
GRACE-1: Cross-Layer Adaptation for
Multimedia Quality and Battery Energy

Wanghong Yuan, Member, IEEE, Klara Nahrstedt, Senior Member, IEEE,

Sarita V. Adve, Member, IEEE, Douglas L. Jones, Fellow, IEEE, and Robin H. Kravets, Member, IEEE

Abstract—Mobile devices primarily processing multimedia data need to support multimedia quality with limited battery energy. To

address this challenging problem, researchers have introduced adaptation into multiple system layers, ranging from hardware to

applications. Given these adaptive layers, a new challenge is how to coordinate them to fully exploit the adaptation benefits. This paper

presents a novel cross-layer adaptation framework, called GRACE-1, that coordinates the adaptation of the CPU hardware,

OS scheduling, and multimedia quality based on users’ preferences. To balance the benefits and overhead of cross-layer adaptation,

GRACE-1 takes a hierarchical approach: It globally adapts all three layers to large system changes, such as application entry or exit, and

internally adapts individual layers to small changes in the processed multimedia data. We have implemented GRACE-1 on an HP laptop

with the adaptive Athlon CPU, Linux-based OS, and video codecs. Our experimental results show that, compared to schemes that adapt

only some layers or adapt only to large changes, GRACE-1 reduces the laptop’s energy consumption up to 31.4 percent while providing

better or the same video quality.

Index Terms—Energy-aware systems, support for adaptation, real-time systems, embedded systems.

!

1 INTRODUCTION

BATTERY-POWERED mobile devices that primarily process
multimedia data, such as image, audio, and video, are

expected to become important platforms for pervasive
computing. For example, we can already use a smartphone
to record and play video clips and use an iPAQ pocket PC
to watch TV. Compared to conventional desktop and server
systems, these mobile devices need to support multimedia
quality of service (QoS) with limited battery energy. There
is an inherent conflict in the design goals for high QoS and
low energy: For high QoS, system resources such as the
CPU often show high availability and utilization, typically
consuming high power; for low QoS, resources would
consume low power but yield low performance.

Although the requirement of high QoS and low energy is
challenging, it is becoming achievable due to the strong
advances in the adaptable system layers, ranging from

hardware to applications. For example, mobile processors
from Intel and AMD can run at multiple speeds, trading off

performance for energy. Similarly, multimedia applications
can gracefully adapt to resource changes while keeping the
user’s perceptual quality meaningful. Researchers have

therefore introduced QoS and/or energy-aware adaptation

into different system layers.1 Hardware adaptation dyna-
mically reconfigures system resources to save energy while
providing the requested resource service and performance
[3], [4], [5], [6], [7]. OS adaptation changes the policies of
allocation and scheduling in response to application and
resource variations [1], [8], [2], [9]. Finally, application
adaptation changes multimedia operations or parameters to
trade off output quality for resource usage or to balance the
usage of different resources [10], [11], [12].

The above adaptation techniques have been shown to be
effective for both QoS provisioning and energy saving.
However, most of them adapt only a single layer or two
joint layers (e.g., OS and applications [13], [14] or hardware
[15], [16], [17]), as shown in Fig. 1a. More recently, some
groups [2], [18], [19], [20] have proposed cross-layer
adaptation, in which all layers adapt together in a coordi-
nated manner, as illustrated in Fig. 1b. These cross-layer
approaches, however, adapt only at coarse time granularity,
e.g., when an application joins or leaves the system.

We believe that it is also necessary for a cross-layer
adaptive system to adapt at fine time granularity, e.g., in
response to small changes in the processed multimedia
data. The Illinois GRACE project is developing a novel
cross-layer adaptation framework that adapts multiple
system layers at multiple time granularities. This paper
presents the first generation implementation, called
GRACE-1. GRACE-1 coordinates the adaptation of the
CPU speed in the hardware layer, CPU scheduling in the
OS layer, and multimedia quality in the application layer in
response to system changes at both fine and coarse time
granularity. The challenging problem addressed in GRACE-
1 is as follows: Given all adaptive layers, how do we coordinate

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006 799

. W. Yuan is with DoCoMo USA Labs, 181 Metro Dr, Suite 300, San Jose,
CA 95110. E-mail: whyuan@illinoisalumni.org.

. K. Nahrstedt, S.V. Adve, and R.H. Kravets are with the Department of
Computer Science, University of Illinois, Urbana-Champaign, 201
N. Goodwin Ave., Urbana, IL 61801.
E-mail: {klara, sadve, rhk}@cs.uiuc.edu.

. D.L. Jones is with the Department of Electrical and Computer Engineering,
University of Illinois, Urbana-Champaign, 201 N. Goodwin Ave., Urbana,
IL 61801. E-mail: dl-jones@uiuc.edu.

Manuscript received 31 Aug. 2004; revised 20 Jan. 2005; accepted 2 Mar.
2005; published online 16 May 2006.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0255-0804.

1. This paper focuses on three layers—hardware, OS, and applications
—of stand-alone mobile devices such as portable video players. We also
consider middleware systems such as Puppeteer [1] and Dynamo [2] as
parts of the OS.

1536-1233/06/$20.00 ! 2006 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

them to achieve the benefits of cross-layer adaptation with
acceptable overhead.

To address this problem, GRACE-1 applies a global and an
internal adaptation hierarchy, balancing the scope and the
temporal granularity. Global adaptation coordinates all
three layers in response to large system changes at coarse
time granularity, e.g., when an application starts or exits.
The goal of global adaptation is to achieve a systemwide
optimization based on the user’s preferences, such as
maximizingmultimedia quality while preserving the battery
for a desired lifetime. On the other hand, internal adaptation
adapts a single layer to small changes at fine granularity,
e.g., when an MPEG decoder changes the frame type. The
goal of internal adaptation is to provide the globally
coordinated multimedia quality with minimum energy.

This paper makes three major contributions. First, we
propose and justify a hierarchical framework for cross-layer
adaptation. This framework consists of optimization-based
coordination for all three layers and adaptive control for the
CPU hardware and OS layers. Second, we design and
implement a cross-layer adaptive system for stand-alone
mobile devices. To the best of our knowledge, GRACE-1 is
the first real system that integrates and coordinates
adaptation in the CPU hardware, OS, and application
layers. Finally, and more importantly, we perform a case
study of a cross-layer adaptive system and analyze its
impact on QoS and energy. In particular, we have validated
GRACE-1 on an HP laptop with an adaptive Athlon CPU,
Linux-based OS, and video codecs. The experimental
results show that, compared to schemes that adapt only
some layers or only at coarse and medium time scales,
GRACE-1 reduces the total energy of the laptop by
1.4 percent to 31.4 percent, depending on application
scenarios, while providing better or same video quality.

The rest of the paper is organized as follows. Section 2
introduces models of adaptive layers and system changes
that trigger adaptation. Section 3 presents the design of
GRACE-1, focusing on its architecture and adaptation
hierarchy. Sections 4 and 5 show the implementation and
experimental evaluation, respectively. Section 6 compares
GRACE-1 with related work. Finally, Section 7 concludes
this paper.

2 SYSTEM MODELS

Our target systems are stand-alone mobile devices that
primarily run CPU-intensive multimedia applications for a
single user. This section introduces the adaptive models for
the CPU hardware, OS allocation, and multimedia applica-
tions, and discusses what kinds of changes GRACE-1
should adapt to. Although GRACE-1 is currently built on

these specific models, it can be extended to support other
adaptive models for I/O and network. Such an extension is
a part of our ongoing work.

2.1 Adaptive CPU Model

In the hardware layer, we consider reducing CPU energy. In
general, CPU energy can be saved by switching the idle
CPU into the lower-power sleep state or by lowering the
speed (frequency and voltage) of the active CPU. The first
approach, however, does not apply to our target multi-
media applications, which access the CPU periodically (e.g.,
every 30 ms) and, hence, cause a short idle interval in each
period. These idle intervals are often too short to put the
CPU into sleep due to the switching overhead. This paper
therefore focuses on the second approach, i.e., dynamic
frequency/voltage scaling (DVS).

Specifically, we consider mobile processors, such as
Intel’s Pentium-M and AMD’s Athlon, that can run at a
discrete set of speeds, ff1; ! ! ! ; fKg, trading off performance
for energy. The CPU power (energy consumption rate) is
dependent on the operating voltage [21]. When the speed
decreases, the CPU can operate at a lower voltage, thus
consuming less power. Since our goal is to reduce the total
energy consumed by the whole device, rather than CPU
energy only, we are more interested in the total power
consumed by the device at different CPU speeds. Without
loss of generality, we assume that the total device power
decreases as the CPU speed decreases, i.e., the CPU power
reduction is greater than the additional (if any) power
consumed by other resources such as memory due to the
CPU speed reduction. If this assumption does not hold, we
will never choose the CPU speed that results in more total
power but provides lower performance than another speed.
In general, the relationship between the speed f and the total
device power pðfÞ can be obtained via measurements.
Table 1, for example, shows the relationship, measured with
anAgilent oscilloscope, for anHPN5470 laptopwith a single
Athlon CPU. During the measurements, an MPEG video
player reads data from the local disk, decodes the data, and
displays the decoded frame; the network is turned off.

2.2 Adaptive Application Model

We consider multimedia tasks (processes or threads) such
as audio and video codecs that are long-lived (e.g., lasting

800 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006

Fig. 1. Adaptation in different layers. (a) Previous work adapts one or two layers at a time, while (b) this paper considers coordinated cross-layer
adaptation.

TABLE 1
Speed-Power Relationship for an HP N5470 Laptop

for minutes or hours) and CPU-intensive (i.e., the time
spent for I/O access is negligible relative to the CPU time).
Each task consumes CPU resource and generates an output.
Adaptive tasks can trade off output quality for CPU demand
by changing multimedia operations or parameters [22], [12],
[14]. For example, mpegplay, an adaptive MPEG decoder,
can decode the video with different dithering methods.
Different dithering methods need different numbers of CPU
cycles for the same frame (Table 2). We refer to the set of
quality levels a task supports as its quality space, Q, which
may be continuous or discrete.

For any quality level q 2 Q, a task releases a job (e.g.,
decoding a frame) every period P ðqÞ. The period is the
minimum time interval between successive jobs and can be
specified by the task based on its semantics such as the rate
to read, process, and write multimedia data. Each job has a
soft deadline, typically defined as the end of the period. By
soft deadline, we mean that a job should, but does not have
to, finish by this time. In other words, a job may miss its
deadline. Multimedia tasks are soft real-time tasks and,
hence, need to meet some percentage of job deadlines. This
percentage can be specified by the application developers or
users based on application characteristics (e.g., audio needs
to meet more deadlines than video).

2.3 Adaptive Allocation Model

A task consumes CPU cycles when executing each job. To
meet the deadline, the task needs to be allocated some
CPU cycles for each job. However, different jobs of the same
task may demand a different amount of cycles due to
variations in the input data (e.g., I, P, and B frames). Unlike
hard real-time tasks, soft real-time multimedia tasks do not
need worst-case-based allocation. We therefore periodically
allocate to each task a statistical number of cycles, CðqÞ,
which can be estimated with our previously developed
kernel-based profiler [23]. For example, if a video decoder
requires meeting 95 percent of deadlines and, for a
particular video stream and quality level, 95 percent of
frame decoding demands no more than 9$ 106 cycles, then
the parameter CðqÞ is 9$ 106. Correspondingly, the

allocated processing time to the task is CðqÞ
f

per period if
the CPU runs at the speed f .

Combining the adaptive CPU,OS, and applicationmodels
together, we get a cross-layer adaptation model (Fig. 2).
Specifically, we need to configure the CPU speed in the
hardware layer, the CPU allocation to each task in the OS
layer, and the quality of each task in the application layer.

2.4 Adaptation Triggers

Mobile systems often exhibit dynamic variations, which
trigger adaptation in the GRACE-1 system. This paper
considers two kinds of variations, changes of the number of
tasks (i.e., task entry or exit) and changes in the input data
of a task. These two kinds of variations occur at different
time scales and have different impact: The former requires
reallocating CPU among tasks at coarse granularity (e.g., in
minutes or per-task), while the latter changes CPU usage a
little bit at fine granularity (e.g., in tens of milliseconds, per-
job, or cross multiple jobs for a scene change). An adaptive
system needs to respond to the small changes in the latter
case; otherwise, these small changes may cause deadline
miss, thus degrading multimedia quality, or idle the CPU,
thus wasting energy.

3 HIERARCHICAL CROSS-LAYER ADAPTATION

This section presents the design of the GRACE-1 cross-layer
adaptation framework. We describe the architecture of
GRACE-1 and its major operations.

3.1 Overview

GRACE-1 is a cross-layer adaptation framework that
coordinates the adaptation of the CPU speed, OS schedul-
ing, and multimedia quality for stand-alone mobile devices.
Fig. 3 shows the architecture of GRACE-1, which consists of
five major components: a coordinator, a task scheduler, a
CPU adapter, a battery monitor, and a set of task-specific
adaptors. The coordinator coordinates all three layers based
on the available energy, task quality levels, and user’s
preferences. Each task has a specific task adapter, which
adjusts the operations or parameters for the task. The
CPU adapter minimizes the CPU speed and total power
while providing the required performance. The scheduler
enforces the coordinated allocation for all tasks. It also
monitors the cycle usage of each task and adapts the
CPU allocation in response to the usage changes.

The key problem addressed in GRACE-1 is as follows:
Given the three adaptive layers, how do we coordinate them to

YUAN ET AL.: GRACE-1: CROSS-LAYER ADAPTATION FOR MULTIMEDIA QUALITY AND BATTERY ENERGY 801

TABLE 2
CPU Demand for Different Dithering Methods

Fig. 2. Cross-layer adaptation for adaptive CPU speed, CPU allocation, and multimedia quality.

achieve the benefits of the cross-layer adaptation with acceptable
overhead?GRACE-1 takes three steps to address this problem.
First, when a task joins or leaves the system, GRACE-1 uses
global adaptation todecide thequality level andCPUallocation
for each task and the average power consumption of the
device. These global decisions try to achieve a systemwide
optimization, such as maximizing the overall multimedia
quality for a desired battery lifetime. Second, GRACE-1 uses
speed-aware real-time scheduling to enforce the globally co-
ordinated decisions. Finally, GRACE-1 uses internal adapta-
tion to adapt the CPU allocation and/or the CPU speed in
response to the changes in the CPUusage of individual tasks.
The goal of the internal adaptation is to minimize energy
consumption while enabling each task to operate at the
coordinated quality level. We next discuss the three major
operations in detail.

3.2 Global Adaptation

Global adaptation happens when the CPU resource needs
to be reallocated among tasks, e.g., due to the entry or exit
of a task. In such a case, GRACE-1 coordinates all three
layers (the CPU hardware, OS allocation, and multimedia
quality) to achieve a system-wide optimization based on the
preferences of the user of the device. The user may have
different preferences for trading off multimedia quality
against energy in a battery-powered device. For example,
the user may want to maximize multimedia quality when
the battery is high and minimize power consumption to
achieve a desired lifetime (e.g., finishing a two-hour movie)
when the battery is low.

The coordinator takes the user’s preferences as an input
for the global adaptation (Fig. 3). Although GRACE-1 can
support different user preferences, this paper uses a
representative preference, called lifetime-aware max-quality
min-power, that considers battery lifetime, multimedia
quality, and power consumption together. In this prefer-
ence, the user wants 1) to maintain the battery for a desired
lifetime, 2) to maximize the current multimedia quality, and
3) to minimize the total power consumed by the device. The
desired lifetime can be specified by the user based on, e.g.,
how long tasks should run before recharging the battery. If
the user does not specify the desired lifetime, the
coordinator uses a very short lifetime to relax the lifetime
constraint.

More formally, let us assume that 1) there are n adaptive
tasks running concurrently, 2) each task i; 1 % i % n;

demands CiðqiÞ cycles per period PiðqiÞ for a quality level
qi in its quality space Qi, and 3) the residual battery energy
is E, the desired lifetime is T , and the total power of the
device is pðfÞ at the CPU speed f . The global coordination
problem for the lifetime-aware max-quality min-power pre-
ference is to select a quality level qi for each task and a
CPU speed f such that

maximize QF ðq1; :::; qnÞ ðoverall quality functionÞ; ð1Þ
minimize pðfÞ ðtotal device powerÞ; ð2Þ
subject to pðfÞ $ T % E ðlifetime constraintÞ; ð3Þ

Pn

i¼1

CiðqiÞ

f

PiðqiÞ
% 1 ðCPU constraintÞ; ð4Þ

qi 2 Qi i ¼ 1; :::; n; ð5Þ
f 2 ff1; :::; fKg; ð6Þ

where (4) is the CPU scheduling constraint. This constraint
requires that the total CPU utilization of all tasks is no more
than 1. The reason is that GRACE-1 uses an earliest-
deadline-first (EDF)-based scheduling algorithm, which
will be discussed in Section 3.3.

Equation (1) denotes the overall quality of all concurrent
tasks. Now, the problem is how to quantify the overall
quality. Although there is a lot of related work (such as
utility functions [24], [14]) on measuring multimedia quality
from the user’s point of view, it is still challenging to
quantify the perceptual quality of an adaptive multimedia
task and the overall quality of concurrent tasks. Instead of
quantifying the perceptual quality, GRACE-1 characterizes
multimedia quality in a qualitative way through a weighted
max-min allocation approach, which is commonly used in
network bandwidth allocation [25]. Intuitively, a task
delivers higher quality with more CPU allocation. The
overall quality of concurrent tasks can be reduced to the
level of the most important task; e.g., the movie quality is
bad with great video but poor audio.

Specifically, we make two assumptions: First, at the same
CPU speed f , each adaptive task increases its output quality
as its CPU utilization

CiðqÞ
f

PiðqÞ

802 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006

Fig. 3. Architecture of the GRACE-1 cross-layer adaptation framework.

increases. This assumption is reasonable; otherwise, the task

will never run at the quality level that demands more CPU

but provides lower quality than another level. Second, at

each speed f , each adaptive task has a minimum CPU

utilization Umin
i ðfÞ and a maximum utilization Umax

i ðfÞ for

the lowest and highest quality level, respectively. With these

assumptions, GRACE-1 makes global adaptation as follows:

. The coordinator finds the allowable speed,

f ¼ maxff : pðfÞ $ T % E and f 2 ff1; :::; fKgg

that allows the battery to last for the desired

lifetime T .
. The coordinator initially allocates to the tasks their

minimum CPU utilization at the allowable speed,
Umin
i ðfÞ and increases their CPU allocation propor-

tional to their weight (importance to the user) until
all tasks have the maximum utilization, Umax

i ðfÞ, or
their total CPU utilization becomes 100 percent. This
weighted max-min allocation policy makes sense for
mobile devices since they often have a single user
who can prioritize concurrent tasks.

. Based on this coordinated CPU allocation, each task
then configures its QoS parameters, such as frame
rate.2 If a task supports only a discrete set of quality
levels, the task is configured to the highest quality
level allowed by the CPU allocation.

Fig. 4 shows the global coordination algorithm. This
algorithm provides an approximate solution. Its complexity
is Oðn2 þ

Pn
i¼1 mi þKÞ, where n is the number of con-

current tasks, mi is the number of discrete quality levels of
task i (mi ¼ 1 if task i can change quality continuously), and
K is the number of CPU speeds.

3.3 Speed-Aware Real-Time Scheduling

After global adaptation, GRACE-1 needs to enforce the
global decisions on multimedia quality and power con-
sumption. In particular, each task should provide the
coordinated quality and the device should consume no
more than the coordinated power. To enforce these
decisions, GRACE-1 uses a variable-speed constant band-
width server (VS-CBS) scheduling algorithm [27]. This
algorithm is extended from the CBS algorithm [28] for an
energy-aware context.

Specifically, when a task joins, the OS creates a VS-CBS
for the task. The VS-CBS is characterized by four para-
meters: a period P , a maximum cycle budget C, a budget c,
and a deadline d. The maximum budget and period equal
the allocated number of cycles and period, respectively, of
the served task. The budget is initialized as the maximum
budget, and the deadline is initialized as the deadline of the
first job. The scheduler always selects a VS-CBS with the
earliest deadline. As the selected VS-CBS executes a job, its
budget c is decreased by the number of cycles the job
consumes. That is, if the VS-CBS executes for !t time units
at speed f , its budget is decreased by !t$ f . Whenever c is
decreased to 0, the budget is recharged to C and the
deadline is updated as d ¼ dþ P . At that time, the VS-CBS
may be preempted by another one with an earlier deadline.

Note that the deadline of the VS-CBS may be different
from the deadline of the current job executed by the server.
Compared to approaches that use job deadline and allocate
cycles to the job directly, VS-CBS is better to handle
overruns (i.e., a job needs more cycles than allocated). In
particular, these approaches typically protect overruns by
running the overrun job in best effort mode until the next
period begins [29]. The VS-CBS algorithm, instead, post-
pones the VS-CBS deadline. If the VS-CBS still has the
earliest deadline, it continues to execute the job, which
increases the possibility that the overrun job meets its
deadline.

YUAN ET AL.: GRACE-1: CROSS-LAYER ADAPTATION FOR MULTIMEDIA QUALITY AND BATTERY ENERGY 803

Fig. 4. Algorithm for global adaptation.

2. Although not explicit here, Grace can support quality consistency of
dependent tasks (e.g, lip synchronization among audio and video) by
treating these tasks as a task group and adapting each group jointly [26].

Fig. 5 shows an example of the VS-CBS scheduling
algorithm. Initially, when task T1 joins at time 0, the
coordinator performs a global adaptation. As a result of
the global adaptation, T1 is allocated 7:5$ 106 cycles per
period 30 ms and the CPU speed is set to 7:5$106

30
¼ 250 MHz.

VS-CBS1 is created for T1, initializes its budget to
7:5$ 106 cycles, and its deadline to d1;1 ¼ 30 ms. VS-CBS1
executes T1

0s first job, T1;1, which has deadline 30 ms. At time
20 ms, task T2 joins and another global adaptation happens.
As a result, the CPU speed is increased to 500 MHz and
VS-CBS2 is created for T2. VS-CBS2 initially has budget 5$
106 and deadline d2;1 ¼ 40 ms. Since VS-CBS1 has the
earliest deadline, it continues to execute until time 25, when
its budget becomes 0. The budget of VS-CBS1 is then
recharged to 7:5$ 106 cycles and its deadline is updated as
d1;2 ¼ d1;1 þ 30 ¼ 60 ms. At this time, VS-CBS2 has the
earliest deadline, so it starts to execute job T2;1.

This example illustrates that the VS-CBS algorithm
enforces the coordinated allocation at the coordinated
speed and provides isolation among tasks. This algorithm,
however, cannot efficiently handle overruns and underruns
(i.e., a task needs fewer cycles than the allocated). An
overrun may result in deadline miss and, hence, degrade
quality. An underrun, on the other hand, may idle the CPU
and, hence, waste energy, for example, when job T1;1 misses
its deadline due to overrun. Similarly, when job T2;2

underruns at time 55, the CPU becomes idle. We next
discuss how to use internal adaptation to handle overruns
and underruns.

3.4 Internal Adaptation

GRACE-1 performs internal adaptation to handle small
variations in the CPU usage of each task. In general, internal
adaptation can happen in each of the hardware, OS, and
application layers. For example, multimedia tasks can
internally adapt QoS parameters within an acceptable range
of the globally coordinated quality level, e.g., through rate
control [1], [12]. The CPU hardware can also adapt

internally to save more energy since the coordinated speed
may be larger than the total CPU demand due to the
discrete speed options. For example, Ishihara and Yasuura
[30] proposed a simulation approach that provides the
required performance by executing each cycle (or a group of
cycles) at two different speeds.

This paper does not discuss the internal adaptation in the
application and hardware layers for two reasons: 1) The
internal application adaptation is often application-specific
and 2) when used in real implementations, the above
internal CPU adaptation may incur large overhead since the
cycle division results in frequent speed changes and
interrupts. Instead, we focus on the internal OS adaptation
and its consequent CPU adaptation. The basic idea of the
internal OS adaptation is to adjust the CPU allocation (and
possibly the CPU speed) of each task based on its runtime
CPU usage. In particular, we investigate two approaches,
per-job adaptation and multijob adaptation. The former
adjusts the cycle budget for the current job of a task upon
an overrun or underrun, while the latter adjusts the cycle
budget for all later jobs of a task in case of consistent
overruns or underruns.

3.4.1 Per-Job Adaptation

In per-job adaptation, the scheduler allocates an extra
budget to or reclaims the residual budget from a job when it
needs more or less cycles than allocated. Specifically, let us
consider a task Ti underrun at time t with a residual budget
of bi cycles. This residual budget would be wasted since the
task has no job to execute until the start of the next period, t0.
To avoid this waste, the scheduler reclaims the residual
budget from the VS-CBS. This reclamation enables a lower
CPU speed. At the current speed f , which can be the
globally coordinated speed or the speed adapted in
previous internal adaptations, the original total cycle
demand in the time interval ½t; t0) is f $ ðt0 * tÞ, but the
new total cycle demand becomes f $ ðt0 * tÞ * bi due to the

804 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006

Fig. 5. An example of the VS-CBS scheduling algorithms.

reclamation. As a result, the speed can be decreased to
flow ¼ f * bi

t0*t
in the interval ½t; t0).

Similarly, consider a task Ti overrun at time t. To enable
the task to finish the overrun job by its deadline t0, we can
allocate an extra budget to the serving VS-CBS, rather than
recharging its budget and postponing its deadline. The
number of extra cycles, however, is known only after the job
finishes. We, therefore, heuristically predict that the current
job needs the same amount of extra cycles as the last
overrun job of the task. For a predicted overrun of bi cycles,
the total budget demand over the interval ½t; t0Þ becomes
f $ ðt0 * tÞ þ bi. To support this extra allocation, the CPU
needs to run at a higher speed fhigh ¼ f þ bi

t0*t
.

Fig. 6 illustrates the per-job adaptation. The idea of
underrun handing is similar to previous reclamation
approaches [31], [16], [32]. The idea of accelerating the
CPU to handle overrun is new. The per-job adaptation
shows the flexibility of our speed-aware real-time schedul-
ing algorithm: The scheduler can handle underruns and
overruns by changing the CPU speed without affecting the
CPU allocation of other tasks.

3.4.2 Multijob Adaptation

In the global adaptation, the coordinator makes decisions
on CPU allocation according to the statistical cycle demand
of each task. This statistical demand may change over time
due to variations in the input data (e.g., scene changes).
Fig. 7, for example, plots the variations of the instantaneous

and statistical cycle demands of an MPEG decoder when it
plays video 4dice.mpg with frame size 352$ 240 pixels.
The decoder’s statistical cycle demand, defined as the
95th percentile of the job cycles, changes for different video
segments. For example, the 95th percentile of all jobs is
much higher than that of the first and last 300 jobs but is
lower than that of the middle 300 jobs.

The dynamic nature of the statistical demand implies
that a multimedia task may consistently underrun or
overrun its coordinated allocation. The consistent under-
runs or overruns would trigger the above per-job adapta-
tion frequently. Such frequent adaptation is inefficient due
to the cost associated with each speed change (see
Section 5.2). To avoid this, GRACE-1 triggers multijob
adaptation to update the statistical demand of the task
(and, hence, the allocation to all later jobs of the task)
according to its recent CPU usage.

Specifically, the scheduler uses a profiling window to
keep track of the number of cycles each task has consumed
for its recent W jobs, where W is the window size (W is set
to 100 in our implementation). When the overrun or
underrun ratio of a task exceeds a threshold, the scheduler
calculates a new statistical cycle demand, e.g., as the
95th percentile of the job cycles in the profiling window.
Let C0 be the new statistical cycle demand. The scheduler
then uses an exponential average strategy, commonly used
in control systems [10], [33], to update the task’s statistical
demand C as !$ C þ ð1* !Þ $ C0, where ! 2 ½0; 1) is a
tunable parameter and represents the relative weight
between the old and new cycle demands (! is set to 0.2 in
our implementation). Consequently, the scheduler will
update the maximum cycle budget of the serving VS-CBS.

When the multijob adaptation updates a task’s statistical
cycle demand, the total CPU demand of all concurrent tasks
changes accordingly. If the total demand exceeds the
allowable CPU speed, the multijob adaptation fails. After
reaching a certain failure threshold, the scheduler can either
tell the task to degrade its quality and CPU requirements or
trigger a global adaptation to reallocate the CPU among all
tasks. GRACE-1 takes the latter approach since it can
potentially achieve a better configuration. For example, if an
important task, such as a user-focused video, consistently
overruns and the CPU already runs at the maximum speed,

YUAN ET AL.: GRACE-1: CROSS-LAYER ADAPTATION FOR MULTIMEDIA QUALITY AND BATTERY ENERGY 805

Fig. 6. Per-job adaptation for handling underruns and overruns. (a) Reclaim budget to handle underrun. (b) Allocate extra budget to handle overrun.

Fig. 7. Variations of the instantaneous and statistical cycle demand of an

MPEG video decoder.

GRACE-1 can allocate more cycles to the important task by
decreasing the allocation to other less important tasks.

In summary, to handle variations in the CPU usage of
individual tasks, GRACE-1 integrates three different adap-
tations: per-job adaptation, multijob adaptation, and global
adaptation, and applies them at different time scales. Fig. 8
illustrates this integration.

4 IMPLEMENTATION

We have implemented a prototype of the GRACE-1 cross-
layer adaptation framework. The hardware platform is an
HP Pavilion N5470 laptop with a single AMD Athlon CPU
[34]. This CPU supports six different speeds: 300, 500, 600,
700, 800, and 1,000 MHz, and its speed and voltage can be
adjusted dynamically under operating system control. The

operating system is Red Hat 8.0 with a modified version of
Linux kernel 2.6.5, as discussed below.

Fig. 9 illustrates the software architecture of the proto-
type implementation, which is similar to the design
architecture in Fig. 3. The entire implementation contains
2,605 lines of C code, including about 185 lines of
modification to the Linux kernel. The task adapter is
application-specific and, hence, is integrated into the
application task. In the Linux kernel, we add two loadable
modules, one for the CPU adapter and one for the
coordinator and soft real-time (SRT) scheduler. The
PowerNow module (the CPU adapter) changes the
CPU speed by writing the speed and corresponding voltage
to a system register FidVidCtl [34].

The real-time scheduling module (the coordinator and
SRT scheduler) is hooked into the standard Linux

806 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006

Fig. 8. Applying various adaptations at different time scales to handle CPU usage variations.

Fig. 9. Software architecture of GRACE-1 implementation.

TABLE 3
New System Calls for GRACE-1

scheduler, rather than replacing the latter. In doing so, we
can support the coexistence of real-time and best-effort
applications and also minimize the modification to the
kernel. Table 3 lists new system calls for multimedia tasks
to communicate with the kernel and illustrates how to use
these system calls. These new system calls are designed
for adaptive applications. They, however, become a
limitation for legacy applications that cannot be modified.
To support legacy applications, GRACE-1 can be enhanced
as follows: First, the OS kernel can derive application
requirements and control application behavior. For exam-
ple, the scheduler can derive the period of applications by
monitoring their CPU usage pattern [35] and further
control their execution rate via CPU allocation. Second,
middleware such as Puppeteer [1] can be used to adapt
applications without open source.

The SRT scheduler is time-driven. To improve the
granularity of soft real-time scheduling, we add a high
resolution timer [36] with resolution 500 "s into the kernel
and attach the SRT scheduler as the call-back function of the
timer. As a result, the SRT scheduler is invoked every
500 "s. When the SRT scheduler is invoked, it charges the
cycle budget of the current task’s VS-CBS, updates its
deadline if necessary, and sets the scheduling priority of the
current task based on its VS-CBS’s deadline. After that, the
SRT scheduler invokes the standard Linux scheduler, which
in turn dispatches the task with the highest priority.

5 EXPERIMENTAL EVALUATION

This section experimentally evaluates the GRACE-1 cross-
layer adaptation framework. We describe the experimental
setup and then present the overhead of GRACE-1 and its
benefits of global and internal adaptation. These results
demonstrate that GRACE-1 achieves the benefits of the
cross-layer adaptation with acceptable overhead.

5.1 Experimental Setup

Our experiments are performed on an HP N5470 laptop
with 256 MB RAM and without network connection. We
use an Agilent 54621A oscilloscope to measure the energy

consumed by the laptop. Specifically, we remove the battery
from the laptop and measure the current and voltage of the
AC power adaptor, as shown in Fig. 10. The total power
consumed by the laptop is the product of the measured
current and voltage and the energy consumption is the
integral of the power over time.

The experimental applications include an H263 video
encoder and an MPEG video decoder, both of which are
single-threaded. The H263 encoder, based on the TMN (Test
Model Near-Term) tools, supports three quality levels with
different quantization parameters: 5, 18, and 31. All three
levels encode a frame every 150 ms. Before encoding each
frame, the H263 encoder retrieves the coordinated quality
level from the kernel and sets the quantization parameter
correspondingly.

The MPEG decoder, based on the Berkeley MPEG tools,
supports four quality levels with different dithering
methods: gray, mono, color, and color2. All four levels
decode a frame every 50 ms. When adapting the dithering
method, the MPEG decoder restarts to decode the video
from the current frame number with the new dithering
method. This quality adaptation may incur a large overhead
due to the restart. The MPEG decoder also uses the X library
to display the decoded image. To address the dependency
between the MPEG decoder and the X server, we let them
share a VS-CBS, which executes the decoder most of the
time but executes the X server when it is called by the
decoder. Correspondingly, the SRT scheduler uses the
priority inheritance protocol [37] to set the scheduling
priority of the X server to that of the decoder when the
decoder calls the X library.

For each quality level of the above two codecs, we use
our previously developed kernel-based profiler [23] to
profile the number of cycles for each frame processing
and estimate the statistical cycle demand as the
95th percentile cross all frames. This demand enables each
codec to meet about 95 percent of deadlines. The input for
the MPEG decoder is StarWars.mpg with frame size
320$ 240 pixels and 3,260 frames. The input for the
H263 encoder is Paris.cif with 1,065 frames. Table 4
summarizes the quality levels of these two codecs. When
these codecs start, they tell the above parameters to the
kernel. The kernel then stores them into the process control
block of the corresponding codec.

5.2 Overhead

In the first set of experiments, we analyze the overhead of
GRACE-1. Specifically, we measure the time cost for global
adaptation, real-time scheduling, internal adaptation, and
new system calls. Unless specified otherwise, we run the
CPU at the lowest speed, 300 MHz, to measure the time
elapsed during each operation. This elapsed time represents

YUAN ET AL.: GRACE-1: CROSS-LAYER ADAPTATION FOR MULTIMEDIA QUALITY AND BATTERY ENERGY 807

Fig. 10. Power measurement with a digital oscilloscope.

TABLE 4
Quality Levels for Two Adaptive Multimedia Codecs

the worst-case cost in terms of different CPU speeds.
Although we are unable to directly measure the energy cost
(i.e., energy consumed during each operation), our results
imply that it is small since the time cost is small.

To measure the cost for global adaptation, we run one to
five MPEG decoders at a time (mobile devices seldom run
more than five active applications concurrently) and
measure the time elapsed for coordinating the CPU, OS,
application layers and determining their configuration
(Steps 1 and 2 in Fig. 4). The results in Fig. 11 show that
the cost for global adaptation increases significantly with
the number of tasks, but is quite small (below 300 "s) for up
to five tasks. GRACE-1, however, cannot invoke global
adaptation frequently for two reasons. First, the cost
reported here does not include time for configuring each
layer based on the global decisions. This time may be large,
especially in the application layer, e.g., the MPEG decoder
takes hundreds of milliseconds to change its dithering
method. Second, frequent global adaptation may result in
rapid fluctuation of the perceived quality, which could be
annoying to the user.

To measure the cost for soft real-time scheduling, we run
one to five MPEG decoders at a time and measure the time
elapsed for each invocation of the SRT scheduler. Fig. 12
plots the results. The scheduling cost is below 4 "s and,
hence, negligible for multimedia processing. In terms of
relative overhead, the scheduling cost is below 0.8 percent
since the granularity of soft real-time scheduling is 500 "s

(recall that we use a 500 "s-resolution timer to invoke the
SRT scheduler). Further, the cost of real-time scheduling
does not increase significantly with the number of con-
current tasks. The reason is that, like the Oð1Þ scheduling

algorithm in Linux kernel 2.6, our real-time scheduler also
uses an Oð1Þ algorithm, which primarily maintains the
status of the current task.

Now, we analyze the cost of the adaptation in the CPU
and operating system layers. To measure the cost for
CPU speed change, we adjust the CPU from one speed to
another and measure the time elapsed for each adjustment,
during which the CPU cannot perform computation. Fig. 13
plots the results. The cost for speed adaptation depends on
the destination speed and is below 40 "s. This cost is
acceptable for GRACE-1 to adapt the CPU speed at most
twice per job, one for handling overrun or underrun and the
other for recovering the speed at a new period.

To measure the cost for internal operating system
adaptation, we run one MPEG decoder and measure the
time elapsed during each per-job and multijob adaptation.
The results (Fig. 14) show that multijob adaptation has a
much larger overhead (factor of 100) than per-job adapta-
tion. However, both per-job and multijob adaptations incur
negligible overhead relative to multimedia processing. For
example, the cost of multijob adaptation is below 22"s,
which is less than 0.05 percent of the time for decoding an
MPEG frame.

Finally, we measure the cost for the system calls (Table 3).
To do this, we run three MPEG decoders and measure the
time elapsed during each system call in the application
level. Fig. 15 plots the cost, which is negligible relative to
multimedia processing for the following reasons: First,
although getQoS is called once per job, the cost per call is
very small. Second, although enterSRT, setQoS, and
exitSRT have larger costs per call, they are called only
once or a few times per task. Finally, although finishJob

808 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006

Fig. 11. Cost of global adaptation. The solid line shows the mean of six

measurements and the error bars show the minimum and maximum of

the six measurements.

Fig. 12. Cost of soft real-time scheduling. The solid line shows the mean

of 5,000 measurements and the error bars show the 95 percent

confidence intervals.

Fig. 13. Cost of changing CPU speed. The solid line shows the mean of

12 measurements and the error bars show the minimum and maximum

of the 12 measurements.

Fig. 14. Cost of internal adaptation. The bars show the mean of

six measurements and the error bars show the minimum and maximum

of the six measurements.

has a large cost (in milliseconds) per call, this cost does not
matter from the QoS point of view for the following reason:
Immediately after calling finishJob, the application is
suspended in the kernel until the next period when the next
job is available and finishJob returns from the kernel. In
other words, the cost of finishJob includes the time when
the application waits for the next period.

Another interesting result from Fig. 15 is that setQoS

and finishJob both exhibit large deviations in their cost.
For setQoS, it may trigger a global adaptation if the task
sets the last quality level. For finishJob, the calling task is
usually suspended until the next period, but starts a new
job immediately if the task finishes the previous job at or
after the deadline.

5.3 Benefits of Global Adaptation

We now analyze the benefits of GRACE-1’s global adapta-
tion for QoS provisioning and energy saving. To do this, we
compare GRACE-1 with other adaptation schemes that
adapt only some of the three system layers:

. No-adapt. This is a baseline system. The CPU runs at
the highest speed. Each task operates at the highest
quality level. The operating system does not handle
overruns and underruns.

. CPU-only. Same as no-adapt except that the CPU
adapts when a task joins or leaves. The CPU sets the
speed to meet the total demand of all concurrent
tasks, all of which operate at the highest quality
level.

. CPU-app. Joint adaptation in the hardware and
application layers. Each task adapts when it joins:
It configures its quality level as high as possible
given the available CPU resource when the task
joins. The CPU adapts when a task joins or leaves:
The CPU sets the speed to meet the total demand of
all concurrent tasks.

For a fair comparison, GRACE-1 does not perform
internal adaptation here. We perform two kinds of experi-
ments under each adaptation scheme: 1) single run, in which
we run each of the MPEG decoder and H263 encoder one at

a time, and 2) concurrent run, in which we start an
H263 encoder and start an MPEG decoder 60 seconds later.
Table 5 shows the desired lifetime for the single and
concurrent runs (i.e., the time until each experiment
finishes). Although the experiment time is short, it is
enough to evaluate GRACE-1. In the concurrent run, the
H263 encoder and MPEG decoder have weights 0.8 and 1.0,
respectively; a codec exits immediately if there is insuffi-
cient CPU resource. This concurrent run represents several
realistic scenarios, such as a video-conferencing client that
compresses the video captured at its own side and displays
the video from the other clients, and a video recorder that
plays back the recorded video while capturing new video.

In each experiment, we measure three metrics: energy,
achieved lifetime, and CPU allocation. The last metric indicates
multimedia QoS in a qualitative way based on the weighted
max-min policy in which the overall quality is better if the
minimum allocation to tasks is high. We do not measure the
actual battery lifetime due to the difficulties in recharging
the same battery energy for different adaptation schemes.
We instead assign an energy budget and decrease it by the
energy consumed by the laptop as the experiment runs. The
achieved lifetime is the time interval until the energy
budget is exhausted or no more task will run. We repeat the
experiments with different energy budgets in terms of the
percentage of the highest demanded energy that is suffi-
cient for the CPU to always run at the highest speed for the
desired lifetime.

Fig. 16 reports the achieved lifetime and energy con-
sumption when the energy budget varies from 60 percent
(which enables the CPU to run at the lowest speed for the
desired lifetime) to 100 percent. In the single runs, GRACE-
1 always achieves the desired lifetime and extends the
lifetime by 6.4 percent to 38.2 percent when the energy
budget is low. The reason is that GRACE-1 considers the
energy constraint and is aware of the lifetime when
coordinating the CPU, OS, and application layers in the
global adaptation. In contrast, other schemes are oblivious
to lifetime.

In terms of energy, GRACE-1 always consumes the
lowest energy. Specifically, for the single H263 case with
energy budget of 70 percent, GRACE-1 allocates CPU
bandwidth 411 MHz to the H263 encoder for the desired
lifetime, while other schemes allocate the highest CPU
demand to the H263 but with shorter lifetime. We also
notice that CPU-only and CPU-app extend the lifetime and
save energy compared to no-adapt. This shows the benefits
of CPU adaptation since the CPU does not need to always
run at the highest speed.

In the concurrent run, GRACE-1 achieves the desired
lifetime when the energy budget is no less than 80 percent,
which is sufficient to concurrently run the H263 encoder
and MPEG decoder at their lowest quality levels. In
particular, when the energy budget is 80 percent, GRACE-
1 extends the lifetime by 9.8 percent relative to CPU-app,
which also runs two codecs together by adapting their
quality but does not coordinate their adaptation. When the
energy budget is 60 percent or 70 percent, the global

YUAN ET AL.: GRACE-1: CROSS-LAYER ADAPTATION FOR MULTIMEDIA QUALITY AND BATTERY ENERGY 809

Fig. 15. Cost of new system calls. The bars show the mean of

10 measurements and the error bars show the minimum and maximum

of the 10 measurements.

TABLE 5
Desired Lifetime for Single and Concurrent Runs

adaptation succeeds when the H263 encoder starts, but fails
when the MPEG decoder starts. This failure causes the
MPEG decoder to be rejected. That is, GRACE-1 runs only
the H263 encoder, thus resulting in a shorter lifetime. This
shows that GRACE-1 is limited by few quality levels of
codecs, i.e., these two codecs cannot run concurrently when
the allowable speed is low due to the low energy budget.

In terms of energy, GRACE-1 reduces energy by
5.1 percent to 31.4 percent relative to CPU-app, though they
run the same number of tasks. GRACE-1 consumes more
energy than no-adapt and CPU-only when the energy budget
is greater than 70 percent. The reason is that GRACE-1 runs
two tasks while the latter two schemes run the H263
encoder task only with shorter lifetime.

After analyzing lifetime and energy, we next analyze
next the CPU allocation to tasks. In the single runs, GRACE-
1 limits the CPU speed for the desired lifetime and then
allocates CPU to the single task based on the allowable
speed, while other schemes always allocate the highest
CPU demand to the single task and, hence, may use up the

energy before the lifetime. We, hence, focus on the
concurrent run. Figs. 17 and 18 show the concurrent
allocation with energy budget of 80 percent and 100 percent,
respectively.

Clearly, no-adapt and CPU-only are oblivious to applica-
tion adaptation and allocate CPU only to the H263 encoder,
which starts first. This is not desirable for concurrent
execution. GRACE-1 and CPU-app both adapt applications
to run two codecs concurrently. However, GRACE-1
coordinates the adaptation and allocates CPU in the user-
specified weighted max-min fair manner. In particular, with
an energy budget of 80 percent, GRACE-1 limits the total
allocation (and, hence, CPU speed) for the desired lifetime
and finishes two codecs; CPU-app, on the other hand, runs
each codec at as high a quality as possible, but does not
finish the MPEG decoder. When the energy budget is
100 percent and enables the highest CPU speed, GRACE-1
coordinates the allocation to the two codecs and has a
higher minimum allocation than CPU-app in the time
interval [60, 223] when two codecs run concurrently. This

810 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006

Fig. 16. Comparing GRACE-1 with systems adapting only some layers: The bars show the mean of five measurements and the error bars show the
minimum and maximum of the five measurements. (a) Lifetime for H263 encoder. (b) Energy for H263 encoder. (c) Lifetime for MPEG decoder.
(d) Energy for MPEG decoder. (e) Lifetime for concurrent run. (f) Energy for concurrent run.

implies that GRACE-1 achieves a better overall quality in

terms of the weighted max-min policy.

5.4 Benefits of Internal Adaptation

We now analyze the benefits of GRACE-1’s internal

adaptation at fine time granularity. To do this, we compare

GRACE-1 with the following schemes that perform global

cross-layer adaptation only at coarse and medium time

granularity:

. Coarse-only. It coordinates the adaptation of the CPU,
OS, and applications when a task joins or leaves.
This represents cross-layer adaptive systems (e.g.,

[18], [19], [20]) that handle only large system changes
at coarse time scales.

. Coarse-medium. It is the same as coarse-only except
that it also dynamically updates the CPU demand of
each task based on its 95th percentile CPU usage of
its recent 100 jobs and adjusts the CPU speed to
reach a full utilization.

Note that, in the above two schemes and GRACE-1,
applications do not perform internal adaptation (they adapt
only when they join or leave), as discussed in Section 3.4.
We repeat the above single and concurrent run experiments
under the above two schemes and GRACE-1. Since all three
schemes perform the same global adaptation, we focus on

YUAN ET AL.: GRACE-1: CROSS-LAYER ADAPTATION FOR MULTIMEDIA QUALITY AND BATTERY ENERGY 811

Fig. 19. Comparing GRACE-1 with systems adapting at coarse and medium time scales when energy budget is 100 percent: the bars show
the mean of five measurements and the error bars show the minimum and maximum of the five measurements. (a) Energy consumption.
(b) Deadline miss ratio.

Fig. 18. CPU bandwidth allocation for concurrent run with energy budget of 100 percent. GRACE-1 coordinates allocation to increase the minimum

allocation while achieving the desired lifetime. (a) No-adapt and CPU-only. (b) CPU-app. (c) GRACE-1.

Fig. 17. CPU bandwidth allocation for concurrent run with energy budget of 80 percent. GRACE-1 coordinates allocation to achieve the desired
lifetime. (a) No-adapt and CPU-only. (b) CPU-app. (c) GRACE-1.

the cases with energy budgets of 100 percent and measure
energy consumption and deadline miss ratio. Fig. 19 reports
the results. We notice immediately that GRACE-1 consumes
the lowest energy and misses fewer deadlines. GRACE-1
saves energy by 3.8 percent to 10.4 percent relative to coarse-
only and by 1.4 percent to 5.7 percent relative to coarse-
medium. These energy benefits result from GRACE-1’s
internal adaptation for handling underruns. The underrun
handling is effective since the budget reclamation decreases
the total CPU demand and may, hence, allow the CPU to
run at the next lower speed.

The expected deadline miss ratio would be about
5 percent since each codec is allocated CPU based on its
95th percentile of demand. All three schemes have a very
low deadline miss ratio in the single runs, but use different
approaches. Coarse-only and coarse-medium schemes utilize
the unallocated cycles, which exist due to the discrete speed
options, to implicitly handle an overrun. GRACE-1, on the
other hand, explicitly controls an overrun by allocating an
extra cycle budget. This handling is especially effective for
the concurrent run in which GRACE-1 lowers the average
deadline miss ratio of the two codecs by a factor of 22.8
when compared to coarse-only and coarse-medium schemes.
The reason is that the two codecs may overrun at the same
time and compete for the unallocated cycles without
overrun handling.

5.5 Results Summary and Discussion

Overall, our experimental results show that GRACE-1
provides significant benefits for QoS provisioning and
energy saving. Compared to adaptation schemes that adapt
only some of the three layers, GRACE-1’s global adaptation
allocates CPU in a weighted max-min fair way for better
quality, extends the lifetime by 6.4 percent to 38.2 percent
when the battery is low, and saves energy by up to
31.4 percent when the battery is high. Compared to
adaptation schemes that adapt all three layers only at
coarse or medium time granularity, GRACE-1’s internal
adaptation further saves energy by 1.4 percent to 10.4 per-
cent while missing fewer deadlines, especially for con-
current execution.

Although GRACE-1 does not measure perceptual quality
from the user’s point of view, it can accept the user’s
preferences (lifetime-aware max-quality min-power in the
current implementation) during the coordination. GRACE-
1 could extend the cross-layer adaptation with a user layer
to support the changes of the user’s preferences such as
different utility functions.

We also found that the effectiveness of GRACE-1 is
limited by few quality levels of our experimental applica-
tions. In particular,when the energy budget is low,GRACE-1
allows a lower CPU speed for the desired lifetime. The
allowable speed is too low to support two concurrent codecs.
We expect that GRACE-1 will provide more benefits if
applications can adapt quality in a wider range.

6 RELATED WORK

In this section, we first review QoS- and energy-aware
adaptation approaches in various system layers. These
approaches are leveraged by the GRACE-1 cross-layer
adaptation framework. We then compare GRACE-1 with
other frameworks that also coordinate adaptations.

6.1 QoS and/or Energy-Aware Adaptation

There have been numerous research contributions on
adaptation in the hardware and software layers of mobile
devices. Here, we summarize the work related to our
GRACE-1 system. In the hardware, dynamic voltage scaling
(DVS) [31], [38], [39], [32] is commonly used to save
CPU energy by adjusting the frequency and voltage based
on application workload. In general, the workload is
heuristically predicted for best-effort applications [38], [7]
or derived from the worst-case demands of hard real-time
applications [39], [16]. These two approaches, however,
cannot be directly applied to soft real-time multimedia
applications, since the worst-case-based derivation is often
too conservative for multimedia applications and the
heuristic prediction may violate multimedia timing con-
straints too often. Grunwald et al. [38], for example,
concluded that no heuristic algorithm they examined saves
energy without degrading multimedia quality. In contrast to
the aboveDVSwork,GRACE-1 integratesDVSwith real-time
scheduling and, hence, saves energy while delivering soft
deadline guarantees. This integration is similar to otherwork
on OS-directed hardware adaptation [31], [15], [16], [17].

In the application layer, multimedia applications can
gracefully adapt output quality against CPU and energy
usage. Corner et al. [40] proposed three time scales of
adaptation for video applications. Flinn et al. [1], [41]
explored how to adapt applications that have open or
closed source code to save energy. Similarly, Mesarina and
Turner [11] discussed how to reduce energy in MPEG
decoding. The above application adaptation work is
orthogonal and complementary to GRACE-1. GRACE-1
further provides a mechanism to coordinate application
adaptation with hardware and OS adaptation.

In the OS layer, much work has been done on real-time
CPU resource management. Like GRACE-1, these resource
managers, such as SMART [29], deliver soft deadline
guarantees. Some of them also adapt to the variations in
the CPU usage. Unlike GRACE-1, however, these ap-
proaches assume a static CPU speed without considering
energy. Some groups have also researched OS or middle-
ware services to support application adaptation. For
example, Odyssey [12] adds system support for mobile
applications to trade off data fidelity and energy. Agilos
[10], DQM [22], PARM [2], and Puppeteer [1] are middle-
ware systems that help applications adapt to resource
variations. GRACE-1 provides similar support but differs
from the above work in that GRACE-1 coordinates the
adaptation of the CPU hardware, OS scheduling, and
multimedia quality.

Recently, energy has become important in resource
management. For example, ECOSystem [9], [42] and
Nemesis [43] manage energy as a first-class OS resource.
Vertigo [35] saves energy by monitoring application
CPU usage and adapting the CPU speed correspondingly.
Muse [44] saves energy for Internet hosting clusters by
shutting down unnecessary servers. Real-time CPU sche-
duling has also been extended for energy saving. For
example, Lee et al. [45] investigated how to reduce leakage
power in fixed and dynamic priority scheduling algorithms.
This approach is further integrated with DVS to minimize
both static and dynamic energy [46]. More recently, some
researchers have proposed energy-aware scheduling algo-
rithms for dependent tasks [47], [48]. Jejurikar and Gupta

812 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006

[47] proposed algorithms to compute the static slow-down
factor of DVS for tasks sharing resources. Zhu et al. [48]
proposed power-aware scheduling algorithm for tasks
modeled with AND/OR graphs. The above related work
is complementary to GRACE-1. For example, our previous
work [26] shows that GRACE-1 can support the adaptation
of dependent tasks with quality and execution dependency.

6.2 Adaptation Coordination

Other related work includes QoS and/or energy-aware
resource allocation. Q-RAM [14] models QoS management
as a constraint optimization that maximizes QoS while
guaranteeing minimum resources to each application.
Perez et al. [49] proposed a similar QoS-based resource
management scheme. Park et al. [18] extended Q-RAM to
optimize energy for multiresource, multitask embedded
systems. Similarly, IRS [50] coordinates allocation and
scheduling of multiple resources to admit as many
applications as possible. Rusu et al. [20] proposed two
optimization algorithms that consider constraints of energy,
deadline and utility. These coordination approaches are
similar to GRACE-1’s global adaptation in that all of them
coordinate the resource allocation to multiple applications
for a systemwide optimization. None of the above work
performs internal adaptation at fine time granularity.

Recently, some groups have also been researching
adaptation coordination. Efstratiou et al. [13] proposed a
middleware platform that coordinates multiple adaptive
applications for a system-wide objective. Q-fabric [51]
supports the combination of application adaptation and
distributed resource management via a set of kernel-level
abstractions. HATS [52] adds control over bandwidth
scheduling to the Puppeteer middleware [1] and coordi-
nates adaptation of multiple applications to improve net-
work performance. The above related work considers
application adaptation only (with the support of resource
management in the OS or middleware). In contrast,
GRACE-1 considers cross-layer adaptation of the CPU
speed, OS scheduling, and application QoS.

More recently, there is some work on QoS and energy
aware cross-layer adaptation [53], [54], [19], [17]. Pereira
et al. [54] proposed a power-aware application program-
ming interface that exchanges the information on energy
and performance among the hardware, OS, and applica-
tions. This work is complementary to GRACE-1, e.g.,
GRACE-1 can be extended to manage I/O resources with
this interface. PADS [17] is a framework for managing
energy and QoS for distributed systems and focuses on the
hardware and OS layers. Mohapatra et al. [53] proposed an
approach that uses a middleware to coordinate the
adaptation of hardware and applications at coarse time
granularity (e.g., at the time of admission control). EQoS
[19] is an energy-aware QoS adaptation framework. Like
GRACE-1, EQoS also formulates energy-aware QoS adapta-
tion as a constrained optimization problem. GRACE-1
differs from EQoS for two reasons: First, EQoS targets hard
real-time systems where the application set is typically
static and requires worst-case guarantees. In contrast,
GRACE-1 aims for multimedia-enabled mobile devices.
The soft real-time nature of multimedia applications offers
more opportunities for QoS and energy trade-off, e.g., more
energy can be saved via stochastic (as opposed to worst-
case) QoS guarantees. Second, EQoS focuses only on global

adaptation at coarse time granularity, while GRACE-1 uses
both global and internal adaptation to handle changes at
different time granularity. The global and internal adapta-
tion hierarchy enables GRACE-1 to balance the benefits and
cost of cross-layer adaptation.

7 CONCLUSION

This paper presents GRACE-1, a cross-layer adaptation
framework to trade off multimedia quality against energy
for stand-alone mobile devices that primarily run CPU-
intensive multimedia applications. The challenging
problem addressed in GRACE-1 is as follows: Given the
adaptive CPU hardware, OS scheduling and multimedia
applications, how do we coordinate them based on the
user’s preferences such as maximizing multimedia quality
for a desired battery lifetime? To address this problem,
GRACE-1 uses a novel hierarchy of global and internal
adaptation. Global adaptation coordinates all layers at
coarse time granularity when a task joins or leaves, while
internal adaptation adapts the hardware and OS layers at
fine granularity when a task changes CPU demand at
runtime.

We have validated GRACE-1 on an HP N5470 laptop
with an adaptive Athlon CPU, Linux OS, and MPEG and
H263 video codecs. Our implementation has shown that
cross-layer adaptation preserves the isolation of different
layers; in particular, multimedia applications only need to
add five new system calls to support the cross-layer
adaptation. Our experimental results indicate that
GRACE-1 achieves significant adaptation benefits with
acceptable overhead. Specifically, for our implemented
lifetime-aware max-quality min-power adaptation policy,
GRACE-1 almost achieves the user-desired lifetime, reduces
the total energy up to 31.4 percent, allocates CPU in a max-
min fair way for better quality, and misses fewer deadlines
when compared to adaptation schemes that adapt only
some layers or only at coarse and medium time scales.

Our work with GRACE-1 taught us some lessons. First,
we found that the efficiency of GRACE-1 was limited by
few quality levels of our experimental applications. We
expect that GRACE-1 will provide more benefits if applica-
tions can adapt quality in a wider range. Second, we found
that the energy efficiency of GRACE-1 was limited by the
few speed options of the Athlon CPU (i.e., the CPU may run
at a higher speed than the total CPU demand, thus wasting
energy, due to the discrete speed options). To address this
limitation, we plan to emulate the optimal speed with two
available speeds [30]. Finally, we are extending GRACE-1 to
develop more coordination policies, manage other
resources such as network bandwidth, and integrate
internal adaptations of CPU architecture, network proto-
cols, and applications.

ACKNOWLEDGMENTS

This work was performed while Wanghong Yuan was at
the University of Illinois at Urbana-Champaign. The
authors would like to thank Daniel Grobe Sachs for
providing the adaptive H263 encoder, other members of
the GRACE project for their informative discussions,
and the anonymous reviewers and the associate editor,

YUAN ET AL.: GRACE-1: CROSS-LAYER ADAPTATION FOR MULTIMEDIA QUALITY AND BATTERY ENERGY 813

Professor Mani Srivastava, for their constructive feedback.
This work was supported in part by the US National
Science Foundation under grants CCR-0205638 and EIA-
99-72884. Any opinions, findings, and conclusions are
those of the authors and do not necessarily reflect the
views of the above agencies.

REFERENCES

[1] J. Flinn, E. de Lara, M. Satyanarayanan, D.S. Wallach, and W.
Zwaenepoel, “Reducing the Energy Usage of Office Applica-
tions,” Proc. Middleware 2001, pp. 252-63, Nov. 2001.

[2] S. Mohapatra and N. Venkatasubtramanian, “Power-Aware
Reconfigure Middleware,” Proc. 23rd IEEE Int’l Conf. Distributed
Computing Systems, May 2003.

[3] S. Gurumurthi, A. Sivasubramaniam, and M. Kandemir, “DRPM:
Dynamic Speed Control for Power Management in Server Class
Disks,” Proc. 30th Ann. Int’l Symp. Computer Architecture, pp. 169-
179, June 2003.

[4] C. Hughes, J. Srinivasan, and S. Adve, “Saving Energy with
Architectural and Frequency Adaptations for Multimedia Appli-
cations,” Proc. 34th Int’l Symp. Microarchitecture, pp. 250-261, Dec.
2001.

[5] S. Iyer, L. Luo, R. Mayo, and P. Ranganathan, “Energy-Adaptive
Display System Designs for Future Mobile Environments,” Proc.
Int’l Conf. Mobile Systems, Applications, and Services, pp. 245-258,
May 2003.

[6] A.R. Lebeck, X. Fan, H. Zeng, and C.S. Ellis, “Power Aware Page
Allocation,” Proc. Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS IX), Nov. 2000.

[7] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
Reduced CPU Energy,” Proc. Symp. Operating Systems Design and
Implementation, Nov. 1994.

[8] P. Levis et al., “The Emergence of Networking Abstractions and
Techniques in TinyOS,” Proc. First Symp. Networked System Design
and Implementation (NSDI ’04), Mar. 2004.

[9] H. Zeng, X. Fan, C. Ellis, A. Lebeck, and A. Vahdat, “ECOSystem:
Managing Energy as a First Class Operating System Resource,”
Proc. 10th Int’l Conf. Architectural Support for Programming
Languages and Operating Systems, pp. 123-132, Oct. 2002.

[10] B. Li and K. Nahrstedt, “A Control-Based Middleware Framework
for Quality of Service Adaptations,“ IEEE J. Selected Areas Comm.,
vol. 17, no. 9, pp. 1632-1650, Sept. 1999.

[11] M. Mesarina and Y. Turner, “Reduced Energy Decoding of
MPEG Streams,” Proc. SPIE Multimedia Computing and Networking
Conf., Jan. 2002.

[12] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton, J. Flinn, and
K. Walker, “Agile Application-Aware Adaptation for Mobility,”
Proc. 16th Symp. Operating Systems Principles, pp. 276-287, Dec.
1997.

[13] C. Efstratiou, A. Friday, N. Davies, and K. Cheverst, “A Platform
Supporting Coordinated Adaptation in Mobile Systems,” Proc.
Fourth IEEE Workshop Mobile Computing Systems and Applications,
pp. 128-137, June 2003.

[14] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A Resource
Allocation Model for QoS Management,” Proc. 18th IEEE Real-Time
Systems Symp., pp. 298-307, Dec. 1997.

[15] J. Lorch and A. Smith, “Operating System Modifications for Task-
Based Speed and Voltage Scheduling,” Proc. First Int’l Conf. Mobile
Systems, Applications, and Services, pp. 215-230, May 2003.

[16] P. Pillai and K. G. Shin, “Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems,” Proc. 18th Symp.
Operating Systems Principles, pp. 89-102, Oct. 2001.

[17] V. Raghunathan, P. Spanos, and M. Srivastava, “Adaptive Power-
Fidelity in Energy Aware Wireless Embedded Systems,” Proc.
IEEE Real Time Systems Symp., pp. 106-117, Dec. 2001.

[18] S. Park, V. Raghunathan, and M. Srivastava, “Energy Efficiency
and Fairness Tradeoffs in Multi-Resource, Multi-Tasking
Embedded Systems,” Proc. Int’l Symp. Low Power Electronics and
Design, pp. 469-474, Aug. 2003.

[19] P. Pillai, H. Huang, and K.G. Shin, “Energy-Aware Quality of
Service Adaptation,” Technical Report CSE-TR-479-03, Univ. of
Michigan, 2003.

[20] C. Rusu, R. Melhem, and D. Mosse, “Maximizing the System
Value while Satisfying Time and Energy Constraints,” Proc. 23rd
Real-Time Systems Symp., pp. 246-257, Dec. 2002.

[21] A. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-Power
CMOS Digital Design,“ IEEE J. Solid-State Circuits, vol. 27, pp. 473-
484, Apr. 1992.

[22] S. Brandt and G.J. Nutt, “Flexible Soft Real-Time Processing in
Middleware,“ Real-Time Systems, vol. 22, no. 1-2, 2002.

[23] W. Yuan and K. Nahrstedt, “Energy-Efficient Soft Real-Time
CPU Scheduling for Mobile Multimedia Systems,” Proc. Symp.
Operating Systems Principles, pp. 149-163, Oct. 2003.

[24] R. Liao and A. Campbell, “A Utility-Based Approach for
Quantitative Adaptation in Wireless Packet Networks,“ Wireless
Networks, vol. 7, no. 5, Sept. 2001.

[25] Y. Hou, H. Tzeng, and S. Panwar, “A Weighted Max-Min Fair
Rate Allocation for Available Bit Rate Services,” Proc. IEEE
GLOBECOM, Nov. 1997.

[26] W. Yuan and K. Nahrstedt, “Process Group Management in
Cross-Layer Adaptation,” Proc. Multimedia Computing and Net-
working Conf., Jan. 2004.

[27] W. Yuan and K. Nahrstedt, “Integration of Dynamic Voltage
Scaling and Soft Real-Time Scheduling for Open Mobile Systems,”
Proc. 12th Int’l Workshop on Network and OS Support for Digital
Audio and Video, pp. 105-114, May 2002.

[28] L. Abeni and G. Buttazzo, “Integrating Multimedia Applications
in Hard Real-Time Systems,” Proc. 19th IEEE Real-Time Systems
Symp., pp. 4-13, Dec. 1998.

[29] J. Nieh and M.S. Lam, “The Design, Implementation and
Evaluation of SMART: A Scheduler for Multimedia Applications,”
Proc. 16th Symp. Operating Systems Principles, pp. 184-197, Oct.
1997.

[30] T. Ishihara and H. Yasuura, “Voltage Scheduling Problem for
Dynamically Variable Voltage Processors,” Proc. Int’l Symp. Low-
Power Electronics and Design, pp. 197-202, 1998.

[31] H. Aydin, R. Melhem, D. Mosse, and P. Alvarez, “Dynamic and
Aggressive Scheduling Techniques for Power-Aware Real-Time
Systems,” Proc. 22nd IEEE Real-Time Systems Symp., pp. 95-105,
Dec. 2001.

[32] L. Yan, J. Luo, and N. Jha, “Combined Dynamic Voltage Scaling
and Adaptive Body Biasing for Heterogeneous Distributed Real-
Time Embedded Systems,” Proc. Int’l Conf. Computer-Aided Design,
Nov. 2003.

[33] A. Sinha and A. Chandrakasan, “Dynamic Voltage Scheduling
Using Adaptive Filtering of Workload Traces,” Proc. Fourth Int’l
Conf. VLSI Design, pp. 221-226, Jan. 2001.

[34] AMD, Mobile AMD Athlon 4 Processor Model 6 CPGA Data Sheet,
http://www.amd.com, Nov. 2001.

[35] K. Flautner and T. Mudge, “Vertigo: Automatic Performance-
Setting for Linux,” Proc. Symp. Operating Systems Design and
Implementation, pp. 105-116, Dec. 2002.

[36] G. Anzinger et al., “High Resolution POSIX Timers,” http://
high-res-timers.sourceforge.net, 2004.

[37] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-Time Synchroniztion,“ IEEE
Trans. Computers, vol. 39, no. 9, Sept. 1990.

[38] D. Grunwald, P. Levis, K. Farkas, C. Morrey III, and M. Neufeld,
“Policies for Dynamic Clock Scheduling,” Proc. Fourth Symp.
Operating System Design and Implementation, pp. 73-86, Oct. 2000.

[39] T. Pering, T. Burd, and R. Brodersen, “Voltage Scheduling in the
lpARM Microprocessor System,” Proc. Int’l Symp. Low Power
Electronics and Design, July 2000.

[40] M. Corner, B. Noble, and K. Wasserman, “Fugue: Time Scales of
Adaptation in Mobile Video,” Proc. SPIE Multimedia Computing
and Networking Conf., pp. 75-87, Jan. 2001.

[41] J. Flinn and M. Satyanarayanan, “Energy-Aware Adaptation for
Mobile Applications,” Proc. Symp. Operating Systems Principles,
pp. 48-63, Dec. 1999.

[42] H. Zeng, C. Ellis, A.R. Lebeck, and A. Vahdat, “Currentcy: A
Unifying Abstraction for Expressing Energy Management Poli-
cies,” Proc. USENIX Ann. Technical Conf., pp. 43-56, June 2003.

[43] R. Neugebauer and D. McAuley, “Energy Is Just Another
Resource: Energy Accounting and Energy Pricing in the Nemesis
OS,” Proc. Eighth IEEE Workshop Hot Topics in Operating Systems
(HotOS-VIII), pp. 67-72, May 2001.

[44] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle,
“Managing Energy and Server Resources in Hosting Centres,”
Proc. Symp. Operating Systems Principles, pp. 89-102, Oct. 2001.

[45] Y.H. Lee, K.P. Reddy, and C.M Krishna, “Scheduling Techniques
for Reducing Leakage Power in Hard Real-Time Systems,” Proc.
15th Euromicro Conf. Real-Time Systems, pp. 105-116, July 2003.

814 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006

[46] R. Jejurikar and R. Gupta, “Procrastination Scheduling in Fixed
Priority Real-Time Systems,“ ACM SIGPLAN Notices, vol. 39, no. 7,
July 2004.

[47] R. Jejurikar and R. Gupta, “Energy Aware Task Scheduling with
Task Synchronization for Embedded Real Time Systems,” Proc.
IEEE Int’l Conf. Compilers, Architecture and Synthesis for Embedded
Systems, pp. 8-11, Oct. 2002.

[48] D. Zhu, R. Melhem, and D. Mosse, “Power Aware Scheduling for
AND/OR Graphs in Real-Time Systems,“ IEEE Trans. Parallel and
Distributed Systems, vol. 15, no. 8, pp. 849-864, Aug. 2004.

[49] C. Perez et al., “QoS-Based Resource Management for Ambient
Intelligence,“ Ambient Intelligence: Impact on Embedded System
Design, pp. 159-182, 2003.

[50] K. Gopalan and T. Chiueh, “Multi-Resource Allocation and
Scheduling for Periodic Soft Real-Time Applications,” Proc. SPIE
Multimedia Computing and Networking Conf., Jan. 2002.

[51] C. Poellabauer, H. Abbasi, and K. Schwan, “Cooperative Run-
Time Management of Adaptive Applications and Distributed
Resources,” Proc. 10th ACM Multimedia Conf., pp. 402-411, Dec.
2002.

[52] E. Lara, D. Wallach, and W. Zwaenepoel, “HATS: Hierarchical
Adaptive Transmission Scheduling for Multi-Application Adap-
tation,” Proc. SPIE Multimedia Computing and Networking Conf., Jan.
2002.

[53] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N. Venkatasu-
bramanian, “Integrated Power Management for Video Streaming
to Mobile Devices,” Proc. ACM Multimedia Conf., Nov. 2003.

[54] C. Pereira, R. Gupta, P. Spanos, and M. Srivastava, “Power-Aware
API for Embedded and Portable Systems,” Power Aware Comput-
ing, R. Graybill and R. Melhem, eds., pp. 153-166. Plenum/
Kluwer, 2002.

Wanghong Yuan received the BS and MS de-
grees in 1996 and 1999, respectively, from the
Department of Computer Science, Beijing Uni-
versity, and the PhD degree in 2004 from the
Department of Computer Science, University of
Illinois at Urbana-Champaign. Since July 2004,
he has been with DoCoMo USA labs, where he
is a research engineer. His research interests
include operating systems, networks, multime-
dia, and real-time systems, with an emphasis on

the design of energy-efficient and QoS-aware operating systems. He is
a member of the IEEE.

Klara Nahrstedt received the BA degree in
mathematics from Humboldt University, Berlin,
in 1984, and the MSc degree in numerical
analysis from the same university in 1985. In
1995, she received the PhD from Dpartment of
Computer Information Science at the University
of Pennsylvania. She was a research scientist in
the Institute for Informatik in Berlin until 1990
and is an associate professor in the Computer
Science Department at the University of Illinois

at Urbana-Champaign. Her research interests are directed toward
multimedia middleware systems, quality of service(QoS), QoS routing,
QoS-aware resource management in distributed multimedia systems,
and multimedia security. She is the coauthor of the widely used
multimedia book Multimedia: Computing, Communications, and Appli-
cations (Prentice Hall), and she is the recipient of the US National
Science Foundation Early Career Award, the Junior Xerox Award, and
the IEEE Communication Society Leonard Abraham Award for
Research Achievements. She is the editor-in-chief of the ACM/Springer
Multimedia Systems Journal and she is the Ralph and Catherine Fisher
Associate Professor. She is a member of the ACM and a senior member
of the IEEE.

Sarita V. Adve received the PhD degree in
computer science from the University of
Wisconsin-Madison in 1993. She is an as-
sociate professor in the Department of Com-
puter Science at the University of Illinois at
Urbana-Champaign. Her research interests
are in computer architecture and systems,
with a current focus on power-efficient and
reliable systems. She currently serves on the
US National Science Foundation CISE advi-

sory committee, served on the expert group to revise the Java
memory model from 2001 to 2005, was named a UIUC University
Scholar in 2004, received an Alfred P. Sloan Research Fellowship
in 1998, IBM University Partnership awards in 1996 and 1997, and
an NSF CAREER award in 1995. She was on the faculty at Rice
University from 1993 to 1999. She is a member of the IEEE and
the IEEE Computer Society.

Douglas L. Jones received the BSEE, MSEE,
and PhD degrees from Rice University in 1983,
1985, and 1987, respectively. During the 1987-
1988 academic year, he was at the University of
Erlangen-Nuremberg in Germany on a Fulbright
postdoctoral fellowship. Since 1988, he has been
with the University of Illinois at Urbana-Cham-
paign, where he is currently a professor in
electrical and computer engineering, the Coordi-
nated Science Laboratory, and the Beckman

Institute. He was on sabbatical leave at the University of Washington in
Spring 1995 and at the University of California at Berkeley in Spring
2002. In the Spring semester of 1999, he served as the Texas
Instruments Visiting Professor at Rice University. He is an author of two
DSP laboratory textbooks, and was selected as the 2003 Connexions
Author of the Year. He is a fellow of the IEEE and served on the Board of
Governors of the IEEE Signal Processing Society from 2002-2004. His
research interests are in digital signal processing and communications,
including nonstationary signal analysis, adaptive processing, multi-
sensor data processing, OFDM, and various applications such as
advanced hearing aids.

Robin H. Kravets received the PhD degree
from the College of Computing at the Georgia
Institute of Technology in 1999 and is currently
an assistant professor in the Computer Science
Department at the University of Illinois, Urbana-
Champaign. She is the head of the Mobius
group at UIUC, which researches communica-
tion issues in mobile and ad hoc networking,
including power management, connectivity man-
agement, transport protocols, admission control,

location management, routing, and security. Her research has been
funded by various sources, including the US National Science
Foundation and HP Labs. She actively participates in the mobile
networking and computing community, both through organizing con-
ferences and being on technical program committees. She is currently a
member of the editorial board for the IEEE Transactions on Mobile
Computing and Elsevier Ad Hoc Networks Journal. She is also a
member of the Steering Committee for WMCSA, the IEEE Workshop on
Mobile Computing Systems & Applications. She is a member of the
IEEE. For a list of publications and more detailed information, please
visit: http://www-sal.cs.uiuc.edu.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YUAN ET AL.: GRACE-1: CROSS-LAYER ADAPTATION FOR MULTIMEDIA QUALITY AND BATTERY ENERGY 815

