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14 Abstract. 

15 Continuous observations of temporal variations in the Earth’s gravity field have 

16 recently  become  available  at  an  unprecedented  resolution  of  a  few  hundreds  of 

17 kilometers. The gravity field is a product of the Earth’s mass distribution, and these 

18 data – provided by the satellites of the Gravity Recovery And Climate Experiment 
19 (GRACE) – can be used to study the exchange of mass both within the Earth and 

20 at its surface.  Since the launch of the mission in 2002, GRACE data has evolved 

21 from being an experimental measurement needing validation from ground truth, to a 

22 respected tool for Earth scientists representing a fixed bound on the total change and 

23 is now an important tool to help unravel the complex dynamics of the Earth system 
24 and climate change. In this review, we present the mission concept and its theoretical 

25 background, discuss the data and give an overview of the major advances GRACE has 

26 provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology 

27 and oceanography. 
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28 1. Introduction 
 

29 Gravity is one of nature’s fundamental forces.  Although most people tend to think of 

30 gravity – or, more precisely, the gravitational acceleration g at the Earth’s surface – as 

31 a constant of approximately 9.81 m/s2, it is not uniform around the globe. The Earth’s 
32 rotation and its equatorial bulge cause deviations from the mean value of about half a 

33 percent, which can be well predicted from theory.  Because the Earth’s gravity field is 

34 a product of its mass distribution, variations in the density of the Earth’s interior and 

35 topography cause further regional deviations of a few tens of a millionth of g (Figure 1). 

36 These are much harder to model, since this requires knowledge of the Earth’s structure. 

37 However, mass transport in the interior is a slow process, so that these deviations can be 

38 considered to be more or less constant on human timescales. Water, on the other hand, 

39 is much more mobile than rock and its constant movement on the Earth’s surface and 

40 in the atmosphere will cause changes in the gravity field on a wide range of time scales. 

41 These variations are minute, but measuring them accurately means literally ’weighing’ 
42 changes in the Earth’s water cycle and could help unravel the complex dynamics of 

43 the Earth system and climate change. The list of possible applications of time-variable 

44 gravity measurements is abundant:  tracking changes in the water held in the major 

45 river basins, observing variations in the hydrological cycle, measuring the ice loss of 

46 glaciers and ice sheets, quantifying the component of sea level change due to transfer of 

47 water between the continents and oceans, detection of water droughts and the depletion 

48 of large groundwater aquifers due to unsustainable irrigation policies, and much more, 

49 would all be possible. And even processes within the solid Earth would be measurable, 

50 provided that they occur fast enough and their gravitational signal is strong enough 

51 (e.g., mega-thrust earthquakes). As we will see, all of this and more has become reality 

52 at a global scale since the launch of the Gravity Recovery And Climate Experiment 

53 (GRACE) satellites. 
54 Although the temporal gravity variations associated with the phenomena listed 

55 above  are  extremely  small  (∼  10−8m/s2),  they  can  be  measured  with  dedicated 

56 instruments. Locally,  time variations in gravity can be recorded accurately on the 

57 ground by gravimeters [1], but global, satellite-based, measurements of time-variable 

58 gravity  have  long  been  restricted  to  mapping  large-scale  variations  only. These 

59 early observations were mainly based on satellite laser ranging (SLR), which involves 

60 measuring the position of satellites orbiting the Earth, with a precision of a few cm or 

61 better. Such a high precision is obtained by emitting a laser pulse to a dedicated satellite, 

62 covered with reflectors, and measuring the round-trip travel-time once the reflected pulse 

63 is received. By collecting a sufficient amount of such position measurements, the orbit 

64 can then be determined, which is for a large part determined by the Earth’s gravity 

65 field.  However, these satellites – such as the Laser Geodynamics Satellites (LAGEOS 

66 [2]), launched in the 1970s and 1990s and still operational today – orbit the Earth at 

67 a high altitude (∼6000 km) to minimize atmospheric drag.  Because the sensitivity to 

68 the Earth’s gravity field decreases with increasing altitude, the determination of time- 
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variable gravity with SLR is restricted to scales of typically 10,000 km [e.g., 3].  For 

a higher resolution, satellites at a lower altitude are required, such as the Challenging 

Minisatellite Payload (CHAMP; [4]) satellite, which allowed continental-scale gravity 

observations at seasonal periods (2000–2010), and in particular GRACE, the subject of 

this review article. 

Like many space missions, GRACE had a long history of negotiation and 

deliberation before the satellites saw daylight.  For at least two decades prior to its 

launch, the Earth Science community had been calling for a dedicated gravity satellite 

mission to provide an improved determination of the Earth’s  static,  global gravity 

field [e.g., 5, 6, 7, 8]. While that message had always been well received by NASA 

and other space agencies, the arguments had not been persuasive enough to lead 

to an approved mission. A combination of events in the late 1990’s changed that 

situation, and culminated in the acceptance of GRACE. One was the innovative GRACE 

measurement concept itself, which  permits the recovery of monthly  global gravity 

solutions of unprecedented accuracy down to scales of a few hundred km. Originally, 

though, the focus of GRACE was still to be on the static field. But officials at NASA, 

wondering about the possible scientific payoff of time-variable gravity measurements, 

commissioned the US National Research Council to undertake a study to look into this. 

Prior to that study, it was known that a mission like GRACE could recover the secular 

gravity changes due to vertical land-motion to useful accuracy, but there had been 

virtually no work done on the possible use of time-variable satellite gravity to study 

other processes. The resulting NRC committee, chaired by Jean Dickey, discovered a 

multitude of possible applications that were well suited to the expected spatial and 

temporal resolution of GRACE [9]. The proposed GRACE mission design and science 

plan were subsequently adjusted to focus on the time-variable field, rather than on the 

static field. The usefulness of these time-variable applications and their relevance to such 

a wide variety of Earth science disciplines, as well as the perceived ability of GRACE 

to recover those signals, were certainly among the factors that influenced the decision 

by NASA and DLR, the German space agency, to fund the mission. Relatively soon 

after funding was approved, the mission was launched on March 17, 2002, from Plesetsk 

Cosmodrome in Russia. 

GRACE has lead to important new insights in many scientific fields, ranging from 

verifying the ’Lense-Thirring effect’ of general relativity [10] to the detection of a 

giant meteorite impact crater underneath the Antarctic ice sheet [11], to observing 

tropospheric  density  changes  during  geomagnetic  storms  [12],  but  it  has  greatly 

advanced our understanding of how masses move within and between the Earth’s 
subsystems (land, ocean, ice and the solid earth, in particular [13, 14]).  Before reviewing 

the progress made in time-variable gravity research since the launch of GRACE, we 

briefly discuss the mission design, some essential equations and the GRACE data. 
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1.1. The GRACE satellites & data 
 

Although every satellite mission is a mammoth, complex operation, the basic principle 

of GRACE is beautiful in its  simplicity. GRACE consists of two satellites in a low, 

near-circular, near-polar orbit with an inclination of 89◦, at an altitude of about 500 

kilometres, separated from each other by a distance of roughly 220 kilometres along- 

track (Figure 2). The mission does not measure gravity directly with an active sensor, 

but is based on the satellite-to-satellite tracking concept, which tracks variations in the 

inter-satellite distance and its derivatives to recover gravitational information. Suppose 

the satellites approach a sizeable mass located on the Earth’s surface (e.g., an ice 

sheet): since the two GRACE satellites are separated by a certain distance, and the 

gravitational pull of the mass is inversely proportional to the squared distance to each 

satellite, the orbit of each of the satellites will be perturbed slightly differently. The 

leading satellite will be pulled slightly more towards the mass than the trailing one and 

the separation between the satellites will increase. Although these changes are minute 

– in the order of a few micrometres, or 1/100th of the width of a human hair – they can 

be measured by means of a dual-one way ranging system, the K/Ka band microwave 

ranging system (KBR). Non-gravitational forces, such as atmospheric drag will also alter 

the relative distance, and are accounted for using onboard accelerometer measurements. 

The orientation in space of the satellites are mapped by two star-cameras.  Since the 

KBR measurements provide no information on the position in the orbit, the satellites 

are equipped with Global Positioning System (GPS) receivers so that their location is 

known. 

From these data, called the Level-1 data, variations in the Earth’s gravity field 

can be recovered.   This is generally done through an iterative procedure:  first, an 

a-priori model of the Earth’s mean (static) gravity field in combination with other 

’background’ force models (e.g., representing luni-solar and third body tides, ocean 

tides, the pole tide, etc.) is used to determine the orbit of both satellites. Importantly, 

the gravitational effects of ocean and atmosphere mass variations are removed from 

the measurements at this step using numerical models, because otherwise their high- 

frequency contributions would alias into longer periods and bias the results.   Next, 

this predicted orbit is compared to the GPS and KBR observations and residuals are 

computed.  Linearized regression equations are constructed, which relate the gravity 

field (more specifically, the spherical harmonic coefficients as we will see next) and 

other parameters to the residuals and are used to update the orbit.   By combining 

data of a sufficiently long period – about a month, which guarantees a sufficient ground 

track coverage of the satellites – these equations can be used to relate the Level-1 

observations to variations of the gravity field in a least square sense (see [15, 16]). The 

GRACE data are processed at three main science data centers, i.e., the Center for Space 

Research (CSR) and the Jet Propulsion Laboratory (JPL), both located in the USA., 

and the German Research Centre for Geosciences (GFZ) in Germany.  Differences in 

the approaches of the processing centers lie in the background models used, the period 
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over which the orbits are integrated, weighting of the data, the maximum degree of 

the estimated gravity harmonics, etc. [17, 18, 19]. Other institutes are also providing 

independent gravity solutions nowadays, often based on alternative approaches [e.g., 

20, 21, 22]. 

Next, we discuss the basic equations behind temporal gravity and the GRACE data. 

For the casual reader, it suffices to know the GRACE data generally are distributed as 

(Stokes) coefficients of spherical harmonic functions of degree l and order m, which can 

be related to variations in water height at the Earth’s surface. The maximum harmonic 

degree of the data depends on the analysis center, but in all cases it is sufficient to 

provide a spatial resolution of roughly 300 km. 

The Earth’s gravitational field is described by the geopotential V . At a point above 

the Earth’s surface, with spherical coordinates radius r, co-latitude θ and longitude λ, 
it can be expressed as a sum of Legendre functions: 
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where G is the gravitational constant, M the mass of the Earth and ae denotes 

its mean equatorial radius. Plm are the Legendre polynomials of degree l and order m, 

and Clm and Slm are the spherical harmonic coefficients. The higher the order l, the 

smaller the spatial scale [see, e.g., 23, for a good introduction]. Note that as l increases, 

(ae/r)l+1, and consequently also variations in V , become smaller. Thus, satellites at 

lower altitudes r can better resolve small wavelength features. 

Equation 1 may be used to define equipotential surfaces, i.e. surfaces of constant 

potential V . The equipotential surface that would best fit the mean sea level at rest is 

referred to as the geoid, which in turn can be approximated by an ellipsoid of rotation. 

The height difference between such a ’reference ellipsoid’ and the geoid is referred to as 

the geoid height and is approximated by Bruns formula: 

V (R, θ, λ) − U 
173 N = 

γ 
(2) 

where U is the gravitational potential on the reference ellipsoid, equal to the constant 

potential of the geoid, and γ the normal gravity on the ellipsoid’s surface. The latter 

can  be  further  approximated  by  GM/a2,  so  that  in  turn  the  geoid  height  can  be 

approximated by [23]: 
∞ 

 

 

 

 
174 

 

175 

 

176 

 

177 

 

178 

 

179 

N (θ, λ) ≈ ae         Plm(cos θ)(Clm cos mλ + Slm sin mλ) (3) 
l,m 

From this it follows that variations in the geoid height can be fully described by 

the spherical harmonic coefficients Clm and Slm, referred to as Stokes coefficients in 

geodesy. It is this set of coefficients that is estimated from the satellite measurements and 

distributed by the GRACE science teams every month as Level-2 data. The maximum 

degree l of the monthly Stokes coefficients lies between 60–120, which corresponds to a 

spatial resolution of roughly 150–300 km (20,000 km/l). 
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Geoid height is a commonly used unit in geodesy, but one more step is required to 

relate the Stokes coefficients to changes in (water) mass distribution, a more intuitive 

metric to most researchers studying the Earth’s water cycle. On monthly to yearly time- 

scales, changes in the Earth’s gravity field are primarily caused by redistribution of water 

in its fluid envelope, which all take place within a thin layer of a few kilometers near the 

Earth’s surface. In this case, (ae/r)l+1 in Equation 1 reduces to 1 and the anomaly in 

surface density (i.e., mass per area) can then be obtained using the following equation 

[see 24, for a step-by-step derivation]: 
 

aeρe  
∞ l

 2l + 1  
 

188 ∆σ(θ, λ) =  
3 

    
Plm(cos θ) 

l=0 m=0 
1 + k1

 ×(∆Clm cos(mλ)+∆Slm sin(mλ))(4) 
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where we included the symbol ∆ to indicate that we are dealing with time-variable 

quantities, and ρe   is the average density of the Earth (5517 kg/m3).  The load Love 
 

191 numbers  k1
 [e.g., 25] account for deformation of the solid Earth due to the loading of 
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the mass anomaly on its surface, which will cause a small gravity perturbation as well. 

Units of ∆σ are typically kg/m2. Often, the surface density is divided by the density 

of water, which yields surface water height in meters water equivalent. An example of 

the surface height anomaly observed by GRACE for August 2005 is shown in Figure 3. 

When integrating ∆σ over an area, one obtains a volume estimate, usually expressed 

as km3  of water, or, equivalently, gigatonnes (Gt). One gigatonne equals 1012  kg, a sea 

level rise of 1 mm requires approximately 360 Gt of water. 

The  monthly  GRACE  Stokes  harmonics  are  publicly  available  and  can  be 

downloaded  from  http://podaac.jpl.nasa.gov   and  http://isdc.gfz-potsdam.de. 

While the availability of GRACE data only as unfamiliar spherical harmonics originally 

slowed its application toward wider use by non-geodesists, the data has more recently 

been made available in easier-to-use gridded format as well (http://geoid.colorado. 

edu/grace/grace.php  or http://grace.jpl.nasa.gov/data/).   Yet,  as we will see 

later on, interpretation of these gridded maps is not always straightforward and requires 

some expertise. 

Some researchers also derive regional mass anomalies directly from the Level-1 

range-rate data.   In a method originally developed to study the gravity field of the 

moon, point masses or regional uniform mass concentrations (’mascons’) are spread 

over the Earth’s surface.  The gravitation acceleration exerted by each mascon is then 

expressed as a sum of spherical harmonic functions so that the effect on the GRACE 

orbit can easily be computed. Each mascon is then given a scaling factor which is 

adjusted to give the best fit to the regional KBR observations [e.g., 26, 27]. Although 

this approach is computationally much more demanding, it has certain advantages, 

e.g., regional solutions can be obtained and certain constraints can be applied between 

neighbouring mascons to reduce the leakage problem, as discussed below. 

http://podaac.jpl.nasa.gov/
http://isdc.gfz-potsdam.de/
http://geoid.colorado/
http://grace.jpl.nasa.gov/data/)
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1.2. Handling the GRACE data 
 

The first GRACE science results were published about two years after the mission 

launch [28, 29]. Many geophysical features – such as the seasonal change in water 

storage in the Amazon river system – were readily recognizable, but surprisingly, the 

maps of surface water height showed distinctive North-South striping patterns (Figure 

3a). Although it had been anticipated during the mission design phase that the higher 

degree Stokes coefficients (i.e., small spatial scale) would have larger errors than the 

lower degrees (large spatial scale), such – clearly unphysical – striping had not been 

foreseen. The origin of these stripes lies in the orbit geometry of the GRACE mission 

[e.g. 30, 31]. The gravity field is sampled using the variations in the along-track distance 

between the two satellites, which circle the Earth in a near-polar orbit. As a result, the 

observations bear a high sensitivity in the north-south direction, but little in the east- 

west direction. Errors in the instrument data, shortcomings in the background models 

used to remove high-frequency atmosphere and ocean signals, and other processing errors 

will consequently tend to end up in the east-west gravity gradients. Since the release 

of the first GRACE data, methods to process the satellite data have improved and new 

ocean and atmosphere models allow for a better removal of high-frequency variability 

signals from the observations. This has lead to new, reprocessed GRACE solutions, 

which contain significantly less noise than earlier releases [32], as illustrated in Figure 

3. Yet, although much reduced, the North-South striping problem persists. 

Several methods have been developed to reduce the effect of noise in the GRACE 

data.  One technique converts the global spherical harmonics into a local time series 

and then averages the observations over a larger, pre-determined region, such as river 

or drainage basins. If the area is sufficiently large – larger than the spatial decorrelation 

scale of the noise – the noise will tend to cancel out.  Based on this concept, [33] 

formulated a ’basin averaging approach’ which aims to isolate the signal of individual 

regions while minimizing the effects of the noise and contamination of signals from the 

exterior.  The ’basin averaged’ time series of the surface water anomalies can then be 

analyzed or compared to regional ground-based measurements.This has become a very 

common method of analysis with GRACE, especially in hydrological studies (see section 

2). 

Another straightforward and very commonly applied approach reduces the noise in 

the GRACE observations by smoothing the data.  In the spectral domain, this means 

weighting the Stokes coefficients depending on the degree l, with a lower weight given 

to the noisier, higher degree Stokes coefficients. In the spatial domain, this is equivalent 

to convolving the GRACE maps with a smoothing kernel.   A popular kernel is the 

Gaussian, bell-shaped, function, which decreases smoothly from unity at its center to 

zero at large angular distances (Figure 4) and is characterized by its smoothing  radius, 

i.e., the distance on the Earth’s surface at which the kernel value has decreased to 

half the value at its center [34, 24].  As the smoothing radius increases, the higher 

degree Stokes coefficients are damped more strongly and the noise in the GRACE data 
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is reduced (Figure 5a-c). Unfortunately, using a large smoothing radius also means 

that the true, geophysical signals are damped and are smeared out over large regions, 

hindering a straightforward interpretation of the GRACE observations. 

The Gaussian kernel has an isotropic character, i.e., it is independent of orientation, 

but as discussed above, the noise in the GRACE data has a strong non-isotropic North-

South character. Non-isotropic filters have been developed [35, 36], but these 

generally still require a large smoothing radius to remove all stripes in the GRACE 

maps. A closer inspection of the GRACE Stokes coefficients by Swenson and Wahr 

[37] revealed that striping patterns could be traced back to correlated errors in the 

Stokes coefficients of even and odd degree l, respectively. This opened the door to 

more advanced post-processing methods which allowed a further increase of the spatial 

resolution of the GRACE data. To reduce the intercoefficient correlation, Swenson and 

Wahr [37] fit a quadratic polynomial in a moving window to the Stokes coefficients 

of even and odd degrees separately (for a fixed order m) and removed this from the 

original Stokes coefficients. Other methods apply principal component analysis on the 

Stokes coefficients [38] or use the full variance-covariance matrix of the Stokes coefficients 

[39, 40] to decorrelate the GRACE solutions. These advanced postprocessing methods 

have lead to a reduction of noise in the GRACE data of 50% and more [Figure 6; 41]. 

Unfortunately,  the limited resolution of the GRACE data and the required 

post-processing means that the observations do not represent point-measurements. 

Additionally, any type of post-processing filter or during-processing constraint which 

reduces GRACE errors can also reduce local signal amplitude [42, 43, 44, 45].  So, 

when studying a specific region, one cannot simply take the average of the GRACE 

observations over that region.  Besides the signal attenuation, leakage effects will bias 

such a simple average: due to the low resolution, water mass variations in neighbouring 

areas will spill into the desired region, while part of the signal of interest will spread 

outside  the  region.    Leakage  is  particularly  problematic  in  regions  of high  spatial 

variability in surface water storage patterns, as well as along coastlines where smoothing 

with the ocean’s far smaller signal notably damps the apparent hydrological signal. 

Rescaling is commonly used to remedy the signal loss caused by post-processing and 

the transformation of point-source signals to a finite number of spherical harmonics 

(e.g., up to degree and order 60).   To compute a rescaling parameter, a model is 

made  with  higher  spatial  resolution  than GRACE,  then  transformed  to the  limited 

set of spherical harmonics that GRACE uses and post-processed identically to GRACE. 

A ratio of the original model to the post-processed model signal amplitude is called 

the rescaling parameter.  Assuming that the model reasonably represents the spatial 

pattern of the true signal, this ratio can act as a multiplier to upscale or downscale 

the  actual  post-processed  GRACE  data  and  counter  the  amplitude  damping  effect 
seen as leakage.  Typically, the rescaling has been done on a basin scale [e.g., 46], 

though recently Landerer and Swenson [44] have tested and released a 1◦ × 1◦  mapped 

version of GRACE with rescaling and rescaling errors included, specifically focused at 

hydrologists. Nonetheless, limitations and inaccuracies at short spatial scales remain a 
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problem, especially as the focus moves to smaller and smaller basins. 

In addition to spatial limitations, GRACE’s typical monthly sampling rate also 

limits its ability to estimate signals that act at shorter than seasonal time scales, though 

it handles annual and longer-term signals well. Recently, a few sub-monthly signals have 

been produced [47, 48, 49, 50, 20, 26], but the remaining delay between observation 

and data delivery makes real-time assessments (for which they would be most desired) 

impossible.   Typically,  increasing the temporal resolution of the GRACE time series 

means accepting an increased noise level in the signal, since the ground track coverage 

becomes less dense. Various types of constraints can ameliorate the difficulty, but not 

eliminate it entirely – and these constraints often alter the signal strength along with 

that of the noise. 

After these introductory sections, we will now give an overview of the Earth Science 

applications of GRACE in the fields which have most benefited from this unique new 

set of time-variable gravity observations (hydrology, solid Earth sciences, glaciology and 

oceanography). Each section discusses the unknowns before GRACE was launched, the 

major scientific advances the mission provided and its limitations. 
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GRACE’s ability to accurately measure sub-yearly to decadal-trend mass changes on 

the global and regional scales has made it a unique data source for hydrology and 

hydrological modeling. Prior to the GRACE mission, total terrestrial water storage 

(TWS) changes over land could not be measured over significant spatial or temporal 

scales. Instead, the focus was on  individual pieces of  TWS: groundwater (GW), near-

surface and deep soil moisture (SM), surface water (SW), snow-water equivalent 

(SWE) and ice, and water contained within biomass (BIO). These subsections of the 

terrestrial water storage were measured via in situ systems or other satellites, and/or 

were modeled from basic principles. However, the difficulty and expense of establishing 

and maintaining reliable in situ observation systems is significant, especially over large 

and remote areas and for long periods of time. Where observation coverage is good, in 

situ measurements have focused on particular sub-sections of the water signal, resulting 

in, for example, excellent coverage of near-surface soil moisture and groundwater, but 

no knowledge at all of surface water. Hydrological models also reflect this, often lacking 

one or more components of water storage in their computations. A growing selection of 

remote sensing hydrologic tools exist, but few have long data records and none besides 

GRACE see signals below a shallow subsurface layer. 

GRACE’s ability to measure the sum of all hydrologic components in the water 

column, over the entire planet, at monthly intervals has proven a bounty for large- 

scale hydrological researchers. Two parallel techniques exist when using GRACE for 

hydrologic purposes. The first, as suggested above, is to solve for changes in TWS 

directly, based on changes (∆) in some or all of the individual components of water 

storage listed above: 
 

 

340 ∆TW S = ∆GW + ∆SM + ∆SW + ∆SW E + ∆BIO (5) 
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This technique is particularly valuable in combination with observed data for some 

of the terms on the right-hand side of equation 5, using GRACE to give the ∆TWS 

sum. The second common technique is to consider the processes which cause changes 

in terrestrial water storage, principally precipitation (P), evapotranspiration (E), and 

runoff/discharge (R): 

∆TW S = P − E − R (6) 
 

This is often useful for modelers, who can use GRACE’s estimate of terrestrial water 

storage changes to bound their estimates of P, E, and/or R, oftentimes in combination 

with other observations of those same variables. The combination of P-E can also 

be estimated based on atmospheric anomalies, if the change in water vapor and the 

divergence of the atmospheric moisture transport are known. Whether using equation 5 

or 6, GRACE measurements present a mathematical bound which did not exist before. 

Besides the main limitations of GRACE mentioned in the introduction, such as 

the need for smoothing and post-processing, the limited spatial resolution and leakage 
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of GRACE signal into and out of the desired region, a major complexity with using 

GRACE for hydrologic purposes is inherent in its definition: GRACE measures the entire 

water column as one measurement. This makes separation into hydrologic constituents 

complicated, requiring combination with other hydrologic products, all of which have 

their own limitations and errors. The differing spatial and temporal scales between 

GRACE (a global, monthly product) and in situ data such as river  or well gauges 

(point-source measurements which are non-uniform in space and time) makes exact 

comparisons and combinations difficult. Complications can also arise if non-hydrologic 

mass signals, such as alterations of mass in the atmosphere or solid Earth or leakage 

from the nearby ocean, also occur in the region, a particular problem given that models 

to correct for such signals are not perfect. The lower noise levels of GRACE RL05 [32] 

are expected to reduce many of these problems, but the general design of the GRACE 

mission means that they cannot be completely eliminated. 

The use of GRACE by hydrologists has gone through two historical stages: 

validation and  full utilization. For several years  after the  2002 launch  of GRACE, 

the focus was on using hydrological models and observational data to determine the 

accuracy of GRACE itself. Many of the initial comparisons were qualitative and large- 

scale. Various researchers [27, 26, 51, 28] created side-by-side comparisons of GRACE 

with hydrological models, as in Figure 7a, or otherwise noted that the dynamically- 

active regions seen by GRACE matched where hydrological models and our previous 

understanding of weather and climate placed them. Others [52, 53, 29] compared 

GRACE results to hydrological models across large basins (Figure 7b) and noted that 

both amplitude and phase were typically close. Later, EOF analyses were used to 

better quantify the similarities [54, 55]. The images shown here use the most recent 

CSR RL05 GRACE series from February 2004 to January 2012, but even one or two 

years of RL01 GRACE were sufficient to verify the general accuracy of GRACE in large, 

hydrologically-active regions. 

Once several years of GRACE data had been garnered, hydrological GRACE papers 

became more in-depth and quantitative, using models, in situ data, or both to verify the 

general accuracy of GRACE and estimate the combined error in GRACE and their other 

data sources. A fine early example is Swenson et al. [56], who made use of a widespread in 

situ well and soil moisture network in the US state of Illinois. Based on prior knowledge, 

they assumed that the dominant terms in equation 5 in Illinois were groundwater (GW) 

and near-surface soil moisture (SM), ignoring surface water, snow, and the effect of 

the biosphere. They smoothed and destriped three years (2003–2005) of GRACE RL01 

data, took the significant gravitational signal associated with vertical land motion (see 

Section 3) into account, then used a basin average to compute the ∆TWS time series 

over the Illinois region. When they compared the GRACE ∆TWS to the sum of in 

situ ∆SM and ∆GW from wells, they found good agreement (Figure 8a). Seasonal 

amplitudes ranged between 5-10 cm depending on the year, while the RMS difference 

from the in situ ∆GW+∆SM was only 2 cm, much of which was likely caused by the 1.8 

cm in estimated GRACE RMS errors. The three-year correlation between ∆TWS from 
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GRACE  and ∆GW+∆SM from in  situ  measurements  was  0.95.  This  was  put forth 

as early evidence that seasonal hydrological signals seen by GRACE are reasonable. 

Additionally, Swenson et al. found that in Illinois, soil moisture and groundwater are of 

approximately equal magnitude, with soil moisture sometimes lagging the groundwater 

by a month or two (Figure 8b). This means that in order to compare with GRACE, 

estimates of both groundwater and soil moisture are needed, not merely one or the other, 

a finding which has been confirmed via terrestrial gravity measurements [e.g., 57]. Thus 

a model which ignores either one would be unable to represent the true terrestrial water 

storage well. 

Unfortunately, groundwater is not predicted by several global hydrology models, 

including one of the more commonly-used: the Global Land Data Assimilation 

System (GLDAS, [58]). Moreover, it proved difficult to find other in situ systems of 

measurement for both groundwater and soil moisture over large areas. Rodell et al. 

[59] worked around this in the greater Mississippi basin by combining what they did 

have: in situ well measurements for groundwater, and soil moisture and snow-water 

equivalent estimates modeled by GLDAS. Rather than combining the in situ ∆GW 

with the modeled ∆SM+∆SWE and comparing to GRACE’s ∆TWS, they worked 

equation 5 backwards, solving for the ∆GW which the GLDAS model could not provide. 

They compared that to the in situ well measurements – which are not available in 

many areas of the world – for verification that ∆GW can be estimated in such a 

manner. Using two years of RL01 GRACE data (2002–2004), they demonstrated that 

the seasonal groundwater signal in the wider Mississippi basin can be estimated using 

GRACE terrestrial water storage and the SM+SWE from a model. However, when they 

repeated the same procedure for smaller subbasins of the Mississippi, they found that the 

technique failed to properly determine the seasonal well signal in basins smaller than 

about 900,000 km2. While well undersampling in the spatial domain and inaccurate 

assessments of well specific yields also provided serious concerns, the dominant error 

source in these smaller subbasins was assumed to be the RL01 GRACE product. 

A similar study was performed across the US state of Oklahoma [60], and another 

over the High Plains Aquifer in the US [61]. The latter is particularly interesting in that 

it investigated water storage changes in a semi-arid region which is heavily irrigated using 

groundwater. It thereby touched on the socio-economic issue of water scarcity and large- 

scale human pumping for groundwater, something not considered by most large-scale 

hydrological models at the time. Strassberg et al. [61] averaged the RL01 GRACE fields 

into three-month seasons to better reduce noise, then compared to in situ groundwater 

data from 2719 intermittent wells in the area and modeled soil moisture estimates from 

NLDAS (North American Land Data Assimilation System). The groundwater and soil 

moisture signals were both large (5-7 cm maxima) and varied differently in time, with 

a clear seasonal signal in the groundwater but not in the soil moisture.  They found 

a correlation of 0.82 between GRACE ∆TWS and the ∆GW+∆SM combination from 

the wells and model (above the 95% confidence level). A 3.3 cm RMS difference existed 

between the two series, largely caused by a greater estimated amplitude of ∆GW+∆SM 
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compared to GRACE, which Strassberg et al. [61] posited may be due to overestimation 

of ∆GW during local summer, when  irrigation pumping  is occurring. Despite the 

imperfect matching, this paper provided firm evidence that GRACE could add value to 

hydrological studies even in semi-arid regions where significant groundwater was being 

pumped for irrigation. 

Even before the launch of GRACE, hydrological modelers were aware of 

imperfections in their models due to missing terrestrial water storage components. 

However, these errors of omission came into sharp relief when presented with 

independent GRACE results. For example, numerous researchers noted that while the 

spatial pattern of GRACE ∆TWS matched with models, the amplitude of the models 

was notably lower in many high-signal locations than what was seen with GRACE (the 

Amazon basin in Figure 7, for example) and occasionally differed slightly in phase as 

well (the Ganges basin in Figure 7). As the GRACE timespan lengthened, interannual 

variations and long-term slopes (Figure 9) were also found to differ locally [62, 54, 63]. 

Based on comparisons like those listed above, modelers began to trust GRACE more 

and started considering GRACE during their cycles of model improvements, to better 

tune their parameters [64, 65] or directly assimilate GRACE TWS into their models 

[66, 67]. 

Niu and Yang [68] wrote one of the earliest examples demonstrating GRACE’s 
use in improving hydrology models.   They began with the standard NCAR CLM 

hydrology model and, based on in situ  information and basic principles, altered it 

in five significant ways:  (1) decreasing the canopy interception of precipitation, (2) 

altering the percolation rate through the soil column, (3) decreasing surface runoff and 

thus increasing infiltration of the surface, (4) reducing the rate of subsurface flow, and 

(5) increasing the permeability of frozen soil. These modifications were made ahead of 

time, then compared to GRACE, along with the original CLM model, as verification. 
They found that the alterations resulted in ∆TWS maps which more closely matched 

what GRACE saw than the original series did, demonstratably increasing the amplitude 

of the hydrology signal in high-signal areas like the Amazon and Zambezi basins. When 

looked at as basin-wide averages, the RMS difference between the modified model time 

series and GRACE was half or less the size of the RMS difference between the original 

model and GRACE over large cold basins (Ob), classic monsoon basins (Yangtze), and 

tropical rainforest basins (Amazon). The improvement continued to hold for basins on 

the order of 300,000 km2 , as well.  This demonstrated not simply an improvement of 

one model over another, but also a method with which the independent GRACE data 

set could help determine the precise features of a model which cause improvement. In 

a later paper, Niu et al. [69] used similar techniques to determine an appropriate runoff 

decay factor for use with modeled snow. 

Werth and Güntner [65] used GRACE to tune the WaterGAP Global Hydrology 

Model (WGHM) in a more statistically rigorous fashion.  As they had only six years 

of GRACE data (2003–2008), they removed all long-term trends and focused only on 

seasonal and interannual variability.  They performed sensitivity analysis on 21 model 
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parameters having to do with soil moisture, groundwater, surface water, snow-water 

equivalent, and biomass over 28 large river basins. After choosing the 6-8 most sensitive 

parameters in each separate basin, they used a Pareto-based multi-objective calibration 

scheme to balance the fit to GRACE’s ∆TWS and a secondary independent data set, 

river discharge. Their optimized results were then compared to the original model and 

explanations given for the differences seen. Overall, the calibrated model increased the 

variability of terrestrial water storage throughout the tropical and temperate regions 

while decreasing it in colder areas, making the calibrated model better match what is 

seen with GRACE. The parameters causing the changes depended largely on the basin. 

In tropical and temperate basins, a deeper rooting depth allowed for greater seasonal 

storage as soil moisture. In basins with widespread rivers, lower river flow velocities 

and larger runoff coefficients kept water in the rivers for longer, thus increasing and 

delaying the seasonal maxima in terrestrial water storage. In colder basins, raising the 

temperature of snow melt drove the snow to melt later, changing the phase of the signal 

more than the amplitude. Groundwater variability decreased in many arid and semi-arid 

regions due to increased evapotranspiration. The optimization findings also suggested a 

route forward to more improvements, such as using more than one soil moisture layer to 

prevent excessive drying from evaporation, decorrelating the soil moisture from GW in 

some areas, and testing to optimize parameters which set GW timing and river volume. 

Werth and Güntner [65] noted that while a few basins were relatively insensitive to this 

optimization scheme, in general, the use of GRACE in combination with river discharge 

rates improved the tuning of the WGHM. 

A similar combined optimization scheme using river discharge and GRACE TWS 

was also used by Lo et al. [64] to tune their CLM model, and Zaitchik et al. [67] 

assimilated the two data sets along with groundwater observations into their GLDAS 

model for testing as well. Houborg et al. [70] assimilated GRACE into the Catchment 

Land Surface Model (CLSM), then applied that model to the specific problem of drought 

monitoring in North America. They first determined that the GRACE-assimilated 

model better matched in situ GW+SM data than did the original, un-assimilated 

CLSM model in most areas of the US. The addition of GRACE helped overcome 

various weaknesses in the CLSM, while the assimilation technique allowed the individual 

terrestrial water storage components of surface soil moisture, root-zone soil moisture, 

and GW to be separated (Figure 10), as they cannot be in GRACE alone. This 

combination of GRACE plus model could help improve the US and North American 

Drought Monitors in the future. 

By around 2008, reductions in GRACE errors via release RL04, a longer time 

series, and increasing confidence with the data began allowing research into more varied 

subjects. (Güntner [71] is an excellent survey paper describing the state of GRACE 

hydrology at that time.) Local analyses of a wide selection of hydrological basins around 

the world have since been completed: in North America [72, 73, 74, 75], South America 

[76, 62, 77, 78, 79], Africa [80, 81, 82, 83, 84], Europe [85], Australia [86, 87, 88], 

Asia [89, 90, 91, 92, 93], and the Arctic [94, 95].  Several studies revolved around 
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the transference of water between the land and the ocean, particularly concerning the 

teleconnections of El Niño/La Niña [81, 62, 96, 97, 98, 99]. 

GRACE has also begun to be used in combination with GPS to estimate the short- 

term solid-earth deformations caused by variations in local hydrologic loading. Van 

Dam et al. [100] compared the vertical surface displacements derived from GRACE 

to GPS data from stations in Europe and found substantial differences in amplitude 

and phase for most sites. They attributed these differences to tidal aliasing in the GPS 

data, since the differences were largest at coastal sites. Steckler et al. [101] used GRACE 

along with river gauge data to estimate Young’s Modulus for the elastic loading of the 

lithosphere caused by monsoon flooding in Bangladesh.  Kusche and Schrama [102] 

demonstrated how to combine GPS and GRACE into a single J2 series as well as a 

low-resolution (degrees 2-7 only) time series. Tregoning et al. [103] compared 10-day- 

averaged GPS measurements of crustal deformation with 10-day-averaged estimates of 

elastic deformation from GRACE. This demonstrated that a significant part of the non- 

linear GPS motions, particularly in the vertical direction, are caused by hydrological 

changes picked up by GRACE. After taking the monthly deformations from GRACE 

into account, Tesmer et al. [104] found a 0–20% reduction in GPS weighted RMS at 

43% of their GPS stations and more than a 20% improvement at an additional 34%, 

percentages which improve if only the annual signal is considered. They noted that the 

GPS stations most likely to be harmed or not improve by the addition of GRACE were 

all located on islands or peninsulas – places where the deformational signal estimated 

from GRACE is likely smaller than the noise and leakage in GRACE, and thus where 

GRACE should not be expected to provide assistance. Valty et al. [105] computed the 

vertical displacement from loading at European GPS sites by combining GRACE with 

GPS and global circulation models, then used the ”three-cornered hat” technique to 

compute the errors from each contributing data source, assuming the errors in each 

data set are independent. They determined that, over large areas, GRACE’s precision 

was about twice that of GPS, and that such combined solutions for loading vertical 

displacement are not very sensitive to the specific choice of GRACE or GPS processing 

center. 

Additionally, topics directly impacting people fell under study. A primary man- 

caused signal visible by GRACE is the depletion of freshwater via the pumping of 

underground aquifers, mainly for irrigation of farmland. This research is of considerable 

importance to regional planners, as groundwater is often slow to recharge, and extensive 

overdrawing of reservoirs could lead to costly land subsidence and future water shortages. 

Unfortunately, monitoring of groundwater use is limited and withdrawals for personal 

use and irrigation typically unrestricted. Additionally, most hydrological models 

(including GLDAS) do not model groundwater at all, or else model it without including 

anthropogenic withdrawal effects, or else (as WGHM) have yet to perfect their model 

of both natural and anthropogenic groundwater changes. Model estimates of trends, 

therefore, are often wrong in areas with significant groundwater reduction. Improving 

the modeled estimates of groundwater deplenishment by humans is thus a subject of 
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current effort by some hydrological modelers [106, 107, 108, 109]. GRACE’s estimate 

of variations in total terrestrial water storage is perhaps the only independent tool able 

to estimate the actual amount of water being withdrawn in comparison to the recharge 

by precipitation and flow each year. 

Two dominant examples of this sort of research consider the highly-irrigated regions 

of northern India and interior California. Rodell et al. [91] focused on the depletion of 

GW in arid and semi-arid northern India, which is suspected to be larger than the rate 

of recharge. The Indus River plain aquifer is heavily drawn on to support agriculture 

and straddles the border between India and Pakistan, making land-based monitoring 

systems politically problematic as well as expensive. The use of GRACE for monitoring 

this region is made more complicated by the proximity of the Himalayas only about 

100km to the northwest [110]. Rodell et al. [91] use the GLDAS hydrology model to 

estimate soil moisture in the region, then estimate ∆GW from the difference between 

GRACE ∆TWS and the modeled ∆SM from 2002–2008. Groundwater was shown to 

have a negative trend of about 4 cm/yr (Figure 11), which would cause a 0.33 m/yr 

fall in the local water table, on average. As precipitation was normal or even slightly 

greater than normal during the time period, and as measurable drops in in situ water 

levels have also been noticed, the mass loss is presumed to come predominantly from the 

drawing of groundwater for irrigation, rather than from natural causes. Additionally, 

they note that much of the water used from irrigation must be either evaporating or 

running off into rivers, rather than seeping through the soil back into the aquifer, which 

would be invisible to GRACE. In only six years, this region of India lost 109 km3 of its 

freshwater. If its consumption continues unabated, serious water shortages will cause 

hardship in future years. Several other studies have since confirmed these basic findings 

[110, 92]. 

A similar set of studies has been conducted by Famiglietti et al. [111] in the Central 

Valley of California.  As with the Indus River aquifer, the aquifers underlying the 

Sacramento and San Jaoquin river basins are heavily pumped for agricultural irrigation. 

The southern San Joaquin basin, in particular, is a relatively dry area with little available 

surface water. Famiglietti et al. [111] first checked GRACE’s accuracy over this region 

by collecting in situ measurements of precipitation, evaporation, and streamflow runoff 

and comparing them to GRACE’s ∆TWS through the use of equation 5.  They found 

excellent agreement at the seasonal scale, which gives confidence behind the ability of 

GRACE to measure accurate mass changes in this area. It also verified that the known 

wintertime droughts in 2006/07 and 2008/09 were large enough to be visible.  Then, 

using in situ measurements of surface water, a local model of snow-water equivalent 

which is constrained by in situ measurements, and modeled soil moisture, they solved 

for groundwater using GRACE and equation 5.   Over six years (2004–2010), local 

terrestrial water storage dropped by about 31 cm/yr with groundwater estimated to 

make up about 20 cm/yr of that loss.   Over 80% of this occurred in the drier San 

Joaquin basin. However, Famiglietti et al. [111] note that prior to the drought beginning 

in winter of 2006/07, groundwater storage was roughly balanced, with neither large 
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gains nor decreases. Only after the onset of the drought did a clear negative trend set 

in. They note that, historically, this seems typical: regional farmers draw more GW 

for irrigation during dry times, but their non-drought-time withdrawals approximately 

balance with the natural recharge rate, leading to significant depletion of the aquifer 

over the long-term. GRACE could be used in such a manner, in combination with other 

measurements, to help create a long-term plan for sustainable water use in this sensitive 

and valuable region. 

In addition to man-caused water storage change, more recent studies have focused 

on natural changes which could have profound impacts on human life. Extended floods 

and droughts, in particular, have been measured with GRACE. In areas with few in 

situ measurement systems in place, such as the Amazon [62, 77], GRACE is one of 

only a few remote systems capable of estimating the magnitude and duration of such 

weather events. While other remote systems like MODIS (Moderate Resolution Imaging 

Spectroradiometer) or Landsat measure surface water extent (but not depth), and 

TRMM (Tropical Rainfall Measuring Mission) observes rainfall in the tropics, none but 

GRACE give us information on what is happening under the surface over time. Even 

in places where effort has gone in to installing regular in situ measurement devices, 

GRACE provides assistance and a wide-view image of the situation. Leblanc et al. [87] 

used GRACE to measure a decade-long drought in southeastern Australia, for example. 

Australia has a good, though spatially limited, in situ measurement system for surface 

water and GW, but is dependent on models for estimates of soil moisture. Leblanc et al. 

[87] used equation 5 to verify that the yearly-averaged combination of their model and 

in situ data approximately summed to the ∆TWS seen by GRACE, with correlations of 

0.92-0.94 for the 2003–2007 period. Groundwater was shown to account for the majority 

(86%) of the 13 cm ∆TWS loss seen by GRACE from 2002–2006, with soil moisture 

losing most of its available water during the early part of the drought. GRACE also 

measured the increase in mass associated with the precipitation increase in 2007, most of 

which is believed to have gone into replenishing the soil moisture rather than increasing 

surface flow. Leblanc et al.  (2009) then used GRACE to calculate the severity of 

the drought in a quantitative way, relative to a 2001 threshold (Figure 12). Without 

requiring the use of any modeled data, they estimated the average total deficit volume 

during 2002–2007 to be about 140 km3, with a maximum severity of approximately 240 

km3  during early 2007. 

To summarize, GRACE has been demonstrated to be useful for measuring 

hydrological signals hard to estimate in other ways, including estimates of water storage 

change in poorly monitored regions; annual and longer-term GW change due to human 

activity; the relation of groundwater, surface water, and soil moisture to droughts and 

floods; the short-term elastic deformation of the Earth to hydrologic loading; and 

the teleconnections between land hydrology and oceanography. Limited spatial and 

temporal resolution make GRACE an imperfect product for some investigations, but 

overall, it has added to the body of hydrological understanding and will surely continue 

to do so for years to come. 
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Most studies using GRACE data focus on processes occuring in the ocean, cryosphere or 

hydrosphere, which represent redistribution of water within a thin layer at the Earth’s 

surface. However, since the mean density of the Earth is about five times as large as 

that of water, GRACE measurements are especially sensitive to mass redistribution 

in the Earth’s interior. Given that GRACE cannot distinguish the source of the mass 

change (on or within the Earth), a correction for such solid Earth signals is critical if one 

wants to interpret the surface mass redistribution from GRACE correctly, in particular 

when one looks at long-term trends. However, these processes in the Earth’s interior 

are not just a source of noise: conversely, GRACE has also been used to improve our 

understanding of the solid Earth. Most processes in the Earth, like mantle convection 

and plate subduction, occur on long enough time scales to be considered as static over 

the GRACE period. Other processes, such as glacial-isostatic adjustment (GIA) lead to 

a long-term trend in the GRACE time series, whereas very large earthquakes, like the 

Sumatra-Andaman Earthquake, will typically show up as abrupt jumps in the gravity 

field. These two processes will be discussed next. 
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Glacial Isostatic Adjustment 
 

The Earth’s interior responds to changes of the load on its surface, for example, the 

retreat and re-advance of ice sheets, with viscoelastic deformation seeking to gain a new 

equilibrium state. This process, glacial-isostatic adjustment, induces changes in the 

Earth’s gravity field, the rotation of the Earth, surface geometry and sea-level height. 

On long time scales, the most important redistribution of ice mass is associated with 

the glacial cycles. Paleoclimatic records indicate that over the last 800,000 years – that 

is the period most relevant for GIA – glacial and interglacial epochs alternated with a 

period of about 100,000 years. This period coincides with the variation of the Earth’s 

orbital eccentricity, the Milankovich cycle of 95,800 yr, and several theories have been 

proposed about orbital forcing of the glacial cycles [e.g., 112, 113], yet their role in 

triggering internal feedbacks in the climate system are still far from understood [114]. 

Recent glacial cycles exhibit a glaciation phase, marked by a steady growth of ice 

during about 90–100 thousand years, followed by a rapid deglaciation phase that lasts 

only about 10–20 thousand years, with the Last-Glacial Maximum (LGM) about 21,000 

years before present (BP). During the LGM, the Laurentide Ice Sheet, for example, 

covered large parts of the North American continent with ice of several km in thickness, 

depressing the Earth surface by hundreds of meters (schematically shown in Figure 

13). The response of the Earth can be described by the flexure of an elastic plate, the 

lithosphere, with a thickness of about 100 km covering the viscoelastic mantle. Due to 

the high viscosity of the displaced mantle material, the adjustment to the ice retreat 

following the LGM is delayed, leading to surface displacement and gravity changes of the 

Earth on time scales of 10,000 years – a process still ongoing today. In the 18th century, 

Celsius [115] was among the first to collect evidence of falling sea-level and changing 
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coastlines related to GIA. Today, an imprint of GIA is clearly visible in the temporal 

trends of GRACE gravity-fields, for example in Fennoscandia and North America (as 

illustrated in Figure 14). GIA is also strongly present in Antarctica, but is less clearly 

visible in GRACE due to superposition with recent changes in continental ice, due to 

variations in glacier flow and snow accumulation. 

GIA not only leads to deformation of the Earth’s surface, it also has a dominant 

impact on the sea-level relative to the Earth surface. As an ice sheet retreats, its 

gravitational attraction decreases and the sea level drops in its vicinity. In contrast, in 

regions with a GIA-induced increase of mass, the gravitational attraction increases and 

sea level tends to rise. In addition, the water volume changes – as ice is redistributed 

between the ocean and the continent – as well as the geometry of the ocean basin 

through deformation and flooding/falling dry of land in response to changing surface 

loads. These interactions between changes in the gravity field, deformation of the solid 

Earth and also disturbances in the Earth’s rotation vector will yield regional variations 

in relative sea level which are much more complicated than a uniform rise or fall of 

the ocean’s surface. This concept was already acknowledged in 1835 by Lyell [116], 

who studied rock formations formerly submerged in the ocean along the Baltic coast 

and concluded that, in this region, the relative sea-level ”is very different in different 

places”. Figure 15 shows geological evidence recording the viscoelastic, exponential- 

type fall of relative sea-level typical for GIA in the near-field of a former ice sheet, here 

the Fennoscandian ice sheet. Clearly, these regional variations needs to be considered 

in the interpretation of geomorphological indicators of past sea-level change, as well 

as in future projections. A unified theory describing the effects of sea-level changes 

on a Maxwell-viscoelastic, self-gravitating Earth was put forward by Farrell and Clark 

[117], building on the work of Woodward [118]; the related integral equation describing 

gravitationally consistent the mass redistribution between ice and ocean has become 

known as the sea-level equation (SLE) and it is now implemented in all state-of-the-art 

numerical models of GIA [e.g., 119, 120]. 

Modeling of GIA requires two main ingredients: an ice model and knowledge of 

the Earth’s structure. The former describes the loading and unloading of the Earth’s 
surface by the waxing and waning of the ice sheets. Constraints for extent and timing are 

typically taken from glacial trim lines, dating of moraines pushed forward by advancing 

glaciers and paleo-indicators of sea level far from GIA regions. For the Earth structure, 

the distribution of density and elasticity are taken from models based on seismological 

screening of the Earth, like the Preliminary Reference Earth Model (PREM) [121]. The 

Earth’s rheology can only be obtained from creep experiments of mantle rocks [122], 

but it was the investigation of GIA that first provided constraints on the Earth’s mantle 

viscosity [e.g., 123]. The ice model and Earth structure used in GIA models are strongly 

coupled: present-day uplift in a certain region can be due to a strong loss of ice after 

the LGM, but also by a moderate loss combined with a slow response of the solid Earth. 

The situation becomes even more complicated when a re-advance of the ice occurred. 

Ice and Earth models are therefore often iteratively adjusted until an optimal match is 
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found with present-day crustal deformation, e.g. from relative sea level indicators, and 

nowadays also GPS measurements and GRACE observations. 

Theory and numerical models solving GIA, as well as the first model-based 

interpretations of observations in terms of the Earth’s viscoelastic structure, date back to 

the mid-1970s [e.g., 124, 125]. Since then, theoretical descriptions and their numerical 

implementation have continuously been advanced [e.g., 126, 127, 128, 129]. Current 

models now not only include the solution of the sea-level equation [130, 131], but also 

GIA-induced variations of the Earth’s rotation [e.g., 132, 133, 134, 135], two- and three- 

dimensional distributions of mantle viscosities [e.g., 136, 137, 138, 139, 140, 141, 142] and 

may allow for non-Newtonian [e.g., 143], composite rheologies [144] and compressible 

viscoelasticity [e.g., 145]. 

Over the instrumental period of about 100 yrs, the temporal behavior of GIA 

is well approximated by a linear trend, an exception being young and tectonically 

active provinces with a very low-viscous upper mantle, such as Alaska, Patagonia or the 

Antarctic Peninsula. This means that GIA is present in trend estimates from geodetic 

time series of surface deformation from GPS, tide-gauge and alimetry measurements of 

sea level, as well as measurements of the Earth’s rotational variations, classical leveling, 

surface-gravity and geocenter motion and in particular the gravity field changes from 

GRACE. Because of the long time scales associated with GIA, seasonal variations in 

the GRACE data related to e.g. the global hydrological cycle are hardly affected. But 

for the study of interannual and long-term mass trends, a correction for GIA needs 

to be subtracted from the GRACE observations. This is in particular the case for 

estimates of the integrated ocean mass change from GRACE where the GIA correction 

is of the same order of magnitude as the signal (see section 5) and for monitoring the 

mass balance of the ice sheets. As mentioned above, GIA models are often iteratively 

adjusted until an optimal agreement is reached with crustal uplift data. Unfortunately, 

uplift data is scarce for the polar ice sheets, due to the remote, hostile environment 

and the fact that much of the region is still covered by ice.  Particularly, the poorly 

defined ice loading history and Earth rheology of the Antarctic region has been a key 

limitation in estimating the Antarctic ice-mass balance from GRACE [146, 147]. Since 

the uncorrected GRACE data over Antarctica show a trend close to zero, it is the 

GIA model that determines the contribution of the ice sheet to sea level change. Early 

GIA models showed widely varying GIA corrections, ranging from 113 to 271 Gt/yr 

[148], equivalent to a sea-level rise of 0.30–0.75 mm/yr. In the course of the 2000s, an 

increasing number of GPS stations have been installed in the interior of Antarctica as 

part of the POLENET project (www.polenet.org), complementing near-coastal GPS 

stations available since mid-1990s. Thomas et al. [149] re-assessed the ground motion 

at the available Antarctic GPS stations and found that the GIA models systematically 

overestimate the uplift recorded by GPS. These GPS data, together with new evidence 

from glacial geology that the West-Antarctic ice sheet lost significantly less ice since the 

LGM than previously thought, have lead to a revision of the GIA predictions. The most 

recent GIA corrections for the Antarctic continent are now in the range of 6 to 103 Gt/yr, 
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with a preferred value of ∼40–60 Gt/yr. This is about half the magnitude of earlier 

estimates, with the consequence of attributing substantially weaker mass loss to the 

Antarctic Ice Sheet [150, 146, 151, 147]. A substantial uncertainty remains concerning 

the GIA signal underlying the East-Antarctic ice sheet, and regional to local patterns 

of the solid Earth response. 

For North America, however, GRACE has provided new insights into GIA. It has 

been argued that, at some stage, the Laurentide Ice Sheet consisted of two distinct ice 

domes located south-east and west of Hudson Bay [e.g., 152]. Tamisiea et al. [153] first 

analyzed the spatial GIA pattern in the GRACE trends for 2002 to 2005, and interpreted 

its signature in favour of such a glaciation scenario (Figure 14). Later van der Wal et al. 

[154] showed that part of these 5-year GRACE trend must be attributed to water storage 

variations south-east of Hudson Bay from summer 2003 to summer 2006, which can, for 

short time series, produce a gravity rate comparable to GIA. With two more years of 

GRACE data (August 2002 to August 2009), Sasgen et al. [155] confirmed that the 

pronounced two-dome GIA pattern is much reduced, yet a kidney-shaped anomaly is 

retained. These low positive GIA amplitudes may suggest early ice disintegrating within 

the Hudson Bay area, leading to comparably early floating of ice and hence de-loading 

of the continent. The problem of contamination by hydrological signals and noise in the 

GRACE data remains, currently hampering secure conclusions, although a combination 

of GRACE with other data sets, such as GPS [156] and terrestrial gravity data [157], 

may help to remedy this problem [63]. 

Paulson et al. [158] was the first to invert the GIA signal in the GRACE data 

over North America for the mantle viscosity using numerical modelling. Although the 

authors had to conclude that the GRACE and relative sea level data are insensitive 

to mantle viscosity below 1800 km depth, and that data can distinguish at most two 

layers of different viscosity, they demonstrated consistency between the inversion of 

GRACE and relative sea-level data. A new aspect GRACE brought into the study is 

the analysis of spatial patterns (’fingerprints’) of GIA associated with specific mantle 

viscosities. The inversion of the GIA signal magnitude remains somewhat ambiguous 

due to the trade-off between mantle viscosity and load as discussed earlier. Although 

this ambiguity is inherent also in the GRACE inversion, Paulson et al. [158] treat the 

(unknown) magnitude of the load as a free parameter that is adjusted to optimize the 

fit to the GRACE data. Then, the residual misfit depends mainly on the modelled and 

observed spatial pattern of the GIA that is mainly governed by the mantle viscosity. 

In this sense, GRACE represents a valuable new data set in addition to point-wise 

measurements like GPS, tide-gauges or sea-level indicators [122]. 

For the region of Fennoscandia, the ongoing adjustment has been monitored by 

GPS studies, most important the Baseline Inferences for Fennoscandian Rebound 

Observations, Sea Level and Tectonics (BIFROST) project [159, 160]. The results 

indicate a GIA-induced land-uplift at rates of up to 8 mm/yr close to the former load 

centre. Agreement between GRACE and the terrestrial data in terms of the spatial 

pattern and magnitude could be achieved after a robust multi-year GRACE trend was 
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available. Since the Fennoscandian GIA pattern is well recovered by GPS, the signal 

could be used to verify GRACE post-processing methods [e.g., 161]. As for North 

America, the separation of the GIA signal and that of hydrological mass variations 

remains the largest challenge and source of uncertainty. The first joint inversion of 

GRACE, GPS and tide gauge data was performed by Hill et al. [162], obtaining results 

that are consistent with previous models, but with an improvement in the spatial 

pattern, which again demonstrates the power of combining GRACE with other data 

sets. 
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Seismology 
 

A second area of solid Earth research where the time-variable measurements from 

GRACE have provided new insights is seismology. For the  first  time,  widespread 

gravity changes induced by earthquakes can be observed directly [163]. Since the 

signal generated by most earthquakes is small in comparison with the background noise, 

only the largest seismic events, those with moment magnitudes Mw> 8 [164], can be 

successfully observed. 

Such giant earthquakes are characterized by a displacement at the fault interface 

of several tens of meters, distributed over a surface of 300–1000 km along fault by 

100–200 km across fault. They generate seismic waves that are detected around 

the globe, deform the earth’s surface by several meters close to the fault and at 

the centimeter-level a few thousand kilometers from the epicenter, and can generate 

significant tsunamis. Observations of those processes, such as seismic waves, surface 

deformation and tsunamis, are available within hours to days after each seismic event 

and can be used to constrain the earthquake kinematics and dynamics. However, most 

major seismic events occur at the boundaries of oceanic regions, so that the availability 

of direct observations of surface deformation (mainly by GPS) is spatially highly 

heterogeneous and mostly limited to one side of the fault (over neighbouring continental 

areas). Furthermore, seismic observations, which can be used to determine the locations 

and magnitudes of coseismic events beneath either the continents or oceans, are not 

sensitive to long-period postseismic motion. Since space-based gravity observations 

provide homogeneous coverage of the earth’s surface, and because they detect mass 

redistribution at scales of months and longer, they can reveal seismic information that 

would otherwise go unnoticed. 

GRACE observations have improved our understanding of the largest earthquakes 

of the last decade, for two time-frames: the occurrence of a seismic event (coseismic 

phase) and the period after that (postseismic phase). There are three main postseismic 

processes: afterslip, poroelastic relaxation  and viscoelastic relaxation. Afterslip  is 

equivalent to an earthquake which occurs so slowly that it does not produce seismic 

waves, at time scales from a few hours to several weeks. This additional slip is usually 

located either on the same fault activated by the earthquake, or on deeper segments that 

have not released seismic energy.  Poroelastic relaxation is related to the fact that the 
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sudden pore-pressure change induced by an earthquake can displace fluids contained in 

rocks, and the same fluids slowly return to their original location during a few months 

to years after the seismic event [165, 166]. Viscoelastic relaxation, which also plays a 

major role in the process of GIA discussed earlier, occurs in deeper parts of the Earth, 

where temperatures and pressures are so high that rocks behave as high-viscosity fluids 

(viscosities in the range 1018–1021 Pa s). In seismically active areas, this is typically 

the case below depths of 25-40 km. After an earthquake, the fault displacement (slip) 

causes an increase in stress at the bottom of the top brittle layer, and this stress is 

slowly released through viscous flow that can last for decades [167, 168]. 

In one of the first GRACE earthquake studies, Han et al. [169] used raw 

measurements of the inter-satellite distance changes (Level-1 data) to determine the 

co-seismic gravity signal from the 2004 Sumatra-Andaman event. Level-1 data are 

available relatively quickly, and allow for the isolation of sudden gravity changes from 

sub-monthly time series. Han et al. [169] concluded that among the major factors 

contributing to the gravity signal were density changes within the earth’s upper layers. 

Density changes have often been included in deformation models [170, 171], but they 

had not previously received much attention because dilatation effects play only a limited 

role in determining changes in the earth’s geometry, such as those observed by GPS and 

InSAR. However, when modelling the gravity changes observed by GRACE, the role of 

density variations is found to be as large as that of the displacement of rock material 

[169, 172]. This surprising result was later discussed in more detail by Cambiotti et al. 

[173] and Broerse et al. [174], who showed that the crucial effects of dilatation result 

from a combination of the large-scale sensitivity of GRACE and the presence of an 

ocean. The effects of dilatation on the deformation are small compared to the peak 

value, and so have little impact on geometrical observations, which tend to focus on 

the peak displacements. But those effects are spread over a large area, particularly for 

an earthquake with a large focal plane such as the Sumatra-Andaman event, and so 

can have a significant impact on large-scale measurements. The presence of an ocean is 

important because it dramatically reduces the density discontinuity at the solid earth’s 
surface (from about 2600 kg/m3 to 1600 kg/m3), and consequently reduces the gravity 

signal due to topographic changes (the Bouguer effect). This causes a further increase 

of the relative contribution of dilatation to the total gravity change. Other studies 

followed in 2007, showing that coseismic signals could be detected in pre-processed 

(Level 2) data, as well [175, 176, 177]. These studies opened the way to a broader use 

of GRACE measurements by the solid Earth community, since Level 2 data are freely 

distributed by the official GRACE processing centres. Mega-thrusts later became the 

object of intensive research, with the first results often published within only a few 

months after each event. This was the case, for example, for the 2010 Maule [178, 179] 

and the 2011 Tohoku-Oki [180, 181] earthquakes. 

Apart from modelling issues (i.e., determining which processes need to be accounted 

for to reproduce  GRACE  observations),  the  main  objective  of  using  GRACE  data 

to study coseismic  deformation is to improve  fault-reconstruction models.   This  is 
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important because more accurate fault models can help in understanding the relation 

between recent and past earthquakes in the same region [182], and to help isolate 

postseismic signals. This line of study has been addressed in several ways: first of 

all, existing fault models obtained from seismic and GPS data have been corroborated 

by GRACE data for the Sumatra-Andaman [e.g., 169, 177, 183], Maule [178, 179] and 

Tohoku-Oki [180, 184] events; secondly, GRACE data have been used to obtain Centroid 

Moment Tensor (CMT) solutions fthe or Sumatra-Andaman [173, 172], Maule [172], 

Tohoku-Oki [181, 185, 172] and the east Indian Ocean [172] earthquakes; finally, a few 

studies have used GRACE data to constrain a finite-fault model for the Maule [186] and 

Tohoku-Oki [187, 188] events. 

As suggested by the number of studies listed above, perhaps the most interesting 

application of GRACE data in coseismic studies has been the inversion for CMT 

solutions. In a CMT description, a seismic source is represented by a point-like double- 

couple and characterized by a few fundamental parameters: seismic energy, fault plane 

orientation, and slip direction. Those parameters are enough to completely define 

the earthquake, as long as the point-source approximation is valid, i.e., as long as 

observations are taken far enough from the location of the seismic event. Because 

of the large-scale sensitivity of GRACE, CMT parameters are particularly well suited 

for an inversion of GRACE data, in what could be called ’GRACE seismology’. 
This approach has been recently formalized by Han et al. [172], who applied it to 

all seismic events observable by GRACE up to that time (with the exception of the 

2005 Nias earthquake, which can not be clearly separated from the co- and postseismic 

effects of the 2004 Sumatra–Andaman earthquake). Forward models of earthquake- 

induced gravity changes computed using the GRACE-inferred CMT parameters, are 

shown in Figure 16. Han et al.’s study has highlighted how the depth of a seismic event 

is crucial for establishing the importance of density changes, and hence for characterizing 

the pattern and amplitude of its gravity signature. It also showed that large trade-offs 

are present in the determination of seismic energy vs. dip angle, which is the inclination 

of the fault plane in the vertical direction, and of the direction of slip vs. strike angle, 

which is the orientation of the fault plane in the horizontal direction. An example of the 

energy-dip angle trade-off as a function of depth is shown in Figure 17. The implication is 

that GRACE data should best be viewed as supporting traditional seismic and geodetic 

data when inverting for earthquake mechanisms. Nonetheless, a CMT solution based on 

GRACE observations alone does provide an estimate of the total energy released during 

the first few weeks after the seismic event, including contributions from slow post-seismic 

processes. Those are hard to measure using other techniques and are therefore rarely 

observed. Results from Han et al. [172] support the presence a slow slip for the Sumatra- 

Andaman earthquake, as had been suggested earlier on the basis of seismic inversions 

of ultra-long periodic motion [189, 190]. A slow component has not been detected by 

GRACE for any other event. 

The fact that GRACE provides large-scale spatial coverage of an earthquake area, 

raises the possibility of providing better constraints on postseismic processes than can 
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be obtained with sparse and unevenly distributed GPS measurements. This should 

be particularly true for viscoelastic relaxation, which is more widespread and longer- 

lasting than the effects of other processes, and therefore better suited to the spatial and 

temporal resolution of GRACE data. In addition, GRACE observations of postseismic 

deformation following large earthquakes can provide information about the mechanical 

properties (the rheology) of the entire upper mantle in the vicinity of the earthquake, and 

improvement over what can be learned from smaller events, since the depth sensitivity 

is roughly proportional to the earthquake size. 

The first paper to address postseismic processes with GRACE data was Ogawa and 

Heki [175]’s study of the Sumatra-Andaman earthquake. After analyzing monthly data 

spanning 4 years (including 16 months after the event), they came to the conclusion 

that the observed recovery of the initial geoid depression could best be explained by 

the diffusion of water. In contrast to previous studies of poroelastic relaxation in the 

upper crust [e.g., 166], in this case the flow was predicted to have taken place in the 

upper mantle, where pressure and temperature conditions are so high that water is in a 

supercritical state. This study remains the only study, to date, to have addressed this 

process, in spite of the important role of water in the dynamics of the earth’s interior 

[191]. 

A few papers [183, 192, 193] have modelled the observed postseismic signal after 

the Sumatra-Andaman event as the result of viscoelastic relaxation.  All studies agree 

that relaxation is characterized by a transient phase with fast flow followed by a slower 

steady-state phase. The simplest model that can represent such a process is a Burgers 

body, which has a mechanical analogue of a spring and dash-pot in parallel (Kelvin 

element), combined in series with a spring and dash-pot in series (Maxwell element). The 

Kelvin element accounts for most of the transient signal, usually localized in the shallow 

part of the upper mantle (the top 100–200 km), while the Maxwell element represents 

the steady-state deformation throughout the entire mantle, as is also assumed in GIA 

studies (discussed earlier in this section). Though such a mechanical model had already 

been suggested on the basis of GPS data alone [194], the availability of GRACE data 

made it possible to better discriminate viscoelastic effects from the effects of afterslip, 

which had also been proposed as a candidate explanation for the early postseismic phase 

[e.g., 195]. Since afterslip causes a deformation pattern similar to the coseismic signal, 

but with much smaller amplitudes, its identification requires the availability of accurate 

near-field measurements, which in the Sumatra-Andaman region were limited to a few 

GPS sites.   Based on GRACE data alone, Han and Simons [183] strongly favoured 

viscoelastic relaxation as the primary postseismic mechanism for this event, with the 

possibility of a small role of afterslip in the first few days after the earthquake.  Panet 

et al. [192], however, invoked the presence of a small amount of afterslip, on the basis 

of GRACE data and a few GPS sites at about 500–1000 km from the fault. Following a 

different approach, Hoechner et al. [193] started from GPS data to refine the coseismic 

model and to reduce the number of candidate postseismic models, and to estimate the 

optimal crustal thickness.  Then, they used GRACE data to discriminate between two 



GRACE, time-varying gravity, Earth system dynamics and climate change 26  

 

 

981 

 

982 

 

983 

 

984 

 

985 

 

986 

 

987 

 

988 

 

989 

 

990 

 

991 

 

992 

 

993 

 

994 

 

995 

alternatives, the combination of a Maxwell model and afterslip vs. a Burgers model, 

and found that the Burgers model provides a much better fit to gravity observations 

(Figure 18). Interestingly, this distinction was made possible by the fact that the two 

processes caused different patterns in the oceanic areas west of the Andaman islands, 

where no observations except those from GRACE were available. 

When summarizing the role of GRACE data in improving our knowledge of the 

seismic cycle around the major subduction zones, we can safely say that results so 

far have already exceeded expectations. The accurate isolation of the coseismic signal 

has provided interesting information about slip occurring outside the classical seismic 

spectrum. However, the most important insights will likely originate from the study 

of postseismic deformation, which promises to highlight how stress evolves at scales 

of years to centuries, and how it is related to the recurrence of large earthquakes 

[196]. Since several years of observations are required to discriminate between different 

postseismic processes, there is still much to be learned by continuing to monitor the 

regions encompassing recent mega-thrusts events. 
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Until not too long ago, ice sheets and, to a lesser extent, glaciers were considered to be 

rather inert systems, reacting only slowly to climate changes. The mass balance (MB) 

of an ice body – the temporal change of its mass M – can be expressed as: 
 

dM 

dt  
= MB = SM B − D (7) 

where SMB stands for surface mass balance (SMB), the sum of processes that 

deposit mass on the surface (precipitation) and remove mass from the surface (runoff, 
drifting snow sublimation and erosion and surface sublimation), and D is the ice 

discharge across the grounding line, where we neglect the small basal melting of 

grounded ice and changes in the grounding line position [197]. In the vast, hostile 

polar environment, collecting sufficient in situ observations to constrain the MB of the 

ice sheets would be a gargantuan task and until about 20 years ago, estimates of the 

contribution of the ice sheets to sea level changes were necessarily based on extrapolation 

of sparse set of samples. 

A giant leap forward in our understanding of the cyrosphere was made by the 

advent of satellite remote sensing. Despite the lack of missions specifically dedicated at 

observing the mass balance of the cryosphere, estimates of volume and mass changes 

were already made in the 1990s using satellite radar alimetry. These missions were 

typically designed to measure height changes over the ocean, which is relatively smooth 

compared to the outlet glaciers at the ice sheet’s edges. The rugged topography in 

these locations introduces an ambiguity in the determination of the echo position of the 

emitted radar beam: over flat surfaces the first returned radar pulse will be associated 

with the point beneath the satellite, but along-track variations in the ice surface will 

move this point away from nadir, so that the exact location of the measurement is 

unknown. This becomes especially problematic in the coastal regions, where outlet 

glaciers are located in narrow fjords with a cross section smaller than the radar footprint, 

typically a few km. Furthermore, depending on the properties of the surface snowpack, 

the radar pulse penetrates in the  snow adding further ambiguity  to the observed 

height variations [e.g., 198]. A dedicated ice altimetry mission, ICESat, launched in 

2003 and decommissioned in 2010, countered these limitations by using a laser beam 

with a footprint of ∼70 m, sufficiently small to resolve narrow glaciers features and 

with minimal surface penetration. Unfortunately, due to degradation  of the laser 

system, measurements were coarse in time (∼3 campaigns/yr) and space. The ESA 

Cryosat-2 mission, launched in 2010 and currently in orbit, uses a Synthetic Aperture 

Interferometric Radar Altimeter to accurately determine the angle of arrival of its radar 

pulse, which allows measurements even in very irregular terrain. Yet, a major problem, 

associated with all geometric measurements, remains: to relate surface elevation changes 

to mass changes, the observations need to be multiplied with the local surface density. 

This is less trivial than one would assume. In regions dominated by ice dynamics, 

the density used should be close to that of ice.  In contrast, in areas where melt or 
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accumulation changes at the surface dominate, it should be roughly that of snow. In 

many regions, both mechanisms operate and an intermediate value is to be used. Snow 

and ice density vary by a factor 2-3, ranging from 100–200 kg/m3 for freshly fallen 

snow to 800-917 kg/m3 for ice, thus introducing a significant uncertainty in the mass 

change estimates from altimetry. Furthermore, spurious trends may be observed due 

to firn compaction (compaction of the top snow layer under its own weight), which 

are unrelated to mass changes and difficult to correct for as they depend on the snow 

properties, temperature variations and accumulation rate. 

Another satellite-based method, the input-output method (IOM) combines 

measurements of the influx of surface mass with the outflux at the boundaries of the ice 

field. Surface mass balance (SMB) is taken from (regional) climate models which are 

driven by meteorological re-analysis data [e.g., 199]. The outflux by glacier discharge (D) 

is obtained by multiplying ice thickness with ice flow velocities at the glacier’s grouding 

line. These glacier velocities can be either obtained from in situ flow measurements 

or from space, e.g., using Interferometric Synthetic Aperture Radar (InSAR). This 

technique has a high spatial resolution and can map individual glacier systems, but 

combines two large quantities which both have large uncertainties. Furthermore, 

observations of ice flow are made typically only once a year, which does not allow 

the interpretation of rapid, month-to-month discharge events, and do not always cover 

all glacier systems. 

Although GRACE has its own limitations (in particular its low resolution and 

sensitivity to glacial isostatic adjustment – see section 3), it measures mass changes 

directly with global coverage at monthly intervals and thus provides an excellent tool to 

monitor the cryosphere. Whereas seasonal changes in the GRACE maps are dominated 

by hydrologly, the strongest interannual changes and trends are found in glaciated areas 

(Figure 19). Relatively soon after the mission’s launch, the first mass balance estimates 

of the two major ice sheets became available. For the Greenland Ice Sheet (GrIS), 

most pre-GRACE studies suggested that the ice sheet had shifted from being in near- 

balance to losing mass in the mid-1990s [e.g., 200]. One of the first GRACE studies 

focusing on Greenland did indeed suggest a mass loss of 75 ± 26 Gt/yr for Apr. 2002– 

Jul. 2004 [46], although the time series of just two years was still too short to draw 

any firm conclusions. Indeed, interannual variability in the GrIS system lead to a 

wide band of mass balance estimates in the first few years of the GRACE mission. 

Extending the time series by two years, Velicogna and Wahr [201] found a radically 

different mass loss of -227±33 Gt/yr for Apr. 2002–Apr. 2006, with a 250% increase 

between the first and second half of the observation period. These estimates were based 

on the averaging-kernel method which calculates the average signal over a large area 

from the monthly spherical harmonic gravity fields [33] and did not allow a regional 

separation of the mass changes. Luthcke et al. [27] used the mascon approach to 

estimate mass changes directly from the intersatellite K-band range and range rate, 

which allowed the first interpretation at a drainage-system scale. A strong mass loss in 

the coastal regions was observed, which was only partly compensated by mass gain in 
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the interior of the ice sheet. Interestingly, this pattern mirrored the responses to climate 

warming as predicted by climate models, with increased precipitation at high altitudes 

and thinning at the margins due to warmer temperatures. The overall mass loss of 

Luthcke et al. [27] added up to 101±16 Gt/yr (2003–2005), mainly concentrated in the 

southeast and to a lesser extent in the northwest. The difference with the estimates 

of Velicogna and Wahr [201] likely arose from interannual variability and the relatively 

low signal-to-noise ratio of the first release of the GRACE spherical harmonic solutions. 

Indeed, when improved GRACE solutions became available, and with the help of post- 

processing filtering, Wouters et al. [202] showed that regional partitioning of the mass 

loss is feasible with the standard global spherical harmonics as well. For the entire study 

period (2003-2008) a mass loss of 179±25 Gt/yr was reported, but when considering 

the same observation period, results were consistent with Luthcke et al. [27]. This also 

implies that the mass loss in the last few years was comparatively larger, which was 

attributed to increased melt in the summer months. Again, the inland growth and 

coastal ablation was observed, with an epicenter in the southeast and increasing mass 

losses in the northwest. This spreading of the mass loss to the northwest (illustrated in 

Figure 20) was later confirmed in other studies [e.g., 203, 204, 205] and independently 

by GPS stations which recorded uplift of the Earth surface in response to the diminished 

ice load. In the same study, Khan et al. [206] also reported moderate deceleration of 

the southeast ice loss in 2006 based on GRACE and GPS observations. 

As discussed earlier, GRACE only observes integral mass changes and cannot 

separate the individual components contributing to these changes. Van den Broeke et al. 

[197] successfully compared GRACE time series to IOM mass balance for the GrIS and 

found a good agreement between the two fully independent data sets. This validation 

of the IOM data allowed a further partitioning of the individual components (equation 

7) contributing to the mass loss observed by GRACE. Roughly half of the mass loss was 

attributed to an increase in discharge (D), the other half to changes in SMB processes. In 

particular, it was shown that in the pre-GRACE era, a large positive anomaly in surface 

melt (and consequently runoff) had developed, balanced by an increase in precipitation. 

After 2004, precipitation levelled off, but runoff remained high, resulting in a negative 

SMB for the GrIS. The model also showed that approximately 30% of the meltwater 

refroze in the top firn layer of the ice sheet, thereby partly reducing the total mass loss, 

but also leading to a release of a significant amount of energy to the snowpack. Locally, 

temperatures of the firn layer were estimated to have increased by as much as 5 to 10 K. 

Sasgen et al. [203] continued along this path and found that the GRACE observations 

also agree with the IOM results at a regional scale. They revealed that the accelerating 

ice-mass loss along the west-coast of the ice sheet was a consequence of reduced SMB 

compared to the first few years of the GRACE observations, combined with an increase 

in glacier discharge.  Furthermore, a good agreement was found between the regional 

GRACE mass balances and surface height changes from ICESat. 

As the GRACE observational record lengthened, studies started to focus on 

interannual variations in the mass balance of the GrIS. A good example is the work 
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of Tedesco et al. [207] who compared various observations of the record melt which 

occurred in summer 2012. GRACE showed a mass loss of approximately 550 Gt during 

the summer months, equivalent to about 1.5 mm sea level rise. Although noise in the 

GRACE data makes it hard to exactly determine month-to-month variations, this signal 

clearly exceeded the mean ice-mass loss of previous summers (about 350 Gt/yr for 2002- 

2011). Similarly, all other data sets used in the comparison (surface temperature, albedo 

and melting, modelled SMB and runoff) showed new records compared to the long-term 

observations. These record events were attributed to a highly negative North Atlantic 

Oscillation, an index related to large-scale pressure patterns in the northern hemisphere, 

which has been in a negative state since summer 2006, leading to advection of warm air 

to Greenland. 

Estimating mass changes of the Antarctic Ice Sheet has been proven to be slightly 

more challenging. Whereas GIA is small and fairly well constrained for the GrIS, it poses 

a much larger problem in Antarctica (see section 3). Also, the interannual variabilty of 

the AIS is large compared to the trend so that the choice of the observation window 

is important. A third complication is the fact that the AIS covers a much larger area, 

which makes the total mass balance much more sensitive to how the GRACE data is 

treated (e.g., the choice of the degree-1 or C20 correction as mentioned in section 1). As 

in the GrIS, initial estimates of the AIS mass balance showed quite some disagreement. 

Velicogna and Wahr [148] reported the first trends for Antarctica at -139±73 Gt/yr 

for 2002-2005, where the large uncertainty mainly resulted from disagreement between 

GIA models. The majority of the ice loss was found to originate in West Antarctica, 

while East Antarctica was roughly in balance. Chen et al. [208] localized the mass 

loss in West Antarctica to the Amundsen Sea Embayment region and the mass gain 

in the East to the Enderby Land region, but added that it was unclear whether the 

latter represents actual ice accumulation or should be attributed to an incorrect GIA 

correction. However, comparing GRACE data to altimeter observations, Gunter et al. 

[209] and Horwath et al. [210] found a similar positive signal in the altimetry surface 

elevation data, which are much less sensitive to GIA, suggesting that the mass gain is 

real. In a follow-up investigation using GRACE, Chen et al. [211] also identified the 

Antarctic Peninsula as a region of significant mass loss, which was later confirmed by 

Horwath and Dietrich [212] and Sasgen et al. [213].  The former reported a trend of 

−109 ± 48 Gt/yr for Antarctica as a whole (Aug. 2002–Jan. 2008). 

Whereas most studies up to 2009 had found the East AIS to be gaining mass or to 

be in near-balance, Chen et al. [214] reported the EAIS to be losing mass at a rate of 

−57 ± 52 Gt/yr and a total AIS ice-mass loss of −190 ± 77 Gt/yr. However, SMB is 

highly variable over the eastern part of the AIS, making the statistics sensitive to the 

observation window chosen.  Horwath et al. [210] identified a sequence of alternating 

periods of mass gain and loss in the region in both GRACE data and independent 

surface height observations from the ENVISAT altimetry satellite.  Using GRACE, 

Boening et al. [215] observed an increase of approximately 350 Gt between 2009 and 

2011 along the coast of Dronning Maud Land in East Antarctica. Further inspection 
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of atmospheric reanalysis data attributed this mass gain to anomalously high snowfall 

in just two months, May 2009 and June 2010, due to atmospheric blocking events 

advecting moist ocean air towards the East Antarctic coast. The El Niño Southern 

Oscillation has also been linked to interannual variations in the mass balance of the 

AIS, in particular at the Antarctic Peninsula and in the Amundsen Sea sector, where 

the transport of atmospheric moisture from the ocean towards the continent is regulated 

by the Amundsen Low pressure system. Maximum correlation between the Southern 

Oscillation and interannual mass variations (∼ ±30 Gt) in these regions from GRACE 

were observed at a lag of 10 months [213]. 

Overall, when uncorrected for GIA,  the apparent  mass  change  in the  GRACE 

time series is close to zero for Antarctica, so that the final result strongly depends 

on the method used to correct for GIA. Riva et al. [216] published a first AIS trend 

estimate which did not rely on GIA modelling, but separated ice-mass loss from GIA 

by combining the GRACE gravity data with ICESat surface elevation changes. This 

concept, based on earlier theoretical work of Velicogna and Wahr [217], relies on the 

fact that GRACE mass and ICESat elevation observations bear different sensitivities 

to GIA and ice-mass loss, respectively. Their GIA correction of 100±67 Gt/yr was 

considerably smaller than the correction used in Velicogna and Wahr [148] (176±72 

Gt/yr). A wide uncertainty range remained, due to noise in the observations and the 

fact that firn compaction was neglected in the surface height trends, but this result 

suggested that the AIS GIA correction and consequently also the mass loss may have 

been overestimated so far. Indeed, as discussed in Section 3, a comparison of crustal 

uplift predicted by GIA models to vertical motion recorded by GPS stations indicated 

that the models systematically overestimated the GIA signal [149]. Recently developed 

GIA models suggest a GIA signal in the range of 6 to 103 Gt/yr, with a preferred 

value of ∼40–60 Gt/yr [218, 150, 151]. King et al. [146] applied the regional approach 

of Wouters et al. [202] to Antarctica, and, using the GIA correction of Whitehouse 

et al. [150], estimated an ice-mass change significantly lower than previous estimates 

(-69±18 Gt/yr for Aug. 2002–Dec. 2010), again concentrated along the coastal zone of 

the Amundsen Sea sector. 

As is evident from the above overview, initially, mass loss trends reported in early 

GRACE studies disagreed by a factor of almost 2 for both ice sheets due to the different 

processing methods and, in particular, the time spans used. These early studies were 

based on only a few years of data, and surface mass balance for the GrIS and AIS may 

vary from one year to another by several hundred gigatonnes [219, 220], so adding just 

one year of measurements may change a trend substantially. Nowadays, as researchers 

have become more aware of the unique character of the GRACE data and the longer 

observations makes the statistics less susceptible to the choice of the time window, 

more recent estimates have converged. The Ice sheet Mass Balance Inter-comparison 

Exercise [221] compared GRACE mass balance estimates from six different research 

groups. A common time span was used (2003–2010) and all groups used the same GIA 

models, so that the differences between the estimates can be attributed to the data 
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source (the global Level-2 spherical harmonics provided by the GRACE science teams, 

or the ’mascons’ estimated directly from the Level-1 range-rate data) and the analysis 

scheme used to estimate the mass changes from the GRACE data. This showed that 

all estimates agree within their respective uncertainties, for both ice sheets. Trends 

differed by approximately ±10 Gt/yr between the six groups, which can be taken as 

the approximate current methodological uncertainty. For the GrIS, this is comparable 

to the uncertainty in the GIA correction, for the AIS, GIA remains the main source of 

uncertainty (see Section 3 for a discussion). At time of writing, mass loss of the GrIS 

stands at approximately -251±20 Gt/yr (Jan. 2003–Dec. 2012; update of Wouters et al. 

[222]). For the AIS, the numbers still depends on the approach used to correct for GIA 

and mass loss is nowadays in the range of -67±18 Gt/yr (Mar. 2003–Jul. 2012; update 

of King et al. [146]) to -114±23 Gt/yr (Jan. 2003–Sep. 2012; [151]). As is evident from 

Figure 21, the rate of mass loss of both ice sheets appears to have been steadily increasing 

since the launch of the GRACE satellites. Velicogna [223] found that the GrIS and AIS 

time series are indeed better characterized by a quadratic rather than a linear fit. This 

study reported an acceleration of -26±14 Gt/yr2 and -30±11 Gt/yr2 for Antarctica and 

Greenland, respectively, for 2002–2009 (fitting a α0 + α1t + 0.5α2t
2 function, where 

α1 symbolises the trend and α2 the acceleration). Rignot et al. [224] extended the 

GRACE time series by one year and reported acceleration which were approximately 

50% smaller (-13.2±10 Gt/yr2 for AIS and -17.0±8 Gt/yr2 for GrIS). These two studies 

used a slighly different approach to estimate the accelerations: fitting a quadractic to the 

GRACE mass anomalies (cummulative mass balance, M (t)) in Velicogna [223] versus 

fitting a linear trend to the monthlly mass balance values (dM/dt) in Rignot et al. 

[224], but this explains only a few Gt/yr2 of the differences. Adding another two years 

of data, Wouters et al. [222] found -21±13 Gt/yr2 and -25±9 Gt/yr2, respectively. Since 

acceleration estimates are unaffected by GIA (this slow phenomenon can be assumed to 

be approximately linear over the time period considered), this indicates that, again, the 

statistics are sensitive to the choice of the observation window and, to some degree, to 

the choice of data and processing [146, 225]. The high interannual variability in SMB 

makes the current GRACE record too short to robustly separate long-term accelerations 

from internal ice sheet variability. About 20 years of observations would be required 

to obtain an acceptable signal-to-noise ratio [222], highlighting the need for a follow-up 

GRACE mission. 

GRACE has also provided important new insights in the mass balance of smaller 

ice caps and glaciers systems. Direct observations of glaciers are sparse, both in space 

and in time, because of the labour intensive nature and tend to be biased toward glaciers 

systems in accessible, mostly maritime, climate conditions. Approximately 60% of the 

in situ glacier mass balance records are from the smaller European Alps, Scandinavia 

and northwestern America [226]. Very large and less accessible glaciers, in contrast, are 

undersampled and lack continuous and uninterrupted observation series. Both problems 

can be overcome by GRACE, which provides global and continuous observations. Yet, 

as the spatial scale becomes smaller, the effect of noise in the GRACE data becomes 
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larger and validation of the GRACE observations of glaciers by independent methods 

becomes often desirable. 

Much of the attention has focused on the glaciers in the (sub)Arctic region. In the 

Gulf of Alaska (GoA), airborne altimetry observations in the 1990s and early 2000s 

suggested a glacier mass loss of -96±35 Gt/yr for 1995–2001 [227]. This number 

was based on extrapolation of 28 profiled glaciers and the observations did not allow 

to resolve interannual variations. The first GRACE-based estimates confirmed the 

altimetry results, with trends of typically 100-110 Gt/yr in the first few years of the 

GRACE mission [∼2003–2005; 228, 229, 230]. However, the GRACE time series revealed 

substantial interannual variabilty in the mass budget of the GoA glaciers (see Figure 22): 

anomalously high snowfall in the winter of 2007 [230] was followed by high mass loss in 

2009, which Arendt et al. [231] linked to the Mount Redoubt eruption in March of that 

year. The ash fall of the volcanic plume caused a decrease in the ice surface albedo in the 

GoA region, leading to a greater absorption of solar radiation and hence surface melt. 

They report a mass trend of -61±11 Gt/yr for 2004–2010, somewhat more negative 

than the -46±7 Gt/yr of Jacob et al. [110] for a slightly longer period (2003–2010). 

Interestingly, GRACE suggests that the neighbouring glaciers in Western Canada and 

USA are gaining mass at a moderate rate of a few Gt/yr (Fig. 22; [110, 232]), although 

the uncertainty due to GIA and leakage of hydrological signals is large for this region 

and in situ measurements indicate that these glaciers are actually losing mass [232]. 

Located northwest of the GrIS, the glaciers and ice caps of the Canadian Arctic 

Archipelago (CAA) hold about one-third of the global volume of land ice outside the 

ice sheets. Mass loss in the northern CAA was reported in the study of Wouters et al. 

[202]. A few years later, Gardner et al. [233] compared data from ICESat, GRACE 

and a regional climate model for 2004–2009 and found that all three data sets indicated 

a sharp acceleration of the mass loss occurring around 2007 (Fig. 22), mainly due 

to increased melt in response to higher air temperatures. About two-third of the ice 

loss (39±9 Gt/yr) was attributed to the northern part of the archipelago, while in the 

southern part, the melt (24±7 Gt/yr) was found to have doubled compared to its long- 

term value (11.1±1.8 Gt/yr for 1963–2008 [234]). Recently, GRACE data was also used 

to validate climate projections of a more advanced regional climate model in the CAA 

region, which indicates that the accelerated ice-mass loss will be sustained in the 21st 

century [235]. 

Another region where glaciology has much benefited from the GRACE mission is 

the Russian High Arctic. In-situ measurements are extremely sparse in this region, for 

example, Severnya Zemlya has been surveyed only three times (1957, 1958 and 1969) 

and no in situ surface mass balance measurements at all are available for Franz Josef 

Land [236]. Moholdt et al. [237] assessed the regional glacier mass budget for 2003– 

2009 using ICESat and GRACE and found a small imbalance of 9.1±2.0 Gt/yr for this 

period, mainly due to ice loss in Novaya Zemlya. Comparable ice loss has been observed 

with GRACE in Iceland [∼-11 Gt/yr; e.g., 202, 110, 232] and Svalbard [-3 to -9 Gt/yr, 

depending on the observation window e.g., 202, 110, 232]. 
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In the Southern Hemisphere, the main glaciated areas outside Antarctica are the 

Patagonia Icefields in the Southern Andes. Based on comparison of topographic data 

obtained between 1968 and 2000, the glaciers in the region have been estimated to 

have lost ∼15 Gt/yr during this period, with an increase in the late 1990s [238]. The 

acceleration was confirmed by the first GRACE study of the area, which reported a 

mass loss of -25±10 Gt/yr [239]. This rate appears to have remained relatively constant 

within the GRACE era (Fig. 22), with values in later studies ranging from 23 to 29 

Gt/yr [110, 232] and compares well to independent estimates based on differencing of 

digital elevation models [240]. The Patagonia Icefields are located in a zone of low mantle 

viscosity (see section 3), so that the solid earth reacts relatively rapidly to changes in ice 

load, such as those since the Little Ice Age (LIA). Ivins et al. [241] combined GRACE 

observations with GPS data to simultaneously invert for ice loss and solid earth (both 

LIA and GIA) effects, yielding an ice-mass loss of -26±6 Gt/yr. 

Arguably the most challenging region to estimate glacier mass balances using 

GRACE is the High Mountain Asia region, which encompasses the Himalayas, 

Karakoram, Pamir and Tienshan mountain ranges and the Tibetan Plateau. Complex 

hydrological processes, such as highly variable monsoon precipitation and groundwater 

extraction in the neighbouring India Plains (see Section 2), seismological activity and 

poorly constrained GIA and LIA, make the GRACE estimates very dependent on the 

corrections used to isolate the glacier signal. Matsuo and Heki [242] obtained an 

average mass loss of -47±12 Gt/yr for 2003–2009, but did not include a correction 

for hydrological processes. Gardner et al. [232] did include a correction for this (with a 

large uncertainty) and reported a lower loss of -19±20 Gt/yr for the same period. Both 

estimates are within the error bounds of the -29±13 Gt/yr estimated from ICESat 

altimetry [232]. As is evident from figure 22, the signal shows large year-to-year 

variability which is reflected in the even lower estimate of Jacob et al. [110] of -4±20 

Gt/yr for 2003–2010 due to a positive mass balance in the last few years of the time 

series. 

To date, two studies have been published which provide a global mass balance 

estimate of the world’s glaciers and ice caps (excluding peripheral glaciers on Greenland 

and Antarctica). Summing up all regions, Jacob et al. [110] reported an average mass 

loss of -148±30 Gt/yr for 2003–2010. For a slightly shorter period (2003–2009), the 

GRACE-based estimate of Gardner et al. [232] resulted in a total of -168±35 Gt/yr. 

Both numbers are considerably smaller than estimates based on interpolation of in 

situ observations [-335±124 Gt/yr for 2003–2009; 232], which for a large part may be 

attributable to undersampling problems in the latter method, but also to the limitations 

of GRACE in separating glacier signals from other sources of mass variation. 
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Oceanography benefits  from both the time-mean  and time-variable components of 

satellite gravity. The mean component (the geoid) can be combined with sea surface 

height (SSH) from satellite altimetry to determine the dynamic ocean topography, the 

spatial gradients of which are directly proportional to surface geostrophic currents [243]. 

Although this has been theoretically known for over 30 years, it has only recently been 

possible to realize it. Early gravity models were too inaccurate to be useful except 

at the very longest wavelengths, much larger than the width of major current systems 

[244, 245]. Although methods were developed to include finer scale gravity information 

based on gradients of SSH [e.g., 246], these mean gravity models were found to have 

absorbed much of the gradients of dynamic topography as well, making them useless for 

determining the surface geostrophic currents [247]. 

Even a very early gravity model from GRACE, based on less than 90 days of 

observations, demonstrated dramatic improvement [247]. The mean surface geostrophic 

currents are now capable of being resolved for all regions at an unprecedented resolution 

(Figure 23). With more data available from GRACE, along with improved terrestrial 

and airborne gravity data and higher-resolution gravimetry from the GOCE mission 

after 2009, the global surface geostrophic currents can now be resolved over widths of 

less than 100 km [248, 249, 250]. 

The earliest use of the time-variable gravity data from GRACE over the ocean was 

for validation purposes, by assuming the residual variations over the ocean relative to 

a model represented noise [29, 251]. These early studies concluded that the signal-to- 

noise ratio in the GRACE time-variable data was likely too small to make them useful 

for ocean applications, except in small regions where extreme ocean bottom pressure 

variations were likely to exist. However, Chambers et al. [252] demonstrated that by 

averaging over the entire ocean basin, GRACE was capable of measuring global ocean 

mass variability to an accuracy of a few mm of equivalent sea level. Although the 

magnitude of global mean ocean mass fluctuations (∼1 cm amplitude) is small compared 

to local sea level variations (>20 cm in some regions) the signal has a very large-scale 

coherent pattern that is very nearly uniform across the world’s oceans. This is because 

the ocean adjusts via fast barotropic waves to water mass fluxes, either from changes 

in precipitation and/or evaporation [253] or melting of ice sheets [254]. The response 

time to reach equilibrium is less than a week. Considering the size of this mass being 

lost from the ice sheets, presumably with most going into the oceans and staying there 

(Section 4), GRACE is perfectly suited to measure the mass component of sea level rise. 

However, GRACE will also measure the GIA signal over the ocean (Section 3). In 

order to accurately determine the effect of current ocean mass increase, one needs to 

remove the GIA signal from the GRACE observations. There has been considerable 

controversy in the literature regarding the appropriate correction recently, with two 

groups arguing for corrections that differed by 1 mm yr−1   of equivalent sea level rise 

[255, 256], which is the size of the expected signal. Chambers et al. [256] concluded that 
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the correction suggested by Peltier [255] suffered from two significant errors – applying 

a non-zero global mean mass trend to the GIA model and an apparent error in the 

application of the polar wander rates. Subsequently, Peltier et al. [257] have found an 

error in their code that created the second artefact, and have admitted that for GRACE 

applications, the GIA global mean mass rate should be zero. The two groups now agree 

on the correction rate to within the estimated uncertainty of 20-30% [258, 257], which 

is still limited by our current knowledge of mantle viscosity and ice histories. 

Global mean sea level (GMSL) is the sum of the mass component and the 

thermosteric component. Seasonal variations in the mass component are roughly two 

times larger than the seasonal variation in total GMSL and 180◦ out of phase, but the 

mechanisms for this are well understood [259, 260, 261]. It is caused by the timing and 

size of land-ocean water mass exchange compared to that of the global ocean thermal 

expansion (thermosteric sea level). Global mean thermosteric variations peak in the 

Austral Summer (due to the larger ocean area in the Southern Hemisphere), whereas 

ocean mass peaks in the Boreal Summer (due to larger land area in the Northern 

Hemisphere which stores more water during Boreal Winter).  Moreover, the amplitude 

of the seasonal thermosteric variation is half the size of the amplitude of ocean mass 

change. 

The longer-term trends and interannual variations in the mass component of GMSL 

have been less well understood than the seasonal variations, and measurements from 

GRACE have significantly improved our understanding.  Many efforts have focused 

on closing the ’sea level budget’ of trends and estimating the relative size of different 

contributions.  Early efforts had no direct measurement of the mass component, and 

so either used estimates of mass loss from ice sheets and glaciers to infer a trend [e.g., 

262] or used the residual between GMSL and thermosteric trends [263, 264].  Initial 

results attempting to close the sea level budget with global measurements from altimetry 

(total GMSL), GRACE (mass component), and temperature profiles from the Argo 

floats (thermosteric component) suffered from pressure bias errors with the Argo data, 

changing sampling of Argo as the number of floats increased, biases in the radiometer 

correction to altimetry, and the aforementioned GIA correction [264, 261, 265, 266, 267]. 

However, after correcting altimetry for known biases, removing Argo floats with 

pressure biases and using only floats after 2005 when data are relatively well distributed 

globally, all studies now find closure of the sea level budget within the uncertainty 

[256, 268, 269, 270].  Between 2002 and 2012, the trend in the mass component of 

GMSL explains 60–80% of the observed rise of GMSL over the same period (Figure 24). 

The residual 20%–40% is caused by thermosteric sea level rise.  Roughly 70% of the 

mass increase is coming from the Greenland and Antarctica ice sheets (Section 4). 

In addition to the longer-term trend in ocean mass, it is clear that many interannual 

variations in GMSL correspond to changes in the mass component and not the 

thermosteric sea level.   This is most apparent between 2010-2012, when the large 

oscillation from low anomalies to high anomalies in global mean sea level is found 

mainly in ocean mass (Figure 24).  Previous studies using land hydrology models and 
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combinations of altimetry and steric data had suggested that interannual mass variations 

related to cycling of water between the continents and oceans could be responsible for 

observed El Niño variations in GMSL [272, 263, 273]. Willis et al. [261] confirmed 
the existence of relatively large interannual changes in ocean mass that was directly 

reflected in sea level, and Chambers and Schr öter [274] found that mass variations 

dominated the interannual GMSL fluctuations between 2005 and 2007. Boening et al. 

[270] suggested the much larger fluctuations between 2010 and 2012 were caused by 

the 2011 La Niña, which changed evaporation and precipitation patterns so much that 

a large amount of water was transferred from the ocean to land for a short period of 

time. In a subsequent study, Fasullo et al. [271] demonstrated that it was much more 

complicated, and involved a very unique combination of a strong negative phase of the 

Indian Ocean Dipole, a positive phase of the Southern Annual Mode, and the strong La 

Niña, all of which led to an anomalously high amount of precipitation over the interior 

of Australia. The patterns converged to dump up to more than 400% more rainfall 

than average between 1 September and 30 November 2010, according to analysis by the 

Australian Bureau of Meteorology. Since there is no direct drainage from this region to 

the ocean, the water filled a large, normally dry lake called Lake Eyre, where it stayed 

until it evaporated. It is estimated that these events occur roughly every forty to fifty 

years in Australia. These studies have shown without a doubt that large interannual 

variations in GMSL are more likely due to changes in water cycling between the oceans 

and continents than due to changes in the heat storage. 

The time-variable mass measured by GRACE has also been used to quantify certain 

aspects of regional ocean dynamics. Low-frequency variations in ocean bottom pressure 

caused by changes in the circulation and transport are particularly difficult to measure 

or model. Bottom pressure recorders (BPRs) are expensive and difficult to deploy. 

Moreover, they have significant drifts in the recorded pressure over time, making them 

useless for measuring variations with periods longer than about 1-year. Models can 

simulate low-frequency ocean bottom pressure, but results are often suspect due to 

the time-scale needed to update the state in the deep ocean – of order 100 years 

or longer. Since the deep density structure of the ocean is still poorly known and 

most ocean models have been run to simulate less than thirty years of the ocean state, 

deep ocean state parameters are still adjusting and can cause spurious drift and low- 

frequency signals in ocean bottom pressure. One of the earliest studies demonstrating 

the usefulness of GRACE for regional ocean dynamics was by Morison et al. [275], who 

used the observations to measure a shift in the gyre circulation in the Arctic Ocean. 

Although BPRs saw a dramatic drop in pressure in the center of the Arctic Ocean 

from 2005 to 2006 (Figure 25), it was unclear if this was a real signal or drift in the 

instrument. GRACE measurements confirmed this was not a drift in the BPRs and that 

the trend had in fact started earlier. Moreover, maps of ocean bottom pressure (OBP; 

1 mbar ≈ 1 cm of water) from the GRACE mission clearly showed that the drop was 

associated with increasing OBP in the coastal regions, consistent with a change in the 

gyre circulation.  Morison et al. [276] have continued to rely on these observations to 
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document low-frequency variability of the Arctic Ocean circulation and have combined 

the GRACE data with altimetry sea surface height and in situ measurements to infer 

the regional distribution of freshwater content in the Arctic ocean, which they link to 

Arctic  Oscillation. 

Another oceanic region where GRACE has been used to better understand low- 

frequency mass variations is the North Pacific. This region has large variations in OBP. 

Previous studies showed this was mainly caused by large sub-monthly and seasonal 

variations driven by changing wind curl over the region, but also intensified by the 

bottom topography [e.g., 277], which traps mass moving into the region instead of 

allowing readjustments to propagate as free Rossby waves. Bingham and Hughes [278] 

compared the seasonal cycle in the GRACE observations to the output of a numerical 

ocean model and showed that the satellites can detect large-scale OBP variations at 

these time scales in the region. Song and Zlotnicki [279] found a significant interannual 

fluctuation in the OBP from 2003 to 2005, and suggested that the timing was consistent 

with OBP variations simulated in a model, but only for that brief 2-year period. 

Chambers and Willis [280] examined a longer time-span of data in the area and found 

a significantly longer-lasting increase in OBP lasting until 2007, which they verified 

as real by comparing with steric-corrected altimetry in the region. Further study by 

Chambers [281] confirmed the increasing trend in OBP lasted until at least 2009 in both 

GRACE and steric-corrected sea level before beginning to level off somewhat (Figure 

26). Two different ocean models failed to reproduce the event. Chambers and Willis 

[280] demonstrated that the first model did not accurately reproduce the observed steric 

signal or sea surface height in 2003 and 2006, even though these data were assimilated 

into the model. Chambers [281] demonstrated that the ECMWF winds driving the 

second model were inconsistent with satellite observed winds; changes in the satellite 

winds, however, were consistent with increasing ocean bottom pressure in the region. 

GRACE measurements have also been used to track exchanges of mass between 

ocean basins. Although previous studies based on models demonstrated there are 

large-scale redistributions of mass within the ocean at periods of a year or shorter 

[282, 277, 283], interannual variations were considered suspect due to potential drift in 

the models. Chambers and Willis [284], however, demonstrated large, coherent mass 

exchanges between the Indo-Atlantic and Pacific oceans, on time-scales longer than 1- 

year (Figure 27). These were observed in GRACE observations, which verified model 

simulations, although the GRACE data indicated larger amplitudes. Although the size 

of the total mass being moved around is quite large (±1500 Gt including seasonal terms, 

±800 Gt removing seasonal), the equivalent sea level change is small (a few mm) as the 

mass is distributed more or less uniformly over the entire basin. The change in volume 

transport required to support this mass exchange is of the order of 0.001 Sv (1 Sv = 

106 m3/sec). For comparison, the size of month-to-month variability of transport in 

the Antarctic Circumpolar Current (ACC), which has the largest volume transports of 

any ocean current is about ±10 Sv (one standard deviation) about the mean of 125 Sv 

[285].  The capability to measure the variability of the net transport into and out of 
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a basin using in situ instrumentation is therefore limited to a precision of about ±10 

Sv. Thus, by using basin-scale averages of ocean mass variability with satellite gravity, 

one can detect otherwise unmeasureable changes in oceanic transports, at least the net 

transport into a large region. 

In some areas, GRACE may be able to detect transport variation for a specific 
current system. One such current is the ACC, which has measureable currents to the 

sea floor. When the geostrophic transport varies, it has to be balanced by changing 

pressure across the current, which should be observable by GRACE. This is important, 

as measuring the transport of the ACC and especially its low-frequency variability is 

difficult.  This can only be done directly by measuring temperature and salinity along 

a north-south transect of the ACC, such as along the Drake Passage, then estimating 

geostrophic current shear. However, this is only precise if the measurements are made to 

the bottom, and a current reading is also made at some depth as a reference, neither of 

which has been done more than a handful of times due to the expense [285]. Errors by not 

measuring to depth and assuming a reference velocity of zero can be of the order of 25 Sv 

or more. Other estimates have been made using bottom pressure gauges based on some 

assumptions that simplify the problem [e.g. 286]. However, since these sensors drift, 

it is difficult to determine long-term changes in transport with any certainty. Climate 

models have predicted a poleward movement and strengthening of the Southern Ocean 

winds and the ACC in the in a warming world [e.g., 287], so there is a need to measure 

whether the transport is increasing to confirm the models 

While there have been attempts to measure the transport of the Antarctic 

Circumpolar Current with GRACE, all have focused on seasonal and shorter period 

fluctuations, and for averages over large areas, generally the size of the Pacific sector 

of the ACC, and have included portions of the transport that does not pass through 

the Drake Passage [288, 289, 290]. Results show generally good agreement with the 

seasonal and higher frequency variability predicted by models, with differences of about 

3 Sv RMS. Little work has been done to evaluate low-frequency variations, however, 

except for some evaluation of correlations between GRACE derived transport for the 

ACC averaged over the Pacific sector and the Southern Annual Mode (SAM) [290]. The 

SAM is often used as an index of wind variability over the Southern Ocean, and has 

variations from a few weeks to many decades. Although correlations between GRACE- 

derived transport and SAM have been shown to be high [290], the results are likely 

biased by the high-frequency and seasonal variability. No analysis was done for the 

longer than annual period. However, assuming monthly errors of 3 Sv with a random 

autocorrelation, a change in transport of less than 0.3 Sv/year should be detectable by 

GRACE with 90% confidence using the current 10-year record. 

Most oceanograpic studies using GRACE focus on large-scale phenomena, occuring 

in the open ocean. This is partly due to the fact that locally, the amplitude of OBP 

signals generally falls below the noise level of GRACE. Near the coast, the comparably 

weak OBP variations are obscured by signal leakage from nearby land hydrology, due to 

the limited spatial resolution of GRACE. An exception are shallow semi-enclosed shelf 
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zones, where the water column is generally well mixed and wind stress is distributed 

over a relatively thin column, leading to predominantly barotropic variability. GRACE 

has been used to identify large OBP variations in the Gulf of Carpentaria (Australia) 

[291] and the Gulf of Thailand [292], with a seasonal amplitude of 20 cm and more. 

Interestingly, the hydrological signals over land captured by GRACE can also be used 

to infer OBP variations in the oceans. As explained in Section 3, changes in mass 

loading on land will alter the gravitational pull on the ocean, so that water moving from 

land to ocean will not be distributed as a uniform layer in the ocean. Continental mass 

anomalies from GRACE have been used as input in the sea-level equation to show that 

meltwater from land ice will lead to an above-average sea level rise between 40◦N/S [293] 

and that seasonal water exchange between land and ocean leads to non-uniform relative 

sea-level variations of ∼ 2 to 17 mm, with a distinct North-South gradient [294, 295]. 

Another oceanograpic application where GRACE has lead to advancement is modelling 

of ocean tides. Tidal model rely heavily on sea surface height observations from satellite 

altimetry. These observations do not always cover the high latitudes, so that empirical 

tidal models are relatively poorly constrained in polar areas. Various studies have used 

the GRACE intersatellite range-rate observations to invert local tidal mass variations 

and revealed tidal variations not predicted by tidal models, in particular in the Arctic 

[296] and Antarctic [e.g., 36, 297] regions. 



GRACE, time-varying gravity, Earth system dynamics and climate change 41  

 

 

1553 6. Conclusions  and  Perspectives 
 

 

1554 

 

1555 

 

1556 

 

1557 

 

1558 

 

1559 

 

1560 

 

1561 

 

1562 

 

1563 

 

1564 

 

1565 

 

1566 

 

1567 

 

1568 

 

1569 

 

1570 

 

1571 

 

1572 

 

1573 

 

1574 

 

1575 

 

1576 

 

1577 

 

1578 

 

1579 

 

1580 

 

1581 

 

1582 

 

1583 

 

1584 

 

1585 

 

1586 

 

1587 

 

1588 

 

1589 

 

1590 

 

1591 

 

1592 

 

1593 

Over the past decade, GRACE has gone from being an experimental measurement 

needing to be verified by more trusted in situ data, to a respected tool for Earth 

scientists representing a fixed bound on the total change in water storage over medium 

to large regions. Terrestrial water storage can now be measured at large scales and 

in remote areas, the mass balance of the ice sheetse and larger ice caps and glaciers 

can be monitored at an unprecedented temporal resolution, and the exchange of water 

masses between ocean regions can be tracked directly. Whereas with the original 

RL01 data, only large seasonal signals were confidently visible above the processing 

errors, the newest release (RL05) brings with it lower errors and a far larger selection 

of possible uses. Due to the improved data quality, the expertise in handling and 

interpreting this new data product gained since the mission launch, and the increasing 

interaction between GRACE-processors and researchers from other fields, the focus of 

GRACE-related research has moved from simply observing variations in water storage 

to explaining and interpreting these observations. Earth system modellers and GRACE 

processors are now engaged in an iterative cycle of mutual improvement for their 

products and GRACE has become a popular tool to validate and tune Earth system 

models, especially in hydrology [e.g., 64, 65] and glaciology [e.g., 197, 298, 235]. GRACE 

data are nowadays being directly assimilated into ocean [299] and hydrology [67, 70] 

models and are also fed into model simulations to assess the impacts of climate change, 

such as the potential weakening of the Atlantic meridional overturning due to increased 

meltwater input from the Greenland Ice Sheet [300]. Furthermore, the mission has 

already lead to a successful spin-off, the Gravity Recovery and Interior Laboratory 

(GRAIL), which mapped the Moon’s gravity field in 2012, using basically the same 

concept as GRACE. 

With a mission length of more than 11 years and counting, the nominal 5-yr mission 

lifetime has long been exceeded. Both satellites still operate nominally, and with the 

current low solar activity (leading to less atmospheric drag), the cold gas reserves of 

the satellites’ attitude and orbit control system are expected to last until 2018–2019. 

The batteries, however, are starting to feel their age. Over the years, the capacity 

of the battery cells has degraded and one of the two satellites has suffered two cell 

failures. Measures have been taken to extend the battery lifetime, which involves that, 

since 2011, no scientific data are collected when the sun is positioned unfavourably with 

respect to the satellites’ orbit and the solar arrays cannot collect sufficient energy. This 

occurs about every 161 days, but, if a third battery cell would fail, there would be a 

data gap every 30–50 days. A follow-on mission has been approved and funded and 

is planned to be launched in 2017. This will be almost a carbon-copy of the current 

GRACE mission, but with evolved versions of some of the components (such as the 

KBR, GPS and accelerometer systems) and include an experimental laser link between 

the two satellites to prove the feasibility of the much more precise laser inter-satellite 

ranging for future gravity missions. 
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The fact that the GRACE satellites sense mass redistribution as one measurement 

can either be seen as an advantage (e.g., in hydrology, where total terrestrial water 

storage can be measured directly), or as a limitation (e.g., when studying the cryosphere, 

where trends in ice mass  are  difficult  to  separate  from  GIA).  This  is  inherent  in 

the mission principle and is very unlikely to change in future GRACE-like missions. 

However, for other characteristics of the GRACE observations, there is room for 

improvement. A reduction of the North-South striping, and the noise level in general, 

would lead to a more accurate estimation of the mass redistribution.  Since  this 

reduces the need for smoothing and post-processing, this would also allow a higher 

spatial resolution, and thus a better separation of individual signals (e.g., between 

hydrological and oceanographic signals in coastal regions). The quality of submonthly 

gravity solutions may also improve, although there will always be a trade-off to be made 

between an acceptable noise level and spatial resolution, and the temporal resolution, 

since a sufficiently dense groundtrack coverage is required. Several conceptual studies 

for a redesigned GRACE successor are being carried out, funded nationally and by 

space agencies such as ESA and NASA, with input from the broad international user 

community. Various new mission architectures are being considered, such as two pairs 

of satellites in different orbital planes, which would substantially increase the spatial 

resolution and reduce the North-South striping problem [e.g., 301, 302, 303]. Such a 

GRACE II mission is expected to be launched in the 2020s, which would ensure the 

long-term availability of time-variable gravity and allow the scientific  community to 

continue to monitor changes in, and improve our understanding of, the Earth’s water 

cycle and large scale mass redistribution in its interior. 
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Figure 1. Static gravity anomalies based on 4 years of GRACE observations, 

illustrating the regional variations in the gravity field due to topography and variations 

in the Earth’s density. The anomalies are computed as the difference between gravity 
on the geoid and the normal gravity on a reference ellipsoid. Units are milligal (1 mGal 

= 10−5m/s2). 



 

 

 
 

Figure 2. Artist’s impression of the GRACE satellites (credit: NASA).‘ 
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Figure 3. Maps of the observed surface water height anomaly for August 2005, based 

on three GRACE releases: a) the original first release (CSR RL01); b) the fourth 

release (CSR RL04) and c) fifth release (RL05). The data are smoothed with a 350 

km Gaussian kernel. 
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Figure 4. Value of a Gaussian smoothing kernel W for a smoothing radius of 500 

km, a) as a function of the distance from the center point and b) as a function of the 

spherical harmonic degree l. 
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Figure 5. Surface water height anomaly for August 2005 observed by GRACE (based 
on CSR RL05 data), smoothed with a Gaussian kernel with three different smoothing 

radii: a) 0 km; b) 200 km and c) 500 km. An animation showing the 500 km monhtly 

surface water height anomalies for 2003–2012 is available from stacks.iop.org/... 
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Figure 6. Surface water height anomaly for August 2005, smoothed with a 200 km 

Gaussian kernel as in Figure 5b, but now with the destriping algorithm of Swenson 

and Wahr [37] applied. 
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Figure 7.  Comparison of a) annual signal amplitude and b) signals across three large 

basins for CSR RL05 GRACE and the hydrology models GLDAS and WGHM. Data 

is from 2004–2011, 300 km Gaussian smoothing applied to all series. 
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Figure 8. a) Total water storage anomalies from GRACE in the Illinois region (circles 

are monthly anomalies, gray line is the data smoothed to accentuate the seasonal 

variations [56]), and combined in situ soil moisture and groundwater measurements 

(black line is the smoothed time series). X-axis is time in years, and Y-axis is 

storage change in mm. b) In situ soil moisture and groundwater storage anomalies. 

Circles are monthly anomalies of soil moisture to 1 meter depth, triangles are 

groundwater anomalies below 1 meter depth; gray/black lines are smoothed soil 

moisture/ groundwater smoothed time series respectively. Adapted from Figures 3 

and 4 from Swenson et al. [56] (copyright AGU 2006, this material is reproduced with 

permission of John Wiley & Sons, Inc.). 
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Figure 9. Comparison of trends in surface water height for CSR RL05 GRACE(top) 

and the hydrology models GLDAS (middle) and WGHM (bottom). Data is from 

2004–2011, 300 km Gaussiann smoothing applied to all series. 
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Figure 10. Correspondence between (a) the GRACE monthly water storage anomaly 

elds, (b) the U.S. Drought Monitor product, and (c) drought indicators based on 

model-assimilated GRACE terrestrial water storage observations during the drought 

in the southeastern United States in August 2007. In Figure 10b A, H, and AH define 

agricultural drought, hydrological drought, and a mix of A and H, respectively. From 

Houborg et al. [70] (copyright AGU 2012, this material is reproduced with permission 

of John Wiley & Sons, Inc.). 
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Figure 11. Monthly time series of anomalies of GRACE-derived total terrestrial water 

storage, modelled soil-water storage and estimated groundwater storage, averaged over 

Rajasthan, Punjab and Haryana, plotted as equivalent heights of water in centimetres. 

Also shown is the best-fit linear groundwater trend. Inset, mean seasonal cycle of each 

variable. From Rodell et al. [91] (copyright Macmillan Publishers Limited, 2009, this 

material is reproduced with permission of Nature Publishing Group.). 
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Figure 12. Severity of the multiyear drought derived from GRACE total water deficit 
across the Murray-Darling Basin. From Leblanc et al. [87] (copyright AGU 2009, this 

material is reproduced with permission of John Wiley & Sons, Inc.). 
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Figure 13. Illustration of the glacial-isostatic adjustment process (courtesy of Volker 

Klemann). 
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Figure 14. Apparant trend in surface mass loading from  GRACE  over  North 

America for 2003-2012 , without (left) and with (right) correction for hydrological 

mass variations (after Tamisiea et al. [153]). Two distinct anomalies left and right of 

the Hudson Bay are visible, which could be related to the presence of an ice sheet with 

two domes during the Last Glacial Maximum. 
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Figure 15. Examples of sea-level data (red dots with error bars) in Europe showing 

the different regional changes in relative sea level in response to the desintegration 
of the Fennoscandian ice sheet after the LGM. From Steffen and Wu [122] (copyright 

Elsevier Ltd. 2011, this material is reproduced with permission of Elsevier). 
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Figure 16. Synthetic gravity changes computed from centroid moment tensor (CMT) 

solutions for the 2004 Sumatra-Andaman earthquake, 2007 Bengkulu, 2010 Maule, 

2011 Tohoku-Oki, and 2012 Indian Ocean earthquakes, respectively. The black circle 

delineates the spherical cap of radius θh defining the region of localization used in 

GRACE data post-processing (adapted from Figure 6 of Han et al. [172] (copyright 

AGU 2013, this material is reproduced with permission of John Wiley & Sons, Inc.)). 
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Figure 17. Examples of trade-offs in the determination of moment magnitude (M0, 

green), relative slip direction (rake, red) and vertical fault inclination (dip, blue) as 

a function of depth, for the 2011 Tohoku-Oki earthquake. A black line indicates the 

variance reduction (VR). The trade-off can be seen from the fact that the VR is almost 

flat for depths of 15–20 km, while large changes in M0 are compensated by changes 

in dip angle. From Han et al. [172] (copyright AGU 2013, this material is reproduced 

with permission of John Wiley & Sons, Inc.). 
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Figure 18. Postseismic geoid change, shown as average of fourth year minus first 

year after the 2004 Sumatra-Andama earthquake. Burgers rheology is in accordance 

with GRACE, and Maxwell rheology plus afterslip model underpredicts the observed 

effect. From Hoechner et al. [193] (copyright AGU 2011, this material is reproduced 

with permission of John Wiley & Sons, Inc.). 
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Figure 19. Trends in surface water mass height observed by GRACE for 2003–2013, 

based on GRACE CSR RL05 data and smoothed with a 100 km Gaussian kernel. 

The strongest trends are found in glaciated areas such as Greenland and the Arctic, 

Antarctica and Alaska, but the imprint of the Sumatra-Andaman earthquake can also 

be distinguished near 5◦N 95◦E. 
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Figure 20. Mean annual mass trends for 2003-2007, 2008-2012 and 2003-2012 (based 

on CSR RL05 data), after correcting for GIA [304] and expressed as cm/yr equivalent 

water height for the Greenland (top) and Antarctic (bottom) Ice Sheet, illustrating 

the interannual variations in the observations. Animations showing the monthly 

evolution of the mass changes is available from stacks.iop.org/... (Greenland region) 

and stacks.iop.org/... (Antarctica). 
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Figure 21. Cumulative mass balance of the Greenland and Antarctic Ice Sheet for 

Jan. 2003–Dec. 2012 (update of Wouters et al. [222]) and Sasgen et al. [151]). As 

discussed in Section 4, the trends depend to a certain degree on the correction for GIA 

effects, in particular for Antarctica. The two time series represent anomalies and have 

been vertically shifted with respect to each other for clarity. 
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Figure 22. Cumulative mass balance for Jan. 2003–Dec. 2012 for glaciers and ice caps, 

based on GRACE CSR RL05 data and estimated using the method of Gardner et al. 

[232]. A correction for hydrology (using GLDAS-NOAH025) and GIA (using the model 

of A et al. [304]) has been applied. The time series represent anomalies and have been 

vertically shifted with respect to each other for clarity. The regions are shown in the 

top figure. 
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Figure 23. Surface geostrophic currents determined from a mean ocean dynamic 

topography calculated from altimetry sea surface height [305] and a geoid based on 

GRACE and other in situ gravity measurements [250]. Colours denote the magnitude 

of the velocity, and the arrows denote the direction. The length of the arrows is 

unrelated to the size of the current. Updated from Tapley et al. [247]. 
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Figure 24. Non-seasonal GMSL change since 2003 (black line), including the mass 

component from GRACE (red line), and the thermosteric component for the upper 

2000 m from Argo (blue line). The GMSL and mass component have had a 2-month 

running mean applied, while the thermosteric component is yearly averages. Total 

GMSL data are updated from Nerem et al. [267], mass component is updated from 

Chambers et al. [256], and thermosteric component is updated from Levitus et al. [306]. 
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Figure 25. Ocean bottom pressure (in cm of equivalent water) measured by GRACE 

(red line), and a bottom pressure recorder (blue line) near the North Pole, after Morison 

et al. [275]. The GRACE data have been updated from Morison et al. [275] and are 

based on CSR RL05 data [32]. 
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Figure 26. Monthly, non-seasonal OBP averaged over the North Pacific region 35◦N– 

45◦N, 160◦E–185◦E for (a) GRACE and steric-corrected altimetry (updated from 

Chambers and Willis [280], Chambers [281]). Both time series have been smoothed 

with a 5-month running mean. The dashed line represents the best-fit linear trend to 

the longer GRACE observations. 
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Figure 27. Monthly total mass anomaly (global mean variation removed) for the 

Indo-Atlantic Oceans (blue) and Pacific Ocean (red) observed by GRACE (CSR RL05), 

updated from Chambers and Willis [284]. The correlation between the two is -0.94, 

representing an exchange of mass between the Pacific and Indo-Atlantic Oceans. 
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