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Abstract—In this paper we introduce an online grasping
system for the Nao robot [1] manufactured by Aldebaran
Robotics. The proposed system consists of an object detector
and a grasp motion planner. Thereby, known objects are
detected by a stereo contour-based object detector and hand
motion paths are planned by an A*-based algorithm while
avoiding obstacles.

Compared to skilled robots such as Justin [2] or ASIMO [3]
online grasping with the Nao constitute as particular problem
due to the limited processing power and the hand design. The
methods proposed allow detecting and grasping objects in real-
time on an affordable humanoid robot.

I. INTRODUCTION

Humans interact with their environment. Besides coun-

tenance, speech, and gestures, humans can also manipulate

their surroundings with their hands. For instance humans can

lift a coffee cup in order to drink. Since hands are one of the

most useful human features, it seems that robots also could

benefit.

In this paper we present an online grasping system that

combines a stereo vision-based object detector and a grasp

function for the affordable Nao robot [1]. The objects to

grasp are ones that can be completely embraced by the robots

finger and palm. We focus on small objects or objects with

a handle, for instance a light standard-sized coffee cup or a

pencil.

We use a Nao V3.3 with a stereo vision head that was

specifically designed for us by Aldebaran Robotics (based on

the Nao V4 head). In the design of the stereo vision, the two

cameras are mounted parallel in the eye holes of the robot’s

head. The cameras are connected through an FPGA with an

embedded PC mainboard equipped with an Intel Atom (1.6

GHz) processor. The acquisition of two images can be done

in less than 33 ms. The recorded images overlap at approx.

10 cm outgoing of the center between the cameras.

There are many different ways to grasp an object, but not

every option is the best. In the approach of Borst et al. [4],

grasps are distinguished in force-closure and form-closure

grasps. Force-closure grasps are able to balance disturbances
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by the wrenches (fingers) at the contact points. With form-

closure grasps an object is completely embraced by the

fingers and palm with the result that there is no friction on

the contact points, even if the grasp holds.

Nao’s hands are underactuated [5], because they are con-

structed with three flexible fingers per hand, which are

controlled by a single motor (open / close). Unfortunately,

the fingers are only really stiff if the hand is completely

closed. Hence, experiments showed that solid objects such as

coffee cups are only graspable if the grasp is form-closure.

Furthermore, it seems that performing a force-closure grasp

is not possible with this robot, since it is not able to move

its fingers individually [6].

Most motion planners are operating either in Cartesian or in

configuration space. While motion planners in configuration

space as in [7] and [8] are able to guarantee a solution

given there is one, planners in Cartesian space as in [9]

are incomplete and difficult due to redundant kinematics.

However, the integration of obstacle avoidance into a path

planner operating in Cartesian space is simpler than in

configuration space.

Furthermore, motion path planning in Cartesian space can

be a very expensive process particularly when the grasping

hand is attached to a humanoid robot, which can move in

order to reach certain objects. Thus, the reachability needs

to be checked by inverse kinematics for many points in

order to select a suitable grasp and to validate reachability

along the path. This process can be speed up best by a pre-

calculated table as the capability map in [10] and [11]. By

defining the workspace and storing information about how a

region can be reached by the hand, it is possible to quickly

select possible grasp points without the direct use of inverse

kinematics. In our work we use the predefined workspace to

solve redundant kinematics as well as the reachability along

the motion path, which enables our motion path planner to

quickly operate in Cartesian space. In contrast to the work of

Cotugno and Mellmann [12], the grasping function proposed

plans and executes only single handed grasps using an A*-

based algorithm.

The first step of the general procedure of the grasp function

proposed is to detect the object. Thereby edge detection is

performed on the left and right stereo image by computing a

contrast-normalized Sobel (cns) image instead of using color

segmentation as in [13]. Afterwards the contrast images are



Fig. 1. A cup detected by our stereo contour-based object detector. The
detection is based on a 3D model. Technically, the model contains a disc
as cap which is specially labelled so its circle is always included in the
contour.
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Fig. 2. Dataflow overview of our stereo contour-based object detector.

used to recognize the object by evaluating a range of possible

object poses. The detected object is given to the grasp planner

as a 6D pose.

The next step of the procedure is to decide whether an object

can be grasped. By doing so, possible grasp hand poses

are evaluated by using the pre-calculated workspace. Once a

possible hand grasp pose is found, a motion path from the

current hand position is planned. At last, the resulting motion

path is executed by a trajectory based motion engine.

II. STEREO CONTOUR BASED OBJECT RESPONSE

On the perceptual side the goal was to recognize an object

handed to the robot by a human in order to grasp it (Fig. 1),

in our case a cup or a (big) pencil. There are many ways to

do this and our motivation for the approach presented was

the following: In computer vision there is the general insight

that taking hard decisions early impairs robustness. Examples

therefor are pixel-wise color segmentation or Canny edge

detection followed by line segment extraction followed by

object detection. Instead, one should take a decision only

after considering all relevant input data, in our case the whole

stereo image, assessing which interpretation is overall most

supported by the data. Compared to mono, stereo gives a

better depth perception, and following the above paradigm

we do a combined search in both images, not separately.

This is of course computationally expensive and here we

wanted to investigate, whether this thorough methodology

can be implemented for object detection on Nao’s limited

computation power.

A. Overview

Our detection is contour-based, so following the above

methodology, the detector considers a range of hypotheses

for the object pose and evaluates for each how much it is

supported by the stereo image, i.e. how much the image

at those points where a contour should be looks like an

actual contour. Consider Figure 2 ignoring the “cns”-box

for the moment. The first step is rasterization, i.e. rendering

the object in a given hypothetical pose from the perspective

of the left and right cameras. The result is a 2D-contour,

i.e. a function [0 . . . 1] → R
2. The second step is contour

evaluation, i.e. computing a response how much the contour

is supported by the image. Its definition has been adapted

from our previous work [14], where it is used for circle

detection. Based on this goal function, an optimizer searches

through the space of possible poses, finding the cup pose

with the largest response.

B. Contour Response

The contour response ∈ [0 . . . 1] is naturally defined as an

integral over the contour

cresp(p) =

∫

1

0

resp
(

p(λ),∠p′(λ) +
π

2

)

dλ. (1)

The response resp
(

p(λ),∠p′(λ) + π
2

)

at a single contour

point p(λ) indicates, how much the local image at p(λ)
looks like the ideal contour, i.e. an intensity gradient in the

direction ∠p′(λ)+ π
2

normal to the contour. Additionally, we

demand linear illumination invariance from resp and specify

what “local” means by the 3×3 weighting mask 1

16

(

1 2 1
2 4 2
1 2 1

)

.

From these assumptions, it follows that
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where X is the image and ∗ denotes convolution. The Sobel

filters in the nominator follow from the choice of the weight-

ing mask. The denominator is a weighted image variance

that follows from illumination invariance. The details of this

derivation are beyond scope here, but the fact that (2) follows

from first principles support our methodical claim.

C. Contrast Normalized Sobel (CNS) Image

Equation (2) needs to be evaluated for many points along

many contours. Fortunately, it can be decomposed

cns =

√
2
[

X ∗
(

1 0 −1

2 0 −2

1 0 −1

)

, X ∗
(

1 2 1
0 0 0
−1 −2 −1

)]T

√
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(3)

resp(x, y, θ) =

(

(

cos θ
sin θ

)T

cns(x, y, )

)2

(4)



Fig. 3. Plot of the response (5) as a function of cns norm | cns(x, y)|
and angular mismatch δ = θ − ∠ cns(x, y). The corresponding plot for
the response used in the classical Hough-transform is 1 inside a hand-tuned
rectangle and 0 outside.

into the squared scalar product of the contour-normal
(

cos θ
sin θ

)

and a contrast-normalized Sobel image (cns). The cns-image

does not depend on the contour and is only computed once

(Fig. 2). The contour-normal is reused when searching at

different positions and only the squared scalar product needs

to be computed for every point of every contour evaluated.

Also, (4) has a nice interpretation, as

resp(x, y, θ) = cos2 (θ − ∠ cns(x, y)) | cns(x, y)|2. (5)

This means that the detector gradually penalizes an angular

mismatch between the desired and the observed gradient

direction as well as local images which do not look gradient-

like as indicated by the cns-norm (Fig. 3). Since the latter

is illumination invariant, it measures “gradient purity” as

opposed to “gradient intensity” for the classical Sobel vector.

D. Efficient Implementation

The cns-computation (3) has been implemented using Sin-

gle Instruction Multiple Data (SIMD) parallelism, here Intel’s

SSE3 instruction set. Multi-core parallelism would also be

easy, but is not available on Nao’s Atom processor. Also the

various filters were separated into X ∗ ( 1 2 1 ) ∗ (−1 0 1 )
T

,

X ∗(−1 0 1 ) ∗( 1 2 1 )
T

and X ∗( 1 2 1 ) ∗( 1 2 1 )
T

, reusing

the horizontal X ∗ ( 1 2 1 ) intermediate result. In order to

maximize parallelism, the filters are computed in 16 bit,

converting to float for the reciprocal square root only. Also,

a regularizer of 256 (1 intensity unit) is added in the square

root to avoid 0/0.

The actual response evaluation (4) is most time-critical.

Intel’s SSE3 includes an instruction pmaddubsw that mul-

tiplies 2 × 16 bytes adding adjacent products (16 bit). This

computes
(

cos θ
sin θ

)T
cns(x, y) in (4). However, one operand is

unsigned, so we shift the cns image by 1, (technically 128),

making it positive and correct the product by subtracting

cosα+sinα. The result is squared (4) and accumulated (1).

Overall, 6 instructions perform 8 evaluations of (2). The eval-

uations correspond to an identical contour but 8 successive

pixels in the (cns-) image. To exploit this parallelism, we

always compute 8 × 8 (or even 16 × 16) responses of the

same contour shifted by [0 . . . 7]× [0 . . . 7].

III. 3D OBJECT SEARCH PROCESS

A. Rasterization

The rasterization (Fig. 2) takes a triangle mesh as 3D

object model, a camera calibration and a hypothetical object

pose as input and renders the contour of the object at the

given pose as viewed from the camera. The first step is to

determine which edges of the model form the contour. At

the moment, we go through all edges and select those where

one adjacent face is viewed from the front and one from the

back. This does not consider global occlusion, an extension

that could be implemented in the future. As a special rule,

faces can be marked by a color label and edges between

visible faces of different labels are also added. This feature

is needed to make for instance the front edge in Figure 1

part of the contour.

Contour-edge determination is expensive. Fortunately, it

depends only on the camera’s position relative to the object,

not its orientation, so we precompute a 3D look-up-table.

Next, the vertices involved are perspectively projected

into the image in an SSE implementation. The projection

ignores distortion which is ≈ 1 pixel only for Nao. The

precomputed edge list is sorted such that projected vertices

can be used twice. In principle, one would raster each edge,

e.g. with the Bresenham line-algorithm, then. However, to

save computation, time we only use the mid-point of each

edge in the contour and compute the contour orientation

at that point from the two projected vertices. Instead of

θ, we directly compute sin θ and cos θ to avoid expensive

trigonometrical operations. Midpoints outside the image are

skipped.

Overall, with these optimizations, computation time is

reduced from 2× 600µs to 2× 28µs.

B. Local Search (Refinement and Tracking)

During local search, the optimizer (Fig. 2) changes the

pose towards growing responses. This procedure is used for

tracking as well as to refine a coarse initial pose obtained

by our global search heuristic presented later. We use the

simple approach to optimize DOFs round-robin one at a time,

although there are of course more sophisticated optimization

algorithms. However, we exploit that the response computa-

tion provides an array of 8×8 responses for shifted contours

(2D translation).

So, to refine one DOF, we compute 8×8 responses around

the original pose, around a pose changed on step in the

considered DOF, and around the inversely changed pose.

The subpixel-refined maximum of these 3× 8× 8 responses

defines the new pose. Therefor the image translation must

be converted into a change of pose. This is approximated by

a rotation of the object around the camera which moves the

object’s center in the image according to the obtained image

translation.



As image translation is already covered, the 4 remaining

DOFs are translation in viewing direction and object rotation

around X, Y and Z (skipped in case of symmetry). The step

size is roughly determined to create 3 pixel changes in the

image based on object size and distance.

At first sight it may appear to be a waste of time to refine

image-translation each time one of the four DOF is refined.

However, typical object movement creates large image move-

ment but rather small change in shape, so this approach

makes the system capable of tracking faster movements and

exploits the SSE-based 8× 8 block computation.

Finally, one remarkable finding was that the stereo

contour-based object response has a rather large range of

convergence as shown in Figures 7 and 9 in Section V. This

supports our motivation that avoiding early hard decisions

improves robustness.

C. Global Search Heuristic

The textbook solution for global object search would be to

find the maximum response of all poses within the grasping

space (6DOF). However, this is computationally beyond

scope despite all the optimizations mentioned. Instead, we

use an application-specific heuristic. We search only for a

single cup orientation by assuming it is roughly vertically

aligned and by removing the handle, making it rotationally

symmetric. This orientation is obtained from the robot’s for-

ward kinematic and the decision to use only one orientation

was motivated by the large range of convergence mentioned

above.

For the position, we go through the image in patches of

64×48 pixels and rasterize the cup at several positions along

the center pixel’s ray. For each contour 64 × 48 responses

are computed and the largest overall response is refined.

Then cup-rotation is determined by evaluating the response

of several rotated cups with handle. Finally, the full model

is refined and if the response exceeds a threshold (0.65) we

switch to tracking mode. If the response in tracking mode

falls below 0.5 for 15 frames, we switch back.

The global search takes ≈ 320ms, so we spread it over

several frames, evaluating only between one and two 64×48
blocks in each frame (13− 26ms).

IV. OBJECT GRASPING

On the motion side, the goal is to successfully grasp an

object. More specific, the goal is to decide from which hand

pose the object can be grasped and to find a valid motion

path from the current hand pose. In addition, obstacles such

as the object itself or body parts that may be in the direct

path between the target position and the start position have

to be avoided.

We decided to implement a motion planner instead of a

reactive approach in order to foresee collisions with the

object or parts of the robot body. Since Nao’s processor is

limited as well as the degrees of freedom (DOF) of Nao’s

arms, we decided to pre-calculate the workspace and to use

this table in the motion planner for efficiency.

A. Overview

While most robotic arms have six or even seven DOF,

Nao’s arms are constructed with only five DOF. The fifth

DOF represents the wrist angle and has only minor influence

on the planning. So our approach ignores this DOF first,

using only four DOF to define a certain hand pose, and

handles the wrist-DOF later. This leaves only one DOF of

four for the lower arm direction while a fixed hand position

is commanded, less than the two possible DOF. According

to that, the reachability of Nao’s hand is clearly very limited

and the lower arm direction depends on the hand position.

For that reason it is necessary to check for each grasp pose

and each point on a motion path whether it can be reached.

This leads to the problem that a large number of reachability

checks are necessary for motion planning. This can be speed

up best by predefining the workspace in a reachability map.

The reachability map is precomputed and used as the basis

of the whole grasping process. The first step is to evaluate

a range of grasp poses by using the map. Once a reachable

grasp pose is found, the grasp planner plans a path through

the grid cells of the map. The planning procedure is to

evaluate nodes starting with the goal node (grasp pose) in

order to find a path to the current hand pose. For each node to

be evaluated possible collisions are inspected. The resulting

motion plan is converted into a Bezier path and executed by a

trajectory-based motion engine. During the motion execution,

the motion plan is updated in each frame.

Fig. 4. Left: The best reachable regions are marked in red, less well-
reachable regions are marked in blue and badly reachable regions are marked
in green. Right: Extended reachability map due to multiple possible shoulder
positions: sit down, lean left, lean right, and stand.

B. Reachability Map

In our approach we discretize the workspace with a cube

that is divided into equally sized smaller cubes. Each sub

cube serves as a region in the workspace. Each region stores

a set of reachable lower arm directions (1 DOF). Because

the wrist rotation can be calculated later from the lower arm

direction and the joint limits, we only need to store a set of

possible lower arm directions per region instead of a set of

full hand orientations. The left side of Figure 4 pictures the



reachability map used, where only reachable directions per

region are marked.

The map is created offline by using forward kinematics for

each 0.5 degree angle of each arm joint. In that process we

calculate the position of the palm as well as the direction of

the lower arm and mark them in the map. In order to keep

the memory footprint as small as possible, each lower arm

direction calculated is rounded to a set of 512 directions,

which are generated by using the spiral point algorithm

proposed by Saff and Kuijlaars [15].

The origin of the reachability map is located in the shoulder

of the robot. Thus, it is possible to test with different shoulder

positions whether a certain hand position is reachable without

the use of inverse kinematics. The right side of Figure 4

pictures how the workspace increases with only four possible

shoulder positions.

C. Grasp Selection

Before the motion plan can be constructed, a target posi-

tion needs to be selected. In order to do this, we assign a set

of predefined grasp rules to each object. Each rule is defined

by a grasping point and a range of lower arm directions

relative to the object. In Figure 5, grasp rules are marked

with blue triangles. The green dots constitute the position

where to grasp and the triangle defines a range of lower arm

directions.

In order to select a grasp, the grasp rules are matched with

the reachability map defined in Section IV-B. In this process,

areas that include a grasping point are examined further in

order to check whether the corresponding possible lower arm

directions are qualified for the grasp. This step is necessary,

because the possible lower arm directions per area are very

limited (Fig. 4). In this process, the possible lower arm

directions (red in Fig. 5) of the grasp areas are compared to

the angle ranges from the grasp rules (matching directions

are shown in yellow in Figure 5). The best match is selected.

Fig. 5. Each object has its own grasp map, which is generated from a set of
predefined grasp rules. Each rule connects a range of lower arm directions
to a grasp position (blue). The reachability map (red) is matched to the
object’s grasp map. Matches are marked yellow.

D. Motion Planning

The next step is the actual planning from the selected

grasp position (start node) to the current hand position (goal

node). Compared to just using linear joint angle interpolation

Fig. 6. The linear interpolated motion path of the hand and the elbow.
Lower arm directions per waypoint are represented with red lines. Obstacles
are marked by orange cylinders and the finger positions calculated per
waypoint are represented by green lines.

this allows to avoid collisions on the way. The planner

uses the precomputed reachability map without the need for

reachability checks via inverse kinematics.

The reachability map provides the planner with 6D in-

formation on the possible hand positions and lower arm

directions. Since planning in 6D is very expensive, our A*-

based planning algorithm initially only uses the 3D area grid

and ignores the lower arm direction and hand orientation.

Thereby, to be evaluated, nodes are checked for reachability

and obstacle collision in order to calculate the heuristics

only for verified nodes. In this process, nodes with more

suitable lower arm directions are rated better than nodes with

greater deviations from the lower arm goal direction. Also

the distance between the node evaluated and the goal node

in 3D are taken into account.

The output from the planning algorithm is a list of waypoints

through the reachability map, which are represented as red

dots in Figure 6. Since there is a dependence between the

hand positions the directions of the lower arm, a waypoint

also includes a direction. Each direction defines the elbow

position corresponding to the waypoint and is marked by

red lines in Figure 6. In order to execute a plan found, a

trajectory-based motion engine [16] was extended to take

arm movements as input. Since the grasp plan consists of

waypoints, executing them with linear interpolation would

exhibit velocity discontinuities at the waypoints. In order to

overcome this problem, the grasp plan is converted into a

Bezier spline using the method by DeRose et al. [17].

1) A* Heuristic and A* Cost: The A* heuristic estimates

the costs to reach the goal from the current node, while the

A* cost function calculates the costs from the start node to

the current node. If an admissible heuristic is used, A* finds

the optimal way from the start node to the goal node.

In equation (6), the heuristic hσ for a node x is calculated



as the weighted sum of the position difference (7) and the

difference in lower arm direction (8) with fh0
and fh1

as

factors (cf. Table I).

hσ = fh0
h0 + fh1

h1 (6)

h0 = |x− xgoal|; (7)

h1 = |d(x)− d(xgoal)|; (8)

Thereby not only the distance to the goal node but also

the change in the direction of the lower arm (d(xi)) is

considered. This is necessary, because most nodes are only

reachable with a few possible lower arm directions as it

is shown in Figure 4. If the heuristic would only take the

distance into account, there could be nodes on the path,

in which the lower arm directions are not matching to one

another. This could lead to an inhomogeneous motion path.

The aim of this approach is to add an extra weight to each

node, which rewards more homogenous nodes. Hence, a

closer area with a badly rated lower arm direction is valued

inferior to an area with a well-rated lower arm direction.

Analogously to the heuristic, the cost-function (9) sums the

distance of one node to the next as well as the changes in

the direction of the lower arm.

cσ = fc0c0 + fc1c1 (9)

c0 =
∑

|xk − xk−1|; (10)

c1 =
∑

|d(xk)− d(xk−1)|; (11)

2) Obstacles: The object to grasp as well as the body

parts such as fingers and legs are included into the planner as

obstacles. Since collision checks can be very expensive, we

only test whether the fingers collide at this time. Furthermore,

we only use cylinders (orange in Fig. 6). In doing so, all

obstacle positions except for the fingers are calculated once

per frame. In contrast, finger positions are calculated for

each node that is to be evaluated. These finger positions are

represented by green lines in Figure 6.

In order to check whether any part of a finger collides

with the object or another limb, the shortest distance or the

intersection, respectively, between each obstacle and each

finger is calculated. Thereby, if the shortest distance between

a finger and an obstacle is smaller than the sum of obstacle

and finger radius, a collision is detected. In that case, the

corresponding node is rejected as possible waypoint of the

path.

V. EXPERIMENTS

All experiments were made on a Nao robot using its Intel

Atom (1,6 GHz) processor with 1 GB SDRAM.

A. Stereo Contour-based Object Response

We have evaluated the contour-based stereo detector on

a set of 53 images taken in a cluttered office environment.

Figure 7 shows a typical image with the rough pose detected

by the global search and after refinement. Figure 8 shows a

roc-curve of the detector. In our opinion the performance is

Fig. 7. An example of a global search result before and after refinement.
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Fig. 8. Precision over recall (roc-curve) for the stereo image based cup
detector.

good given the highly cluttered scenes and the fact that often

the cup is only partially visible in the image and partially

occluded by the hand. Figure 9 shows that the detector has

a rather large range of convergence, which allowed us to

perform the global search efficiently with a rather coarse

grid and only a single orientation.

Computation time of the detector is 2 × 1.2ms for the

cns-computation, 28µs for rasterization of one pose in one

camera and 1µs for response evaluation of one contour, when

always blocks of 8× 8 contours are evaluated.

B. Planning

We tested the planning algorithm with different heuristic

and cost-function parameters for the equations (6) and (9) as

shown in Table I. The frame rate of the planner was 30 Hz.

The first parameter set from Table I generates an admissible

heuristic and a cost function that prefers motion plans with
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Fig. 9. Probability with which local refinement converges to the true pose
as a function of the angular and translational distance between starting and
true pose. The probability is computed with 100 tries in each image. The
cup is 95× 75mm large, so nearly half a cup-diameter in the initial guess
leads to a good final pose.



Fig. 10. Left: Depiction of nodes evaluated by using the first parameter set
from Table I. Nodes considered are represented as dots. The path planned
and the corresponding lower arm directions per waypoint are marked by
lines. Right: Depiction of nodes evaluated by using second parameter set
from Table I.

homogenous lower arm directions, which is shown in the left

half of Figure 10. This heuristic takes the distance between

the current and the goal node as well as the difference

between the current and the goal node lower arm direction

into account. The cost function summarizes the distance

between the current node and its predecessor as well as the

difference between the current and the predecessor’s lower

arm direction. Although many nodes need to be processed,

this parameter set is usable for real-time grasping.

The second parameter set from Table I generates an admis-

sible heuristic and cost function that takes only the distances

into account. The heuristic considers the distance between the

current and the goal node and the cost function summarizes

the distance between the current node and its predecessor. In

comparison, the parameter set compels that more nodes need

to be processed and consequently, the computation is almost

50% slower. Since only nodes that are closer to the target

node are rated superior, some elusive nodes are included into

the path. This is especially the case around the lower leg,

which is included to the planner as an obstacle. Furthermore,

on the right side in Figure 10, the problem of inhomogeneous

motions is conspicuous.

With the last two parameter sets from Table I we only

consider the heuristic and ignore the cost function. This

follows the approach of a greedy-search, whereby only the

estimated costs are considered to select a successor node. We

anticipated a lower calculation time but a less optimal path,

TABLE I
HEURISTIC AND COST-FUNCTION PARAMETERS IN COMPARISON TO

CALCULATION TIME PER FRAME.

fc0 fc1 fh0
fh1

average ms
frame

1 0.5 1 0.5 20 ms

1 0 1 0 29 ms

0 0 1 1 13 ms

0 0 1 0 14 ms

Fig. 11. Left: Depiction of nodes evaluated by using the third parameter
set from Table I. Right: Depiction of nodes evaluated by using the last
parameter set from Table I. Planning is done from the object to the hand.

which actually is the case.

According to that the left half of Figure 11 constitutes the

third parameter set from Table I tested. The corresponding

non-admissible heuristic considers the difference of the lower

arm direction in comparison to the goal node as well as the

distance. The result is not the shortest but a homogenous

path. In comparison to the first parameter set, the calculation

time could be lowered by about almost one third. The last

parameter set from Table I also generates a non-admissible

heuristic but only considers the distance to the goal node.

As it can be seen on the right half of Figure 11 the path is

inhomogeneous and no real speed difference can be measured

compared to the third parameter set.

We also made experiments regarding the correct solution of

the planning algorithm with obstacles. Therefore, we placed

a cylindrical obstacle in between the robot and the object to

grasp. Figure 12 depicts the correct solution of the planning

algorithm. Since the workspace is rather small there are very

few positions where an additional obstacle can be placed.

Hence, additional objects often obstruct the workspace such

that no solution can be found.

C. System Level Experiments

In 30 experiments, we tested whether a cup could be

grasped and how long it took. Thereby, we recorded the

time between the first detection and the successful grasp

in a normal illuminated simple office environment. In 29

trials, the cup could be successfully grasped with an average

duration of 10.026s. The duration is Gaussian distributed

with a standard degression of 1.42s as it can be seen in

Figure 13. As a consequence, the grasp time is with a

probability of 95% between 7.186s and 12.866s.

During the trials we also measured the timings of the object

detector. Both cns images are calculated with an average time

of 2.5ms per frame, the global search with 21.6ms per frame

and the refinement in 1.8ms per frame. An exemplary video

of the overall system accompanies the paper.



Fig. 12. Topview of the smoothed Bezier path with only the object to
grasp as obstacle (left) and with an additional obstacle (right).
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Fig. 13. We performed the Kolmogorov-Smirnov test with a confidence
level of 0.1. The result proves with a probability of 99% the hypothesis of
Gaussian distributed measurements.

VI. CONCLUSION

Summarizing, the online grasping system proposed is not

only able to plan and execute a grasp on the affordable

Nao robot, but it also is fast enough for a frame rate of

30 Hz. It seems that a precomputed reachability map can

have very positive effects on the planning performance in

such a way that a sufficient amount of possible waypoints

can be processed. Furthermore, the search space can be

decreased by including the evaluation of the lower arm

direction into the heuristic as well as into the cost function.

By using a non-admissible heuristic the planning speed can

be increased, which enables robots (i.e. older Nao models)

with less processor power to also use the proposed grasp

function.

Furthermore, we were able to analyze Nao’s new stereo

vision design and we discovered that the overlap of the

cameras is sufficient to detect objects very near to the head.

However, since the motion range of Nao’s head pitch joint

is not high enough to view the area directly in front of its

body the overlap of what can be detected and what can be

grasped is rather small.
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