround time.

Modern language features. Languages like C++ evolve.

Organizations might support more modern language stan-

dards or incompatible source environments which both

might conflict with the subset of language features supported

by proprietary compilers. This can and does make compli-

cated source sandboxing necessary.

In this paper, we present gpucc, a fully functional, open-

source, high performance, CUDA-compatible toolchain,

based on LLVM [23] and Clang [1]. We developed, tuned,

and augmented several general and CUDA-specific opti-

mization passes. As a result, compared to nvcc, we are able

to beat runtime performance for our end-to-end benchmarks

by up to 51.0% with a geometric mean of 22.9% and on par

with several open-source benchmarks. Compile time is 8%

faster on average (geometric mean of compile times) and is

improved by up to 2.4x on pathological cases (>100 secs).

The compiler fully supports modern language features, such

as C++11 and C++14. Our main contributions are:

• We developed and describe in detail gpucc, the first fully

functional and completely open-source GPGPU compiler

targeting CUDA.

• We identify and detail a key set of optimizations that are

essential to generating efficient GPU code. With these

optimizations, gpucc produces code that performs as

well as or better than NVIDIA’s proprietary compiler

nvcc on a diverse set of public and internal benchmarks.

In the remainder of the paper, we describe the compiler

architecture in §2, optimizations in §3, evaluation results in

§4, and related work in §5.
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Figure 1: Overview of the compilation flow and execution

of a mixed mode input file containing CPU and GPU code.

2. Overview

In this section, we will provide an overview of the system

architecture and the compilation flow of gpucc.

The standard compilation of CUDA C/C++ programs

consists of compiling functions that run on the device into

a virtual ISA format dubbed PTX [28]. The PTX code is

then compiled at runtime by the driver to the low-level ma-

chine instruction set called SASS (Shader ASSembler) that

executes natively on NVIDIA GPU hardware.

One key design challenge for gpucc is to compile mixed

code. Unlike the OpenCL programming mode which re-

quires host code (code running on CPU) and device code

(code running on GPU) to be separated, CUDA mixes host

and device code in the same compilation unit (C++ source

file) with a special invocation syntax (<<<...>>>) that allows

host code to invoke device code. Compiling mixed code dif-

fers from traditional C++ compilation as two different archi-

tectures are targeted simultaneously.

2.1 Separate Compilation v.s. Dual-Mode Compilation

One possible approach to compile mixed-mode source files

is separate compilation, which is adopted by nvcc and an

early version of gpucc. This approach requires a compo-

nent called the splitter that filters the mixed-mode code

into source code required for the host (CPU) and the de-

vice (GPU). The splitter does this by performing source-to-

source translation using Clang’s tooling library [2]. The host
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struct S {};

template <typename T>

__global__ void kernel(T *x) {}

template <typename T>

void host(T *x) {

kernel<<<1, 2>>>(x);

}

int main() {

S s;

host(&s);

}

Figure 2: A mixed-mode code example that demonstrates

template instantiation across host and device boundary.

and device source code are then compiled separately and fi-

nally merged into a fat binary.

However, separate compilation has two major disadvan-

tages. First, the source-to-source translation it relies on is

fragile. For example, C++ templates are a significant com-

plication for splitting a mixed-mode input file. Declara-

tions which should be compiled for the device are explic-

itly marked as __device__ or __global__ but emitting only

functions and variables with these attributes is insufficient

due to interdependencies between templatized host and de-

vice code. Specifically, templates can use compile time eval-

uated host functions to perform partial specialization, such

as in Figure 2. As we perform source translation, these host

functions would need to be retained. However, these retained

host functions may use builtins (e.g., __builtin_rdtsc())

that are only available to the host. Therefore, the source-to-

source translation needs to remove calls to device-specific

builtins from the retained host functions.

The second disadvantage is that separate compilation re-

quires unnecessary compilation time. Specifically, using this

approach, gpucc has to parse source code four times – twice

to filter the input into host and device source code and then

twice when we compile them.

To overcome the above two disadvantages, the latest ver-

sion of gpucc adopts the idea of dual-mode compilation. In-

stead of generating two intermediate source files, its frontend

directly emits LLVM IR for the host and device avoiding

the source-to-source translation. Also, template instantiation

is no longer an issue because gpucc now has the complete

translation unit which includes information about template

instantiation on both host and device sides.

Figure 1 shows the architecture of gpucc with dual-mode

compilation. The Clang CUDA frontend (§2.2) preprocesses

and parses the input mixed-mode source file in two modes,

one generating LLVM IR for the host and the other for the

device. The resultant device IR is optimized and lowered to

PTX assembly by the device generator (§2.3). Then, the host

code generator (§2.4) injects the PTX to the host IR as a

string literal. At runtime, the PTX assembly is JIT-compiled

and executed by the CUDA driver.1

2.2 Clang CUDA Frontend

Given a mixed-mode input file, the Clang CUDA frontend

(henceforth referred to as the frontend) parses the input file

twice, once for host compilation and the other for device

compilation. The generated host IR and device IR are then

passed to the following host and device compilation.

To perform dual-mode parsing, the frontend needs to dis-

tinguish what code should be compiled for CPU and what

should be compiled for GPU. The frontend does that lever-

aging function type qualifiers, a CUDA extension that indi-

cates whether a function is executed on the host or device. A

function declared with the __host__ attribute or with no at-

tributes (for compatibility with C++) is executed on the host.

The __device__ and __global__ attribute declare a device

function. The __global__ attribute additionally declares a

kernel, an entry to device code that can be launched via

<<<...>>> from host code.

Unlike compiling a source file that contains only one lan-

guage, the frontend also need to be aware of the differences

between the CUDA and C++ languages; otherwise, when

parsing the input for one target, the frontend would stum-

ble on the code written for the other target. Below are the

major differences between the two languages.

Target-specific predefined macros. A mixed-mode input

can include headers that rely on target-specific macros pre-

defined by the preprocessor, such as __SSE__ defined on x86

and __PTX__ defined on NVPTX. To preprocess these target-

specific macros, gpucc simultaneously predefines both host-

and device-specific macros. This approach allows the fron-

tend to expand macros before its semantic analysis can dis-

tinguish what code is compiled for host or device. Defining

both sets of macros simultaneously causes no conflicts, be-

cause CUDA and C++ agree on all overlapping macros, most

of which are related to sizes and limits of data types.

The only macro that is predefined differently is

__CUDA_ARCH__. In device mode, the frontend sets

__CUDA_ARCH__ to indicate the compute capability of

the device targeted. This macro can be used by the pro-

grammer to generate different code sequences for different

device (e.g., to use atomic instructions on GPUs that

support it) as well as to distinguish between host and device

compilation. For example, programmers use this facility to

execute different code in __host__ __device__ functions

depending on whether the function is being executed on the

host or device.

Compiler builtins. Some compiler builtins are target-

specific. For example, __builtin_rdtsc() is only available

during compilation targeting x86, and __ldg() is only avail-

1 We are also experimenting compiling PTX to SASS before program exe-

cution and embedding the SASS directly into the resultant binary. This can

save the run time spent on JIT compilation.
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Caller

Callee
Host Device Global

Host yes no only kernel launch

Device last resort yes no

Global last resort yes no

Table 1: Requirements of function calls. A function with

__host__ __device__ is treated as a host function in host

mode and as a device function in device mode.

able on GPU. A mixed-mode input may use builtins that are

specific for host and device targets, so the frontend needs to

be aware of multiple compilation targets.

Language features. Some language features (e.g., thread-

local storage, exceptions, and target-specific inline assem-

bly) are not supported during device-side compilation, but

the frontend still needs to be able to parse host code that

uses them. Dual-mode compilation needs to suppress er-

rors/warnings based on the target of the code where the issue

is found. For example, when processing the input in device

mode, the frontend will not produce any errors about thread-

local storage variable used in a host function, even though

they are not supported by the current target.

Function calls. Because functions can be executed on dif-

ferent targets, some function calls are disallowed. Table 1

shows what types of function calls are allowed and disal-

lowed in host and device mode.

In general, callees that match current compilation mode

are preferred, but it is possible for a device function to call a

host function if there is no suitable alternative with a device

attribute. This approach allows the device code to use a

larger subset of host software without having to modify it

to explicitly add target attributes. For example, the Thrust

library calls functions declared in STL headers. If a device

function calls a function that has both a device version and

a host version, gpucc still prefers the device version as the

callee.

2.3 Device Code Generator

The device code generator compiles the device IR generated

by the frontend down to PTX. There are two submodules:

The LLVM IR optimizer runs a series of general and GPU-

specific optimizations on the input IR, and passes the op-

timized IR to the NVPTX code generator. The IR optimizer

heavily influences the quality of the generated PTX, and thus

is crucial to producing high performing PTX for GPU ap-

plications. The specific optimizations performed by the IR

optimizer will be discussed in §3.

The NVPTX code generator is the PTX code generator that

was contributed to LLVM by NVIDIA. It translates LLVM

IR to PTX which is compiled by NVIDIA’s driver to SASS.

The PTX produced by the device code generator is in-

jected as string literal constants into the host IR generated

__global__ void kernel(arg1, arg2) { ... }

int main() {

...

kernel<<<grid, block>>>(arg1, arg2);

return 0;

}

(a) original input

const char* __ptx =

".visible .entry kernel(\n"

"  .param .u64 arg1,\n"

"  .param .u64 arg2\n"

...;

__cuda_fatbin_wrapper = {..., __ptx, ...}

void __cuda_module_ctor() {

__cudaRegisterFatBinary(__cuda_fatbin_wrapper);

__cudaRegisterFunctions(kernel_stub , "kernel");

}

void kernel_stub(arg1, arg2) {

cudaSetupArgument(arg1, ...);

cudaSetupArgument(arg2, ...);

cudaLaunch(kernel_stub);

}

int main() {

...

cudaConfigureCall(grid, block, 0, nullptr);

kernel_stub();

return 0;

}

(b) host IR

Figure 3: Host code generation.

by the frontend, producing a “fat” binary containing both

host and embedded device code.

2.4 Host Code Generator

The host code generator injects the PTX to the host IR,

and inserts CUDA runtime API calls2to load and launch

the CUDA kernels in the injected PTX. Figure 3b shows an

example of how the generated host code looks like. Note

that the actual code is in LLVM IR; we show C++ here for

clarity. The host code generator wraps the PTX in a global

struct called __cuda_fatbin_wrapper. It also inserts a static

initializer called __cuda_module_ctor that loads the PTX

from __cuda_fatbin_wrapper and registers all the kernels

using __cudaRegisterFunctions. For each CUDA kernel,

it generates a kernel stub that prepares the arguments of

the kernel (using cudaSetupArgument) and then launches the

kernel. The only parameter of cudaLaunch is the address

of the kernel stub which __cuda_module_ctor binds to the

kernel name.

2 Besides the CUDA runtime API, gpucc can target a new host runtime

named StreamExecutor, which we will also open-source. StreamExecutor

presents the user with a fluent C++ API with which to orchestrate data
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3. Optimizations

This section describes some of gpucc’s key IR-level opti-

mizations. When we started building gpucc, it used LLVM’s

-O3 optimization pipeline, which had been well tuned to

CPUs but totally oblivious to the quirks of GPUs. Com-

pared with our initial state, the optimizations described in

this section resulted in a nearly 50x improvement in code

performance. §4.3 will detail how each individual optimiza-

tion impacts performance.

All these optimizations are implemented on and have

been open-sourced to the LLVM compiler. Four of these

optimizations and analyses (§3.2, §3.3, §3.4, and §3.5) are

added as new passes in LLVM; two of them (§3.1) are exist-

ing optimizations tuned for CUDA programs; the remaining

one (§3.6) is an existing optimization originally designed for

other architectures and now enabled by us in gpucc.

3.1 Loop Unrolling and Function Inlining

Loop unrolling and function inlining are critical for gpucc’s

performance. Jumps and function calls are more expensive

on common GPUs than on CPUs due to single-instruction

multiple-thread execution, no out-of-order execution, and

the pass-in-memory calling convention. Besides reducing

jumps and function calls, loop unrolling and function inlin-

ing can expose more opportunities to Constant Propagation

and Scalar Replacement of Aggregates (SROA) which pro-

motes stack variables to registers. SROA removes the signif-

icant cost of accessing stack variables and has been observed

to speed up some kernels by over 10x.

gpucc increases the function inlining threshold to 1100,

which we select based on the overall effects on our bench-

marks. The programmers can also use #pragma unroll and

__forceinline__ to force gpucc to unroll a loop and inline

a function respectively. In our benchmarks, such annotations

benefit both nvcc and gpucc.

3.2 Inferring Memory Spaces

CUDA C/C++ includes memory space designation as vari-

able type qualifers (Table 2). Knowing the space of a mem-

ory access allows gpucc to emit faster PTX loads and stores.

For example, a load from shared memory can be translated

to ld.shared which is roughly 10% faster than a generic ld

on an NVIDIA Tesla K40c.

Unfortunately, type qualifiers only apply to variable dec-

larations so gpucc must infer the space of a pointer derived

(via pointer arithmetic) from a variable. For example, al-

though p in Figure 4 is not directly type-qualified, it can be

proven to point to shared memory so programmers expect

gpucc to emit ld.shared.f32 for Line 5.

We address this challenge using an IR-level optimiza-

tion called memory space inference. This optimization prop-

agates the annotated memory spaces from variable declara-

transfers and computations. It supports both CUDA and OpenCL. Its CUDA

support is built on top of the CUDA Driver API.

Memory space Attribute Type qualifier

shared .shared __shared__

global .global __global__

local .local N/A

constant .const __constant__

Table 2: Representation of memory spaces in PTX and

CUDA. Column attribute shows the memory space at-

tributes PTX’s ld and st instructions can optionally take.

Column type qualifier shows the CUDA type qualifiers that

programmers can use to annotate a variable residing in each

memory space.

1 __shared__ float a[1024];

2 float *p = a;

3 float *end = a + 1024;

4 while (p != end) {

5 float v = *p;

6 ... // use "v"

7 ++p;

8 }

Figure 4: A CUDA example that involves a pointer induction

variable. gpucc is able to prove that p in Line 5 points to

shared memory.

tions to its users. As a result, the NVPTX code generator can

emit a load/store from a specific memory space if memory

space inference proves that the address resides in that space.

We implemented memory space inference using a

fixed-point data-flow analysis (Algorithm 1). gpucc runs

Propagate on each function for each memory space MS .

It first assumes all derived pointers (via pointer arithmetic)

point to MS . Then, it iteratively reverts that assumption for

pointers derived from another one that is not guaranteed in

MS . In the end, GS and AS combined contains all pointers

in the memory space MS .

This algorithm handles pointer induction variables which

depend on themselves. For example, p in Figure 4 is initially

assumed shared, and then remains shared because its in-

coming values are either a (guaranteed shared) or derived

from p itself.

3.3 Memory-Space Alias Analysis

Besides enabling fast loads and stores (§3.2), knowing the

space of a memory access also benefits alias analysis be-

cause memory spaces are logically disjoint. To leverage this

feature, we add a memory-space alias analysis to gpucc that

reports two pointers from different memory spaces as not

aliasing. This new alias analysis makes dead store elimina-

tion more effective, and consequently speeds up the lavaMD

benchmark in Rodinia by 5x.
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Algorithm 1: Memory space inference.

Input : a function F and a memory space MS

Output: a set of pointers guaranteed in MS

Propagate(F,MS)
GS ← ∅ // guaranteed in MS

foreach pointer P used in F do

// P can be a global variable, argument, or

instruction.

if P is guaranteed in MS then

GS ← GS ∪ {P}

AS ← ∅ // assumed in MS

foreach instruction I ∈ F that returns a pointer do

if I is derived from other pointers then

AS ← AS ∪ {I}

while true do
foreach I ∈ F that does pointer arithmetic, pointer

cast or PHI do

foreach source S of I do

if S /∈ GS and S /∈ AS then

AS ← AS − {I}

break

if nothing has changed in this iteraion then

break

return GS ∪AS

3.4 Straight-Line Scalar Optimizations

This subsection describes gpucc’s straight-line scalar op-

timizations. Their common feature is simplifying partially

redundant expressions that perform integer or pointer arith-

metic. For example, gpucc can rewrite (b+1)*n as b*n+n if

b*n is already computed by its dominators.

These optimizations are particularly useful for HPC pro-

grams that often access arrays, e.g., matrix multiplication,

dot product, and back propagation. These programs usu-

ally have unrolled loops (either unrolled manually by pro-

grammers or automatically by compilers) that walk through

an array with a fixed access pattern. The expressions that

compute the indices or pointer addresses of these accesses

are often partially redundant. While we initially designed

and implemented these optimizations for CUDA, some of

them have been adopted by other backends in LLVM such

as AMDGPU, PowerPC and ARM64.

Figure 6 shows a running example that we will use

throughout this subsection. This example loads a 3x3 sub-

matrix at indices (b,c) in the array a. The nested loops are

fully unrolled to Figure 5a. Without straight-line optimiza-

tions, gpucc would emit very inefficient code by naı̈vely

following the source code. For example, gpucc would com-

pute p8 in the as-is order, which is suboptimal for two major

reasons.

• Partial redundancy. This computation order doesn’t

eliminate the partial redundancy between (b+1)*n and (b

+2)*n. (b+2)*n could be replaced with (b+1)*n+n which

takes only one extra add instruction.

• Not leveraging addressing modes. PTX ISA supports

the var+offset addressing mode where var is a register

and offset is a 32-bit immediate. If p8 is only used

by load/store instructions, we could reassociate p8 to

(c+(b+2)*n)*4+8 so that the operation +8 can be folded

into addressing.

To attack these two sources of inefficiency, gpucc per-

forms three major optimizations:

• Pointer arithmetic reassociation (§3.4.1) extracts con-

stant offsets from pointer arithmetic, making them easier

to be folded to the addressing mode var+offset.

• Straight-line strength reduction (§3.4.2) and global reas-

sociation (§3.4.3) exploit partial redundancy in straight-

line code and rewrite complex expressions into equiva-

lent but cheaper ones. They together address the partial

redundancy issue.

The end result of these optimizations is Figure 5d. Every pi

except p0 take at most one instruction. Even better, p1, p2,

p4, p5, p7, and p8 can be folded into addressing modes (thus

free) if they are only used in loads or stores.

3.4.1 Pointer Arithmetic Reassociation

The goal of pointer arithmetic reassociation (PAR) is to fold

more computation into addressing modes. Doing that is hard

because the expression that computes an address might not

be originally associated in a form that NVPTX’s address

folding matches.

In contrast to x86, which supports many sophisticated

addressing modes, the only supported nontrivial addressing

mode is reg+immOff where reg is a register and immOff is a

constant byte offset. This addressing mode can be leveraged

to fold pointer arithmetic that adds or subtracts an integer

constant.

To leverage the addressing mode reg+immOff, PAR tries

to extract an additive integer constant from the expression of

a pointer address. It works by reassociating the expression

that computes the address into the sum of a variable part

and a constant offset. After that, the NVPTX codegen can

fold the constant offset into the addressing mode reg+immOff

via simple pattern matching.

Another benefit of PAR is that extracting constant offsets

can often promote better Common Subexpression Elimina-

tion (CSE). For example, PAR transforms p1 in Figure 5a to

&a[c+b*n]+1, and CSE further optimizes that into &p0[1].

After that, the NVPTX codegen folds p1 in a subsequent

load instruction as ld.f32 [%rd1+4] where %rd1 represents

the value of p0. Figure 5b shows the end result of applying

PAR and CSE to the running example.
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p0 = &a[c + b *n];

p1 = &a[c+1+ b *n];

p2 = &a[c+2+ b *n];

p3 = &a[c +(b+1)*n];

p4 = &a[c+1+(b+1)*n];

p5 = &a[c+2+(b+1)*n];

p6 = &a[c +(b+2)*n];

p7 = &a[c+1+(b+2)*n];

p8 = &a[c+2+(b+2)*n];

(a) after unrolling

p0 = &a[c+b*n];

p1 = &p0[1];

p2 = &p0[2];

p3 = &a[c+(b+1)*n];

p4 = &p3[1];

p5 = &p3[2];

p6 = &a[c+(b+2)*n];

p7 = &p6[1];

p8 = &p6[2];

(b) after PAR+CSE

x0 = b*n;

p0 = &a[c+x0];

p1 = &p0[1];

p2 = &p0[2];

x1 = x0+n;

p3 = &a[c+x1];

p4 = &p3[1];

p5 = &p3[2];

x2 = x1+n;

p6 = &a[c+x2];

p7 = &p6[1];

p8 = &p6[2];

(c) after SLSR

p0 = &a[c+b*n];

p1 = &p0[1];

p2 = &p0[2];

p3 = &p0[n];

p4 = &p3[1];

p5 = &p3[2];

p6 = &p3[n];

p7 = &p6[1];

p8 = &p6[2];

(d) global reassociation

Figure 5: Straight-line scalar optimizations.

#pragma unroll for (long x = 0; x < 3; ++x) {

#pragma unroll for (long y = 0; y < 3; ++y) {

float *p = &a[(c + y) + (b + x) * n];

... // load from p

}

}

Figure 6: The running example for straight-line scalar opti-

mizations.

x = (b+C0)*s;

y = (b+C1)*s;

x = b+C0*s;

y = b+C1*s;

x = &b[C0*s];

y = &b[C1*s];

y = x+(C1-C0)*s

Table 3: Strength reduction forms and replacements.

3.4.2 Straight-Line Strength Reduction

Straight-Line Strength Reduction (SLSR) reduces the com-

plexity of operations along dominator paths. It implements

some ideas of SSAPRE [22] and handles more strength re-

duction candidates. The goal of SLSR is similar to that of

loop strength reduction [14], but SLSR targets dominator

paths instead of loops.

SLSR works by identifying strength reduction candidates

in certain forms and making replacements for candidates

in the same form. The current implementation of SLSR

works on three forms shown in Table 3 where b and s are

integer variables, and C0 and C1 are integer constants. For

all the three forms, if x dominates y, SLSR can rewrite y as

x+(C1-C0)*s.

For example, Figure 5b contains the following expres-

sions that fit in Form 1 in Table 3.

x0 = b * n;

x1 = (b + 1) * n;

x2 = (b + 2) * n;

Applying the replacement rule, SLSR simplifies x1 and x2 to

x0+n and x1+n respectively, reducing the cost of computing

x1 or x2 from one add and one multiply to only one add. The

end result of SLSR is Figure 5c, one more step closer to our

desired end result (Figure 5d).

The transformations in Table 3 are likely beneficial but

aggressive in some cases. The transformed code is likely bet-

ter for two reasons. First, C1-C0 is often 1 or -1, so y=x+s

or y=x-s which takes only one PTX instruction to compute.

Second, even if C1-C0 is neither 1 nor -1, the cost of com-

puting (C1-C0)*s is likely amortized because a loop usually

accesses an array with a fixed stride. However, one caveat is

that these transformations introduce extra dependencies and

may hurt instruction-level parallelism. For NVIDIA’s Tesla

K40 GPUs, this issue is secondary to the number of instruc-

tions, because the hardware isn’t pipelined and each warp

has at most two integer function units running simultane-

ously. If needed, SLSR will perform some cost analysis to

make smarter decisions.

3.4.3 Global Reassociation

Global reassociation reorders the operands of a commutative

expression to promote better redundancy elimination. The

idea is similar to the reassociation algorithm in Enhanced

Scalar Replacement [13], but our algorithm is more compile-

time efficient – its time complexity is linear in program size.

Global reassociation has the same goal as “local” reas-

sociation [8] implemented in LLVM’s Reassociate pass.

However, the two approaches are different. Local reassoci-

ation transforms each expression individually according to

some rankings that imprecisely reflect how values are asso-

ciated in other expressions. In contrast, global reassociation

transforms an expression according to how the operands are

actually associated in its dominators. Therefore, global re-

association tends to select forms that expose more CSE op-

portunities. On the downside, global reassociation is more

expensive because it makes decisions on global information.

The following program slice from Figure 5c demonstrates

the benefit of global reassociation over local reassociation.
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j0 = c + x0;

x1 = x0 + n;

j1 = c + x1;

Local reassociation favors grouping values that are not de-

rived from other values, because non-derived values are

more likely to be reused. Therefore, it chooses to reassoci-

ate j1=c+x0+n to (c+n)+x0 since x0 is derived from b and n

(Figure 5c). This does not lead to further optimization in this

case. Global reassociation instead chooses to associate c and

x0 first, because it observes that they are associated before in

j0. The resultant code (c+x0)+n is further CSE’ed to j0+n,

which costs only one add instruction.

Algorithm 2: Global reassociation.

Data: dominators(E) maintains a list of observed

instructions that compute E
Input : the original program P and a schedule S
Output: the specialized program

GlobalReassociation(F )

foreach instruction I in pre-order of domtree(F ) do

// + is used to represent any commutative operator.

if I = a+ b then

E← expr(I)

dominators[E]← dominators[E] + I

if I = (a+ b) + c and a+ b is used only once then

E1← expr(a+ c)

D← ClosestMatchingDom(E1, I)

if D 6= nil then

Rewrite I to D + b

else

E2← expr(b+ c)

D← ClosestMatchingDom(E2, I)

if D 6= nil then

Rewrite I to D + a

ClosestMatchingDom(E, I)
D← dominators[E]

while D 6= ∅ and ¬dominate(D, I) do

popback(D)

if D = ∅ then

return nil

return back(D)

Algorithm 2 shows the pseudo-code of our global reas-

sociation algorithm for integer adds. It is dominator-based

and runs in linear time to program size. The key data struc-

ture is a map called dominators that maps each expression

E to a stack of observed instructions that compute E. The

algorithm scans the instructions in pre-order of the dom-

inator tree. Therefore, when it calls ClosestMatchingDom

(E, I), all the dominators of I that compute E are already

observed and present in dominators[E]. To find the closest

dominator, the function ClosestMatchingDom keeps popping

instructions out of dominators[E] until the top of the stack

dominates I . This pruning guarantees the algorithm runs in

linear time, because every instruction is pushed or popped at

if (b)

u = a[i];

if (c)

v = a[i+j];

(a) original

p = &a[i];

if (b)

u = *p;

q = &a[i+j];

if (c)

v = *q;

(b) speculative

execution

p = &a[i];

if (b)

u = *p;

q = &p[j];

if (c)

v = *q;

(c) straight-line opti-

mizations

Figure 7: An example showing how speculative execution

hoists instructions and promotes straight-line scalar opti-

mizations. Speculative execution transforms Figure a to Fig-

ure b, and then straight-line scalar optimizations further op-

timize it to Figure c.

most once; it is also safe because pre-order traversal guaran-

tees that an instruction not dominating the current one will

not dominate any instruction yet to be traversed either.

Similar to handling commutative integer operations,

global reassociation also considers pointer arithmetic in-

structions. For example, Algorithm 2 transforms p3 in Fig-

ure 5c to &a[j0+n]. Noticing that &a[j0] is already available

as p0, global reassociation further simplifies p3 to &p0[n]

(Figure 5d).

3.5 Speculative Execution

One limitation of straight-line scalar optimizations (§3.4) is

that they are unable to optimize instructions not dominating

one or another (e.g., &a[i] and &a[i+j] in Figure 7a).

To address this limitation, we added an IR-level optimiza-

tion to gpucc called speculative execution. It hoists side-

effect free instructions from conditional basic blocks, so that

they dominate more instructions and are consequently more

likely to be optimized by straight-line scalar optimizations.

For example, after speculative execution hoists p=&a[i] and

q=&a[i+j] out of the conditional basic blocks (Figure 7b), q

is dominated by p and can be optimized by global reassocia-

tion (§3.4.3) to q=&p[j] (Figure 7c). gpucc limits the num-

ber of instructions hoisted, and this threshold is currently

selected based on the overall effects on our benchmarks.

Another benefit of speculative execution is promoting

predication. Traditionally, compilers translate branches with

conditional jumps. However, because jumps are expensive,

common SIMD processors provide another execution model

called predication. For example, all instruction on NVIDIA

GPUs have an optional predicate. A predicated instruction

is only executed when its predicate is true at runtime. With

this support, NVIDIA’s driver tends to translate a small con-

ditional basic block to predicated instructions. This avoids

jumps and the resultant straight-line code is more flexible

for instruction scheduling. Speculative execution can hoist

instructions from conditional basic blocks, rendering the re-

mainder smaller and more likely to trigger predication.
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3.6 Bypassing 64-Bit Divisions

Some of our internal end-to-end benchmarks frequently use

64-bit integer divides for computing array indices in GPU

code. However, 64-bit integer divides are very slow on

NVIDIA GPUs. NVIDIA GPUs do not have a divide unit so

the operation is performed using a sequence of other arith-

metic instructions. The length of this sequence increases su-

perlinearly with the width of the divide. For example, a 64-

bit divide requires approximately 70 machine instructions

compared to approximately 20 machine instructions for a

32-bit divide.

Many of the 64-bit divides in our benchmarks have a di-

visor and dividend which fit in 32-bits at runtime. Lever-

aging this insight, gpucc provides a fast path for this com-

mon case. For each 64-bit divide operation gpucc emits code

which checks whether the divide can be performed within

32-bits. If so, a much faster 32-bit divide is used to compute

the result.

4. Evaluation

We evaluate gpucc on five key end-to-end benchmarks used

internally and three open-source benchmark suites.

The five end-to-end benchmarks are from multiple do-

mains of machine learning: ic1 and ic2 are for image clas-

sification, nlp1 and nlp2 are for natural language process-

ing, and mnist is for handwritten digit recognition. These

end-to-end benchmarks exercise a large amount of CUDA

code. For example, ic2 invokes 59 custom CUDA kernels.

The three open-source benchmark suites are:

Rodinia: 15 benchmarks from Rodinia 3.0. Rodinia [11]

benchmarks are reduced from real world applications tar-

geting GPU systems from multiple domains such as data-

mining and medical imaging.

SHOC: 10 benchmarks from SHOC 1.1.4. SHOC [15] con-

tains a diverse set of scientific computing benchmarks.

Tensor: 15 micro-benchmarks that exercise the Tensor [5]

module in Eigen 3.0, an open-source C++ template library

for linear algebra. This module contains over 18,000 lines of

heavily-templatized CUDA code.

We omitted SHOC’s DeviceMemory, qtclustering,

rnd, and spmv, and Rodinia’s hybridsort, kmeans,

leukocyte, and mumergpu, because our implementation

has not yet supported texture memory. We also excluded Ro-

dinia’s backprop due to licensing constraints.

Our evaluation machine has an Intel Xeon E5-2690 v2

and an NVIDIA Tesla K40c. The baseline compiler for

our comparison is nvcc 7.0, the latest stable release of

NVIDIA’s commercial compiler at time of this writing.

In comparison to nvcc, the remainder of this section

analyzes runtime performance (§4.1), compile time perfor-

mance (§4.2), and the cumulative effects of the optimiza-

tions (§3) on the benchmarks (§4.3).
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Figure 8: gpucc vs nvcc on end-to-end benchmarks. Each

bar shows the relative speedup of the gpucc version of a

benchmark. The higher the bar is, the better gpucc performs

on that benchmark.

4.1 Runtime Performance Comparison

Emitting fast running GPU code is a key goal for gpucc. To

evaluate the performance of gpucc-compiled code, we com-

pile each benchmark using gpucc and nvcc, and compare

the total GPU execution times (measured using nvprof) of

both versions. For comparison, we measure relative speedup

in percent using the formula ( nvcc time
gpucc time

− 1)× 100%.

End-to-end benchmarks. Figure 8 shows that gpucc gener-

ates faster code than nvcc on all the five end-to-end bench-

marks by 10.0%-51.0% with a geometric mean of 22.9%.

gpucc outperforms nvcc on these benchmarks mainly be-

cause of bypassing 64-bit divides (§3.6), which nvcc lacks,

and better straight-line scalar optimizations (§3.4).

Open-source benchmarks. gpucc is on par with nvcc

on open-source benchmarks. Figure 9 shows the perfor-

mance comparison between gpucc and nvcc on Rodinia,

SHOC, and Tensor. Overall, gpucc is on par with nvcc

on all the three benchmark suites. The relative speedups

range from -16.0% (for algebraic in Tensor) to 17.7%

(for convolution in Tensor). The geometric mean relative

speedups of Rodinia, SHOC, and Tensor are 0.8%, -0.5%,

and 3.7%, respectively.

4.2 Compilation Time

Compile time is another important metric to measure

gpucc’s quality. gpucc is 8% faster than nvcc on average

(geometric mean of ratio of compilation time per transla-

tion unit) and significantly outperforms nvcc on the more

complicated/template-heavy files. For example, one compi-

lation unit from our benchmark suite takes 263.1s to compile

with nvcc while gpucc takes 109.8s (2.4x faster compila-

tion). In parallel build systems, the longest compile time of a

file dominates the total compile time. The effect of reducing

the compile time of the pathological cases therefore results

in an even larger decrease in compilation time in parallel

build systems and improves user experience.
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Figure 9: gpucc vs nvcc on open-source benchmarks. Each bar shows the relative speedup of the gpucc version of a

benchmark. Bars with the same pattern represent benchmarks from the same benchmark suite. We also display the geometric

mean speedup of each benchmark suite using a dashed horizontal line.

The compilation times reported are for gpucc’s separate

compilation mode (§2.1). Separate compilation spends on

average 34.7% of compile time performing splitting which

will not be needed once the integration is done. Hence,

gpucc users could get additional speedups in compilation

time.

4.3 Effects of Optimizations

In this section, we describe the effects of gpucc’s optimiza-

tions (detailed in §3) on our evaluated benchmarks. This

evaluation provides a guideline of how pervasive and im-

pactful each optimization is in general.

For the end-to-end benchmarks, the most impactful

optimizations are loop unrolling and function inlining

(§3.1). Adding necessary source code annotations (such

as #pragma unroll) and adjusting thresholds anecdotally

sped up multiple benchmarks by over 10x. Other significant

speedups include: memory space inference (§3.2) sped up

ic1 by over 3x; straight-line scalar optimizations (§3.4) sped

up ic1 by 28.3%; bypassing 64-bit divides (§3.6) sped up

ic2 by 50.0% and nlp1 and nlp2 by approximately 15%.

The effects on the open-source benchmarks are shown in

Figure 10. We enabled the optimizations described in §3 one

by one to evaluate the effect of each optimization. We merge

speculative execution and straight-line scalar optimizations

for this evaluation because they are inter-dependent (§3.5).
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Figure 10: Cumulative effects on open-source benchmarks

from increasing the inlining and unrolling thresholds (IU),

inferring memory space (MSI), speculative execution and

straight-line optimizations (SL), memory-space alias anal-

ysis (AA), and bypassing 64-bit divides (bypass).

All optimizations except bypassing 64-bit divides (§3.6)

have an observable impact on at least one of the three bench-

mark suites. Bypassing 64-bit divides has no impact on these

suites because they don’t use 64-bit divides. Since the effects

are measured as geometric-mean speedups across all bench-

marks in a suite, the impact to individual benchmarks can

be higher than the geometric mean. For example, although
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speculative execution and straight-line scalar optimizations

speed up Tensor by an average of only 5%, they speeds up

its contraction benchmark by 22.0%.

One interesting observation is that function inlining

slightly regressed Rodinia. The reason for that is the dwt2d

benchmark is register-intensive. While function inlining re-

duces the number of instructions, it can unfortunately in-

crease the register pressure.

5. Related Work

We are unaware of other fully functional open-source com-

pilers targeting CUDA. In the absence of such infrastruc-

ture, much of the GPU related architecture research has

been conducted using simulators, such as GPGPUSIM [7].

The micro-architectural details for a given GPU architecture

were determined via micro-benchmarking [33]. This type of

analysis can inform compiler heuristics, but we did not use

it in this effort.

Several compiler infrastructures address different ab-

straction levels, stages of the compilation, or attempt to cross

compile to different target platforms. None of these allow

compilation from CUDA to PTX. Ocelot [16] is a dynamic

compiler which accepts PTX as input and uses LLVM as

a backend and code generator to target several CPU plat-

forms. As such, its input (PTX) is the output of our compiler.

It does not perform the important high-level transforma-

tions during compilation from CUDA to PTX, and we there-

fore expect the resulting performance to remain sub-optimal.

MCUDA [31] is a source-to-source compiler and a runtime

component. It accepts CUDA kernels as input and translates

them to run efficiently on multi-core CPUs. OpenMPC [24]

is another source-to-source compiler for automatic transla-

tion of OpenMP applications to CUDA. POCL [21] accepts

OpenCL as input and uses LLVM to target CPUs such as

x86, Power, or ARM.

There have been several attempts at using higher-level

domain-specific languages (DSLs) to generate CUDA ker-

nels. Liquid Metal [6] translated input written in the Lime

language and generates code for co-execution on GPUs,

CPUs, and FPGAs. The Delite framework [9] uses embed-

ded DSLs to target specific domains and generates code for

GPUs and CPUs. Similar to the infrastructures mentioned

above, these approaches do not target the full CUDA com-

pilation flow and are unlikely to have as fine-tuned an opti-

mization pipeline as described in this paper.

In regards to compiler optimizations, we find very few

publications, and most of them appear to be based on source-

to-source or PTX-level transformations to work around the

unavailability of a functioning open-source CUDA compiler.

Most optimizations target branch diversion and memory lay-

out and placement, which are orthogonal to our optimiza-

tions. For example, Lee et al. [25] and Chakrabarti et al. [10]

describes non-reproducible work done at NVIDIA that re-

duces branch divergence, analyzes memory spaces and vec-

torizes memory accesses. Han et al. [19] reduces branch

divergence using iteration delaying and branch distribution

which appear to be implemented as source-to-source trans-

formations. Fauzia [17] uses instrumentation to find non-

coalesced memory references and offers a PTX-level opti-

mization technique. Porple [12] uses a small configuration

language to specify memory placement of objects and com-

bines it with an auto-tuner to achieve high performance.

Several publications address optimization work for dif-

ferent programming models and input languages. [20] de-

scribes Sponge, a compilation framework for streaming lan-

guages. [27] describes a C++11 compiler and runtime sys-

tem that allows compiling C++ STL functions directly to

GPUs. Similar work for C++14 is PACXX in [18]. Both of

these C++ approaches don’t detail optimizations and only

evaluate microbenchmarks.

Some publications target optimizations at the CUDA

source level. G-ADAPT [26] is an input-adaptive, cross-

input predictive modeling technique that allows predicting

near optimal CUDA program configurations. APR, a recur-

sive parallel repackaging optimization technique is detailed

in [34]. It operates at the CUDA source level and achieves

impressive performance for their benchmarks.

The importance of SASS-level optimizations has been

demonstrated by Tan [32], detailing non-reproducible work

done at NVIDIA, and Nervana [3], showing the benefits of

reverse engineered SASS. Both efforts target peak perfor-

mance of matrix multiply kernels. We do not perform SASS-

level optimizations, as the SASS specification is not publicly

available.

6. Conclusion

We have presented gpucc, an open-source, high perfor-

mance CUDA compiler. We have detailed its system ar-

chitecture and optimizations that are essential to producing

high-performing GPU code. Our results show that gpucc

produces code that is faster than or on par with nvcc, has

comparable or better compile times, and supports modern

language features. The concepts and insights presented in

this paper are general and apply, with modifications, to

other architectures and programming models as well, such

as OpenCL. We believe gpucc will enable meaningful, re-

producible compiler and architecture research and can help

make deployment of GPUs in restricted and controlled envi-

ronments easier.
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ler, and K. Asanović. Exploring the design space of SPMD

divergence management on data-parallel architectures. pages

101–113, 2014.

[26] Y. Liu, E. Z. Zhang, and X. Shen. A cross-input adaptive

framework for GPU programs optimization, 2008.

[27] T. Lutz and V. Grover. LambdaJIT: A dynamic compiler for

heterogeneous optimizations of STL algorithms. In Proceed-

ings of the 3rd ACM SIGPLAN Workshop on Functional High-

performance Computing, FHPC ’14, pages 99–108. ACM,

2014.

[28] NVIDIA. Parallel thread execution, ISA version 1.4.

[29] NVIDIA. CUDA programming guide. http://docs.

nvidia.com/cuda/cuda-c-programming-guide/, Mar.

2015. Version 7.0.

[30] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel

programming standard for heterogeneous computing systems.

Computing in Science and Engineering, 12:66–73, 2010.

[31] J. A. Stratton, S. S. Stone, and W.-M. W. Hwu. Languages

and compilers for parallel computing. chapter MCUDA: An

Efficient Implementation of CUDA Kernels for Multi-core

CPUs, pages 16–30. Springer-Verlag, 2008.

[32] G. Tan, L. Li, S. Triechle, E. Phillips, Y. Bao, and N. Sun. Fast

implementation of DGEMM on Fermi GPU. SC ’11, pages

35:1–35:11, 2011.

[33] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and

A. Moshovos. Demystifying GPU microarchitecture through

microbenchmarking. In ISPASS ’10, pages 235–246, March

2010.

[34] Y. Yu, X. He, H. Guo, S. Zhong, Y. Wang, X. Chen, and

W. Xiao. APR: A novel parallel repacking algorithm for

efficient GPGPU parallel code transformation. In Proceedings

of Workshop on General Purpose Processing Using GPUs,

GPGPU-7, pages 81:81–81:89. ACM, 2014.

116


