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Abstract

Background: Next Generation Sequencing (NGS) of whole exomes or genomes is increasingly being used in

human genetic research and diagnostics. Sharing NGS data with third parties can help physicians and researchers

to identify causative or predisposing mutations for a specific sample of interest more efficiently. In many cases,

however, the exchange of such data may collide with data privacy regulations. GrabBlur is a newly developed tool

to aggregate and share NGS-derived single nucleotide variant (SNV) data in a public database, keeping individual

samples unidentifiable. In contrast to other currently existing SNV databases, GrabBlur includes phenotypic

information and contact details of the submitter of a given database entry. By means of GrabBlur human

geneticists can securely and easily share SNV data from resequencing projects. GrabBlur can ease the interpretation

of SNV data by offering basic annotations, genotype frequencies and in particular phenotypic information - given

that this information was shared - for the SNV of interest.

Tool description: GrabBlur facilitates the combination of phenotypic and NGS data (VCF files) via a local interface

or command line operations. Data submissions may include HPO (Human Phenotype Ontology) terms, other trait

descriptions, NGS technology information and the identity of the submitter. Most of this information is optional

and its provision at the discretion of the submitter. Upon initial intake, GrabBlur merges and aggregates all sample-

specific data. If a certain SNV is rare, the sample-specific information is replaced with the submitter identity.

Generally, all data in GrabBlur are highly aggregated so that they can be shared with others while ensuring

maximum privacy. Thus, it is impossible to reconstruct complete exomes or genomes from the database or to re-

identify single individuals. After the individual information has been sufficiently “blurred”, the data can be uploaded

into a publicly accessible domain where aggregated genotypes are provided alongside phenotypic information. A

web interface allows querying the database and the extraction of gene-wise SNV information. If an interesting SNV

is found, the interrogator can get in contact with the submitter to exchange further information on the carrier and

clarify, for example, whether the latter’s phenotype matches with phenotype of their own patient.

Background

Since the introduction in 2005, Next Generation DNA

Sequencing (NGS) has been used successfully in numerous

research projects [1]. Meanwhile, further technological

advances have reduced the per base pair sequencing costs

dramatically, thereby allowing more and more molecular

diagnostics laboratories to screen the complete exome of

individual patients with an apparently inherited disease for

causative mutations [2]. Indeed, exome sequencing has

already started to revolutionize diagnostic genetic testing

[3][4]. However, pertinent data privacy law, the type of

informed consent declarations used and limited genetic
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counseling resources bar sharing of high-resolution

genetic data with third parties in most countries. From

both a medical and a scientific point of view, this “locking”

of data is hardly compatible with good professional prac-

tice. For instance, for a physician or geneticist it may be

essential to know whether a particular mutation found in

the genome of their patient has been found in another

patient with a similar phenotype before. Related questions

are also likely to arise in basic research projects on both

monogenic and complex (i.e. oliogenetic) diseases.

Tool description

We developed GrabBlur, a tool to collect and aggregate

(i.e. “grab” and “blur”) ‘single nucleotide variants’ (SNVs)

linked to a specific trait or phenotype, and to share them

with others by way of a public database while keeping

individual samples unidentifiable. The database will not

only help human geneticists to distinguish between

benign variant findings and truly disease-causing muta-

tions, but will also benefit genetic epidemiological

research (i.e. case-control association studies) based upon

large-scale SNV data.

In contrast to databases like ClinVar (http://www.ncbi.

nlm.nih.gov/clinvar/) or the Human Gene Mutation

Database (HGMD) [5], which only contain out-of-context

information on genotype-phenotype associations, Grab-

Blur provides access to all SNVs detected in a given

patient alongside the description of their specific pheno-

type. The Exome Variant Server (EVS) [6] provides about

2 million annotated SNVs of 6,500 individuals with

heart-, lung- and blood-related diseases; more details are

not specified. Through the straightforward aggregation of

SNVs, it is not possible to find out, which SNV originated

from which individual and phenotype. The EVS helps

researchers excluding SNV candidates found in patients

with monogenetic diseases, but it is not a resource to

exchange genotypic and phenotypic data from other data

sets, especially for Mendelian diseases where often the

exact phenotypes are needed. Owing to this level of com-

prehensiveness, GrabBlur helps users not only to reckon

known mutations, but also to validate newly found ones.

The most important feature of GrabBlur is the high

level of anonymity ensured by its process of data aggrega-

tion. No conclusions as to the identity of a patient can be

drawn even if the entire data stored for that individual

are downloaded or the whole database is mirrored. It is

possible neither to reconstruct a single patient genome

nor to re-identify a patient from knowing their SNVs.

Data is aggregated at the site of the submitter, i.e. behind

their own firewall and under their responsibility for data

protection. Hence, no identifying data leaves the submit-

ter institution, and even if the data is “tapped” by an

unauthorized person during upload to the database, a

high level of privacy protection is maintained.

DNA sequence data are accepted by GrabBlur in stan-

dardized VCF format [7]. Additional information such as

the phenotype or gender of a patient is stored in a separate

“initialization file” (INI file format). Most of this informa-

tion is optional and provision is at the discretion of the

submitter. The following information may be recorded:

• Trait. A description of the disease of all patients in

a GrabBlur set of samples (see below). Samples must

be marked at least as ‘patient’ or ‘healthy control’.

(mandatory)

• Phenotype: GrabBlur uses Human Phenotype

Ontology (HPO) terms [8] to classify phenotypes.

Every phenotype can be ascribed an unlimited num-

ber of HPO terms. (optional)

• Gender: Gender of a single patient. (optional)

• Platform: DNA sequencing technology used.

(optional)

• Enrichment: DNA enrichment kit used for

sequencing. (optional)

• PI: Identity of principal investigator. (optional)

• Contact details: Identity, affiliation and e-mail

address of the submitter (mandatory for upload, but

optional release to public database)

To help users with the creation of the initialization

file, we developed a web interface (Figure 1) to com-

fortably enter the required information, including

sample ID and phenotype description. Although Grab-

Blur encodes phenotypes by a combination of HPO

terms, users do not have to translate symptoms into

numeric IDs. Instead, we employ an auto-completion

procedure that finds all HPO terms matching the user

input. The chosen terms are then presented in a tree

structure, with their definitions accompanied by par-

ent and children terms. This allows users to easily

refine their description by choosing a more eligible

term. In addition to marking symptoms as present,

users can also identify particular symptoms as being

absent to accentuate interesting characteristics of their

patient.

On the project homepage, we also provide Perl scripts

to read either a single VCF file or all VCF files con-

tained in one directory and to directly submit filenames

and sample IDs to this interface.

GrabBlur aggregates data in the following three steps:

1. Inspection of the additional information avail-

able for every patient

To prevent identification of a patient via the combina-

tion of different individual-specific informational items,

these items must not be unique in the set of sample data

provided to a third party. Every variant of a patient is asso-

ciated with his meta-data. In case of uniqueness, the

reconstruction of a patient’s genome would be possible. At
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least two samples must have exactly the same phenotypes,

same gender information etc.

In order to generate a sufficient level of ambiguity,

samples with an identical set of HPO terms are combined

in classes. If any other additional information is not suffi-

ciently ambiguous, GrabBlur blurs it by deleting e.g. the

gender or the platform-name.

2. Fragmentation of the SNV-data

In a second step, the SNVs of a sample are divided into

sub-samples of different size. A list linking sample IDs and

sub-sample IDs is stored in a encrypted and password-

protected file at the submitter site. Encryption is accom-

plished by means of the Blowfish algorithm of OpenSSL

[9]. Only the submitter themselves can open this file. This

is needed, for example, to delete a sample from the data-

base in case the patient withdraws the consent.

Each SNV of a sample is randomly assigned to a sub-

sample. This assignment is not uniformly distributed

because otherwise any group of linked sub-samples would

contain an approximately equal number of SNVs, thereby

allowing reconstruction of the complete sample. Therefore

SNVs are assigned to a sub-sample with a differently

weighted likelihood.

3. Blurring the genotype information for rare variants

In a third step, all rare variants of a sample are aggre-

gated by replacing the sub-sample ID of a rare SNV by

the contact information of the submitting institution.

Since a patient can easily be identified by singletons (i.e.

SNVs that have been detected only once), these and

other rare SNVs in their exome are blurred. In the

aggregation step the association between an SNV and all

belonging sub-samples has been deleted. Only the trait

and (if known) the submitting institution remain linked

to the SNV. Hence, only common SNVs carry a sub-

sample ID and, therefore, are associated with specific

phenotype information.

The threshold for a variant to be considered rare is

variable and depends upon the submitted data. It is cal-

culated from the median of all SNV frequencies as

freq(SNV) =< 1.5 ∗ med(frq)

Here, freq(SNV) denotes the frequency of the SNV

irrespective of its genotype, and med(frq) is the median

over all SNV frequencies in the sample set. We choose

the median because it is robust against outliers, like in

this case above-average number of singletons.

The default factor of 1.5 can be modified by the sub-

mitter to get a lower or higher aggregation level.

Usually, with a default factor of 1.5, the threshold equals

between 8 and 12 so that a data set must comprise at

least 8 to 12 samples in order to provide additional

information other than the contact address.

Figure 1 Creation of the initialization file. Screenshot of the interface to create the initialization files. The auto-completion procedure finds all

HPO terms matching the user input. The chosen terms are then presented in a tree structure, with their definitions accompanied by parent and

children terms.
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Figure 2 shows the ratio of unblurred data (SNVs

where the genotype is not aggregated) in relationship to

the amount of aggregated samples using the default med-

ian factor of 1.5. The part of unblurred data increases

logarithmically to the number of aggregated samples.

Through the blurring of the rare variants the portion of

unblurred data is reaching a plateau of about 70%.

Hence, a good minimum sample size is n = 100 so that as

less genotype information as possible gets blurred.

Figure 3 shows the frequency distribution of a sample

set containing 50 randomly chosen exomes. As expected,

the proportion of singletons is 10 times higher than that

of common SNVs. In the given example, the threshold

frequency for rare variants would be approximately 20%

(or 10 occurrences).

Aggregation quality

To assess the aggregation quality and hence the level of

ensured anonymity, a sample set of 10 individuals was

blurred and compared to one randomly selected and non-

aggregated sample of that set. For illustration, the sub-

samples in Figure 4 were sorted according to the original

sample IDs (sample ID, sub-sample ID on the X-axis). The

selected individual is sample no. 6. It turns out that the

overlap between a sample and its matching sub-samples is

not notably larger than with other sub-samples. This is

important if the data upload is intercepted or if the data-

base itself gets compromised. Moreover, the aggregation

also makes it impossible for an interested authority to

identify an individual by comparing their own genetic data

to the GrabBlur database (e.g. a law enforcement authority

searching for a suspect).

Data access
After the aggregation steps, the blurred data is written

into a new VCF file at the submitter site (Figure 5) from

where they are being uploaded to the public database.

This process does not start automatically so that the

submitter keeps control of the data they provide. After

uploading, other registered users are able to retrieve

information on the submitted SNVs and their associated

phenotypes. To access the GrabBlur database, we devel-

oped a web front end (accessible at http://grabblur.

ikmb.uni-kiel.de) that offers two main features:

(1) After registration, users can upload their data. The

web front end allows the user to choose an aggregated

VCF-file, which must have been created before using

the blurring software described above. The front end

sends the file to a client software running on the same

server, which checks the file for consistency and poten-

tial corruptions and then transfers it to the database.

During the upload-process, every SNV is automatically

functionally annotated using our in-house software tool

snpActs (http://snpacts.ikmb.uni-kiel.de). snpActs identifies

whether an SNV causes a protein coding substitution and

which amino acid is affected using the gene annotations

Figure 2 Ratio of the unblurred data with various sample set sizes. The ratio of unblurred data (SNVs where the genotype is not

aggregated) in relationship to the amount of aggregated samples using the default median factor of 1.5. The part of unblurred data increases

logarithmically to the number of aggregated samples. Through the blurring of the rare variants the portion of unblurred data is reaching a

plateau of about 70%. Hence, a good minimum sample size is n = 100 so that as less genotype information as possible gets blurred. For blurred

SNVs no genotype will be notified, only the contact data of the submitter will be named.
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from CCDS [10] and RefSeq [11]. The amino acid

changes in all iso-forms of the affected gene are classified

and ranked in the following order: “nonsense” (most likely

to be damaging), “readthrough”, “start-lost”, “splice site”,

“missense”, “synonymous” (least likely to be damaging).

To obtain more information for estimating whether an

SNV is likely to be damaging, snpActs also queries the

Human Gene Mutation Database “HGMD” [5]. HGMD

provides a database of comprehensive, in part manually

curated data on human inherited disease mutations. Since

this is a commercially available database, only an identi-

fier from the HGMD database is named in snpActs. All

results of these annotations, including the highest ranked

classification of the SNV, are stored in the database upon

upload of the data.

(2) All registered users are able to search the database

for loci of interest using either the chromosomal position,

the dbSNP IDs of known SNVs, gene symbols, or a protein

position in combination with a gene symbol. The latter is

particularly useful to identify potentially compound het-

erozygote samples. However, phase information needs to

be retrieved from the submitter via re-contact. Registered

users can also perform combined searches simultaneously

looking for terms of different type (e.g. “chr1:13272” and

“rs6605067” and “NOD2”), so the search result contains

information about the locus, i.e. weather it is situated

within a gene, the gene identifier and gene function, and

how many samples in the database carry an SNV at this

locus (Figure 6). The allele and genotype frequencies of

every SNV over all samples in the database are displayed

as well as publicly available allele frequencies from the

1000 Genomes Project [12] (phase1) and from the Exome

Variant Project [6] (ESP6500SI-V2). The user can access

further information for each of these sets of samples, if

provided by the submitter, including the associated trait in

the form of HPO terms (Figure 7). Additional information,

like the submitter contact information or the sample gen-

der (Figure 8), can be obtained also if provided.

Implementation

The aggregation software was written in C++ on an

Ubuntu Linux system. The runtime of the aggregation

increases linearly with the amount of samples. The con-

sumption of memory (RAM) increases logarithmically. On

a desktop PC, a VCF file with 43,000 SNV was aggregated

in less than 3 seconds using one core (Intel Xeon 4C,

2.0GHz). The aggregation of 50 exomes with about 40,000

- 45,000 SNVs needs approximately 128 MB RAM and

130 sec. The aggregation of 150 exomes needs about

7 minutes with approximately 350 MB RAM.

Figure 3 SNV frequency distribution in a sample of 50 exomes. Evidently, the proportion of singletons is 10 times higher than that of

common SNVs. In the depicted example, the threshold frequency for rare variants was approximately 20% resp. 10 SNVs.
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The interface for the creation of the initialization files

is programmed in Perl and uses JavaScript and AJAX to

display the HPO terms retrieved from a PostgreSQL

database.

The web interface for data access has been implemen-

ted using the Django web application framework [13]

(v1.5.4) and the Python programming language [14]

(v3.2.2). It is currently running on an Ubuntu Linux

Figure 4 Assessment of the aggregation quality. To assess the aggregation quality of GrabBlur, a sample set of 10 individuals was “blurred”

and compared to a non-aggregated sample of that set. For illustration purposes, the sub-samples were sorted according to the original sample

IDs (sample ID, sub-sample ID on the X-axis). The corresponding individual is sample no. 6. The overlap between the sub-samples originating

from this sample is not significantly higher than with the other samples.

Figure 5 Output file “aggregated VCF”. GrabBlur writes the aggregated SNV data of all samples into a new VCF file. This figure shows a

typical GrabBlur output of blurred SNVs. Some VCF information has been excluded, such as the dbSNP-ID and quality information, for

explanatory purposes.
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Server (12.04.3 LTS). The MySQL database containing

the actual GrabBlur data is located on another server

(with the same configuration) and is accessed using the

respective built-in modules of Django and Python.

Discussion

GrabBlur is a “light weight” tool to aggregate SNV data of

thousands of samples with a specific trait or phenotype

and to share the data with other via a public database.

The main goal of GrabBlur, namely to keep each indivi-

dual sample unidentifiable, was achieved by deleting

other important information from individual exomes or

genomes. For instance, all information of linked SNVs

must be dropped to avoid the reconstruction of a given

data set. But exactly this information is very valuable for

scientific studies. For example, rare variant association

analysis methods collapse rare variants into groups based

upon, for example, the functional annotation of genomic

regions. Whether GrabBlur can be used in such studies

needs to be verified individually for each analysis method

(for a review of methods, see [15]). However, GrabBlur is

intended mainly to serve human geneticists who try to

find more data on a variant and the phenotype of inter-

est. The user-friendly GrabBlur web interface should

inspire users to share their data and to use the tool for

their own purposes. Although GrabBlur anonymizes the

genetic data to a sufficient degree, a cautious user may

want to use GrabBlur only behind their own firewall to

handle aggregated information. While we encourage

users to share their data, we also support such “internal”

mirrors and provide instructions to set them up.

GrabBlur also has limitations that should not go unmen-

tioned. For example, the system is not yet checking for

duplicate uploads. It is thus possible that redundant data

end up in the GrabBlur database. Moreover, the quality of

an uploaded SNV may not have been adequately checked.

Detailed quality data, as it can be generated using our pre-

viously reported tool pibase [16], would require that users

also retrieve BAM files for their sequence data, run addi-

tional and standardized analyses. Moreover, the addition

of the quality scores would significantly inflate the Grab-

Blur database. We rather prefer that submitter provide

their contact details so that data users can enquire the

quality of particular SNVs directly. The submitter may

then go back to the raw data and use pibase, the Inte-

grated Genomics Viewer [17] or other tools to assess the

quality of the SNV in more detail. It is also possible with

GrabBlur to ask submitters for additional details on the

phenotype of a patient or for a detailed re-phenotyping

based on new scientific findings.

Figure 6 Web front end - search results. The figure shows an example search result for selected loci. The latter does not lie within a gene, so

no additional gene information is provided. For the other two search terms the in-silico predicted gene function and effect of the SNV on the

gene are provided. For all loci the number of samples in database with known genotype information is given - along with the frequencies for

the genotypes and just the alleles.

Figure 7 Web front end - samples associated with one locus. This view of the front end gives detailed information about the samples

associated with one particular locus including the actual genotype, the trait (as an user definable term) and the HPO ID and terms as they were

determined during the creation of the upload file.
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Figure 8 Web front end - sample details. In addition to the sample list (Figure 7) this detailed view provides the sex of the sample and the

contact information provided by the uploader to get more information on the sample.
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