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ABSTRACT Spintronic three-terminal magnetic-tunnel-junction (3T-MTJ) devices have gained consider-

able interest in the field of neuromorphic computing. Previously, these devices required external circuitry to

implement the leaking functionality that leaky integrate-and-fire (LIF) neurons should display. However,

the use of external circuitry results in decreased device efficiency. We previously demonstrated lateral

inhibition with a 3T-MTJ neuron that intrinsically performs the leaking, integrating, and firing functions;

however, it required the fabrication of a complexmultilayer structure. In this paper, we introduce an anisotropy

gradient to implement a single-layer intrinsically leaking 3T-MTJ LIF neuron without the use of any external

circuitry. This provides the leaking functionality with no hardware cost and reduced fabrication complexity,

which increases the device, circuit, system, and cost efficiency.

INDEX TERMS Artificial neuron, leaky integrate-and-fire (LIF) neuron, magnetic domain wall (DW),

neural network crossbar, neuromorphic computing, three-terminal magnetic tunnel junction (3T-MTJ).

I. INTRODUCTION

When provided with a structured data set, modern

von Neumann computing systems are able to efficiently solve

immensely difficult problems. However, when provided with

unstructured information from the physical environment,

the human brain significantly outperforms these computers.

In fact, the brain can perform these tasks with many orders

of magnitude less energy than standard computers [1]–[3].

According to neuroscientists, this impressive efficiency is a

result of the complex network of neurons and synapses that

comprises the brain. Neurons are cells that integrate series of

electrical signals received via the cells’ dendrites and induce

electrical spikes in the cell body (called the soma). These cells

also propagate the signals generated in the soma into their

axons, which connect to other neurons’ dendrites to convey

information. Synapses, on the other hand, are electrically

conductive junctions that connect the axons of some neurons

to the dendrites of others to allow for communication between

neurons.

One of the primary goals in research toward emulating neu-

robiological behavior is to efficiently replicate the neuron and

synapse functionalities. Although this can be implemented

with software on standard computer hardware [4], [5], such

systems still have considerably higher energy requirements

than their biological counterparts [6]. Instead, hardware using

silicon transistors dedicated to this functionality has been

demonstrated to consume considerably less energy [2], [3].

However, the volatility of silicon transistors is not ideal for

these applications, especially due to the history-dependent

nature of a number of neurobiological systems. Therefore,

the use of nonvolatile devices would greatly increase the effi-

ciency of artificial neural networks. Because of this, a num-

ber of nonvolatile devices, including memristors [7] and

three-terminal magnetic tunnel junctions (3T-MTJs) [8], [9],
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have been shown to mimic some of the features of biological

synapses. However, implementing the complex functionali-

ties occurring in the somas of biological neurons has proven

to be a greater challenge.

The development of a type of artificial neuron known as the

‘‘leaky integrate-and-fire’’ (LIF) neuron has been hindered by

the need to implement the following functionalities.

1) Integration: Accumulation of a series of input spikes.

2) Leaking: Leaking of the accumulated signal over time

when no input is provided.

3) Firing: Emission of an output spike when the accu-

mulated signal reaches a certain level after a series of

integration and leaking.

A number of artificial neurons have already been pro-

posed based on CMOS [10], floating gate transistor and

CMOS [11], MTJs [12], spin-transfer torque random-access

memory [13], and 3T-MTJ devices [9], [14].Most prior works

required external circuitry to implement the leaking func-

tionality; however, we previously proposed an artificial neu-

ron that displayed all three functionalities with one device.

We also discussed the use of lateral inhibition to implement

a winner-take-all (WTA) system [15].

This paper proposes an alternative 3T-MTJ neuron that

simplifies fabrication by reducing the number of material

layers. Instead of using an externally applied magnetic field,

the leaking functionality is implemented using a magne-

tocrystalline anisotropy gradient. This effect is explained and

analyzed in Section III, following the neural network and 3T-

MTJ background in Section II. The neuron functionality is

demonstrated in Section IV, and the conclusion is presented

in Section V.

II. LIF MAGNETIC DOMAIN WALL NEURON

A neural network implemented via hardware requires the

use of electrical analogs of biological neurons and synapses.

These devices are connected in such a manner as to be com-

patible with the standard fabrication processes. This gives

rise to a synapse crossbar array structure providing weighted

connectivity between a set of input neurons and a set of output

neurons.

A. NEURAL NETWORK CROSSBAR ARRAY

A crossbar neural network consists of input and output neu-

rons along with a synapse array. These components are con-

nected via horizontal and vertical wires, where the input

neurons are connected to the output neurons through synapses

such that every input neuron is connected to every output

neuron by a single synapse. The resistive states of these

synapses determine the electrical connectivity between the

input and output neurons, and therefore, the amount of current

transmitted from the input neurons to the output neurons.

B. SYNAPSE

In a neural network, the resistive states of synapses cor-

respond to the degree of correlation or attraction between

two neurons and can be electrically modulated via current.

A biological synapse is also electrically conductive, and

bridges the gap between the two neurons. Its artificial analog

performs the same function in neural networks—it electri-

cally connects two neurons, providing for communication

between the neurons and allowing for the control of this

communication. The weight provided by an artificial synapse

is determined during the training of the neural network.

Nonvolatile devices with multiple resistance states, including

memristors [16], [17] and 3T-MTJs [8], [9], are ideal for this

application.

C. LEAKY INTEGRATE-AND-FIRE NEURON

The LIF neuron has received considerable interest as an

artificial neuron, and it is a modified version of the orig-

inal integrate-and-fire neuron [14]. Its behavior resembles

that of a true biological neuron—that is, the neuron sends

and receives a series of output spikes. As the name indi-

cates, an LIF neuron should implement three functions—

integrating, leaking, and firing. Integration is the process by

which current spikes provided to the neuron increase the

energy stored in the neuron. When leaking, the stored energy

in the neuron gradually decreases. Once the energy stored

in the neuron reaches a certain threshold, the neuron will

release the energy to its output in the form of an output current

spike, which is fed into various synapses connected to other

neurons. The behavior of an LIF neuron is shown in Fig. 1,

where the energy stored in the neuron is represented by a

voltage.

FIGURE 1. Illustration of the functionality of an LIF neuron.

(a) Input current pulse train, (b) energy stored in the neuron by

a voltage while leaking, integrating, and firing and (c) labels for

the three features are provided.

D. THREE-TERMINAL MAGNETIC

TUNNEL JUNCTION NEURON

A 3T-MTJ consists of a soft ferromagnetic nanowire track

in which a domain wall (DW) can move relative to an

MTJ [18], [19]. To ensure that the DW will not annihilate

itself on either end of the nanowire, both sides have regions of

fixed magnetization. In addition, a fixed magnet and a tunnel

barrier, in conjunction with the nanowire track, form anMTJ.

20 VOLUME 5, NO. 1, JUNE 2019



Brigner et al.: Graded-Anisotropy-Induced Magnetic DW Drift

FIGURE 2. Side view of the proposed device.

A current passed through the track in the ±x-direction will

shift theDW in the∓x-direction. As aNéel DW,which is used

in this application, moves, its magnetization state constantly

‘‘rotates’’, or precesses, around the easy axis [20]. Since the

z-axis is the easy axis, the DW shown in Fig. 2 precesses

in the xy plane. When the DW shifts underneath the tunnel

barrier, the resistance of the MTJ across the tunnel barrier

switches between the antiparallel high-resistance state (HRS)

and the parallel low-resistance state (LRS). Due to the exis-

tence of these different resistance states, the 3T-MTJ device

can be used to implement nonvolatile digital logic—in fact,

the device was originally proposed for this very purpose.

However, due to its intrinsic integration of input currents,

the device has generated significant interest in the field of

neuromorphic computing [8], [21].

In [15], we proposed an LIF neuron using this device

with an additional ferromagnetic layer placed underneath the

track. This layer applies a constant external magnetic field

oriented in the −z-direction, causing the DW to gradually

shift in the –x-direction. This implements the leaking func-

tionality without the use of any additional current or control

circuitry, which in turn allows for highly efficient devices and

systems.

III. INTRINSICALLY LEAKING 3T-MTJ DEVICE WITH

GRADED-ANISOTROPY-INDUCED DW DRIFT

DWs in conventional 3T-MTJ devices are primarily shifted

using one of the two types of external stimuli—electrical

currents or magnetic fields. However, by introducing varying

energy states throughout the DW track, it is possible to shift

the DW without the use of any external excitation.

A. DEVICE STRUCTURE

The device is similar to a standard 3T-MTJ device. How-

ever, instead of having a single uniaxial anisotropy value,

the DW track has a linearly graded uniaxial anisotropy value,

as shown in Fig. 3, where the anisotropy is oriented along

the z-axis. Such a device could be implemented by angling

the substrate relative to the target during deposition of the

thin film layers, which creates a thickness and/or composition

gradient along the angled direction [22]–[24].

FIGURE 3. Side view of the device, with the anisotropy shown in

the DW track. Black: lower value and white: higher value.

The micromagnetic simulations were performed using

MuMax [25]. Length L of the device is 250 nm, widthw of the

device is 32 nm, and thickness t of the device is 1.5 nm. The

magnetic cells are 1×1×1.5 nm3. The regions of frozen spin

on either end of the DW track are 10 nm each, allowing for a

230-nm range of motion for the DW. The exchange stiffness

Aex is 1.3×10−11 J/m, the Landau–Lifshitz–Gilbert damping

constant α is 0.02, the nonadiabaticity factor ξ is 0.2, and the

magnetic saturationMsat is 800×103 A/m. Since no external

excitation is applied to the device, the external magnetic field

Bext is 0 T. The DW itself is a Néel-type DW. Further detail

is provided in the supplementary material.

B. LEAKING WITH GRADED ANISOTROPY

The difference in anisotropy values creates a gradient of

DW energies along the nanowire track, as regions of higher

anisotropy correspond to a higher energy state of the DW

than regions of lower anisotropy. Therefore, with no exter-

nal excitation applied to the device, the energy difference

between regions of different anisotropies causes the DW to

shift from the region of higher anisotropy to the region of

lower anisotropy.

This leaking DW motion in the absence of external stim-

uli is demonstrated via micromagnetic simulation shown

in Fig. 4. After using a current to initialize the DW ∼240 nm

from the left end of the device (∼10 nm from the right end of

the device), theDW is allowed to gradually shift to the left end

of the device. The DW reaches a steady state ∼20 nm from

the left end of the track. This DW drift is highly robust to

thermal noise, as shown in the room temperature simulations

of Fig. S1 in the Supplementary Material. For this simula-

tion, the lower anisotropy value is 0.5 × 106 J/m3 and the

upper (larger) anisotropy value is 5×106 J/m3. In comparison,

Co has an anisotropy of ∼0.4 × 106 J/m3. A video showing

the DW leak is included in the Supplementary Material.

The motion induced by the graded anisotropy is demon-

strated for a wide variety of values in Fig. 5(a), which shows

the leaking time (the time taken for the DW to leak from
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FIGURE 4. Anisotropy-gradient-induced DW drift without any

external excitation. (a) DW position as a function of time.

Snapshots from the micromagnetic simulation are shown for

(b) t = 0, (c) t = 45 ns, (d) t = 90 ns, (e) t = 135 ns, (f) t = 180 ns,

(g) t = 225 ns, (h) t = 270 ns, (i) t = 315 ns, (j) t = 360 ns, and

(k) t = 405 ns.

one end of the track to the other) dependent on both the

lower and upper anisotropy values. In general, as the ratio

between the lower and upper anisotropy values increases,

as shown in Fig. 5(b), the leaking time decreases. The leaking

time, however, is not solely dependent on the ratio of the

upper-to-lower anisotropy values, but also on the anisotropy

values themselves. While holding the anisotropy ratio at 2,

increasing the lower anisotropy from 0.5×106 to 1×106 J/m3

will cause the leaking time to increase, since the DW motion

is hindered by the larger anisotropy. However, when increas-

ing the lower anisotropy even further, the energy difference

between regions with higher anisotropy and regions with

lower anisotropy is large enough to counteract this effect.

In addition, within a certain range of anisotropy values,

a precessional phenomenon similar to Walker breakdown

occurs. If an extreme excitation—whether it is a current or an

anisotropy gradient—within the appropriate range is applied

FIGURE 5. (a) Leaking times of the DW for various values of the

smaller anisotropy values as well as the larger anisotropy

values and (b) ratio of the larger anisotropy values to the

smaller anisotropy values.

to the device, an increase in the excitation actually decreases

the average velocity of the DW. Figs. S2 and S3 in the

Supplementary Material demonstrate the DW leaking for the

points in Fig. 5.

IV. ARTIFICIAL NEURON WITH GRADED ANISOTROPY

Since the previous spintronic neurons used external cur-

rents, external magnetic fields, and even extra device layers,

a 3T-MTJ devicewith graded anisotropy can be used to imple-

ment an LIF neuron with simpler hardware and fabrication

requirements than the previous LIF neurons. The integration

and firing mechanisms remain the same as in previous work.

A. INTEGRATION OF EXTERNALLY APPLIED CURRENT

According to [15], a current passed through the DW track is

integrated via the motion of the DW. As the DW shifts from

regions of lower anisotropy to regions of higher anisotropy,

the energy of the DW increases, causing the state of the

neuron to change as well.
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FIGURE 6. Combination of the integration and leaking

functionalities. (a) DW position and current versus time graph

demonstrating the leaking and integrating functionalities of the

neuron. Snapshots from the micromagnetic simulation are

shown for (b) t = 0, (c) t = 2 ns, (d) t = 27 ns, (e) t = 52 ns,

(f) t = 54 ns, (g) t = 104 ns, (h) t = 106 ns, and (i) t = 156 ns.

B. INTEGRATION AND LEAKING WITH GRADED-

ANISOTROPY-INDUCED DW DRIFT

Fig. 6 demonstrates the combined integrating and leaking

functionalities of the device, where the lower anisotropy

value is 0.5 × 106 J/m3 and the upper anisotropy value is

5 × 106 J/m3. A 2-ns pulse of 1012 A/m2 is applied to the

device, followed by a 50-ns leaking period. This process

repeats twice, resulting in a total run time of 156 ns. During

integration, the DWposition shifts rapidly, and during leaking

with no external stimuli, the DW precesses, as can be seen by

the ripple in the DW position [26]. A video displaying this is

included in the Supplementary Material, and Fig. S4 includes

snapshots of this video. The integrating and leaking are both

minimally affected by thermal noise, as shown in the room

temperature simulations of Fig. S5.

C. FIRING THROUGH MAGNETORESISTANCE

SWITCHING

In a standard LIF neuron, the neuron will produce an output

spike once enough energy is stored. For the 3T-MTJ neuron,

the output spike will be produced when the DW passes under-

neath the MTJ, switching the resistance state of the device

from HRS to LRS. This will allow the use of a voltage pulse

to reset the device and produce an output spike.

V. CONCLUSION

In this paper, we propose the use of a rectangular 3T-MTJ

structure with a magnetic anisotropy gradient to implement

an LIF neuron. The regions with different anisotropy con-

stants have different intrinsic energy states, causing the DW

to tend toward regions of lower anisotropy. This device is

an improvement over similar such LIF neurons, since it is

capable of implementing the necessary leaking functionality

without the use of external currents or additional ferromag-

netic layers [27]. Therefore, this structure provides improve-

ments in both power consumption and ease of fabrication over

previous devices, and it may be an important building block

of the future neuromorphic systems.
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