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Abstract: The design of graded and anisotropic materials has been of significant interest, especially
for sound absorption purposes. Together with the rise of additive manufacturing techniques, new
possibilities are emerging from engineered porous micro-structures. In this work, we present a
theoretical and numerical study of graded and anisotropic porous materials, for optimal broadband
and angular absorption. Through a parametric study, the effective acoustic and geometric parameters
of homogenized anisotropic unit cells constitute a database in which the optimal anisotropic and
graded material will be searched for. We develop an optimization technique based on the simplex
method that is relying on this database. The concepts of average absorption and diffuse field
absorption coefficients are introduced and used to maximize angular acoustic absorption. Numerical
results present the optimized absorption of the designed anisotropic and graded porous materials for
different acoustic targets. The designed materials have anisotropic and graded effective properties,
which enhance its sound absorption capabilities. While the anisotropy largely enhances the diffuse
field absorbing when optimized at a single frequency, graded properties appear to be crucial for
optimal broadband diffuse field absorption.

Keywords: anisotropic materials; optimized absorption; diffuse field; graded properties

1. Introduction

In the context of acoustic wave propagation, porous structures are commonly employed for sound
absorption [1–3]. Their efficiency has been demonstrated many times over the past decades and they
have been exploited in numerous applications, like civil engineering, room acoustics and building
insulation. They are particularly useful for compact designs and cheap manufacturing. Their ability to
absorb sound is often characterized by the diffuse field absorption coefficient which is defined as a
weighted average of the absorption for all possible angles of incidence [4–7]. What would be considered
as an optimal absorber would see its absorption coefficient maximized for all frequencies, under all
possible angles of incidence. In order to envisage such an absorber, the design and optimization of
anisotropic and graded materials are explored in this work.
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Porous materials consist in two-phase media, in which a solid phase Ωs, here considered
rigid and motionless is saturated by a fluid phase Ωf, in our case air [8]. The open porosity
is denoted by the scalar φ = |Ωf|/|Ωf ∪ Ωs| ∈ [0, 1], and accounts for the ratio of the fluid
volume over that of the total domain. In these conditions, the porous material can be treated
as, whose acoustical properties depend on the micro-structure. Interestingly, as soon as the
micro-structure is known, as for example in porous materials made of periodic arrangements of
unit cells, the parameters of the Johnson–Champoux–Allard–Lafarge (JCAL) model can be efficiently
computed by a two-scale asymptotic method. These parameters are the open porosity, high-frequency
limit of tortuosity, characteristic thermal and viscous lengths, and static thermal and viscous
permeabilities. The high-frequency limit of tortuosity can be interpreted as the path of a particle, in the
inertial regime of the fluid. Both thermal and viscous characteristic lengths are related to thermal and
viscous skin depth, and the size of the pores. Finally, the static viscous and thermal permeabilities are
linked to the flow restitivty and compressibility. In the case of non-isotropic materials, the tortuosity,
the characteristic viscous length and the static viscous permeability admit different values in each
direction. The definition of these coefficients and their physical interpretation is detailed in Ref. [9].
The thermal and viscous dynamic regimes, occurring inside the medium, arise from the fluid-structure
interaction at the microscopic scale of the unit cell [10]. The JCAL model uses frequency asymptotics
to estimate these complex and frequency-dependent effective permeabilities of the porous medium
described by the six parameters. In the most general case, the unit cells can be anisotropic and thus,
the equivalent fluid can display anisotropic features. In this case, the mass density of the effective
medium will be denoted by the symmetric, second-order tensor ρ(e) which accounts for in-plane and
normal direction properties, together with the bulk modulus B(e). Such physical modeling has been
demonstrated and validated experimentally in many instances [11,12]. The method consists in the
application of a two-scale asymptotic homogenization to governing fundamental equations. The JCAL
parameters are then calculated by integrating the computed fields [13–15].

In addition, the effective properties describing the wave propagation in the medium can also
vary along a specific direction, specifically, together with the complex and frequency dependence,
the medium displays spatially dependent features. Therefore, altering the micro-structure’s geometry
at different locations affects the propagation of acoustic waves. In a rigorous manner, the solution of
an anisotropic, spatially dependent Helmholtz equation describes the acoustic propagation inside the
porous material. In this regard, various analytical and numerical methods of acoustic wave propagation
have been proposed, for multi-layered and continuously space varying materials. Wave-splitting
techniques with Green’s functions (WSTGF) or Peano series expansions (PS) can be applied for this
purpose [16–22]. In order to reduce the computational cost, the well-known transfer matrix method
(TMM) has been also used [23,24].

Recent work on optimized porous materials has been devoted to two main goals. On the one
hand, maximizing sound absorption [14,22], and on the other hand recovering the JCAL parameters
by developing inverse characterization methods [13]. It has been recently shown that quasi-perfect
broadband absorption can be achieved at normal incidence, using graded porous layers [14]. In this
work we present the optimization of anisotropic and graded materials for oblique incidences, paying
special attention to the omnidirectional and broadband absorption. This relates to the property of
maximal and uniform absorption for all possible angles of incidence [25]. Within the frame of this
work, we use a set of unit cells which are described by their geometric parameters. In order to model
the propagation in such materials, a database of JCAL parameters is established by means of finite
elements method (FEM), as in Refs. [13–15]. We use a database of 100 anisotropic unit cells, which links
the JCAL parameters to the geometric ones, for every unit cell. Starting from this set of homogenized
anisotropic unit cells, variations of the geometry are introduced along the depth of the equivalent
fluid layer, so as to achieve prescribed targets for the frequency and angular absorption. These targets
are defined through the introduction of cost functions that are minimized based on the average and
diffuse field absorption coefficients.
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The present article is organized as follows: we first recall the general derivation of wave
propagation in anisotropic and graded fluid layers in Section 2. We then discuss the interpretation of
average and diffuse field absorption in Section 3. In Section 4 the data generation and the optimization
procedures are described in detail. Finally, multiple numerical results are presented and discussed in
Section 5 and are compared to those of isotropic and non-graded media, to demonstrate the benefits of
anisotropic and graded materials.

2. Reminder on Anisotropic and Graded Porous Materials

In this section the propagation of a plane wave through an anisotropic, uni-dimensional (1D)
graded equivalent fluid is recalled. More in-depth knowledge and overall derivation of the equations
can be found in the Refs. [13,14,22]. We set the Cartesian coordinate system R0 = (O, e1, e2, e3) with
the associated spatial coordinates vector x = (x1, x2, x3) ∈ R3 as defined in Figure 1. The equivalent
fluid domain, denoted Ωe ≡ Ωf ∪ Ωs, is a slab of finite thickness L in the x3 direction and of infinite
extent in the (O, x⊥) plane. The subscript ⊥ denotes the restriction of a vector or tensor to the (O, x⊥)

plane with x⊥ = {x1, x2}. The domain Ωe is bounded by the plane boundaries at x3 = 0 and x3 = L

denoted Γ0 and ΓL respectively. We solve for the sound field in this layer Ωe in the linear harmonic
regime using the time convention e−iωt where ω = 2π f is the angular frequency. The exterior of
the domain Ωe is denoted Ω0 and corresponds to x3 > L. It contains an homogeneous isotropic
fluid, taken to be air in this case and considered inviscid. The density of air is ρ(0) = 1.213 kg·m−3

and its bulk modulus B(0) = γP0 with γ = 1.4 the ratio of specific heat and P0 = 101,325 Pa the
atmospheric pressure.

The pressure p and velocity v induced by the acoustic field are governed by the following linear
equations for mass conservation and momentum conservation respectively,

iωρ(j)(x3, ω)v(x, ω) = ∇p(x, ω) , (1a)

iωp(x, ω) = B(j)(x3, ω)∇ · v(x, ω) , (1b)

where the subscript j = {0, e} designates the domains Ω0 and Ωe respectively. The effective bulk
modulus and mass density tensor of the anisotropic 1D graded equivalent fluid (along the e3 direction)
are denoted B(e)(x3, ω) and ρ(e)(x3, ω). In the particular case of a transverse isotropic material,
the density tensor can be written ρ(e) = diag(ρ⊥, ρ⊥, ρ3) in its principal directions. Note that these
quantities are complex-valued, frequency-dependent and can vary along the e3 direction. Moreover,
while the bulk modulus of the anisotropic medium is scalar, the mass density is a second-order tensor
accounting for the anisotropy. To summarize, a non-graded anisotropic material is modeled by the
physical quantities ρ(e)(ω) and B(e)(ω), whereas for graded anisotropic materials, these quantities
ρ(e)(x3, ω) and B(e)(x3, ω) are spatially dependent.

In the air region Ω0 (x3 ≥ L) we define an incident plane wave with unit amplitude:

pinc(x, ω) = eik⊥ ·x⊥−ik3(x3−L) , (2)

where the components of the wave-vector kinc = {k1, k2, k3}
T (with T the non-conjugate transpose) are

given by










k1 = −k0 cos(θ) cos(ψ),
k2 = −k0 cos(θ) sin(ψ),
k3 = k0 sin(θ),

(3)

with ψ and θ the polar and elevation angles, respectively. The free-field acoustic wave-number is
k0 = |kinc| = ω/c0, and the sound speed in free air is defined by c2

0 = B(0)/ρ(0).
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Figure 1. (Color online) Schematic of the propagation problem. The incident wave-vector kinc has
azimuth and elevation angles ψ (yellow) and θ (light purple) respectively.

The presence of the anisotropic layer Ωe gives rise to a reflected wave pr in Ω0. It is written

pr(x, ω) = Reik⊥ ·x⊥+ik3(x3−L) , (4)

where R(ω, θ, ψ) is the specular reflection coefficient and kinc
⊥ = {k1, k2}

T . The derivation of the
governing equations Equation (1) has recently been used for retrieval techniques and applied to
fully-anisotropic porous materials [13]. They can be written using a state-vector formulation,

dW

dx3
= A(x3)W , (5)

where we have introduced the state vector W = {p, v3}
T , and the matrix

A(x3) =

[

0 iωρ3

iωB−1
eq 0

]

, (6)

which admits no diagonal terms when the principal directions of the fluid are aligned to those of the
coordinate system. The propagation problem is reduced to a system of equations with respect to x3.
The term Beq is the equivalent bulk modulus and accounts for transverse (O, x⊥) effective density and
oblique incidence. In the case of anisotropic materials, with mass density tensor ρ(e) = H−1, H ∈ C3×3,
bulk modulus B(e) and wave-vector k, we have,

B−1
eq = B−1

(e)
− [k⊥ · (H⊥ · k⊥)] /ω2 . (7)

At the interface ΓL between the anisotropic layer and the surrounding fluid, the continuity of pressure
and normal velocity is imposed as boundary conditions. At the interface Γ0, a rigid backing is
considered in this work, and thus zero normal particle velocity is imposed by v · n|Γ0 = 0. As a
consequence, the state-vector at both interfaces reads,

WL =

{

1 + R

(R − 1)/Zθ
0

}

and W0 =

{

p(0)
0

}

, (8)

with Zθ
0 = Z0/ sin(θ) the apparent impedance of the air in domain Ω0 with respect to the unit outward

normal vector n = e3 at interface ΓL. The system of equations in Equation (5) can be solved by various
techniques, being the TMM, PS and WSTGF as in Refs. [16–24]. This way, we retrieve the reflection
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coefficient of graded and anisotropic porous materials with a rigid backing. The absorption coefficient
is defined with respect to the angular frequency, and angles of incidence as

α(ω, θ, ψ) = 1 − |R(ω, θ, ψ)|2 . (9)

To sum up, from a given geometry of the unit cell, one can compute the JCAL parameters as in
Refs. [13–15] using FEM. From the JCAL parameters, we obtain the mass density tensor ρ(e)(ω) and
bulk modulus B(e)(ω) of the homogenized medium [9]. As these effective properties depend on the
geometry of the porous material, we can introduce variations of the geometric properties along the
direction x3 by using ρ(e)(x3, ω) and B(e)(x3, ω). Then, the reflection coefficient is provided by solving
Equation (5), using the aforementioned numerical techniques.

3. Average and Diffuse Field Absorptions

In the Cartesian coordinate system R0 = (O, e1, e2, e3), the incident wave is represented by its
wave-vector kinc = {k1, k2, k3}

T . The diffuse sound field is composed of a continuum of plane waves
evenly distributed over the elevation angle θ and azimuth angle ψ. These plane waves have the same
acoustic intensity and are uncorrelated [4,6,7]. To define an absorption coefficient for this diffuse field,
the absorption coefficient α(ω, θ, ψ) defined above, in Equation (9) for an individual plane wave has
to be averaged over all possible incidence angles. In this work, two distinct cases will be considered
regarding this averaging of the acoustic absorption coefficient. The first average is based on the
standard definition of the diffuse field absorption coefficient, which reads as follows [5],

αdi f (ω) :=

∫ π/2

0

∫ 2π

0
α(ω, θ, ψ) sin(θ) cos(θ)dψdθ

∫ π/2

0

∫ 2π

0
sin(θ) cos(θ)dψdθ

, (10)

where sin(θ)dθdψ is due to the change in area of the surface integration element on the sphere.
In addition, the component of the acoustic intensity vector pointing into the surface is proportional
to cos(θ). It follows that the normal and grazing angles of incidence are do not contribute in this
definition, as illustrated in Figure 2b by the blue dashed line. The integral formalism in Equation (10)
can be approached by a discrete sum. As described earlier in Section 2, we use transverse isotropic
materials. Hence the polar angle ψ has no influence on the absorption, we now have,

αdi f ( f ) ≈

(

Nθ

∑
i=1

α( f , θi) sin(θi) cos(θi)

)(

Nθ

∑
i=1

sin(θi) cos(θi)

)−1

, (11)

where Nθ is the number of elevation angles. The second average is based on the arithmetic average of
the absorption coefficient, illustrated in Figure 2c:

ᾱ( f ) ≈
1

Nθ

Nθ

∑
i=1

α( f , θi) . (12)

We note that when compared to the diffuse field average Equation (10), the angular weighting related
to the variations of the solid angle and normal acoustic intensity are not accounted for in Equation (12).
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Figure 2. (Color online) Weighting process for average and diffuse field absorption coefficient.
(a) Discrete incidences on the unit sphere and elementary surfaces. The subfigures (b,c) represent the
integration process defined in Equations (11) and (12) respectively. The solid red line is an example of
an angular-dependent absorption coefficient, the weighting function is shown in a dashed blue and the
light green bars illustrate the discrete integration.

4. Optimization Procedures

The optimization routines provide the anisotropic and graded properties of the porous layer for a
given acoustic target. In particular, for a fixed layer thickness L, the macro-modulated effective density
ρ(e) and bulk modulus B(e) are obtained for the given acoustic absorption properties.

4.1. Interpolated Database of Unit Cells

The proposed unit cell is made of an ellipsoid carved out from a rectangular cuboid, as illustrated
in Figure 3i. This unit cell has already been used for retrieval methods in Ref. [13]. To define this
geometry, several parameters are introduced, namely the open porosity φ, characteristic length ℓc and
stretching in each in-plane direction χ1 and χ2. For simplicity, the two stretching parameters are set
to be equal: χ1 = χ2 = χ. A set of 100 unit cells with φ ∈ [0.56, 0.89], and χ ∈ [1, 10] is first used to
build up a database of the JCAL parameters, representing 100 anisotropic porous materials made of
the periodic repetition of the unit cell, with values (φ, χ1, χ2) from the previous intervals. The interval
for porosity is driven by the topology of the unit cell, whereas the stretch is chosen to span one order
of magnitude. These properties are obtained through a homogeneization method relying on finite
elements methods (see [13,14] for more details). The graded anisotropic materials used in this work for
the optimization of the acoustic absorption properties can be composed of layers of different materials,
the values of porosity and stretching of each layer might correspond to a periodic porous material
made of one of the unit cells in the given database.

In the case in which the couple (φ, χ) does not correspond to one of the 100 unit cells, the effective
properties are obtained by interpolating between the data points existing in the database of JCAL
parameters. This is done using piecewise cubic Hermite interpolating polynomials (PCHIP) [26].
The cubic interpolant of the transport parameters with the geometric parameters is monotonic.
The use of such an interpolation method in this context is therefore robust. Figure 3 shows the
dependency of the JCAL parameters on the stretching factor χ and open porosity φ. This interpolation
spans the whole database and gives a set of JCAL parameters for the required unit cell, allowing
us to obtain the corresponding mass density tensor and bulk modulus of the anisotropic porous
material. We denote the vector of geometric parameters by WG = {ℓc, φ, χ}T with which the unit
cell is described. The corresponding JCAL parameters are stored in the vector of porous properties
WJ = {φ, Θ0, Λ′, Λ⊥, Λ3, τ∞

33, τ∞
⊥ , K0

⊥, K0
33}

T .
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Figure 3. (Color online) Interpolated database of normalized JCAL parameters, with respect to the
geometric properties φ and χ. The values are normalized to those of the isotropic cell with lowest
porosity (corresponding to φ = 0.56, χ1 = χ2 = χ = 1) and are displayed in a logarithmic scale.
The values in the transverse direction of the tortuosity, static viscous permeability and characteristic
viscous length are shown respectively in (a–c); the normal components are displayed in (e–g). Finally,
the static thermal permeability and characteristic thermal length are given in (d,h) respectively. The unit
cell is displayed along with its geometric assets in (i).

The transport parameters shown in Figure 3, are computed for a unit characteristic length ℓc = 1 m.
The parameters are then scaled independently according to their dimension, in meters for Λ′, Λ⊥ and
Λ3, in square meters for Θ0, K0

⊥ and K0
33. They respectively denote the thermal characteristic length,

the viscous characteristic length in transverse and normal directions, the static thermal permeability,
and finally the static viscous Darcy [27] permeability in transverse and normal directions. However,
the open porosity φ and high-frequency limit of tortuosity τ∞

jj are dimensionless and independent of
the characteristic length.

4.2. Macro-Modulation of Effective Properties

The fluid layer Ωe is split in N − 1 intervals, bounded by N linearly placed nodes along e3. At Γ0

there is the first node x
(1)
3 = 0, and at ΓL we place the N-th node at x

(N)
3 = L. Between them, we place
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the other nodes at x
(i)
3 = (i − 1)L/(N − 1) , ∀i ∈ J1, N − 1K. The interpolation of the graded properties

based on this discretization is done using PCHIP [26]. This ensures the values at the nodes WG

(

x
(i)
3

)

and the interpolated function is of class C1, meaning that its derivative remains continuous. On the

interval
[

x
(i)
3 , x

(i+1)
3

]

between two nodes, each geometric property g (components of WG) reads,

∀x3 ∈
[

x
(i)
3 , x

(i+1)
3

]

, x
(i)
3 < x

(i+1)
3 , Wg(x3) :=

3

∑
n=0

an,g

(

x3 − x
(i)
3

)n
, (13)

with an,g being the weights of the polynomial interpolation function. It is important for the reader to
note that two different interpolations are taking place in the procedure. The first one described in the
previous subsection, to interpolate the database of unit-cells, and a second one applied between spatial
nodes to interpolate the graded properties of the medium Ωe.

4.3. Optimization of Geometric Properties

In order to optimize the geometric parameters at the nodes WG

(

x
(i)
3

)

, the Nelder–Mead
(or downhill simplex) method was used. It is an iterative scheme that minimizes a non-linear cost

function, based on a geometric approach [28,29]. From an initial set of geometric nodes WG

(

x
(i)
3

)

,
the method takes a series of steps that tend to minimize the cost function. At each iteration of the
method, the set of parameters from the previous iteration is transformed within the space of parameters
by means of a simplex. The scheme stops when the convergence is reached (with respect to absolute
tolerances) or when the maximum iteration number is attained. The stopping condition is given when
the iteration number exceeds n = 2 × 103, or when both variations of the cost function ∂n J and of the
solution vector ∂nWG do not differ by 1 × 10−6 between two iterations. The optimization is performed
using the function fminsearch within MATLAB R©2016b. This optimization procedure is bounded so
that, as the method scans the space of parameters, the simplex can only exist within the parameter
range of the database. The characteristic length was chosen between ℓc = 0.3 mm and ℓc = 1.5 mm,
and the stretching factor between χ = 1 and χ = 10. In addition, the open porosity was bounded due
to the cell topology, its upper and lower bounds can be derived analytically. The components of WG

must therefore satisfy the following constraints,











φ ∈ [0.56, 0.89] ,
χ ∈ [1, 10] ,
ℓc ∈ [300, 1500]× 10−6 m .

(14)

The initial guess used to start the optimization procedure is formed of random geometric parameters,
according to a uniform distribution within the proposed bounds. The routine also has to be run multiple
times with different initial guesses, to avoid local minima. On the one hand, for the optimization of
the non-graded porous material case, where the vector of geometric parameters WG is constant along
e3, no interpolation is needed and the acoustic propagation problem can be solved exactly using a
single layer by the TMM. On the other hand, when the properties are graded along e3, it is performed
using an interpolation over N = 5 nodes, and solved with 40 layers using again the TMM. For each
layer, the interpolated database connects WG(x3) and WJ(x3), as to reach ρ(e)(x3, ω) and B(e)(x3, ω).
This way, the acoustic features of the graded and non-graded materials are driven by the geometric
properties of the porous structures.

Two distinct cost functions are introduced. The first one is based on the diffuse field absorption,

Jdi f :=
1

N f

N f

∑
i=1

(

αdi f ( fi)− 1
)2

, (15)
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while the second one is based on the arithmetic average of the absorption,

J̄ :=
1

N f

N f

∑
i=1

(ᾱ( fi)− 1)2 , (16)

with fmin and fmax the lower and upper frequency bounds, respectively. In the frequency domain,
the minimization operates on N f linearly spaced values so that ∆ f = ( fmax − fmin)/(N f − 1). Both
the diffuse field absorption Equation (11) and the average absorption Equation (12) are studied,
using a linear discretization over the elevation angle θ ∈ [π/30, π/2] with Nθ = 30 points. It gives
∆θ = (π/2 − π/30)/30 ≈ 0.06 rad as the angular elevation step over all possible incidences.

Considering each cost function, the algorithm will maximize the absorption within targets of
frequency and elevation angle. The vector of geometric parameters WG is optimized to create graded
and non-graded materials. The database that links the geometric parameters WG with the JCAL
parameters WJ is used to obtain Equation (5). This equation is finally solved using TMM as it is usually
faster, and provides the absorption coefficient for the graded and non-graded materials.

5. Results

Results of the optimization procedure are shown for different acoustic targets, in order to highlight
the benefits of anisotropic and graded effective properties with respect to the isotropic and non-graded
ones. We first display the results in the case of a single frequency, when the porous layer operates in
its sub–wavelength regime, that is, when the wavelength of the incident wave was larger than the
thickness of the porous material (λ = c0/ f > L). In this work, we consider the length L = 25 mm.
Then, the optimization was applied to broadband acoustic absorption, on the frequency range between
1 kHz and 5 kHz, in other words, λ/L = 13.6 and λ/L = 2.7 respectively.

5.1. Sub–Wavelength Acoustic Absorption

We consider a single frequency f = 1000 Hz at which the monochromatic plane wave impinges
the porous layer either with anisotropic or isotropic properties. The cost functions described earlier in
Equations (15) and (16) do not need the sum over frequency for this optimization.

Figure 4a,b,d,e show the average absorption coefficients and the diffuse field absorption
coefficients for anisotropic (isotropic) materials with graded and non-graded properties optimized
using Jdi f and J̄, respectively. In all cases, we can see that both the average absorption and the diffuse
field absorption (see Figure 4a,b,d,e) present highest values for the graded porous materials at the
target frequency.

The difference between the absorption of graded and non-graded materials is more pronounced
for isotropic than for anisotropic materials. This result is important to highlight the relevance of
the additional degree of freedom introduced by the spatially dependent properties. On the other
hand, it is important to compare the values of absorption between the anisotropic and the isotropic
materials. In that regard, we can clearly see the improvements of the absorption by the anisotropic
materials showing the importance of the added degree of freedom by this feature. For both J̄ and Jdi f ,
the non-graded medium provides excellent results in terms of absorption. As seen on Figure 4a,b,
the absorption peak at f = 1000 Hz reaches ᾱ = 0.94 and αdi f = 0.97. Figure 4c,f shows the angular
profile of absorption at f = 1000 Hz for anisotropic (isotropic) materials with graded and non-graded
properties optimized using Jdi f and J̄. These results show one important feature related to the impact
of the cost function on the angular absorption profiles. While optimizing the average absorption does
not promote any specific angle (the cost function J̄ accounts for all incidences equally), optimizing the
diffuse field absorption coefficient does not account for the grazing and normal angles of incidence.
Looking at the average absorption, we see that it is high at normal incidence, and creates a plateau
until it finally decreases after θ ≈ π/8 rad as shown in Figure 4c. However, from the optimization for
the diffuse field absorption, we can see the smaller values at normal and grazing incidences as the
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other incident angles present higher weight in the optimization. By comparing Figure 4c,f we notice
the improvement of the results by using anisotropic materials.

In the case of anisotropic materials, where the diffuse field and average absorption are strong,
grading the properties of the layer along its depth does not help significantly. Looking at the JCAL
parameters that give such absorption in Figures 5c and 6c, the medium displays significant anisotropic
features. As seen by the high-frequency limit of tortuosity and static viscous permeability, which are
one order of magnitude higher in the normal direction e3 than in the in-plane ones e⊥. Moreover,
the snapshots of the unit cells in Figures 5d and 6d, display the shape in the optimized unit cells with
large stretch χ, resulting in higher normal tortuosity.
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Figure 4. (Color online) Comparison of different optimization results for average and diffuse field
absorption coefficients. The angular dependence of the absorption coefficient is given at the frequency
f = 1000 Hz, with respect to θ. Results with anisotropic cells are given in (a–c), while the restriction
to isotropic cells is shown in (d–f). In solid red and dashed blue are the results for J̄ with N = 1 and
N = 5, respectively, and for Jdi f with N = 1 in dashdotted green and N = 5 in dotted black.
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Figure 5. Components of the vector of geometric parameters Wg (characteristic length
ℓc, porosity φ and stretch χ) are shown in (a), as a function of the position x3. Scalar
Johnson–Champoux–Allard–Lafarge (JCAL) parameters (φ, Θ0, Λ′) are given in (b) and the
direction-dependent ones (τ∞

⊥ , τ∞
33, K0

⊥, K0
33, Λ⊥, Λ3) are in (c), with respect to x3. The graded values

are in solid lines, and the non-graded ones in dashed lines; in orange for the normal direction, and in
green for the transverse direction. The sketch in (d) displays snapshots of the unit cells at intervals of
L/3 between interfaces Γ0 and ΓL.
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Figure 6. Components of the vector of geometric parameters Wg (characteristic length ℓc, porosity φ

and stretch χ) are shown in (a), as a function of the position x3. Scalar JCAL parameters (φ, Θ0, Λ′) are
given in (b) and the direction-dependent ones (τ∞

⊥ , τ∞
33, K0

⊥, K0
33, Λ⊥, Λ3) are in (c), with respect to x3.

The graded values are in solid lines, and the non-graded ones in dashed lines; in orange for the normal
direction, and in green for the transverse direction. The sketch in (d) displays snapshots of the unit
cells at intervals of L/3 between interfaces Γ0 and ΓL.
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For the sake of comparison, the optimization is also performed with a restriction on the database
to isotropic cells, only with χ = 1. This restriction implies that the medium cannot take contrasted
properties in its principal directions. In this case, using graded properties becomes much more
important to achieve a strong absorption, and we reach αdi f = 0.76 and ᾱ = 0.74. In Figure 4d,e,
the results for an isotropic porous material show the benefit of the geometric gradient WG(x3), when
the medium is constrained to be isotropic.

5.2. Broadband Acoustic Absorption

The frequency vector is given by N f = 15 linearly spaced values between fmin = 1000 Hz and
fmax = 5000 Hz. This frequency range ensures the large wavelength condition as we have λ > 2L at
f = fmax. This is accounted for in the minimization of the cost functions Equations (15) and (16), by the
sum over the frequencies. No weighting is considered in frequency, meaning that all the frequencies
have the same importance. The goal of the optimization routine is to minimize the reflection over the
whole angular and frequency plane (θ, f ), discretized in N f × Nθ = 450 points.

Regarding the geometric and JCAL profiles shown in Figures 7a and 8a, we see that the
optimized non-graded material is isotropic: χ = 1. In this case, over the frequency range of interest,
the high-frequency limit of normal tortuosity τ∞

33 does not need to reach important values, for the
absorption to reach α > 0.9. Figures 7c and 8c show the successive troughs and peaks of the normal
tortuosity, when the medium is graded along x3. This trend is observed when minimizing for both cost
functions, and is intuitively represented on Figures 7d and 8d, as smaller pores and higher transverse
stretches tend to increase τ∞

33.
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Figure 7. (Color online) Components of the vector of geometric parameters Wg (characteristic
length ℓc, porosity φ and stretch χ) are shown in (a), as a function of the position x3. Scalar JCAL
parameters (φ, Θ0, Λ′) are given in (b) and direction-dependent ones (τ∞

⊥ , τ∞
33, K0

⊥, K0
33, Λ⊥, Λ3) are in

(c), with respect to x3. The graded values are in solid lines, and the non-graded ones in dashed lines; in
orange for the normal direction, and in green for the transverse direction. The sketch in (d) displays
snapshots of the unit cells at intervals of L/3 between interfaces Γ0 and ΓL.
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Figure 8. (Color online) Components of the vector of geometric parameters Wg (characteristic
length ℓc, porosity φ and stretch χ) are shown in (a), as a function of the position x3. Scalar JCAL
parameters (φ, Θ0, Λ′) are given in (b) and direction-dependent ones (τ∞

⊥ , τ∞
33, K0

⊥, K0
33, Λ⊥, Λ3) are in

(c), with respect to x3. The graded values are in solid lines, and the non-graded ones in dashed lines; in
orange for the normal direction, and in green for the transverse direction. The sketch in (d) displays
snapshots of the unit cells at intervals of L/3 between interfaces Γ0 and ΓL.

Figure 9a,b shows the average absorption in the plane (θ, f ), for the materials made of the
optimal profiles with non-graded and a graded properties in the target frequency range minimizing
J̄. In the same manner, Figure 9d,e shows the diffuse field absorption in the plane (θ, f ) for the
materials made of the optimal profiles of a non-graded and a graded material in the target range
of frequencies minimizing Jdi f respectively. The optimized non-graded medium provides a large
absorption area in the (θ, f ) plane, showing a single peak of absorption in the [ fmin, fmax] interval
(see Figure 9a,d). However, in the case of the graded material we can clearly observe two peaks of
absorption in Figure 9b,e.

The optimized curves of average and diffuse field absorption for a graded material, Figure 9c,f,
also clearly show this second peak of absorption for the graded materials in the [ fmin, fmax] interval
that is absent in the case of non-graded materials. The maximum of absorption provided by the
non-graded medium is at f = (2750 ± 25) Hz with values ᾱ = 0.91 and αdi f = 0.94. In the case of
graded materials optimized for the diffuse field, the absorption coefficient reaches αdi f = 0.93 at the
first peak at f = (1900 ± 25) Hz and αdi f = 0.96 at the second peak f = (4150 ± 25) Hz, while when
optimizing the average absorption, the peaks appear at ᾱ = 0.92 with f = (1850± 25) Hz and ᾱ = 0.96
at f = (4100 ± 25) Hz.

This clearly shows the relevance of the spatial profiles of the material that can be used to
manipulate the vector of geometric properties WG(x3) introducing a direct effect on the JCAL
parameters WJ(x3) and influencing directly the absorption features of the system. Grading the
effective properties, namely the tensor of mass density ρ(e)(x3) and bulk modulus B(e)(x3), offers
more control on the absorption. However, by comparing Figure 9a,d or Figure 9b,e, we can see that
for broadband and angular optimization the absorption coefficient displays only small variations
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depending on the cost function being minimized. Finally, it is worth noting that the peak of the
non-graded materials or the double peak for the graded material are still present, with the average of
the diffuse absorption coefficients calculated in Figure 9c,f.
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Figure 9. (Color online) Absorption maps with respect to elevation angle and frequency for broadband
optimization. The results for optimized average absorption, both non-graded and graded, are shown
respectively in (a,b). The maps (d,e) display the absorption map for optimized diffuse field absorption
coefficient, respectively for non-graded and graded medium. Average absorption is given in (c),
for graded and non-graded cases in solid red and dashed black respectively. The diffuse field absorption
coefficient is shown in (f), for graded and non-graded cases in solid blue and dashed orange respectively.

At this stage, it is worth analyzing the presence of the second resonance peak in the anisotropic
graded material. In order to do so, we represent the reflection coefficient in the complex frequency
plane. This methodology has been widely used in the past to gain more insight into the absorption
properties of acoustic materials [30,31]. In the absence of losses, this representation presents a unitary
reflection in the real frequency axis, due to the conservation of energy, its resonance implies a pair
of zero and poles, at complex conjugated frequencies due to the temporal invariance of the system.
When losses are introduced in the system, the zeros of the reflection coefficient approach the real
axis, fulfilling the impedance match condition (or the critical coupling condition) when the zero is
located on the real frequency axis, producing perfect absorption. This technique has been previously
described in [14] for the optimization of graded layers at normal incidence, or in [32,33] to explain how
to manipulate the zeros of the reflection coefficient in order to achieve perfect absorption.
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We define the complex-valued angular frequency by ω̃ = 2π( fR + i f I), with, fR ∈ [0, fmax] , f I ∈

[− fmax, fmax]. The differential system of equations in Equation (6) to be solved now reads,

d
dx3

{

p

v3

}

− iω̃

[

0 ρ̃3(ω̃)

B̃−1
eq (ω̃) 0

]{

p

v3

}

= 0 , (17)

where B̃eq and ρ̃3, are respectively the equivalent bulk modulus and equivalent mass density in the
normal direction, at complex angular frequency ω̃. The reflection coefficient R̃(ω̃) ∈ C is computed
and represented in the complex frequency plane. The perfect absorption α = 1 is attained when
the zero of complex reflection coefficient is exactly located on the real frequency axis fR so f I = 0.
Therefore, we track the trajectory of the zeros for the non-graded and graded configurations, in terms
of the angle of incidence θ. The angle at which the zero will be on the real frequency axis will give the
angle of incidence at which the system produces perfect absorption. Figure 10a,c show the complex
frequency map of R̃, for the non-graded optimized system at the incidence angle θ, for which the
zero is on the real frequency axis, that is, at which perfect absorption is obtained by using J̄ and
Jdi f , respectively. The trajectory of the zero crosses twice the real frequency axis, showing that two
configurations present perfect absorption, but only one stands in the target range of frequencies.
Figure 10b,d show the complex frequency map of R̃ for the graded optimized system at the incidence
angle at which the first zero is on the real frequency axis, that is, the perfect absorption of the first peak
by using J̄ and Jdi f respectively. Here, we can observe two zeros corresponding to the previous two
peaks of absorption for the graded case. The trajectories of the zeros cross twice the real frequency
axis, showing that there are four configurations with perfect absorption but only two are in the target
range of frequencies. There is a general tendency of the zeros independently of the type of material
used. In the frequency range of interest, we observe the zeros slowly drifting to higher frequencies as
the angle of incidence decreases, visible on Figure 9a,b,d,e.

In contrast to the non-graded materials, the graded ones contribute to lowering the second
reflection zero in the frequency range of interest, increasing the absorption across the entire range
of frequencies, as shown in Figure 10. Effectively, the broadband absorption is enhanced relative to
a strictly non-graded material. These results are in agreement with the previous discussion of the
Figure 9c,f.
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Figure 10. (Color online) Complex frequency plane representation of the reflection coefficient.
The amplitude is normalized and reads log10 |R̃(ω̃, θ)|2 − log10

(

max|R̃(ω̃, θ)|2
)

as a function of fR

and f I . The maps are plotted at the incidence angle for which the first zero is on the real frequency axis
in all optimization cases, J̄non−grad (a), J̄grad (b) and J

non−grad
di f (c) , J

grad
di f (d). The paths of the complex

zeros of reflection are displayed in solid purple, between θmin = π/30 (◦) and θmax = π/2 (•).

6. Conclusions

In this work, an optimization technique is developed and applied to anisotropic and graded
structures. Acoustic wave absorption can therefore be fine-tuned in porous materials, and designed
for specific angular and frequency ranges. The proposed optimization routine relies on a database of
100 anisotropic porous unit cells, and provides the physical properties of the desired porous material
presenting target absorption features. The effective properties, defined by the mass density tensor and
bulk modulus, are graded, and thus macro-modulated along the depth of the porous material. Instead
of running the minimization for all JCAL parameters of the equivalent fluid, the geometric parameters
are preferred. The average and diffuse field absorption coefficients are considered, and lead to different
geometric profiles for rigidly backed layers of finite thickness. While the optimization of the diffuse
field absorption coefficient is weighted angularly, reducing the effects of the absorption at normal
and grazing incidences, we have seen that using the average absorption can be useful to obtain larger
values of absorption at the normal and grazing angles.

Sub-wavelength and broadband absorption objective functions are considered between 1 kHz and
5 kHz for a fixed thickness of 25 mm. From numerical results emerge the benefits of anisotropic and
graded effective properties. They are visualized through the use of both the angular and the complex
frequency maps, that reveal how the absorption coefficient is maximized. The resulting materials tend
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to approach omnidirectional absorption, by exploiting the database of anisotropic cells and graded
properties. Moreover, as it has previously been found for normal incidence, the graded materials can
strengthen the absorption properties by making use of additional resonances, produced by the graded
properties of the system.

However, such a procedure is non-exhaustive, since a choice of unit cell and geometric parameters
should first be made. It leads to optimized non-unique solutions for a given micro-structure.

Although the present numerical investigation gives promising results, the main hurdle resides
in manufacturing such micro-structures. The manufacturing techniques can be difficult to apply for
such designs, but the strength of the proposed method is its use on the database. Recent printing
techniques can be put into use, but remain limited in terms of surface roughness and overall accuracy
at the microscopic scale. In this way, the community is moving towards characterization and imaging
techniques, so that surface roughness, and overall discrepancies of the manufactured medium can
hence be accounted for, and be quantitatively estimated.
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