
Int. J. Man-Machine Studies (1983) 19, 285-306

Graceful interaction through the
COUSIN command interface

PHIIAP J. HAYES AND PEDRO A. SZEKELY

Computer Science Department, Carnegie-Mellon University, Pittsburgh,

Pennsylvania, U.S.A.

(Received 8 April 1982, and in revised form 21 January 1983)

Currently available interactive command interfaces often fail to provide adequate
error correction or on-line help facilities, leading to the perception of an unfriendly
interface and consequent frustration and reduced productivity on the part of the user.
The COUSIN project of Carnegie-Mellon University is developing command inter-
faces which appear more friendly and supportive to their users, using a form-based
model of communication, and incorporating error correction and on-line help. Because
of the time and effort involved in constructing truly user-friendly interfaces, we are
working on interface system designed to provide interfaces to many different applica-
tion systems, as opposed to separate interfaces to individual applications. A COUSIN
interface system gets the information it needs to provide these services for a given
application from a declarative description of that application's communication needs.

1. Introduction

Many of today's interactive interfaces to computer systems are sources of great

frustration to their users. The simplest error or incompleteness in a command to such

a system is likely to elicit a more or less informative error message and a request to

try again. Different parts of the same interface may use quite different syntax or

conventions for essentially similar functions. The on-line help, if it exists, may come

in chunks too big to be useful for interactive use, and may be indexed and cross-

referenced inadequately to permit easy location of the information desired. These

and other problems with interactive interfaces have been discussed at length by

numerous authors including Hansen (1971), Miller (1968) and Hayes, Ball & Reddy

(1981). In the COoperative USer INterface) project at Carnigie-Mellon University,

we are working towards uscr interfaces that appear more friendly and supportive to

their users, and thus reduce frustration and enhance productivity.

While the COUSIN project is wide-ranging in its overall goals and scope,+ the

present paper is concerned with our work on user-friendly interactive command

interfaces. In particular, it deals with a coarse-grained semantically-constrained style

of command interaction in which the user repeatedly specifies a command together

with a set of dependent semantically-typed parameters. This style of interaction

typically arises at the top command level of an operating system (e.g. manipulating

files, invoking application subsystems), and in interaction with some common applica-

tions (e.g. electronic mail manipulation, magnetic tape management). We are not

I It also covers the work on graceful interaction in natural language interaction by Hayes & Reddy (1983).

285

286 P. J. H A Y E S A N D P. A. S Z E K E L Y

currently looking at the finer-grained kind of interaction that occurs, for instance,

with a screen-oriented text editor. Nor are we concerned with support for naive users,

assuming instead that users have a basic familiarity with computers and command

interaction in general and the kinds of objects they are dealing with (files, directories,

pieces of electronic mail) in particular. Familiarity with the specifics of individual

commands, however, is not assumed.

Given these scope restrictions, our approach to interface design is based on three

key concepts.

One interface for all applications. A single monolithic interface system provides

interface services for a wide variety of different applications. The interface system is

data-driven from declarative descriptions of the interface needs of the various applica-

tions. Given the large amount of time and effort needed to construct user-friendly

interfaces, some method of sharing interface code across applications appears to be

necessary if such interfaces are to bc introduced widely. A single data-driven applica-

tion independent interface achieves such sharing with maximum interface consistency

across applications while also reducing implementation effort for individual applica-

tions.

Communication via forms. A user and an application program communicate

indirectly by reading and updating fields in a form specific to that application, access

to the form being controlled via the COUSIN interface system. Fields correspond to

pieces of information that need to be communicated, such as the initial input para-

meters of a printing application (e.g. number of copies to be printed), or the output

list of messages for an electronic mail application. This kind of form-based communica-

tion makes it straightforward to separate the specification of what information needs

to pass between the user and application from the way in which the communication

is realized, and so facilitates the construction of a data-driven interface system that

can service many applications.

Intelligent support for form-filling. Form fields can have types and defaults, and the

sympathetic enforcement of the type restrictions can provide a major contribution to

user friendliness. The "files to print" field of the print application would be required

to contain readable files, for instance, so misspellings or abbreviations can be checked

and possibly corrected against the names of readable files that actually exist. Informing

the user of what fields are available and what the types and defaults for these fields

are also fulfills a major part of a user's need for on-line help.

After discussing and justifying these three features of our approach to command

interaction in a little more detail, we will look at the practical realization of the ideas

in an implemented interface system. We arc currently working with two implementa-

tions:

COUSIN-Unix. An alternative shell (operating system command interface) for

Unix, operating on standard terminals, and

COUSIN-SPICE. A command interface for the SPICE computing environment for

the Perq, a powerful personal computer with bit-map display and pointing input.

An initial implementation of the former has been completed and is in limited use;

some detailed examples of it in operation will be presented. The latter is in a much

earl ier stage of developmcnt and will not be discussed in any detail.

G R A C E F U L I N T E R A C T I O N S T H R O U G H COUSIN 287

Subsystem
(print) COUSIN

Files: humfact.mss cv.txt

Copies: 3 Font: [Gachal0]

Recipient: George Spencer

L -~ User
F

PageHeadings: [Include]

Fig. 1. Communica t ion by form-filling.

2. Communication via forms

The notion of form-based communication lies at the heart of the COUSIN approach

to command interaction. It is based on the view that the user and the application he

wants to use have certain pieces of information that they wish to exchange one or

more times during an interactive session: the input parameters (number of copies,

files to print, font to use, etc.) for a print command, the output list of messages for

an electronic mail application, the invocation of the delete command and the list of

messages to be deleted for that same application. For a given application, each of

these pieces of information is assigned a fieM, and the collection of these fields

constitutes the form for that application. The lower part of Fig. 1 shows the form for

a generic print application program. In this example, the fields all correspond to input

parameters. Some fields have default values as indicated by the brackets for "Fon t"

and "PageHeadings". Such defaults can be overwritten by the user on input fields as

happened in this form instance for "copies" and "Recipient" (defaults 1 and "Self",

respectively). Some input fields, "Files" in this example, have no default and must be

specified by the user. Not shown in the diagram are the types associated with each

field. The types can be of varying levels of specificity, ranging from "String" for

"Recipient" through "Integer" for "Copies" and "ReadableFi le" for "Files" to

enumerated types for "Fon t" and "PageHeadings", the latter being an enumeration

of size two.

As indicated by the upper part of Fig. 1, a user and an application program

communicate indirectly by reading and updating fields of the form for that application

with all access to the form controlled by the COUSIN interface system. This effectively

decouples the application system from direct interaction with the user. The application

need only specify via its form what information it wishes to have input and output,

and COUSIN will manage the interaction that realizes that transfer of information

to and from the user with all the user friendly support that COUSIN can incorporate,

288 r,. j . I t A Y E S A N D P. A . S Z E K E L Y

including enforcement of the field types on input fields through error-correct ing

dialogues with the user.

The decoupling of applications from direct contact with the user makes it feasible

to provide interface services for a wide-range of applications through a single mono-

lithic interface system such as COUSIN, and was the basic motivation in adopting the

form-based model of communication. Since our goal is to construct practical interfaces

with many sophisticated user-friendly features, we needed to adopt an approach that

would allow us to share the considerable implementat ion time and effort necessary

for such interface sophistication across many application systems. Any approach which

did not allow such sharing would not allow user-friendly interfaces to be constructed

on a routine basis. The use of a single data-driven interface system across a wide

variety of application systems is a clean and attractive method of achieving the sharing

we desire and is highly compatible with the form-based approach to communication.

The notion of sharing an interface across a variety of applications was previously

investigated by Lantz (1980), in the context of a distributed computing environment,

and the work on C O U S I N has benefitted significantly from his experience.

In addition to making user-friendly interfaces for a wide variety of applications a

practical proposition, a data-driven applicat ion-independent interface based on com-

munication via forms has several other advantages.

Reduced implementation effort. Since the application system has no direct interaction

with the user, and since C OUS IN ensures that field values are of appropriate types,

the application system need not perform these interaction and checking tasks itself.

In many cases, this represents a substantial savings in implementat ion effort over an

interface built specially for the application, even if it is simple and relatively unfriendly.

Consistent interface. Because all interaction is conducted through COUSIN,

responses to command errors, requests for missing information, etc., are uniform and

consistent across all application systems.

Immediate availability of interface features. All the advanced interface features of

C O U S I N are immediately available for any application on construction of the

appropriate blank form.

Test facility for interface features. Since any new user-friendly interface feature

incorporated into C O U S I N is immediately available with all applications which have

forms, C O U S I N can be used as a vehicle for experiments on new features of uncertain

usefulness and for performance checking of variations on other interface features.

These experiments can be made more useful by performing them across a wide range

of applications without having to change the applications themselves [see Ball & Hayes

(1982) for a more detailed discussion of the potential of C O U S I N as a test-bed for

interface features].

Error correction and abbreviated input. Since each form field has a type, C O U S I N

can detect and a t tempt to correct invalid values that the user might place in input

fields through spelling correction against the appropriate list of correct values (e.g.

the dynamically determined set of available files for file types, or the enumerated set

for enumerat ion types). The type information can also be used to allow the user to

fill the fields through the use of unique abbreviations and /o r menu selection.

Interactive error resolution. When C OUS IN ' s a t tempts to correct or resolve the

abbreviat ion of a field value fail or when they generate several possible acceptable

G R A C E F U L I N T E R A C T I O N T H R O U G H COUSIN 289

values, the problem can be resolved by interaction with the user based on the field's

type and COUSIN's success in correction. The user's attention can also be drawn to

fields that do not have defaults and for which the user has not supplied a value.

Adaptability. The form based model of communication is a powerful metaphor that

is readily adaptable to various kinds of I / O hardware. Forms can be displayed as

at tr ibute/value lists for alphanumeric terminals or in graphical format for a bit-map

display. Also, forms can be updated by constructive command lines, by within-form

editing, or by menu-selection (using either a screen pointing device or isolated phrase

speech recognition).

Integral on-line help. The display of a form with mnemonically named fields is in

itself a form of on-line help. Through it the user can determine what kinds of

information can be communicated to the application (input fields) and what assump-

tions the application is currently making (defaults). This information can be supple-

mented by making the field type information available in response to a simple command

applicable to all fields.

Automatically generated on-line documentation. The blank forms already contain

most of the information a user is likely to wish to know about individual commands.

When the basic information is supplemented by some sentences describing the purposes

of commands and the fields of their forms, COUSIN can reformat the form automati-

cally to provide on-line documentation. The resulting documentat ion is consistent and

uniform in format, and is always up to date with changes in the application that are

reflected in changes to its form [see Hayes (1982) for a detailed description of how

this documentat ion is produced in the current COUSIN implementation].

So far, we have confined our attention largely to forms containing only input fields.

This kind of form is suitable for the initial specification of the parameters of non-

interactive applications, but is clearly less than sufficient for interactive applications.

Nevertheless, form-based communication can be used with interactive applications.

In fact, through observation of some currently available command interfaces we have

identified three general styles of communication with applications that can be sup-

ported through a form-based approach.

Non-interactive. Parameters are specified, usually in a command line which is

collected by a system command interpreter, before execution of the application begins.

The application normally runs to completion after being invoked in this way.

Information collecting. The application may accept (or request) additional informa-

tion after it gets control, either because necessary parameters were omitted in the

initial command line or because a need for additional information is discovered after

execution begins.

Command loop. After start-up, the application enters an interactive command loop:

repeatedly accepting commands, executing them, and presenting the results to the

user, who then composes his next request.

The corresponding scenarios for the form-based approach of COUSIN are as follows.

Non-interactive. This is the simplest case and the one we have been mostly dealing

with so far. Form fields correspond directly to application parameters. The user invokes

the application through a menu or a command line, which may specify values for

290 P. J. H A Y E S AND P. A. "SZEKELY

some (or all) of the input fields for the application. C O U S I N obtains the form for the

application thus specified, and sets up its defaults. If a command line was used,

C O U S I N parses it and transfers the various paramete r values thus obtained to the

appropriate fields of the form. If after this, all pa ramete r fields are correctly filled,

C O U S I N executes the application in the normal way. If, on the other hand, information

is missing or incorrectly specified, C O U S I N reports the problems to the user, and

gives him an opportunity to correct the situation by editing the form. When both the

user and C O U S I N are satisfied with the way all the fields are filled, the user may start

execution of the application explicitly. However , C O U S I N will not allow him to start

execution while problems remain with the form. If the user is unable to correct the

form satisfactorily, he must either abort the at tempt at application invocation or save

the form in its current state for later correction.

Information collecting. This situation is similar to the previous one, except that

C O U S I N will start execution of an application with some of the required paramete r

fields unspecified, although they cannot, of course, be specified incorrectly. After the

application is started, it can request the value of any field in its form. If a requested

field is undefined, C O U S I N will inform the user that a value is required and suspend

execution of the application until the user specifies the required value which is then

passed back to the application.

Using this type of interaction, an application can be started without fillers for any

of the fields in its form being specified, and the user interface will p rompt for whatever

parameters are needed when they are first referenced. It is a good example of how

C O U S I N insulates the application from concerns about how and in what order its

parameters are acquired, and yet can make the parameters available as they are

required.

Command loop. The user specifies interactive commands to the application by

inserting the name of a command into a field whose type is an enumerat ion of all the

commands available; this insertion could be done by direct type in or by menu selection.

Alternatively, there could be a boolean valued field for each possible command. In

either case, the field used to communicate the command would have a special active

status which means that a messaget is sent to the application by C O U S I N every time

the field changes value, thus allowing the application to avoid inefficient polling of

the field's value.

When not actually executing one of its own commands, the application would wait

for notification that one of these active fields had been modified. Additional parameters

for application commands can be specified through other fields in the form in the

same way as the two previous cases. The display of the form can be organized in such

a way that the correspondence between the command fields and the fields that act as

their parameters is clear to the user. Facilities are also needed to allow the application

to determine whether such parameter fields are up to date or are merely an inappro-

priate leftover from earlier invocations of subcommands.

In each of the above cases, results can be t ransmmitted back from the application to

the user as the values of non-parameter fields reserved for that purpose, and modifiable

only by the application. C O U S I N will display these field values to the user.

,~ We are assuming that COUSIN and the application are separate processes and communicate via some

kind of interprocess communicat ion facility.

G R A C E F U L INTERACTION T H R O U G H COUSIN 291

3. C O U S I N - U n i x

In the preceding section, we discussed form fields being inserted or edited by the user,

and fields being displayed to the user, but we did not say how this would take place.

We omit ted these details because C O U S I N is being implemented for two quite different

hardware configurations, and the details are correspondingly different in each case.

On the one hand, C O U S I N is being implemented on a V A X - 1 1 / 7 8 0 using a standard

(24-line) display terminal for communicat ion with the user. This version of COUSIN

will provide an alternative to the well known Unix shell, the top-level command

interpreter for the Unix operating system (Ritchie & Thompson, 1974), and so is

called COUSIN-Un ix . On the other hand, C O U S I N is also being implemented on

the Perq, a powerful personal computer , equipped with bi t -map graphics display and

pointing device. This version of C O U S I N will provide a command interface to the

SPICE computing environment (Newell, Fahlman & Sproull, 1979) also under

development at Carnegie-Mellon University, and so is known as C O U S I N - S P I C E .

The more powerful interface hardware available for C O U S I N - S P I C E allows a much

richer set of graphically-based interface techniques. Multiple windows, for instance,

can be used to maintain several different applications and their forms simultaneously,

or the user can employ pointing devices to select field values for alteration, menu

selection to choose a field value restricted to one element of a small set, comprehensive

screen editing techniques, etc.

At the time of writing (December 1982), an initial implementat ion of C O U S I N -

Unix has been completed and is in limited use, while C O U S I N - S P I C E is at an earlier

stage of development . We will therefore base our account in this section of how the

general C O U S I N approach can be realized in practice on the present C O U S I N - U n i x

implementat ion, discussing first the modifications its circumstances have required to

the general approach, and then presenting some detailed examples of it in operation.

3.1. ADAPTING COUSIN TO UNIX

Our decision to implement the ideas of C O U S I N in the form of an alternative Unix

shell (top-level operat ing system command interpreter) was motivated in several ways.

We wished to evaluate the C O U S I N approach through an interface with a sufficiently

large potential user community to make the evaluation meaningful. Unix has an

extremely large user community, over 100 of whom can be found within our own

Depar tment , and since a significant segment of that community (see Norman, 1981,

for example) believes the standard Unix shell to be not very user-friendly, there are

grounds to expect that many Unix users would be willing to try out a different command

interface.

We wished to compare two interfaces to the same system, one using the C O U S I N

approach and the other more representat ive of generally available command interfaces.

The standard Unix shell fulfills the role of representat ive command interface.

We wished to test the adaptability of the C O U S I N form-based model of communica-

tion. The standard Unix shell has a style of interaction based on command lines which

does not ostensibly follow the form-based model. This style of interaction can be very

terse and efficient providing the user does not make errors or lack knowledge. This

efficiency made it desirable to keep command line interaction available through

292 P. J. H A Y E S A N D P. A. S Z E K E L Y

COUSIN-Un ix , but to make it more user-friendly and to integrate it with the

form-based model, thus testing the model 's adaptability.

Given these motivations for choosing to try out the ideas behind COUSIN in the

context of a Unix shell, we designed and implemented an interface with the following

major components.

Flexible command line parser. Given that one of our motivations was to test the

adaptability of COUS IN ' s form based model of communicat ion to interaction through

command lines, it was necessary to provide a command line interpreter with at least

the functionality of the standard Unix shell, except for the shell p rogramming features

(conditionals, iteration, etc.). But since we also wished to maintain the user-friendly

character of C O U S I N through the adaptation, it was necessary that the parser be

flexible in the face of input errors, rather than simply rejecting incorrect or incomplete

commands as in standard Unix. i Accordingly, the parser for C O U S I N - U n i x tries to

correct out of order arguments, and typos or other misspellings in command names

and option and argument markers; the parser also allows such markers to be given

in whole word format as well as in the single character style normal in standard Unix.

The output from the parser is the form for the command specified by the first token

of the command line with the appropriate fields filled by the parameters extracted

from the remainder of the command line. Error detection on command parameters

is handled through the standard C O U S I N form correction mechanism in which

COUSIN attempts to use the field types of invalid fields to correct them into valid

ones to the extent to which this is possible. Clearly, no correction is possible when

the type is "arbi t rary string", but spelling correction is used on enumerated types,

including dynamically defined enumerat ions (e.g. names of files and directories). A

successful correction at tempt may produce a unique correction for the user to confirm

or several possible corrections for the user to choose among.

Interactive form editor. This component allows the user to correct incorrect fields,

fill unfilled fields, or in general modify the value of any field of a form, and thus

provides a structured way to correct command line errors without having to type the

line over again, or indeed, to specify the parameters to a command without using a

command line. The form editor also includes a command to cycle the user through

the incorrect and unspecified fields, listing any corrections C O U S I N has come up

with, along with information about what should fill the field. The same facility can be

used to make changes to previously saved forms, either to make corrections that were

not possible earlier or to adapt an earlier correct command to a different task.

Unix-like command loop. In order to obtain as direct a comparison as possible

between C O U S I N - U n i x and the standard Unix shell, and also to minimize the start-up

effort required for a Unix user to try COUSIN-Un ix , we a t tempted to make the basic

COUSIN-Unix command loop as similar to that of the standard Unix shell as possible

for the interpretation of correct commands. It operates as follows:

1. The user types a command line in response to a p rompt from COUSIN.

I U n i x c o m m a n d s ac tua l ly parse the i r own c o m m a n d lines, wi th the shel l p rov id ing on ly some p rep rocess -

ing, such as the file wi ldcard expans ion , so d i f ferent c o m m a n d s behave in d i f ferent ways and it is ha rd to

m a k e gene ra l s t a t e m e n t s of this k ind wi th c o m p l e t e accuracy, bu t the mos t c o m m o n form of r e sponse to

e r r o n e o u s c o m m a n d l ines is a one l ine usage s u m m a r y fo l lowed by a re tu rn to the shel l c o m m a n d level.

G R A C E F U L I N T E R A C T I O N T I t R O U G I - t C O U S I N 293

2. C O U S I N identifies the application invoked by the command line, locates the

blank C O U S I N form for the application and preloads it with the appropriate

defaults.

3. C O U S I N parses any parameters to the application specified in the command

line, using the flexible parser mentioned above and inserts the parameters into

the appropriate form fields. The syntactic information required for this parsing

is included with the blank form.

4. C O U S I N checks the form for completeness (all fields have values), and correct-

ness (all fields have values that satisfy their type restrictions).

5. If the form is correct and complete, C O U S I N executes the command as specified

by the form and loops to Step 1 by issuing another command prompt . Thus, if

the user issues only correct and complete commands, the interaction will look

just like interaction with the standard shell.

6. If the form is incorrect or incomplete, C O U S I N enters the interactive form editor

to help the user correct the errors. The user may also specify that he wishes to

enter the form editor anyway, even if the form specified by the command line

is complete and correct.

7. After the user has completed or corrected all empty or incorrect fields, and is

satisfied with the values of all other fields, he may tell C O U S I N to execute the

form, and this execution happens in exactly the same way as it would if the user

had specified the current form field values through a command line, with control

returning to Step 1 and the issuing of a command prompt.

8. The user may also return to Step 1 by discarding the current form or by saving

it for future reuse with all existing values maintained. Saving a form is useful

for constructing personalized commands with paramete r defaults different

from the standard (the names of saved forms can be used just like command

names in command lines), and for temporari ly saving commands that cannot

be executed because of some circumstances that cannot be remedied from

within the form editor (e.g. the user does not have appropriate access rights for

a file).

In terms of the classification of styles of communicat ion with applications presented

earlier, this command loop presumes all applications are non-interactive, at least as

far as the services of C O U S I N - U n i x go, i.e. they expect all their parameters specified

in advance and run to completion once started with no further interaction with the

user through COUSIN-Un ix . In the context of Unix, this is not an unreasonable

assumption, since it is the only style of interaction of the three we discussed that does

not require any direct communicat ion between the application and COUSIN, and

hence does not require any modification to pre-existing Unix application systems.

C O U S I N - U n i x executes such pre-existing Unix commands by translating the form

back into a command string and executing that. The difference being that after it has

passed through COUSIN, it is known to be correct. If the application needs to

communicate further with the user after it has started execution, C O U S I N - U n i x

provides the same character s tream oriented style of communicat ion as the standard

Unix shell. We anticipate that we will eventually modify some interactive applications

to operate through their forms, thus extending the C O U S I N services to those interac-

tions as well.

294 P. J. H A Y E S A N D P, A, S Z E K E L Y

Within-line input editor. All input by the user is through a single line screen-oriented

editor which allows the user to insert and delete words and characters at positions

other than the end of a given line. In conjuction with a facility by which the user can

get back the input line he just typed, this editor provides the user an alternative and

sometimes more convenient way of correcting command lines. The editor syntax is

modeless and is derived from the Emacs whole screen editor (Stallman, 1981).

Screen management. While both the basic command loop and the form editor

operate in a scrolling, l ine-oriented mode, the current version of C O U S I N - U n i x does

provide a limited amount of screen management , maintaining a two-line mode window

at the bot tom of the screen in which information about the current state of the

interaction and the interface's expectations for the user 's next input is displayed. A

pop-up window in the top half of the screen is also provided for the on-line help

facility described below. A completely screen-oriented version of COUSIN-Un ix ,

including screen-oriented form editing is currently under development as described

in the concluding section of this paper.

On-line help and explanation facility. At any point in the interaction, the user may

obtain on-line help either on a specified topic or, if no topic is specified, general

information relevant to the current state of the interaction. This help is displayed in

a window that springs into existence in the top half of the screen when the user asks

for help, and disappears after the user exits help mode. To be useful, on-line help

text must be available in chunks that are not too large (otherwise there is too much

to read), and adequately cross-referenced and indexed (otherwise the relcvant informa-

tion cannot be found). To avoid these problems for COUSIN, we have adopted some

ideas f rom the Z O G (Robertson, Newell & Ramakrishna, 1977) rapid menu-select ion

system. Like Z O G , the C O U S I N help facility consists of text segments or frames,
none larger than half a display screen, structured into a network by semantically

motivated links, one or more leading from each f rame to other frames containing

related material. Traversing one of these links causes the current f rame to be replaced

with the frame pointed to by the link. Unlike Z O G , there are two types of frames.

Static frames constitute the vast bulk of the frames and describe aspects of the

system being interfaced to that do not normally change within the course of a single

interactive session. These include the commands available, the parameters they

take, the objects they manipulate, and the syntax used to describe these things.

These frames are presented in response to requests for help on specific topics.

Dynamic frames are constructed on the fly in response to non-specific requests for

help, and describe the current state of the system, how it came to be in that state,

what C O U S I N expects the user to do next, what the user 's options for action are,

etc. These dynamic frames also contain links to frames in the static network that

contain descriptions relevant to the current command context.

A more complete description of the C O U S I N help system can be found in Hayes

(1982), along with an account of how most of the static network can be generated

automatically f rom the information about command line syntax and paramete r types

and defaults in the blank forms that C O U S I N already needs to per form its flexible

parsing and interactive error resolution functions.

History mechanism. This component keeps a record of commands already executed,

can print out a list of them on demand, and can retrieve specified commands for

G R A C E F U L I N T E R A C T I O N T H R O U G H C O U S I N 295

re-execution either exactly as before, or if the user employs the within-line editor, in

a modified form.

Transcript facility. To facilitate its evaluation, C O U S I N - U n i x can record a complete

t ime-s tamped transcript of any interactive session conducted through it. The example

interactions with the system given later in this paper were recorded via this facility.

(The t ime-stamps have been edited out.)

To make it clearer how these various components of C O U S I N - U n i x benefit the

user, some examples of actual interactions with C O U S I N - U n i x are appropriate. But

first, a short digression to describe the command language handled by the flexible

command parser of C O U S I N - U n i x is in order.

3.2. COMMAND LANGUAGE FOR COUSIN UNIX

The command language for C O U S I N - U n i x is the same as that used by the standard

Unix shell (Ritchie & Thompson, 1974), minus the constructions at a level higher

than single commands, but supplemented by other language features that make it

easier for the user to specify commands. Speaking approximately to avoid complication

irrelevant to the present purpose, the standard Unix format for command lines is the

command name, followed by a sequence of option flags and markers (single characters

preceded by dashes), followed by a fixed-order sequence of non-optional arguments.

An example is:

dover -r -c 3 -I foo.txt fum.doc

This is a call to dover, t an application program local to Carnegie-Mellon, which prints

files on a Xerox Dover laser printer. Three options are specified: " - r" , print 90 degrees

rotated, i.e. with lines parallel to the long side of the paper; " -c" , print the number

of copies specified by the immediately following input token, in this case three; and

"-I" , l ineprinter m o d e - - n o headings and 66 lines per page. The options are followed

by dover ' s single non-optional argument, a list of files to be printed, in this case foo.txt

and fum.doc. When a command has more than one non-optional argument, which

input tokens are assigned to which argument is specified strictly by the position of

the tokens in the input line. An example is the command, "cp" , which copies a list

of files, its first argument , into a directory, its second argument , as in:

cp filel file2 dir

The standard Unix conventions are extended by C O U S I N in two major ways: the

addition of explicit markers for command arguments as a supplement to the present

system of purely positional specification, and the addition of full word flags and

markers for options as a supplement to the present system of single characters preceded

by dashes. So the above examples could be written for instance as:

dover foo.txt fum.doc rotated copies 2 lineprintermode

cp onto dir from filel file2

; For reasons too obscure to relate here, the command is actually called "cz", but we have named the
form "doverprint", and through the command synonym facility of COUSIN-Unix may refer to it by any
of several names including "cz" and "dover". the latter being treated as an abbreviation of "doverprint".

296 P. J. H A Y E S AND P. A. S Z E K E L Y

Note that when whole-word markers are used order can be relaxed, and that when

only one argument remains unmarked it may appear anywhere in the command line.

The language recognized by COUSIN-Unix is also extended implicitly by the

flexible, error-correcting parsing techniques employed. The following deviations are

handled:

out of order arguments- - to avoid ambiguity, the arguments must be distinguished

either explicitly by markers or implicitly by type;

garbled arguments or spurious interject ions--these are saved on a CouldNotRecog-

nize list, and

misspellings of command names, option and argument markers and flags, and as

far as possible the actual values of arguments and options. In the case of argument

and option values, correction is based on the type of the form field in which the

parameter is to be inserted, and is currently implemented only for enumerated

types, including file and directory names which are considered dynamically defined

enumerations.

In addition to the syntax for individual commands described above, the standard

Unix shell also supports syntax for combinations of commands, including pipelines,

conditional execution, and iteration. Of these, COUSIN-Unix currently supports only

pipelining (including input /output redirection). File wildcarding is also supported

exactly as in the regular shell, but we have not yet tried to combine wildcarding with

spelling correction.

3.3. E X A M P I . E I N T E R A C T I O N S WITH COU~4IN-UNIX

As mentioned earlier, COUSIN-Unix operates through a standard (24-line) display

terminal. The type of terminal actually used also allows some simple screen manage-

ment. In particular, the current implementation of COUSIN-Unix divides the screen

into the three independent windows shown in Fig. 2.

pop-up help w indow

main interaction w indow

(scrolled)

two line status w indow

FIG. 2. COUSIN-Unix screen organization.

G R A C E F U L I N T E R A C T I O N T H R O U G H COUSIN 297

Main interaction window. A scrolled window through which all command line and

form editor interaction takes place; it occupies those parts of the screen not occupied

by the other two windows.

Mode window. A two-line window at the bot tom of the screen, containing continually

updated information about what mode COUSIN-Unix is in, what it is expecting the

user to do next, how to abandon what is being done, and how to ask for more extensive

help.

Help window. A window that springs into existence in the upper part of the screen

when help is requested. It displays nodes from the highly connected network of

finely-chunked text frames that constitutes COUSIN's on-line help facility. If no topic

is specified, a frame containing pointers to information likely to be helpful in the

current state of interaction is generated.

In the example that follows, we will be concentrating our attention on the main

interaction window, with occasional comments about the other two windows as

appropriate.

When COUSIN-Unix starts up, the user is presented with a command prompt "1" :

in the main interaction window, and a message in the status window informing him

that the system is ready to accept a Unix command. The number in the prompt is

related to the history mechanism provided by COUSIN-Unix , of which more later.

If the user types a correct command, it will be executed as in:

1: Is [" /s" is the Unix command to print the contents of the current directory]

differences humfact.aux ijmms.trans save/ umist.mss

foo.press humfact.mss outline umist.aux umist~press

2: dover rota -c 2 humfaetomss

[3 pages * 2 copies ~ 7 sheets] [output from the dover program]

3:

Here, user input is in bold italics, and comments in ordinary italics. Note the mixing

of Unix style markers with the extended COUSIN-Unix syntax, and the initial

abbreviation of the keyword, " ro ta ted" , in the second command. The status line

remains unchanged during the entering and execution of both commands. In terms

of COUSIN's underlying operation, performing the second (dover) command involved

finding the blank form for dover, filling in whatever defaults were specified, filling the

appropriate fields in the form from the command line using the associated syntatic

information, checking that the form thus obtained is correct and complete, and finally

executing the form in the way described earlier.

Suppose now that the user had made a couple of errors in the last interaction,

misspelling the filename and the abbreviation for " rota ted" .

3: dov roat -c 2 humfat.mss

roar ~ rotated

Editing form for doverprint

incorrect field(s):

filestoprint: humfat.mss (not a readable file) (~ humfact.mss)

with the above corrections the form can be executed.

298 P.J. tlAYES AND P. A. SZEKELY

FormEd [-go]: go

[3 pages * 2 copies f f 7 sheets]

4:

For both of these errors, C O U S I N is able to make unique corrections, of which it

informs the user ("filestoprint" is the name of the field in dover 's form that specifies

what files are to be printed). The spelling corrector used by C O U S I N is a simple one

that is capable of correcting exactly one error (character transposition, insertion,

substitution, or deletion) per word.,- In this example, the corrections it is able to make

result in a correct and complete form for dover which could be executed in just the

same way as the one derived from the previous totally correct command. However ,

since what the user typed has been altered, C O U S I N does not go ahead with the

execution, but switches to form editor mode to allow the user to make further changes

or abort the command. The mode shift is indicated by the " F o r m E d : " prompt , and

also in the mode window. Anticipating the most likely response, C O U S I N also gives

"go" as the default, indicated by brackets, associated with that prompt. " G o " is one

of the standard form editor commands , and it means that C O U S I N should initiate

execution of the form currently being edited. At this point, if the user types a

carriage-return, the default will be entered, the go command will be interpreted, and

the dover form executed. On the other hand, the user can type any other form editor

command to display the current form, reject the correction, alter any other fields he

wishes to, save the form for future reuse, etc. In the event, he is happy with the

correction, so he types a carriage-return, C O U S I N echoes the default (note the second

"'go" is not in bold face), executes the form, and when it is finished, switches back to

command mode with appropr ia te changes to the mode window.

Now for an example where a unique correction is impossible.

4: dover align sideways/urs/ppjh/papes/umf
Editing form for doverprint

incorrect field(s):

alignment: sideways (invalid selection)

f i l e s topr in t : /u r s /pp jh /papes /umf (not a readable file)

/ u s r /p jh /pape r s /humfac t .mss I . . .)

Fo rmEd [correct]: correct

Correcting field alignment

alignment: sideways (invalid selection)

selections:

vertical horizontal

alignment [vertical]: sideways [initial string]
alignment [vertical]: h

alignment: horizontal

Correcting field filestoprint

filestoprint: / u r s / p p j h / p a p e s / u m f (not a readable file)

Possible correction(s): / u s r /p jh /papc r s /humfac t .mss I

; Experiments with a very similar spelling corrector (Durham, Lamb & Saxe, 1983) show that this level
of correction is sufficient for the vast majorfly of spelling errors, and a corrector capable of correcting more
complex errors might incur unacceptable performance penalties.

GRACEFUl. INTERACTIONS THROUGH COUSIN 299

/ u s r / p j h / p a p e r s umist .press I / u s r / p j h / p a p e r s / u m i s t . m s s I

/ u s r / p j h / p a p e r s / u m i s t . a u x] / u s r / p j h / p a p e r s / h u m f a c t . a u x

filestoprint: / u s r / p j h / p a p e r s / [initial string]
filestoprint: /usr /pjh/papers/h

filestoprint: / u s r / p j h / p a p e r s / h (not a readable file)

Possible correction(s): / u s r / p j h / p a p e r s / h u m f a c t . m s s [

/ u s r / p j h / p a p e r s / h u m f a c t . a u x

filestoprint: / u s r / p j h / p a p e r s / h u m f a c t . [initial string]
filestroprint: /usr/pjh/papers/humfact.m

filestoprint: / u s r / p j h / p a p e r s / h u m f a c t . m s s

F o r m E d [go]: go

[3 pages * 2 c o p i e s ~ 7 sheets]

5:

Here the user has incorrectly used the word "s ideways" instead of "hor izon ta l " for

the a l ignment of printing on the page, and in trying to use an absolute Unix file

specification, ra ther than as before one relative to the current d i rectory (which is

/ u s r / p j h / p a p e r s) , has misspelt the name in a way that does not have a unique

correction.+ C O U S I N informs the user of these problems, and places him in form

edi tor mode with a default c o m m a n d of "co r rec t " ra ther than " g o " ; " g o " would not

work here even if the user typed it explicitly. The default " co r rec t " command , which

the user accepts, cycles th rough any incorrect or empty fields in the current form, and

helps the user to correct each problem individually. In this case, it tackles the a l ignment

field first. Because it is an enumera t ed type, C O U S I N lists out the possible fillers,

then p rompts the user with the name of the field, giving the default value of the field

as the default input, and the value entered as an initial string that the user can edit

if he wishes, using the within-line character edi tor th rough which all input to C O U S I N

takes place; The rat ionale for giving the user the initial string to edit is that the user

might have misspelt the value in a way that the spelling correc tor cannot deal with,

and may find it easier to line edit it ra ther than re type it; if he wishes to start again

as in this example, a single keys t roke empties the line. In the event, the user simply

cancels the initial string and types " h " fol lowed by a carriage return.$ Since " 'h" is a

unique initial substring of one of the values for " 'a l ignment", that value is inserted in

the field and "co r rec t " goes on to the second problem. Here there is no fixed set of

possible values for the field, but C O U S I N has found several spelling correct ions for

the value entered and these are listed; note that there is an er ror in each e lement of

the full file specification, but that the spelling correct ion can still cope because it

resolves each c lement separately. In this case, the initial string provided by C O U S I N

is the c o m m o n initial substring of the several correct ions; the user extends it by one

character , cutt ing down the number of possibilities to two, at which point another

character is enough to resolve the ambigui ty uniquely. A variat ion on the "cor rec t "

'," The Unix file system is structured as a tree of directories, and a full file specification involves the names
of the directories on the path from the root directory to the one containing the file in question in addition
to the name of the file, the names of the directories and file are separated by "/'" and an initial "'/" indicates
an absolute specification.

:': In the actual interaction, this happens on one line rather than two; the repetition is provided by the
transcript generator to show the before and after state of any input line for which COUSIN provides an
initial string to edit.

300 P.J. HAYES AND P. A. SZEKELY

command, not illustrated here, arises with fields, such as "filestoprint", which can

have more than one filler. If such a field has several fillers and not all are correct, the

"correct" command cycles through each incorrect value individually, allowing the user

to correct each one independently of the others. Alternatively, the user can line-edit

the value of such fields as a single string which is then reinterpreted into a set of

separate fillers.

COUSIN-Unix in general, and its form editor in particular, also provide support

for pipes and the redirection of standard input and output.- The command line syntax

for these features is exactly the same as for the standard shell. In terms of forms, the

features are supported by giving each form two extra fields called "StandardInput"

and "StandardOutput" which may be filled by file names (for I / O redirection) or by

pointers to other forms (for pipes), a pipeline being represented by a sequence of

forms in which adjacent elements point at each other through these fields. In cases

of error or any other use of the form editor, the user edits one form at a time in the

manner illustrated above, and may switch between the forms in a pipeline by means

of the "next", "previous", "first", and "last" commands built into the form editor.

The "correct" command switches forms automatically to get to the next error in the

pipeline.

Sometimes, the form-orientated method of error correction is quite incovenient,

and COUSIN-Unix provides an alternative line-oriented method as shown in the next

example.

5 : dover rotatedfor campbell outl

Editing form for doverprint

incorrect field(s):

filestoprint: outline

rotatedfor (not a readable file)

campbell (not a readable file)

FormEd [correct I: lined

5: dover rotatedfor campbell outl [initial string]

5: dover rotated for campbell outl

6:

Here the user has missed out the space between two words and instead of "campbell"

going into the "recipient" field, it goes into "filestoprint", along with the incorrectly

tokenized "rotatedfor". Clearly, to change this in a form-orientated way would be

quite complicated, involving the alteration of three elements in two fields, so the user

gives the "lined" command instead of taking the default. "Lined" causes the original

command line to be printed out again by COUSIN as a string to be edited by the

user through the usual within-line editor. When the user finishes this line edit, the

result will be interpreted as a new command at the top command level. In the event,

he moves the cursor to the appropriate place, inserts a single space, and types

carriage-return to execute the now correct command.

i" For those readers unfamiliar with Unix, this is a useful feature supported by the regular shell by which
the input and output of commands can be connected to the output and input (respectively) of other
commands or to named files.

G R A C E F U L I N T E R A C T I O N T H R O U G H C O U S I N 301

C O U S I N - U n i x also provides a way to retrieve and reuse previously executed

commands through its history mechanism.

6: hist
1 = l s

2 = doverprint -r -c 2 humfact.mss

3 = doverprint -r -c 2 humfact.mss

4 = doverprint - r / u s r / p j h / p a p e r s / h u m f a c t . m s s

5 = doverprint -r -n campbell outline

6: redo 3
6: doverprint -r -c 2 humfact.mss [initial string]
6: doverprint -r -c 3 for campbell humfact.mss

[3 pages * 3 c o p i e s ~ 10 sheets]

7:

The top-level 'historydisplay" command, uniquely abbreviated here, displays the

commands previously executed translated from their form representat ions (hence the

order rearrangements and replacement of whole word markers by Unix style dash

markers). The top-level " r edo" command allows the user to obtain one of the previous

commands as the initial line to the next command prompt. He can then just type

carriage return to re-execute the command or line edit if first and execute the edited

version as in this example.

An alternative method for reusing old commands is to save the forms derived from

them. The form editor provides a "save" command which allows the user to save a

form under a name of his choice. Both incorrect and incomplete forms can be saved

in exactly the same way as correct and complete ones; thus by saving and then

re-editing an incorrect form, the user can fix up problems that cannot be corrected

through the form editor (e.g. files having the wrong access permissions). Saved forms

are recovered by using their name instead of a regular command name at the start

of a top-level command line, whereupon C O U S I N - U n i x places the user in the form

editor editing the saved form, just as though hc had typed a command line that parsed

into the form, so that if, in particular, the saved form is correct and complete, the

user can immediately execute it through the "go" command of the form editor. Any

parameters on the command line after the name of the saved form are parsed as

though they were parameters to the command from which the form was originally

derived, overwriting any conflicting field values from the saved form. Thus saved

forms also provide a simple and uniform method to save personalized versions of

commands with non-standard paramete r defaults.

So far, we have said little about the help component of COUSIN-Un ix , and space

does not permit a comprehensive set of examples here. To summarize briefly, at any

point in any of the above interactions, the user could make a non-specific request for

help, and get a summary of the current situation, and his options for action, together

with pointers to information relevant to the current context. Suppose, for instance,

he had typed "he lp" or " E S C - ? " at the point in the example sequence above where

he was correcting the alignment field in the form resulting from his "dover align
sideways]urs/ppjh/papes/umf" command at p rompt "4" , i.e. where COUSIN had just

p rompted him "al ignment [vertical]:" and given him the initial string of "sideways"

to line edit. C O U S I N would display the following help frame.

302 e. J. H A Y E S A N D P. A. S Z E K E L Y

Correct mode

Before requesting help, you were in Correct mode (type I' X to return) In Correct

mode, the system expects you to provide a value for a form field, by either correcting

the present value, or cancelling it (I' C) and typing a new one. The field currently

being corrected is alignment of the doverprint form. Its filler must be one of the

listed selections.

* ~ form editor commands

* ~ doverpr in t - - fur ther information

* =}, a l ignment--fur ther information

* =~ general information on Cousin (the interface you are currently talking to)

* ~ line editor commands (all input to Cousin is through a within-line editor)

* ~ how to use the Cousin help system (type "how" to obtain this information)

The characters " * ~ " indicate links to other pre-stored help frames, which may be

followed by typing an appropriate initial substring of the following word, so if the

user was, for instance, confused about the meaning of the "al ignment" parameter, he

might type "alig", and causing the first help frame to be replaced by:

Details on the alignment parameter of doverprint

Purpose: determines whether the printing will be in standarard orienta-

tion on the page (vertical), or rotated 90 degrees (horizontal)

Parameter type: optional

Filler type: one of: {vertical horizontal}

Default: vertical

Syntactic Markers: layout, alignment (followed by explicit value) -r, rotated,

landscape (imply horizontal) portrait (implies vertical)

*=), meaning of fields in this frame

These two frames are part of a large network of help frames, containing details of all

commands that have blank forms, including frames for each of their parameters like

the example above. The frames describing individual commands are generated

automatically off-line from the blank forms. They are tied together by hand-written

frames for such things as command indices and file system descriptions. Both these

kinds of statically defined frames are supplemented by frames dynamically generated

from pre-stored templates to satisfy contexually-dependent requests for help. The

first frame above is an example of a dynamically generated frame. In all cases, the

help is displayed in a separate window at the top of the screen without overwriting

or displacing the immediate context that prompted the request for help. As the user

follows links from one frame to another, the frames successively overlay each other.

Some additional information on the help system was given earlier in this paper in the

section on adapting the COUSIN model to Unix , and a much more detailed account

is given by Hayes (1982).

4. Conclusion

At the time of writing (December 1982), the version of COUSIN-Unix we have

described has been available for two months on several Vaxes in our Depar tment for

G R A C E F U L I N T E R A C T I O N T H R O U G H C O U S I N 303

use by people outside the COUSIN project. We have set up a data collection

mechanism, whereby (unless the user specifies otherwise) all sessions with this experi-

mental version are automatically transcripted, using the built-in transcript facilities.

The transcripts generated are automatically collected on a daily basis onto a single

machine via a file transfer program on our local area network. A comment facility

through which COUSIN-Unix users can mail comments directly to the project per-

sonnel is also provided. The system operates at about half the speed of the standard

Unix shell on correct commands; performance cannot be compared for incorrect

commands since the functionality is quite different, but correction by COUSIN-Unix

can take up to two or three times as long as the processing of correct commands.

Overall, speed does not seem to be a significant problem in using COUSIN-Unix , at

least for lightly loaded machines.

Initially, we have encouraged use only by a relatively small set of (about 10)

"sympathet ic" users, assuming that enough detailed, but practically important prob-

lems would emerge from their experience to make a larger, more controlled, evaluation

unnecessary and unprofitable before those more obvious problems were corrected.

Our assumptions proved to be accurate and we are now engaged in tuning of the

implementation to iron out many of the small, but practically important problems

that came out in this experimental use, as well as engaging in some slightly longer-term

and more extensive revisions also suggested by this small experiment (see below,

under screen-oriented COUSIN-Unix) . Overall, however, the results of the experi-

ments were strongly positive, with many users expressing enthusiasm for the error-

correction and on-line features built into COUSIN-Unix , and deriving from the basic

COUSIN form-based model of communication presented in this paper.

To close, we will describe our plans for work on COUSIN in the near future.

Screen-oriented COUSIN-Unix. By far the most common serious complaint about

COUSIN-Unix from our group of experimental users was that it did not make the

form metaphor of communication very immediate or real to the user. The line-oriented

form editor, in particular, only dealt with one field at a time, had no means of keeping

the entire context of the present form clearly in the user's mind, and thus failed to

convey the notion that the user was editing a form. Its relatively conservative efforts

to keep the user informed about the currrent field being edited also made it appear

rather verbose. The solution to these problems seems to be a screen-oriented version

of COUSIN-Unix in which the form editor operates on a two dimensional image of

the current form which is continuously displayed and kept up with the user's changes.

A revised version of COUSIN-Unix along these lines is currently being implemented.

COUSIN-SPICE. High on our list of priorities is to complete the implementation

of COUSIN on the Perq personal computers, and have it used as one of the command

interfaces for the emerging SPICE personal computing environment. We believe that

the kinds of service that COUSIN provides will be particularly attractive when they

are coupled with the kind of display management and multi-media input only possible

with a bit-map display and pointing device. Some of the possibilities for this kind of

hardware were sketched out earlier in the paper.

Natural language functionality. Much of the attractiveness of natural language as

an interaction medium stems not from its surface forms, which tend to be baroque

and redundant, but rather from the elliptical and anaphoric forms which allow people

304 P. J. H A Y E S A N D P. A. S Z E K E L Y

to miss out much information that can be filled in by their listeners. We intend to

give users of C O U S I N similar opportunit ies for economy in communication, letting

them refer cryptically to objects that are currently being manipulated, and leaving

out details if they want the standard thing done. Many interfaces provide defaults,

and some keep track of a single current object, but we intend C O U S I N to include a

mechanism that provides something much closer to the functionality of human ellipses

and anaphora. True natural language capabilities are still too poorly understood, and

require too much deep cognitive modelling to be included in a practical interface like

COUSIN. However , preliminary work by Hayes (1981) suggests that it is possible to

devise mechanisms that provide much of the functionality and convenience of natural

language, including anaphora and ellipsis, but without deep cognitive modelling,

relying instead on the limited semantics of command interaction, and simple adaptation

by the user. We expect to incorporate such mechanisms into COUSIN, and determine

their utility in practical situations.

Personalization. Just as human conversational participants adapt to the needs of

their conversational partners, so should interactive interfaces be sensitive to the

differing needs and idiosyncracies of individual users. Some of the areas for adaptation

we intend to explore through C O U S I N in the short and near- term future include:

common typing errors, special vocabulary, pa ramete r defaults, and frequency executed

macro commands. Initially, we intend C O U S I N to work from explicit descriptions of

these individual characteristics, but eventually we hope to devise methods for the

interface to personalize itself through observation of the user.

Attractive as these extensions and additional features appear to us at the moment ,

we view their ultimate disposition as an empirical matter. The real test of user-

friendliness is a reduction of frustration and an increase in producitivity for the end

user, and the usefulness of any specific interface feature cannot be determined until

it comes to be used on a daily basis by people other than the implementors. We look

forward with interest to the results of such experiments on C O U S I N - U n i x and

C O U S I N - S P I C E and on the approach to man-mach ine communicat ion that they

embody.

Eugene Ball and Raj Reddy are co-originators with the primary author of the COUSIN
approach to user interface design. Significant contributors to the development of the present
COUSIN-Unix interface were also made by Sandeep Johar, George Mouradian, and Mike
Rychener.

This research was sponsored by the Defence Advanced Research Projects Agency (DOD),
ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract
F33615-81-K-1539. The views and conclusions contained in this documcnt arc those of the
authors and should not be interpreted as representing the olIicial policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

References

BAI,I,, J. E. & HAYES, P. J. (1982). A test-bed for user interface designs. Proceedings. Conference
on Human Factors in Computer Systems, Gaithersburg, Maryland.

DURHAM, I., LAMB, D. D. & SAXE, J. B. (1983). Spelling correction in user inferfaces.
Communications of the Association for Computing Machinery, 26.

HANSFN, W. J. (1971). User engineering principles for interactive systems. Fall Joint Computer
Conference, AFIPS, pp. 523-532.

GRACEFUL INTERACTION THROUGH COUSIN 305

HAYES, P. J. (1981). Anaphora for limited domain systems. Proceedings. Seventh International
Joint Conference on Artificial Intelligence, Vancouver, pp. 416-422.

HAYES, P. J. (1982). Uniform help facilities for a cooperative user interface. Proceedings.
National Computer Conference, AFIPS, Houston.

HAYES, P. J. & REDDY, D. R. (1983). Steps toward graceful interaction in spoken and written

man-machine communication. International Journal of Man-Machine Studies, 19 (3),
231-284.

HAYES, P. J., BALL, J. E. & REDDY, R. (1981). Breaking the man-machine communication
barrier. Computer, 14 (3).

LANTZ, K. A. (1980). Uniform interfaces for distributed systems. Ph.D. Thesis, Computer
Science Department, University of Rochester.

MILLER, R. B. (1968). Response time in man-computer conversational transactions. AFIPS
Proceedings. Fall Joint Computer Conference, Washington, D.C., pp. 267-277.

NEWELL, A., FAHLMAN, S. &, SPROULL, R. F. (1979). Proposal for a joint effort in personal
scientific computing. Technical Report, Computer Science Department, Carnegie-Mellon
University.

NORMAN, D. m. (1981). The trouble with Unix. Datamation, 27 (11) 139-150.
RITCHIE, D. M. & THOMPSON, K. (1974). The UNIX time-sharing system. Communications

of the Association for Computing Machinery, 17 (7), 365-375.
ROBERTSON, G., NEWELL, m. t~; RAMAKRISHNA, K. (1977). ZOG: A man-machine com-

munication philosophy. Technical Report, Carnegie-Mellon University, Computer Science
Department.

STALLMAN, R. M. (1981). EMACS: The extensible customizable self-documenting display
editor. Proceedings. A C M SIGPLAN/SIGOA Symposium on Text Manipulation, Portland,
Oregon, pp. 147-156.

