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Dendritic cells (DC) initiate the adaptive immune response. Glucocorticoids (GCs) down-modulate the 

function of DC. Compound A (CpdA, (2-(4-acetoxyphenyl)-2-chloro-N-methyl-ethylammonium chloride) 
is a plant-derived GR-ligand with marked dissociative properties. We investigated the effects of CpdA 
on in vitro generated GM-CSF-conditioned bone marrow-derived DC (BMDC). CpdA-exposed BMDC 
exhibited low expression of cell-surface molecules and diminution of the release of proinflammatory 
cytokines upon LPS stimulation; processes associated with BMDC maturation and activation. CpdA-

treated BMDC were inefficient at Ag capture via mannose receptor-mediated endocytosis and displayed 
reduced T-cell priming. CpdA prevented the LPS-induced rise in pErk1/2 and pP38, kinases involved in 
TLR4 signaling. CpdA fully inhibited LPS-induced pAktSer473, a marker associated with the generation 

of tolerogenic DC. We used pharmacological blockade and selective genetic loss-of-function tools and 

demonstrated GR-independent inhibitory effects of CpdA in BMDC. Mechanistically, CpdA-mediated 
inactivation of the NF-κB intracellular signaling pathway was associated with a short-circuiting of 

pErk1/2 and pP38 upstream signaling. Assessment of the in vivo function of CpdA-treated BMDC pulsed 

with the hapten trinitrobenzenesulfonic acid showed impaired cell-mediated contact hypersensitivity. 

Collectively, we provide evidence that CpdA is an effective BMDC modulator that might have a benefit 
for immune disorders, even when GR is not directly targeted.

Dendritic cells (DC) are professional antigen-presenting cells that constantly sense endogenous and exogenous 
danger signals in most tissues. DC play a key role linking the innate and adaptive immune responses due to their 
unique ability to induce activation of naïve and memory T-lymphocytes. Danger signals in peripheral tissues 
induce a di�erentiation program on DC, referred to as maturation. �is process enables DC to migrate to lymph 
nodes, attract naïve T-lymphocytes and e�ciently present antigens captured at the periphery. Furthermore, DC 
have strong in�uence on the T_helper (�) pro�le adopted by activated T lymphocytes. Both the type and expres-
sion level of costimulatory molecules on the surface of DC at the site of the immunological synapse, as well as the 
production or absence of signature cytokines co-determine the induction of T-cell proliferation and drive � cell 
di�erentiation1. It is widely known that endogenous stimuli or pharmacological treatments can alter DC, a�ect-
ing the expression level of their surface membrane proteins and cytokine production, ultimately modifying DC 
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functionality. Modulation of DC maturation and function is a fascinating process not only to understand the way 
in which these cells can drive immune responses but also to design immune therapeutic strategies for disorders 
involving immune responses, such as autoimmunity, cancer and transplantation. Understanding the biology of 
DC as well as their responses to in vitro manipulation is an intense �eld of research2.

Glucocorticoids (GCs) in�uence several biological processes including resistance to stress, regulation of 
intermediary metabolism, and immunosuppressive and anti-in�ammatory e�ects3. GCs are potent endogenous 
immunomodulatory agents a�ecting di�erentiation and activation of lymphoid and myeloid cells4. In particular, 
GCs alter DC di�erentiation from progenitor cells and severely impair DC maturation and migration induced by 
in�ammatory stimuli5–6. Synthetic GCs are widely used as anti-in�ammatory and immunosuppressive drugs to 
treat several immune disorders including rheumatoid arthritis, asthma, eczema, and in�ammatory bowel disease; 
they are also employed in organ transplantation. However, chronic administration of GCs induces severe side 
e�ects such as adrenal insu�ciency, diabetes mellitus, osteoporosis, skin atrophy, growth failure, hypertension 
and glaucoma among others7. Immunomodulatory e�ects of GCs involve a GC-receptor (GR)-DNA independent 
interaction mechanism known as transrepression by which activated GR may act as a monomer interfering with 
in�ammatory transcription factors such as NF-κ B, AP1 and Stat5 by direct protein-protein interactions8–9. It is 
becoming increasingly clear that the full anti-in�ammatory potential of GCs also depends on the action of GR 
as a genuine transcription factor, i.e. a transactivation mechanism in which activated GR dimerizes, binds to GC 
response elements (GRE) at the promoter or enhancer regions of GC-regulated genes and induces target genes10. 
However, as this mechanism also drives gluconeogenic gene expression, the diabetogenic side e�ect of GCs is also 
linked to transactivation7,9. �ese di�erential mechanisms have fueled the interest in the study and development 
of new GR-ligands with dissociative properties combining GCs’ anti-in�ammatory properties with a reduced side 
e�ect pro�le.

Compound A (CpdA, (2-(4-acetoxyphenyl)-2-chloro-N-methyl-ethylammonium chloride) is a GR ligand 
without a steroidal structure unlike dexamethasone and prednisolone. It has been identi�ed as a plant-derived 
dissociative GR-ligand that interferes with NF-κ B by transrepression and unable to induce transactivation11. 
CpdA has been studied in several animal and cellular models showing potent anti-in�ammatory properties, and 
reduced metabolic side e�ects12–14. �e e�ects of CpdA on the immunomodulation of lymphocytes and mac-
rophages have been documented in vitro and in vivo13,15–17.

Several lineage-speci�c transcription factors are required for naïve T-cell di�erentiation into distinct � sub-
populations. �e master transcription factor TBX21 (T-box transcription factor, also known as T-bet) is overex-
pressed in T lymphocytes committed to the �1 lineage. It enhances IFNG transcription, and at the same time 
represses IL4 and GATA-318,19. A CpdA-mediated inhibition of the �1 phenotype was demonstrated to result 
from its suppression of the transcriptional activity of T-bet via a mechanism involving GR-mediated transrepres-
sion, similar to the e�ect described for classic GCs9.

In a model of experimental autoimmune neuritis, CpdA augmented �2 cytokine and Foxp3 expression, con-
comitant with a down regulation of �1 and �17 cytokines. Furthermore, CpdA switched macrophages from the 
classically activated M1-type to the alternatively activated anti-in�ammatory M2-type in vitro13. It is known that 
a GM-CSF-conditioned mouse bone marrow culture generates a heterogeneous population of CD11c+ MHCII+ 
dendritic cells and macrophages, which comprise BMDC20. In the current study, we generated BMDC in vitro 
employing a classic and widely used protocol containing GM-CSF as previously described21–24, and investigated 
the immunomodulatory e�ects of CpdA on the maturation and functionality of BMDC in vitro and in vivo upon 
an in�ammatory challenge in comparison with the classical synthetic steroidal GR-agonist dexamethasone. In 
vitro generation of modulatory BMDC would be an invaluable tool in the therapy against allogra� rejection and 
autoimmune diseases20.

Results
CpdA impairs the secretion of pro-inflammatory cytokines and up-regulation of costimulatory 
CD80 by LPS-stimulated GM-CSF- bone marrow-derived dendritic cells. We generated BMDC  
in vitro employing a widely used protocol containing GM-CSF +  IL4 as previously described21–24. Based on a 
recent study describing that GM-CSF BMDC comprise a heterogeneous population that varies depending on 
culturing conditions, we �rst phenotypically characterized BMDC, harvested a�er 7 days in culture. In brief, we 
obtained two CD11c+ subsets (CD11c+ MHCIIlow/intCD11bhigh and CD11c+ MHCIIhighCD11bint). Approximately 
80% of the CD11c+ MHCIIhighCD11bint subset resulted in CD115-CD135+ (GM-DC), which is in agreement 
with results reported by Hel� et al.20 (Supplementary Figure S1). �is heterogeneous BMDC model has been 
employed by several authors for a long time to successfully study the complex regulation of immunomodulatory 
processes21–23. A key feature of LPS-stimulated DC for the establishment of an e�cient T-cell response against 
pathogens resides in their ability to produce pro-in�ammatory cytokines25. It has been demonstrated that CpdA 
may be as e�ective as Dex exerting its anti-in�ammatory e�ects on lymphocytes and macrophages. �e e�ective 
concentration of CpdA reported in vitro varies between 1–10 µ M depending on the cell line or patient cell mate-
rial and the biologic readout assayed11,26,27. �erefore, we �rst investigated the optimal concentration of CpdA 
able to block the secretion of IL12p70 by LPS-stimulated BMDC in vitro. BMDC were pretreated with vehicle, 
CpdA at di�erent concentrations or 0.1 µ M Dex for 1 h followed by LPS challenge for 24 h, and supernatants 
analyzed by ELISA. �e presence of CpdA in the culture medium did not a�ect the basal secretion of IL12p70 
(Fig. 1a). As expected, LPS stimulation increased the secretion of IL12p70 by BMDC (> 6-fold vs. vehicle). CpdA 
did not show any e�ect at the lowest concentration (1 µ M CpdA). Pretreatment with 5 µ M CpdA partially inhib-
ited the IL12p70 secretion by LPS-stimulated BMDC. Finally, 10 µ M CpdA blocked the secretion of IL12p70 by 
BMDC (Fig. 1a) independently of the LPS concentration used (Fig. 1b). �us, 10 µ M CpdA and 0.1 µ M Dex as a 
control were adopted for the following experiments.
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Figure 1. CpdA impairs LPS-induced pro-in�ammatory cytokine secretion and up-regulation of CD80 
by BMDC. BMDC were pretreated with vehicle, CpdA at indicated concentrations or Dex 0.1 µ M for 1 h and 
stimulated with indicated amounts of LPS or le� unstimulated. A�er 24 h, cytokine secretion was determined by 
ELISA and surface expression of CD80 was analyzed by �ow cytometry. (a) E�ect of di�erent concentrations of 
CpdA (1–10 µ M) on IL12p70 secretion by BMDC. (b) Analysis of 10 µ M CpdA e�ect on IL12p70 secretion by 
BMDC challenged with di�erent doses of LPS. (c,d) E�ect of 10 µ M CpdA on TNFα  and MCP-1 secretion by 
BMDC. (e) Representative dot plots of BMDC a�er treatments. Upper right quadrants indicate the percentage 
of CD11c+ BMDC expressing CD80 and the mean �uorescence intensity (MFI) in brackets. (f) Statistical 
analysis of the percentage and MFI of CD80+ CD11c+ BMDC. Data are shown as mean ±  SD of triplicate 
determinations from one representative out of two independent experiments (panels a–d) or as mean ±  SD of 
three independent experiments (panel f). (*)p <  0.05 vs. vehicle, (#)p <  0.05 vs. vehicle +  LPS.
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Culture supernatants of BMDC were quanti�ed for TNFα  and MCP-1 by ELISA (Fig. 1c,d, respectively). 
CpdA- and Dex-treated BMDC showed a reduction in TNFα  and MCP-1 (up to 3-fold) secretion in response 
to the LPS-stimulus. �eir basal secretion was not a�ected by either CpdA or Dex pre-treatment. IL10 was not 
detected in any experimental condition (data not shown).

In order to evaluate whether the continuous presence of CpdA before the LPS-challenge is necessary to achieve 
impaired secretion of pro-in�ammatory cytokines, we assessed several treatment schemes. First, we pretreated 
BMDC for 1 h with either CpdA or Dex and then washed exhaustively before they were challenged with LPS 
during 24 h (Supplementary Figure S2). �e transient presence of CpdA or Dex for only 1 h was enough to reduce 
LPS-stimulated IL12p70 secretion. Also, the action of CpdA 1 h before, simultaneously or 1 h a�er LPS-challenge 
e�ectively impaired IL12p70 secretion (Supplementary Figure S2). CpdA appeared however slightly more e�ec-
tive when administered 1 h before (519 + /−  8 vs. 2389 + /−  346 (veh) pg/ml of IL12p70) the LPS stimulus in com-
parison to the simultaneous treatment regimen (758 + /−  38 vs. 2389 + /−  346 (veh) pg/ml of IL12p70) or 1 h later 
treatment (1014 + /−  52 vs. 2389 + /−  346 (veh) pg/ml of IL12p70). Overall, CpdA treatment consistently reduces 
LPS-induced secretion of IL12p70 as a pivotal cytokine initiator of the �1-biased T cell priming.

�e process of DC maturation/activation enhances their immunogenicity by up-regulation of major histo-
compatibility complex (MHC)-peptide complexes and T lymphocyte costimulatory molecules (e.g., CD80) on the 
plasma membrane. �erefore, we investigated the e�ect of CpdA on the surface expression of CD80. BMDC were 
pretreated with vehicle, 10 µ M CpdA or 0.1 µ M Dex for 1 h followed by a challenge with 1 µ g/ml LPS during 24 h. 
Surface expression of costimulatory CD80 molecules was analyzed by �ow cytometry on CD11c+ (a commonly 
used DC surface marker) cells, excluding apoptotic cells by forward and side light scatter parameters, and 7-AAD 
staining. LPS stimulation increased the percentage of CD11c+ BMDC expressing CD80 as well as its mean �uo-
rescence intensity (MFI, indicative of the expression of molecules per individual cell) (Fig. 1e,f). A reduction in 
the MFI values of CD80 was observed at low CpdA concentrations (1 µ M CpdA, not shown) in comparison with 
LPS-challenged BMDC. However, a signi�cant reduction in the percentage (80 + /−  3% of LPS-stimulated vs. 46 + 
/−  2% of CpdA-pretreated LPS-stimulated BMDC) and MFI (6883 + /−  1127 LPS-stimulated vs. 4500 + /−  1244  
CpdA-pretreated LPS-stimulated BMDC) levels of LPS-activated CD11c+ BMDC expressing CD80 was evident 
at 10 µ M CpdA (Fig. 1f).

CpdA does not affect recovery of GM-CSF-bone marrow-derived dendritic cells. In addition 
to induce cell death of double positive thymocytes, supraphysiological levels of GCs inhibit thymopoiesis and 
accelerate apoptosis of mature T lymphocytes28,29. However, reports about GC-induced apoptosis in DC seem 
to show contradictory results depending on DC source, di�erentiation stage, the type and concentration of GCs 
used, and treatment duration30–33. In particular, it has been reported that DC treatment with Dex reduced via-
bility and yield34. �erefore, we evaluated the recovery and viability of CD11c+ cells harvested on day 7 follow-
ing GM-CSF plus IL4-treated bone marrow progenitors in culture. BMDC were pretreated with vehicle, 10 µ M  
CpdA or 0.1 µ M Dex for 1 h, and stimulated with 1 µ g/ml LPS during 24 h. Recovery of CD11c+ BMDC was ana-
lyzed by �ow cytometry. Viability was analyzed by Annexin-V staining followed by �ow cytometry and trypan 
blue exclusion, in parallel. 60–80% of CD11c+ cells were harvested independently of the treatment received 
(Supplementary Figure S3). Importantly, CD11c+ BMDC recovery upon treatment with CpdA did not di�er from 
the vehicle-control condition, independently of LPS stimulation. We found that treatment with CpdA resulted in 
a reduction in BMDC viability comparable to the one observed with Dex (58–70% of viable CpdA- or Dex-treated 
BMDC vs. 83–84% of viable vehicle-treated BMDC) (Supplementary Figure S3). �e treatment with Dex fol-
lowed by LPS challenge recovered BMDC viability, an e�ect that was not observed with CpdA (Supplementary 
Figure S3).

Using concentrations ≥  1 µ M Dex during 24 h in culture induced more than 60% of unviable BMDC (data not 
shown). All together, these results indicate that both CpdA and Dex, at the concentrations employed in this study, 
did not largely a�ect CD11c+ BMDC recovery and similarly diminished cell viability in vitro. �e dramatic fall in 
pro-in�ammatory cytokines secretion (e.g., ≥  6-fold for IL12p70) and reduction of CD80 expression was not due 
to the loss of BMDC viability by CpdA since its transient presence for only 1h did not induce apoptosis of BMDC 
(data not shown) while showed a signi�cant diminution of IL12p70 secretion comparable to the reduction with-
out removal of CpdA (wash out experiment, Supplementary Figure S2).

Effects of CpdA on the phenotypic maturation of BMDC. �e surface phenotype of CpdA-treated 
BMDC was analyzed by �ow cytometry (Fig. 2a). LPS stimulation increased the percentage of CD40+, CD86+, 
CD273+, CD274+ and CCR7+ BMDC and simultaneously increased the expression level (MFI) of MHCII, CD40 
and CD274 on the surface of BMDC (Fig. 2a,b). Both, CpdA and Dex diminished the LPS-induced increment 
in the percentage of CD40+, CD86+ and CD273+ BMDC, as well as MHCII, CD40 and CD274 MFI values. 
Comparing the e�ect of CpdA and Dex on immature BMDC, only the latter resulted in a decrease of MHCII+ 
(MFI), percentage of CD86+ and CD273+ CD11c+ expressing cells; e�ects that were not observed a�er CpdA 
treatment.

�e chemokine receptor CCR7 was di�erentially modulated by CpdA and Dex a�er LPS-challenge. CpdA 
up-regulated, meanwhile Dex down-regulated the percentage of CCR7+ BMDC followed LPS-stimulation. �is 
opposite e�ect on CCR7 expression exerted by both drugs might grant BMDC with a di�erential ability to migrate 
to the lymph nodes. No di�erences in CD45RB and CD54 expression were detected between all conditions ana-
lyzed (data not shown). With regard to classic GCs, these �ndings are in agreement in part with previous reports 
in that treatment with Dex induced a characteristic immature phenotype in DC5. In addition, our observations 
indicate that CpdA and Dex induced di�erent phenotypic changes on immature and LPS-stimulated BMDC.
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Figure 2. CpdA attenuates phenotypic maturation of BMDC. BMDC were pretreated with vehicle, CpdA 
10 µ M or Dex 0.1 µ M for 1 h and stimulated with 1 µ g/ml of LPS or le� unstimulated during 24 h. (a) Surface 
phenotype of labeled BMDC with APC-CD11c mAb in combination with PE-labeled mAb against MHCII, 
CD86, CD40, CD273, CD274 or Alexa488-conjugated anti-CCR7 mAb followed by �ow cytometric analysis. 
Upper right quadrants indicate the percentage of CD11c+ BMDC expressing CDs and the mean �uorescence 
intensity (MFI) in brackets. (b) Statistical analysis of the percentage and MFI of surface molecules in CD11c+ 
BMDC. Data are shown as mean ±  SD of at least four independent experiments. (*)p <  0.05 vs. vehicle, 
(#)p <  0.05 vs. vehicle +  LPS. Non-viable cells were excluded of the analysis by forward and side light scatter 
parameters, and 7-AAD staining.
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Altered endocytic capacity of CpdA-treated BMDC. Immature DC patrol peripheral tissues like 
sentinels sensing for the presence of pathogens and possess a high e�ciency to internalize antigens through 
receptor-mediated endocytosis or phagocytosis. On the contrary, any stimulus that induces DC maturation 
might diminish their capacity of Ag uptake stabilizing peptide-MHC complexes at the plasma membrane for 
Ag presentation35. �erefore, we analyzed the capacity of BMDC for Ag uptake a�er CpdA treatment. BMDC 
were pretreated with CpdA or Dex for 1 h and stimulated or not with LPS for 24 h. �en, BMDC were har-
vested, extensively washed and pulsed with Dextran-FITC for 1 h (Fig. 3). �e percentage of CD11c+ BMDC 
that incorporated Dextran-FITC was analyzed by �ow cytometry, excluding Annexin-V+ cells. A�er 1 h of incu-
bation, 53 + /−  6% of immature CD11c+ BMDC incorporated Dextran-FITC particles. �e pretreatment with 
either CpdA or Dex signi�cantly reduced the endocytic ability of immature BMDC, 23 + /−  4% or 26 + /−  1% 
(p <  0.05 vs. vehicle-treated), respectively (Fig. 3b). As expected, matured (LPS-stimulated) BMDC showed low 
endocytic activity (26 + /−  8% FITC+ CD11c+ BMDC). Dex-treatment before LPS stimulation preserved the 
endocytic capacity of BMDC that was substantially reduced in LPS-matured BMDC. On the other hand, CpdA 
pre-treatment did not prevent the LPS-induced reduction in Ag uptake. Taken together, these results indicate that 
both Dex and CpdA are able to reduce Ag uptake on immature BMDC but di�erently to Dex, CpdA was unable to 
restore endocytosis in LPS-activated/matured BMDC, indicating that CpdA impaired Ag uptake using a distinct 
unknown mechanism that the employed by Dex.

CpdA reduces the T-cell stimulatory capacity of BMDC. Due to the observed e�ects of CpdA on phe-
notype modulation, Ag uptake and reduction of pro-in�ammatory cytokines secretion by BMDC, it was rea-
sonable to speculate that CpdA might modulate their T-cell stimulatory capacity. First, in an allogeneic mixed 
lymphocyte reaction LPS-stimulated BMDC induced a strong T-cell proliferation, whereas the addition of either 
CpdA or Dex prior to LPS activation reduced their T-cell stimulatory response (Fig. 4a). When the e�ect of CpdA 
was monitored in an Ag-speci�c syngeneic assay to investigate the ability of BMDC to stimulate OVA323-339- 
peptide responder T-lymphocytes obtained from C57BL/6 OT-II TCR-transgenic mice, we also found a markedly 
reduced T-cell proliferation comparable to the e�ect exerted by Dex (Fig. 4b). As expected, immature BMDC in 
both syngeneic and allogeneic assays were poor inducers of T-cell proliferation. �us, LPS-stimulated BMDC in 
the presence of CpdA result in antigen presenting cells with a poor capacity to induce T-cell proliferation. A sim-
ilar e�ect was observed following Dex treatment of LPS-induced BMDC. IFNγ  and IL4 secretion was analyzed 
from the supernatant of the allogeneic assays (data not shown). LPS-stimulated BMDC were potent inducers of 
IFNγ  secretion (20237 + /−  120 pg/ml) and the combination with Dex exhibited a substantial reduction with an 

Figure 3. CpdA impairs the endocytic capacity of immature BMDC. BMDC were pretreated with vehicle, 
CpdA 10 µ M or Dex 0.1 µ M for 1 h, and stimulated or not with 1 µ g/ml of LPS for 24 h. A�er extensive washing, 
BMDC were pulsed with Dextran-FITC during 1 h at 37 °C or 4 °C (control), washed and analyzed by �ow 
cytometry. (a) Histograms show Dextran-FITC incorporation in CD11c+ gated cells from one representative 
out of six independent experiments. (b) Statistical analysis of the percentage of Dextran-FITC+ in CD11c+ 
gated cells. Data are shown as mean ±  SD of six independent experiments. (*)p <  0.05 vs. vehicle, (#)p <  0.05 vs. 
vehicle +  LPS.
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overall decrease in the IFNγ /IL-4 ratio (101 vs. 162 of LPS-BMDC). Contrary, CpdA-treated BMDC showed an 
increase in IFNγ /IL-4 ratio (241 vs. 162 of LPS-BMDC).

CpdA impairs TLR4-stimulated signaling pathways in BMDC. GCs interfere with TLR-induced 
kinases such as Erk1/2, JNK and Akt activated under speci�c conditions36. LPS binding to the TLR4/MD2 com-
plex triggers activation of di�erent kinases, including Akt and the MAPKs Erk1/2, JNK and P38, which may 
induce and/or �ne-tune activation of down-stream in�ammatory transcription factors such as NF-κ B and AP1. 
Since CpdA interferes with downstream mediators following LPS activation on BMDC we asked whether it could 
a�ect TLR4 signaling in these cells. We analyzed by Western blot key phosphorylated kinases in LPS-activated 
BMDC that were pretreated with vehicle, 10 µ M CpdA or 0.1 µ M Dex. LPS increased the levels of pErk1/2, pP38 
and pAkt in LPS-activated BMDC (Fig. 5a). Pretreatment with CpdA prevented the rise in pErk1/2, pP38 and 
pAkt, showing that CpdA impairs the activation of these kinases involved in TLR4 signaling. Dex diminished Akt 
activation a�er LPS treatment on BMDC. Unlike the e�ect of Dex, CpdA completely blocked phosphorylation 
of Akt at all-time points studied. Neither CpdA nor Dex a�ected the JNK pathway in BMDC (data not shown).

In�ammatory stimuli induce proteasomal Iκ Bα  degradation, releasing NF-κ B. �is transcription factor in 
turn translocates to the nucleus to activate in�ammatory gene expression. A�er 20 min of BMDC stimulation 
with LPS, we observed a reduction of Iκ Bα  levels with its minimum expression at 60 min followed by a slow 
recovery starting at 120 min. CpdA delayed LPS-induced Iκ Bα  reduction reaching its minimum at 120 min 
post-stimulation (Fig. 5b). On the other hand, pretreatment with Dex increased initial Iκ Bα  expression but did 
not delay its LPS-induced degradation. Both CpdA and Dex inhibited with similar intensity NF-κ B translocation 
to the nucleus at 30 min post-LPS stimulus (Fig. 5c). �en, we analyzed the subcellular localization of GR protein 
in BMDC. GR is located primarily in the cytoplasm of immature BMDC. Upon Dex treatment, GR was found 
to translocate from the cytoplasm to the nucleus independently of LPS stimulus. However, CpdA did not induce 
nuclear translocation of GR in BMDC (Fig. 5d).

To investigate whether the e�ect of CpdA on altering the expression of key intracellular components of LPS 
signaling in BMDC could be due to changes on TLR4 expression, BMDC were treated with vehicle, CpdA or Dex, 
followed by analysis of surface expression levels of TLR4/MD2 complex at di�erent time points by �ow cytometry 
(Fig. 5e). At the time when the LPS stimulus is supplied (1 h a�er CpdA- or Dex-treatment) we found the same 
levels of TLR4/MD2 at BMDC surface. Pretreatment with CpdA or Dex induced an increment of the TLR4 com-
plex at 24 h in comparison to the vehicle-treated BMDC alone.

Ligand-induced down-regulation of the GR inhibiting glucocorticoid signaling has been postulated as a pos-
sible mechanism of GCs resistance37. Protein expression level of the main isoform of GR was not a�ected a�er 
24 h of treatment with CpdA assessed by Western blot. Although Dex down regulated GR protein expression in 
BMDC, the presence of LPS preserves GR protein levels in the set-up that includes Dex (data not shown). Taken 
together, these results show that CpdA impairs TLR4 stimulation through a partial or complete inhibition of 
phosphokinases involved in in�ammatory signaling, delays IkBα  degradation, and inhibits nuclear translocation 
of NF-κ B in DC, without inhibiting TLR4 and GR expression levels on BMDC. In contrast, synthetic Dex showed 
GR translocation to nucleus of stimulated BMDC.

The immunomodulatory action of CpdA on BMDC is not affected by GR knockdown. It has been 
observed that CpdA exerts anti-in�ammatory activities via activating GR in several cell types11,12,17,38. As we found 
that CpdA and Dex di�erentially modulate key mediators in the signaling pathways studied, we asked whether 

Figure 4. CpdA reduces the Ag presenting function of BMDC. C57BL/6 BMDC were pretreated with 
vehicle, CpdA 10 µ M or Dex 0.1 µ M for 1 h, and stimulated or not with 1 µ g/ml of LPS for 24 h. (a) Allogeneic 
stimulation. Graded numbers of BMDC were co-cultured with 2 ×  105 responder BALB/c T cells during 3 days. 
(b) Graded numbers of BMDC pulsed with OVA323-339 peptide were used as stimulators and co-cultured with 
2 ×  105 responder OT-II T cells during 3 days. T-cell proliferation was assayed by 3H-thymidine incorporation. 
Data are shown as mean ±  SD of triplicate determinations from one representative out of two independent 
experiments. (*)p <  0.05 vs. vehicle +  LPS.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:36646 | DOI: 10.1038/srep36646

Figure 5. CpdA impairs TLR4 signaling pathways in BMDC. (a) BMDC were pretreated with vehicle, CpdA 
10 µ M or Dex 0.1 µ M for 1 h and stimulated with 1 µ g/ml of LPS or le� unstimulated. A�er indicated time, levels 
of phosphoproteins were analyzed by Western blot. One representative out of three independent experiments is 
shown. (b) CpdA e�ect on Iκ Bα  expression. BMDC were treated as described in (a) and stimulated with 1 µ g/ml  
of LPS. A�er indicated times, levels of Iκ Bα  were analyzed by Western blot. GAPDH was used as loading control. 
One representative out of three independent experiments is shown. (c) NF-κ B nuclear translocation. BMDC 
were plated onto poly-L-lysine coated glass coverslips, pretreated with vehicle, CpdA 10 µ M or Dex 0.1 µ M for 
1 h and stimulated with 1 µ g/ml of LPS for 30 min or le� unstimulated. NF-κ B (RelA) expression was analyzed by 
immuno�uorescence staining. Bar represents 20 µ m. Quanti�cation of nuclear:cytoplasmic ratio of NF-κ B  
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the GR is directly involved in the observed modulatory actions of CpdA on BMDC. To this purpose, we used 
siRNA knockdown of GR in BMDC. Figure 6a shows successful down-regulation of GR mRNA and GR protein 
levels when applying GR siRNA to BMDC (also, Supplementary Figure S4). mRNA level of GRE-driven genes, 
such as glucocorticoid-induced leucine zipper protein (GILZ, also known as TSC22 domain family protein 3),  
FKBP5 (FK506 binding protein 51) and DUSP1 (dual speci�city phosphatase 1) were di�erently regulated by Dex 
and CpdA. Meanwhile Dex showed up-regulation of these mRNAs, CpdA had no e�ects on them (Fig. 6b, and 
Supplementary Figure S4).

Transrepression-dependent GR targets, here exempli�ed by LPS-activated MCP-1 and IL-12p70, were inhibited 
by both Dex and CpdA, an e�ect that was also apparent at the protein level (Fig. 6c and Supplementary Figure S4).  
Consequently, the partial loss of GR is expected to (at least partially) a�ect the suppression by both CpdA and 
Dex of these LPS-activated target genes. Surprisingly however, only the gene-repressive e�ect of Dex could be 
partially reverted following a knockdown of GR, suggesting GR-dependence only for the cytokine-inhibitory 
e�ect of Dex, but not of CpdA, in BMDC. In support of these �ndings, also GR blockade employing the GR 
antagonist RU486 1 µ M was unable to inhibit suppression of in�ammatory cytokines (TNFα , IL6, IL12p70) secre-
tion by CpdA-pretreated LPS-stimulated BMDC (Fig. 6d). In contrast, this antagonist did reverse the inhibitory 
activity of Dex on LPS-stimulated BMDC.

Furthermore, to exclude that a remaining low expression of GR levels following siRNA silencing might be 
su�cient to still mediate GR-dependent e�ects, we analyzed BMDC generated from GRCD11cCre mice in which the 
GR-encoding gene is completely ablated in CD11c+ DC39. We found that the secretion of IL-12p70 was inhibited 
by the action of CpdA in LPS-stimulated GRCD11cCre as well as wild type BMDC whilst the inhibition on IL-12p70 
secretion exerted by Dex on wild type BMDC a�er LPS-stimulation was reduced in GRCD11cCre BMDC, implicat-
ing a GR-independent action of CpdA (Fig. 6e). All these �ndings reinforced the notion that immunomodulation 
of BMDC exerted by CpdA works mainly independent of GR.

Reduced delayed-type hypersensitivity in mice adoptively transferred with hapten-sensitized 
CpdA-conditioned BMDC. Having found that CpdA treatment promoted immature/semi-mature BMDC 
diminishing their capability to stimulate naïve T-cells in vitro we asked whether this observation may have  
in vivo relevance. We employed a DTH assay in which BMDC pre-incubated with TNBS (haptenized-BMDCs) 
were injected at the sensitization phase to evaluate their e�ects on naïve T-lymphocytes while testing whether 
the outcome was hapten-speci�c. Mice were sensitized by injection of haptenized-BMDC. As a speci�c control, 
one group of mice was sensitized with vehicle-treated BMDC (without the hapten). Six days later, the ear pinna 
was challenged topically with the hapten (DNFB) and the in�ammatory response was evaluated at 24 and 48 h 
on the right (challenged) and le� (control) ears by measuring the thickness of swelling. Mice sensitized with 
haptenized-BMDC showed a signi�cant increase in swelling of the challenged ear detected at 24 and 48 h compared 
with those sensitized with non-haptenized-BMDC, indicating that the injected BMDC were able to mount a strong 
antigen-speci�c T-cell immune response (Fig. 7a). �e ear thickness in mice sensitized with CpdA-conditioned 
haptenized-BMDC was significantly lower than in mice sensitized with vehicle-treated haptenized-BMDC 
(p <  0.05). The ears were subjected to microscopic analysis 48 h after DNFB challenge. Consistent with the 
increased ear swelling, histological examination of the ears in animals sensitized with vehicle-BMDC and chal-
lenged with hapten showed dermal edema, epidermal hyperplasia, leukocytes infiltration and vasodilation 
(Fig. 7b). On the other hand, animals that were sensitized with CpdA-BMDC and challenged with the DNFB 
showed mild ear edema similar to the control group challenged with vehicle alone (acetone/olive oil). �ese results 
indicate that CpdA-treated BMDC possess a reduced antigen-speci�c T-cell priming capability in vivo.

Discussion
In this work we describe for the �rst time the ability of CpdA, identi�ed before as a selective GR-ligand, to 
modulate GM-CSF bone marrow-derived DC (BMDC) phenotype and functionality. We found that particu-
lar BMDC-modulatory e�ects of CpdA might be explained by a GR-independent (nongenomic) inactivation of 
the NF-κ B intracellular signaling pathway following TLR4 activation, associated with pErk1/2, pP38, and pAkt 
upstream signaling.

Because no marker distinguishes DC and macrophages unequivocally, the existence of a homogeneous popu-
lation a�er GM-CSF activated bone marrow-derived progenitor cells has been questioned20. With this concept in 
mind, here we described the e�ects of CpdA based on a BMDC heterogeneous CD11c+ population that has been 
demonstrated to be useful for immunomodulatory studies since a long time21–23.

staining (red channel) is presented as mean ±  SD from analysis of 5 separate high power �eld images. Results 
from one representative out of three independent experiments are shown. (*) p <  0.05 vs. vehicle, (#) p <  0.05 vs. 
vehicle +  LPS. (d) GR nuclear translocation. BMDC were processed and treated as in (c) and GR expression was 
analyzed by immuno�uorescence staining. Bar represents 20 µ m. Quanti�cation of nuclear:cytoplasmic ratio of 
GR staining (red channel) is presented as mean ±  SD from analysis of 5 separate high power �eld images. Results 
from one representative out of three independent experiments are shown. (*)p <  0.05 vs. vehicle, (#)p <  0.05 vs. 
vehicle +  LPS. e) Surface expression of TLR4/MD2 complex. BMDC were treated with vehicle, CpdA 10 µ M 
or Dex 0.1 µ M. A�er indicated times, BMDC were harvested and surface expression of TLR4/MD2 complex 
on CD11c+ cells was analyzed by �ow cytometry. Relative TLR4/MD2 expression level was calculated as the 
MFI ratio for each condition at indicated times and for non-treated cells. Data are shown as mean ±  SD of three 
independent experiments. (*)p <  0.05 vs. vehicle. Representative histograms for each condition at 24 h treatment 
are shown, �lled grey histogram represent isotype-matched control.
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Figure 6. CpdA does not act exclusively through GR in mouse bone marrow-derived DC. For e�cient 
RNA interference, 3 ×  105 BMDC were transfected with 150 nM mouse GR siRNA (Dharmacon) or 150 nM 
non-silencing control scrambled (mock) siRNA (RL, Dharmacon) by using the Amaxa®  Mouse Dendritic Cell 
Nucleofector®  Kit (Lonza). Sixteen hours a�er transfection, cells were pre-treated with vehicle, CpdA 10 µ 
M or Dex 0.1 µ M for 1 h before they were stimulated with 100 ng/mL LPS or PBS. A�er 24 h, (a) GR mRNA 
and protein expression were examined by real-time PCR (qRT-PCR) and Western blot, respectively. β -actin 
was used as loading control. One representative out of three independent experiments is shown. (b) RNA was 
isolated and levels of GILZ, FKBP5 and DUSP1 mRNA were measured by qRT-PCR. (c) RNA was isolated and 
levels of MCP-1 mRNA were measured by qRT-PCR, supernatant was collected and secretion of IL-12p70 and 
MCP-1 was quanti�ed by ELISA. (d) BMDC were pretreated with vehicle, CpdA 10 µ M or Dex 0.1 µ M for 1 h 
with or without the GCs antagonist RU486 1 µ M and stimulated with 1 µ g/ml of LPS or le� unstimulated. A�er 
24 h, cytokines were determined with speci�c ELISAs. (e) BMDC obtained from GR�ox or GRCD11cCre mice (four 
specimen of each genotype were run independently) were pretreated with vehicle, CpdA 10 µ M or Dex 0.1 µ M  
for 1 h and stimulated with 1 µ g/ml of LPS or le� unstimulated. A�er 24 h, IL-12p70 was determined with 
speci�c ELISA. Data is presented as mean ±  SD of di�erent determinations from one representative out of three 
independent experiments. (*)p <  0.05 vs. vehicle, (#)p <  0.05 vs. vehicle +  LPS, (δ)p <  0.05 GR�ox vs. GRCD11cCre.
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In addition to the e�ects of GCs on activated T cells, it is known that GCs exert immunomodulatory activity 
on DC5,25. Besides their anti-in�ammatory action, GCs might also exert several adverse e�ects, with hypergly-
cemia and hyperinsulinemia being one of the major drawbacks of their long-term use mainly through a direct 
transcriptional e�ect of activated GR on gluconeogenic enzymes by transactivation mechanisms. �erefore, the 
development of safer GR targeting compounds with the dissociated action of a selective GR agonist, the so-called 
dissociated ligands, is of major research interest for translational medicine.

Tolerogenic DC are associated with low expression levels of costimulatory molecules (e.g., CD80, CD86). In 
the generation of DC for cell-based therapy the need for an impaired CD40 signal is recognized40. We demon-
strate that CpdA impairs LPS-induced maturation of BMDC by diminishing costimulatory molecules. �e e�ects 
of CpdA on BMDC di�er in several aspects with those treated with classical GCs, such as Dex25. We observed a 
down-regulation of GR protein levels a�er Dex treatment of BMDC, an e�ect that was not observed a�er CpdA 
treatment. It is documented that down-regulation of GR protein in GCs-treated cells may occur by multiple 
mechanisms and it is cell-type speci�c. �e primary one appears to be a decreased GR protein half-life a�er hor-
mone binding to the GR41.

The treatment of BMDC with CpdA causes a remarkable reduction of the secretion on several 
pro-in�ammatory cytokines. In fact, BMDC secrete a wide array of immunological relevant soluble agents and, 
it is well established that the cytokine pro�le expressed depends on the microenvironment in which they are acti-
vated42. We found that CpdA-treatment reduces LPS-triggered secretion on IL-12p70 by BMDC. �e cytokine 
IL-12p70 is responsible for the development of �1 lymphocyte di�erentiation and proliferation43. In line with 
these observations, CpdA-treated BMDC show poor T-cell stimulatory capacities using an allogeneic mixed lym-
phocyte reaction and Ag-speci�c syngeneic assays in vitro. Upon using a DTH assay to evaluate in vivo �1 
cell-mediated responses producing high levels of IFNγ , our in vivo results showed consistency with the �nding 
that CpdA-treated BMDC induce poor activation of naïve T cells in vitro. �e fact that CpdA increases the expres-
sion of the chemokine receptor CCR7 on BMDC in vitro might suggest that the migratory activity of BMDC to 
lymph nodes is una�ected, in contrast to the action of GCs on these cells. Low levels of CCR7 a�er Dex treatment 
disable DC to migrate towards a CCL19 gradient, one of its speci�c ligands of CCR744. Future studies are needed 
to further evaluate the e�ect of CpdA on BMDC migratory activity.

We have reported that the mechanism of action of CpdA on T-lymphocytes arises from a selective GR mod-
ulation. Inhibition of IFNG gene expression and secretion of IFNγ  following selective CpdA-mediated GR mod-
ulation involves the inhibition of T-bet activity in T lymphocytes15. Although IFNγ  is considered a signature 

Figure 7. Reduced DTH response in mice sensitized by administration of CpdA-treated BMDC. BMDC 
were treated with vehicle or CpdA 10 µ M for 24 h, washed and haptenized by incubation with TNBS 1 mM at 
37 °C for 15 min. Haptenized-BMDC were subcutaneously injected (3 ×  106 cells/50 µ l PBS/foot pad) into C57 
mice; non-haptenized BMDC were used as control. A�er six days, mice were topically challenged with 20 µ l of 
DNFB 0.4% w/v (olive oil:acetone, 4:1) in the right ears. �ickness of ears at 24 and 48 h were measured using a 
digital micrometer. (a) �e percentage of ear thickness increase was calculated using the le� ear as unchallenged 
control. Data are shown as mean ±  SD of one representative (n =  5 mice per group) out of two independent 
experiments. (*)indicates statistical di�erences with a p <  0.05. (b) Representative H&E staining of middle ear 
sections from each group of animals obtained 48 h a�er DNFB challenge (200X magni�cation). Arrows indicate 
in�ammatory cell in�ltrate in haptenized-BMDC group.
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cytokine of CD4+ �1, CD8+ and NK cells it has been demonstrated that antigen-presenting cells synthesize 
this pro-in�ammatory cytokine as well, in particular DC. T-bet expression by DC is rapidly stimulated by IFNγ ,  
and secretion of IFNγ  by DC is also positively in�uenced by IL-12p70 stimulation45. IL-12p70 is pivotal for � 
cell di�erentiation into the �1 phenotype, and the synthesis and secretion of IFNγ  by �1 lymphocytes. Here, 
we found a strong inhibition of IL-12p70 and TNFα  secretion by LPS-stimulated CpdA-conditioned BMDC and 
also, the chemoattractant MCP-1. �e establishment of a positive feedback loop in the communication between 
DC and T cells is important to maximize type 1 immunity. �erefore, it is tempting to speculate that CpdA might 
exert the same modulatory e�ects on DC in vivo, explaining in part their therapeutic action on T-cell mediated 
diseases such as collagen-induced arthritis12.

DC express di�erent pattern recognition receptors (PRRs) that recognize pathogen-associated molecular 
patterns (PAMPs), like LPS46. Antigen recognition involves receptor-mediated endocytosis or phagocytosis that 
subsequently results in DC maturation and migration to secondary lymph nodes for T cell priming47. We found 
that CpdA impairs Ag uptake to a similar extent as Dex on immature BMDC. However, in contrast of the regained 
endocytic funtion of LPS-BMDC exerted by Dex, CpdA-treated LPS-BMDC remained with very low endocytic 
ability. Besides several di�erential e�ects observed by the action of both drugs on BMDC phenotype and func-
tion, the strongest e�ect of CpdA may be related to the speci�c genes that are targeted when it function as a tran-
scription factor repressor that may include genes that a�ect the capacity of BMDC to take up antigens. In view 
of the fact that CpdA-BMDC were poor T cell stimulators we might explain this observation in part to their low 
antigen uptake capacity. �e association with lowered expression levels of molecules involved in T cell stimula-
tion such as MHCII, CD40, CD80 and CD86 may also account for low endocytic capacity a�er CpdA exposure. 
Several agents have been reported as modulators of DC function a�ecting the expression of costimulatory mol-
ecules giving them an immature phenotype such as IL10, aspirin and 1,25-dihydroxyvitamin D348–50. However, 
for most of them, the induction of an immature phenotype as well as the poor stimulatory T cell response was 
associated with enhanced endocytic antigen ability.

LPS acts through the innate receptor toll-like receptor 4 (TLR4) activating the MyD88 and TRIF path-
ways, inducing phosphorylation of several intracellular kinases including the Iκ Bα  kinase, the extracellu-
lar signal-regulated kinases Erk1/2, P38 MAPK, c-Jun N-terminal kinases and phosphatidylinositol-3-kinase 
(PI3K)-protein kinase B (Akt)51. Immune cell activation is linked to changes in cellular metabolism. Krawczyk et al.  
demonstrated that TLR signaling exerts a metabolic reprogramming allowing full maturation and functionality 
of DC52. In fact, TLR signaling favors glycolytic metabolism over mitochondrial oxidative phosphorylation by 
activating the PI3K-Akt pathway that allows a rapid provision of ATP to maintain cell viability and anabolic 
demand during an immune response. In addition to PI3K, Akt is essential for DC survival and function a�er 
in�ammatory stimuli53. Mammalian/mechanistic target of rapamycin (mTOR) activated by the PI3K/Akt sign-
aling pathway, controls glycolysis and metabolism, and regulates cell activation and proliferation. Our data indi-
cate that CpdA treatment of BMDC strongly inhibits LPS-induced pAktSer473 which is an upstream activator of 
mTOR, suggesting that CpdA might induce a metabolic switch to mitochondrial oxidative phosphorylation and 
acceleration of catabolism that has been associated with the generation of tolerogenic DC54. Dex actually reduced 
LPS-induced pAkt in BMDC far less than CpdA. In this respect, pharmacologic treatments to induce tolerogenic 
DC such as the use of Dex or Vitamin-D3 have been described that also a�ect DC metabolism55. Several studies 
have reported that MAPK signaling pathways modulate DC function and survival53,56. We therefore investigated 
whether CpdA interferes with LPS-induced activation of these pathways in BMDC. �e increased expression of 
pErk1/2 and pP38 a�er LPS stimulation was markedly inhibited by both CpdA and Dex treatment on BMDC. 
However, phosphorylated JNK was apparently not a�ected by either CpdA or Dex on BMDC (data not shown). 
NF-κ B signaling is involved in LPS-induced DC maturation and inhibition of this pathway suppresses DC mat-
uration and function57. �e levels of Iκ Bα , the predominant inhibitory molecule of NF-κ B, were found to be 
augmented in the CpdA-BMDC changelled with LPS. CpdA and Dex presented di�erent kinetics in the degra-
dation of Iκ Bα  in BMDC, probably as a result of di�erences in their mechanisms of action. Dex may induce Iκ 
Bα  transactivation through GR binding to a GRE within its promoter region58. �is probably explains the high 
Iκ Bα  levels a�er pretreatment with Dex for 1 h. Unlike Dex, CpdA does not induce transactivation. However, 
CpdA treatment does lead to a delay in Iκ Bα  degradation, possibly by non-genomic e�ects of monomeric GR 
activation. CpdA has initially been described as a fully dissociated GR ligand. However, using GR knockdown 
analysis combined with pharmacological GR blockade and the use of GRCD11cCre mice to obtain BMDC lacking 
GR, we show in this study that the immunomodulatory activity of CpdA on BMDC was able to persist in the 
absence of fully functional GR levels. Moreover and opposite to DEX, CpdA inhibited nuclear translocation of 
GR in BMDC. Particular GR-independent e�ects of CpdA have been reported before and are hence not restricted 
to DC. In a recent report studying airway smooth muscle cells, it was observed that CpdA inhibits the secretion of 
GC-resistant chemokines in a GR-independent manner59, again emphasizing bene�t in absence of GR as a target 
of CpdA.

It has been shown that CpdA functions as not only a GR modulator but also an androgen receptor (AR) 
antagonist60. Bone marrow-derived DC express AR and progesterone receptors (PR)61 and their activation act 
as suppressor of DC function. �erefore, we cannot discard that a possible mechanism of action of CpdA might 
in part be associated to progesterone/androgen ligation to their respective receptors on BMDC. In�ammatory 
signaling pathways a�ected by CpdA can also include a GR-independent component. Indeed, the e�ects of CpdA 
on TNFα -induced MAPK activation occurred independently of GR in rheumatoid arthritis synovial �broblasts62, 
albeit here CpdA-mediated cytokine suppression, i.e. of IL1β , did rely on GR. �is report may encourage further 
research into the in vivo function of CpdA-treated BMDC in relation to their potential immunomodulatory 
ability on undesired allogeneic or autoimmune responses, in which regulatory DC have shown tolerogenic prop-
erties. By using CpdA, or preferably more stable analogues hereof, a suppression of DC function may be achieved 
in order to e�ciently control speci�c undesired immune responses.
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Methods
Animals and reagents. Six- to 8-week-old C57BL/6J and BALB/c mice were purchased from Bioterio 
Central, FCEyN, University of Buenos Aires. �e B6.Cg-Tg(TcraTcrb)425Cbn/j (OTII) mice were obtained 
from Fundación Instituto Leloir. �e GRCD11cCre (Nr3c1tm2GscTg(Itgax-cre)1-1Reiz) and GR�ox (Nr3c1tm2Gsc) mice 
were obtained as previously described39,63. Studies were approved by the Institutional Care and Use Committee 
(CICUAL #0001) FCEyN, University of Buenos Aires. Animal care and experimental procedures were carried out 
in accordance with the guidelines of the Institutional Care and Use Committee of FCEyN-Univ. of Buenos Aires. 
CpdA was synthesized as described26. Dexamethasone (Dex), RU486, LPS, 2,4 dinitro-1-�uorobenzene (DNFB) 
and 2,4,6-trinitrobenzenesulfonic acid (TNBS) were purchased from Sigma-Aldrich.

In vitro generation of GM-CSF bone marrow-derived dendritic cells (BMDC). BMDC were gener-
ated in vitro from mouse bone marrow precursors cultured with GM-CSF and IL4 as described previously21. At 
day 7, cells were subjected to CpdA or Dex and LPS treatments and subsequent analysis.

Cytokines quantification. Detection of IFNγ , IL4, IL6, IL10, IL12p70 and TNFα  in BMDC supernatants 
was performed according to manufacturer´s protocol using Biolegend ELISA sets. MCP-1 secretion was deter-
mined using Ready-SET-Go! ELISA Kit (eBioscience).

GR silencing by Nucleofection of BMDC with target-specific siRNA. C57Bl/6 bone marrow derived 
BMDC were harvested on day 8. For e�cient RNA interference, cells were transfected with mouse GR siRNA 
(Dharmacon) or non-silencing control scrambled (mock) siRNA (RL, Dharmacon) by using the Amaxa®  Mouse 
Dendritic Cell Nucleofector®  Kit (Lonza). Sixteen hours a�er RNA interference, cells were pre-treated with DEX 
or CpdA or solvent control and stimulated with LPS or PBS as a control.

qRT-PCR. RNA was isolated from BMDC by using RNeasy Micro Kit (Qiagen) and mRNA was reverse tran-
scribed to cDNA with the PrimeScript RT kit (TaKaRa).

Phenotypic dendritic cells analysis and endocytosis assay. Inspecific binding on BMDC were 
blocked with normal bovine serum and incubated with the following PE-conjugated mAbs: anti-IAd, -CD80, 
-CD86, -CD40, -CD54, -CD45RB, -CD273, Alexa488-conjugated anti-CD197(CCR7) and biotin anti-mCD11c 
followed by APC-streptavidin (Biolegend). As a negative control isotype-matched irrelevant mAbs were used. 
Apoptosis was assessed by phosphatidylserine exposure analysis using PE-Annexin V staining (BD Biosciences) 
according to manufacturer’s instructions. Analysis was performed using FACS DIVA6. For endocytosis assay, 
BMDC (1 ×  106 cells) were incubated with 10 µ g/ml FITC-Dextran (MW 40000, Life Technology, Molecular 
Probes) at either 37 °C or 4 °C for 1 h. Endocytosis was stopped by extensive wash in ice-cold 0.1% sodium azide-
1% FCS-PBS and cells were stained for surface CD11c+, as described above.

SDS-PAGE and Western blot analysis. BMDC were pretreated with vehicle, CpdA 10 µ M or Dex 0.1 µ M 
for 1 h and stimulated with 1 µ g/ml of LPS for 0, 5, 10, 20, 60 and 120 min. Cells were harvested on ice-cold PBS, 
washed and lysed in 50 mM sodium phosphate/1% v/v SDS/40 mM 2-ME/2 mM EDTA bu�er and conserved 
at − 20 °C until use. Proteins were subjected to SDS-PAGE and blotted with antibodies against pErk1/2, Erk1/2, 
pJNK, JNK, pP38, P38, pAkt, Akt (Cell signaling), IkBα , GAPDH and GR (Santa Cruz) followed by the appro-
priate HRP-conjugated secondary antibodies (Bio-Rad). Staining was developed by ECL (Pierce Biotechnology).

Confocal microscopy. BMDC were harvested, cultured onto poly-L-lysine coated glass coverslips and �xed 
by cold methanol. Cells were incubated with the following primary antibodies: anti-NFκ B p65 (RelA) or anti-GR 
(M-20) (Santa Cruz). Secondary antibodies used at 1/200 dilution were either anti-goat or anti-rabbit Alexa Fluor 
647 conjugated dye (Life Technology). �e coverslips were mounted on slides with Mowiol. Images were acquired 
on a Zeiss Axio Observer Z1 LSM 710 Confocal Microscope (Carl Zeiss Microscopy GmbH). Data acquisition 
was performed with ZEN Black 2011 so�ware and quanti�cation using Fiji so�ware.

Contact hypersensitivity. BMDC were treated with vehicle or CpdA 10 µ M for 24 h, haptenized with 
1 mM TNBS and subcutaneously injected (3 ×  106 cells/50 µ l of PBS/footpad) into C57Bl/6 mice. Non-haptenized 
vehicle-treated BMDC were used as a speci�city control. A�er 6 days, mice were challenged with 20 µ l of DNFB 
(0.2% in acetone/olive oil, 1:4; Sigma-Aldrich) on the right ear pinna. �ickness of the right (challenged) and le� 
(control) ear pinna was measured with a digital micrometer at 24 h and 48 h a�er challenge. Swelling quanti�ca-
tion was determined as the di�erence in the thickness between the right and the le� ear pinna and expressed as 
percentage increase of ear thickness (mean, SE). Ear samples (5–6 mm) were �xed in 4% formaldehyde, embed-
ded in para�n, and processed for staining with H&E. Images were acquired on a Zeizz Axio Vert. A1 Inverted 
Microscope (Carl Zeiss Microscopy GmbH). Each group consisted of �ve mice and the experiment was per-
formed twice.

Antigen-specific presentation assay. C57Bl/6 BMDC (stimulator cells) were co-cultured with OTII 
nylon-wool puri�ed naïve T lymphocytes (responder cells). BMDC (106 cells/ml) were treated with either Dex 
or CpdA and LPS as mentioned before for 24 h, washed, pulsed with 1 µ g/ml of OVA323-339 peptide for 21/2 h 
and co-cultured at di�erent ratios with 2 ×  105 responder T cells in 200 µ l/well round-bottom 96-well plates in 
complete RPMI medium for three days. �e last 18 h wells were pulsed with 1 µ Ci of 3H-thymidine. Cells were 
harvested on �lter mats of glass �ber paper (Skarton Instruments) using a semiautomatic cell harvester. Glass 
�ber �lters were air-dried and each dot was embedded in 1 ml of Optiphase scintillation liquid. �e radioisotope 
incorporation was determined using a beta scintillation counter.
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Mixed lymphocyte reaction. BALB/c splenic T lymphocytes were enriched by passage through nylon wool 
columns and then used as responders (2 ×  105 cells/well) in round-bottom 96-well plates with graded numbers of 
C57Bl/6 BMDC and cultured for 72 h in complete RPMI. Proliferation of T cells was determined as above.

Statistical analysis. Results are presented as mean± SD. Comparison between groups were carried out using 
paired or unpaired Student´s t-test or ANOVA followed by Bonferroni´s multiple comparison test, as appropriate. 
A p <  0.05 was considered to indicate a statistically signi�cant di�erence. All statistical analyses were performed 
using GraphPad Prism version 5.0 So�ware.
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