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Abstract

We propose an algorithm to compute a conforming De-
launay mesh of apolyhedral domain in three dimensions.
Arbitrarily small input angles are allowed. The output
mesh is graded and has bounded radius-edge ratio every-
where.

1 Introduction

In finite element analysis, a domain needs to be parti-
tioned into a cell complex for the purpose of numerical
simulation and analysis [7]. A simplicia complex is a
popular choice and it is also commonly known as atetra-
hedral mesh. The mesh is required to be conforming:
each input edge appears as the union of some edgesin the
mesh and each input facet appears as the union of some
faces of tetrahedra in the mesh. An important challenge
in mesh generation isto construct amesh with good qual -
ity. Our contribution is a simple Delaunay refinement
algorithm that produces tetrahedra with provably good
edge lengths and radius-edge ratio. Our algorithmis dis-
tinguished from previousones[2, 5, 8, 11, 13, 14] by its
ability to handle input angles less than = /2 and its theo-
retical guarantees.

Our input domain is a bounded volume in 3D whose
boundary is specified by a piecewise-linear complex P.
The elements of P are vertices, edges and facets that in-
tersect properly. That is, the intersection of two elements
iseither empty or an element of P. The boundary of each
facet consists of one or more digoint simple polygonal
cycles. Two elements of P are adjacent if their intersec-
tionis non-empty. Two elements of 7 areincident if one
is aboundary element of the other. We make the simpli-
fying assumption that each edge of P has two or more
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incident facets, e.g., polyhedron possibly with voids and
holes. This assumption is not critical and it can be re-
moved, with more work, without affecting our results.

Delaunay tetrahedralization is a popular tetrahedral
mesh in theory and practice [6, 7]. For results using
quadtree and octtree based methods, please refer to the
papers by Bern et a. [1] and Mitchell and Vavasis [10].
Ruppert [12] proposed the Delaunay refinement algo-
rithm to mesh a 2D polygonal domain. The mesh is
graded, i.e., the shortest edge incident to every vertex
v has length at least a constant factor of the local fea
ture size at v. Every triangle has bounded aspect ra
tio. The size of the mesh is asymptotically optimal.
Shewchuk [13] extended Delaunay refinement to 3D for
polyhedral domains. A graded conforming Delaunay
mesh is obtained but there are two differences. First,
when some input angle is less than = /2, the algorithm
may or may not terminate depending on the specific input
instance. Second, for each tetrahedron r, itsradius-edge
ratio (i.e., the ratio of the circumradius of 7 to the short-
est edge length of ) is bounded by a constant. Radius-
edge ratio is a fairly good indicator of the tetrahedral
shape. If the radius-edge ratio is bounded, almost all
tetrahedra have bounded aspect ratio except for a class
known as dlivers. Nevertheless, bounded radius-edge ra-
tioworkswell in some applications[9].

Recently, methods have been discovered to eliminate
slivers when every input angle is at least =/2. Li and
Teng [8] improved Delaunay refinement with a random
point-placement strategy in line of Chew [4]. Cheng
et a. [3] introduced dliver exudation to eliminate dliv-
ers from a Delaunay mesh of a periodic point set with
bounded radius-edge ratio. Cheng and Dey [2] in-
troduced weighted Delaunay refinement which extends
sliver exudation to handle boundaries. Both agorithms
by Li and Teng [8] and Cheng and Dey [2] produce a
graded conforming Delaunay mesh with bounded aspect
ratio and asymptotically optimal size.

Much less is known about handling polyhedral do-



mains with input angles less than =/2. Murphy et
al. [11] showed the existence of a conforming Delau-
nay mesh, but their method produces tetrahedra of poor
shape and unnecessarily many vertices. Cohen-Steiner
et a. [5] proposed an improved method and they ex-
perimentally studied the effectiveness of their algorithm.
Shewchuk [14] attacked the problem differently and gen-
erated a constrained Delaunay tetrahedralization. In
the above results, gradedness is not guaranteed and the
radius-edge ratio is not guaranteed to be bounded every-
where. It is sometimes unavoidable that the edge length
and the shape of tetrahedra deteriorate near a small input
angle. Thus, it is conceivable that there are lower bound
on edge length and upper bound on radius-edge ratio that
use constant factors depending on the input angle. Nev-
ertheless, no such result is known till now.

For the purposes of this paper, we measure three types
of angles as follows. First, angles between adjacent
edges. Second, take an edge uv and a facet F' such
that « € OF and wv and F' are non-coplanar. Let
L be the plane through uv perpendicular to the sup-
porting plane of I'. The angle between uv and I is
min{Zpuv : p € L Nint(F)}. Third, take two adja-
cent and non-coplanar facets 1 and F,. Let H; bethe
supporting plane of #;. For each pointu € Hy N Ha, let
L., betheplanethrough  perpendicularto H1NH,. The
angle between Fy and F» is min,ec g, ng, {Zpug : p €
Ly Nint(Fy), ¢ € L, Nint(F2)}. Throughout this paper,
¢ denotes the smallest angle in the domain measured as
described above. We assume that ¢ < /2 as the other
case has been solved [2, 8].

We present an algorithm MESH that constructs a con-
forming unweighted Delaunay tetrahedralization given a
polyhedral domain. The mesh is graded and has bounded
radius-edge ratio everywhere (Theorem 1 in Section 10).
Let u € (0,1/7] and py > 16 be two a priori chosen
constants. Our agorithm encloses the input edges within
a buffer zone whose size is proportional to local feature
size. For every tetrahedron 7, if 7 does not lie inside the
buffer zone, its radius-edge ratio p(7) < pg; otherwise,
p(1) < p1 where p; depends on p and ¢. The shortest
edge incident to a vertex v has length at least a factor ¢
of thelocal feature size at v where § dependson . and ¢.

The rest of the paper is organized as follows. Sec-
tion 2 gives some basic definitions and an overview of
our algorithm. Section 3 describes the augmentation of
theinput complex with the buffer zone before M ESH pro-
cesses it. Section 4 describes MESH. Sections 5-7 prove
that the output mesh is conforming. Sections 8-10 prove
the bounds on edge length and radius-edge ratio. In Sec-
tion 11, we discuss some future work.
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Figure 1: Thelarge and small circles haveradii f(«) and
g(z) respectively.

2 Prdiminariesand overview

For a point z, the local feature size f(xz) is the radius of

the smallest ball centered at « that intersects two digoint
elements of . Local feature sizes satisfy the Lipschitz
property: f(z) < f(y) + ||z — y|| for any two points =

and y. Itisinconvenient to use local feature sizes directly
when handling domains with acute angles. For a point x,

the local gap size ¢(z) is the radius of the smallest ball

centered at « that intersects two elements of P, at least
one of which doesnot contain . Figure 1 illustrateslocal

feature and gap sizes. Clearly, g(=) < f(x) and for each
vertex v of P, g(v) = f(v). Moreover, we can prove
that g(z) = Q(f(x)) for the pointsthat we are interested
in (Lemmas 16 and 17 in Section 10). In genera, local

gap sizes do not satisfy the Lipschitz property. However,

the Lipschitz property holdsunder certain conditionsand

this sufficient for our purposes.

LEMMA 1 Let ¢ be an edge of P. If x and y are two
pointsin e such that » € int(e), then g(z) < g(y) +
Iz = yll-

Proof. Let B be the ball centered at = with radius
g(y) + ||z — y||. So B intersects two elements of P, one
of which does not contain y. Denote thiselement by £.
Sincey € eand z € int(e), F does not contain x. SO
radius(B) > g(z).

We need concepts including weighted distance and or-
thogonality that are instrumental to obtaining our results.
Let S and S’ denote two spheres centered at p and ¢ re-
spectively. The weighted distance = (.S, S") is defined as
llp — q||* — radius(S)? — radius(5")?. The weighted
distance 7(z, S) between a point # and .S is defined the
same way by treating = as a sphere of zero radius. S and
S’ are orthogonal if 7(S,S”) = 0. Inthiscase, .S and 5
intersect and for any point z € S N S/, the normal to S
at z istangent to S’. That is, S and 5" intersect at right
angle. If S and S’ are orthogonal, p lies outside S’ and



q liesoutside S. The points at equal weighted distances
from S and S’ lieonaplane. We call it the bisector plane
of S and S’. The bisector plane is perpendicular to the
linethroughp and q. If S and S’ intersect, their bisector
planeisthe plane containingthe circle S N 5.

We enclose the edges of P with a buffer zone. We
compute spheres centered at points on edges of P. The
buffer zone boundary is the outer boundary of the union
of these spheres. P is then augmented with the buffer
zone boundary to yield a new complex @. Theideais
to apply Delaunay refinement to Q to mesh the space
outside the buffer zone such that the tetrahedralization
of the space inside the buffer zone is automatically in-
duced. The spheres are judiciously chosen so that con-
secutive ones are orthogonal. The intuition is that the
space outside the buffer zone will have non-acute angle,
thus allowing the use of Delaunay refinement. There are
till two difficultiesto overcome. First, we need to guar-
antee that unnecessarily short edges are not forced when
constructing the buffer zone. Second, we need a method
to triangulate the spherical buffer zone boundary.

3 Augmenting P

We describe the buffer zone and its merging with P
to yield Q. Severa properties of the buffer zone and
@Q are described in Lemmas 2-5. It suffices to know
the construction of the buffer zone and @, Lemma 2
and Lemma 4 to understand MESH (Section 4), prove
boundary conformity (Sections 5-7) and prove termina-
tion of MESH (Sections 8 and 9). Lemma 3 is used with
Lemma 2 to prove Lemma 5 which is then used in Sec-
tion 10 to analyze the edge lengths and radius-edge ratio.

3.1 Protecting spheres

Let u be some fixed constant chosen from (0, 1]. For

each edge e of P, we create some spheres with centers
lying on e. We call these protecting spheres. First, for
each vertex v of P, we create a sphere .S, with center v
and radius 1« - g(v). Second, for each edge uv of P, we
create two protecting spheres S, and S,,, with centers
u, and v, onuwv asfollows. Let ¢, bethesmallest angle
between wv and an edge/facet of P incident to u. ¢;,, is
symmetrically defined. Define 6%, = min{x/3, ¢¥ }
and 0%, = min{n/3, ¢%,}. The positionsof «, and v,
and theradii of S,,, and S, are:

pusec(utl,) - g(u)

[l — ]| - sin(uy, )

Ju—wll =

radius(Sy, )

Figure2: 4 = 1/7 and thebase angleis /4.

pusec(utly) - 9(v)

o = vull - sin(uby, )

lo—vull =

radius(Sy,) =

By construction, S,, and S,,, are orthogonal and so are
Sy and S,,. Third, we call the following agorithm
Split(uy,vy,) Which returns a sequence of protecting
spheres that cover w, v,,. We call two protecting spheres
consecutive if their centers are neighbors on some edge
of P.

Algorithm Split(z, y)

Input: The segment xy and protecting spheres S, and
Sy.

Output: A sequence of protecting spheres, including .S,
and S,, that cover zy. Every protecting sphere
has positive radius. Any two consecutive protect-
ing spheres are orthogonal.

1. Computethe point z on zy using the relation

||z — y||* + radius(S;)? — radius(S,)?

=zl =

2 fle—yll

2. S = \/||ar:—z||2—radius(Sx)2

3. ifZ>3u-9(2)

4, then create a protecting sphere S, with center z
andradius y - g(z)

5. Split(z, z)

6. Split(z,y)

7. else create a protecting sphere S, with center z
and radius 7

Note that the sphere with center z and radius 7 com-
puted in lines 1 and 2 is orthogonal to both S, and
Sy. Figure 2 shows the protecting spheres created for
the sides of an isosceles triangle. The following lemma
states that each protecting sphere S, obtained has radius
O(p - g(x)), the distance between two neighboring cen-
ters is lower bounded by their local gap sizes and the



local gap sizes of two neighboring centers do not dif-
fer much. The proof of Lemma 2 can be found in Ap-
pendix 12.1.

LEMMA 2 Let ¢; = 27/(3v/3) > 1 and ¢y =
min{v/3/2,sin¢} < 1. There exist constants c3 < ¢
and ¢4 < 1 such that for each edge uv of P, the follow-
ing hold.

(i) Su, and S,, are orthogonal to .5, and S, respec-
tively. The two ratio rad;‘zz(f)”“) and rad;‘zsv(f)”“) lie
in[eap, c1p].

(i) Split(uy,vy,) terminates and returns a sequence S
of protecting spheres covering u, v,,. Any two con-
secutive protecting spheresin S are orthogonal . For
any S. € 8§ — {Su,, Sy, }, theratio 2% jjes

. (2)
in[esu, 3u].

(iii) Let » and y be two neighboring centers of pro-
tecting spheres on wv. Then ||z — y|| > cap -
max{g(x),g(y)} and g(y) > capt - g(z).

3.2 Buffer zone

Given a set S of spheres, we use Bd(| Jg¢s S) to de-
note the outer boundary of | Js. s 5. Let B = Bd(U Si),
where S, runs over all protecting spheres created. The
space inside 5 is the buffer zone. For each edge uv of P,
let S, bethe sequence of protecting spheres whose cen-
terslieonuv. BN Jg cs, . S consists of asequence of
rings delimited by two spheres with holes. This decom-
positionis obtained by cutting BN (Jg_ s, . Sz Withthe
bisector planes of consecutive protecting spheres. The
two delimiting spheres with holesare 51 .S, and BN S, .
For each S, € Suy — {54, Sy}, S, contributes exactly
onering BN S,. For each ring, we define its width as
the distance between the parallel planes containing the
two holes. Lemma 3 states that the width of each ring is
lowered bounded by the local gap size and so is the ra-
diusof each holeon BN S, for any protecting sphere S,
Moreover, 5 encloses theedges of P without causing any
unwanted self-intersection or intersection with 2. The
proof of Lemma 3 can be found in Appendix 12.2.

LEMMA 3 Let S, be a protecting sphere. There exist
constants ey < ¢g < ¢5 < ¢4 Such that:

(i) Theradiusof any holeon BN S, isat least c5p? -
g(x).

(i) f BN S, isaring, itswidthisat least cou? - g().

(iii) If E isa vertex, edge or facet of P digoint from z,
the minimum distance between S, and E isat |east

(1=3p) - g(=).

(iv) LetS, beaprotecting sphere thatis not consecutive
to S,. The minimum distance between B N S, and
BN S, isatleast crp® - g(x).

3.3 Thenew complex Q

We merge 5 with P to produce a new complex Q. B
splitseach facet of P into two smaller facets, one inside
B and oneoutside 5. These facets are theflat facetsof Q.
For each edge uv of P, eachring B N S, where z € uv
is divided by the facets of P incident to uv into curved
rectangular patches; and for each vertex v of P, 5N S,
is divided by the facets of P incident to v into spherical
patches. These patches are the curved facets of Q. The
centers of protecting spheres split the edges of P into the
linear edges of Q. The circular arcs on the boundaries of
curved facets are the curved edges of Q. The vertices of
@ consists of the endpoints of linear and curved edges.

For any protecting sphere S, and any curved facet
on 53N .S,, OF consists of curved edges that lie at the
intersections between S, and either facets of P or pro-
tecting spheres consecutive to S,,. Moreover, these two
kinds of curved edges aternatein 0 £. How many edges
can afacet F' of P, wherex € 0F, contributeto 0 £'? If
x is not avertex of P, the answer is clearly at most one
as F isrectangular. Supposethat » isa vertex of P. Ob-
serve that » appears on exactly one simple cyclein 9 F'.
Moreover, S, istoo small to intersect more than one cy-
clein §F or intersect the same cycle more than twice.
Thus, S; N F isconnected. It followsthat F' contributes
at most one edgeto 0 £'. However, aholeon 5N .S, may
contribute several edgesto 0 £ when x isavertex of P.

By design, al angles in the space outside B are equal
to 7 /2. The next lemma gives a precise statement.

LEMMA 4

(i) Let F' be a curved facet. Let F’ be a curved/flat
facet adjacent to F'. If F' and '’ do not lie on the
same sphere, thenormal to F at any pointin FNF’
istangentto F'.

(ii) Let e and ¢’ be two adjacent curved edges that do
not lieon thesamecircle. Let £ (resp. ¢') betheline
through e N ¢’ that is tangent to and coplanar with
e (resp. ¢’). Then ¢ is perpendicular to ¢'.

(iii) Let /' be a curved/flat facet. Let e be a curved edge
adjacent to . If e and F' do not lie on the same



plane or sphere, then the normal to F' at e N F' is
tangent to and coplanar with e.

Lemma 4 motivatesthe use of Delaunay refinement in
the space outside 5. In essence, we compute a mesh that
approximates Q and respects the input boundary. Due
to Delaunay refinement (modified to handle curved ele-
ments), the edge lengths in the final mesh will be pro-
portional to the local feature sizes with respect to Q. For
each point p, let f(p) denote the local feature size at p
with respect to Q.1 Lemma 5 states that if p lies on or
outside B, f(p) = Q(g(p)). Thiswill allow us to re-
late the edge lengths in the final mesh to the local fea-
ture sizes with respect to P in Section 10. The proof of

Lemma 5 can be found in Appendix 12.3.

o~

LEMMA 5 For any pointp onor outside B, f(p) > Au®-
¢(p) for some constant A < 1.

4 Algorithm MEsH

We introduce some notations. Given a circle C' on a
sphere S, the orthogonal sphere of S at C' is the sphere
orthogonal to S that passes through €. We use pg to
denote a circular arc with endpoints p and q.

MESH approximates Q by a Delaunay subcomplex.
Weinitidlize aset V asthe set of vertices of Q. Theini-
tial complex is the Delaunay tetrahedralization, Del V,
of V. V induces several types of geometric objects that
guide MESH to refine the mesh by inserting vertices into
V. We first define these objects.

Each curved edge ¢ of Q is split by the vertices in V
into helper arcs. Let S be the equatorial sphere of ¢, i.e.,
e lieson an equator of S. Let pg beahelper arcone. The
circumcap K of pg isthe smallest cap on S that contains
pq. If the angular width of pg isless than =, the normal
sphere of pq is the orthogonal sphere of S at 9K and
pq is encroached by a point v if v liesinside its normal
sphere. If the angular width of pq islarger than 7 /3, pg
iswide.

Helper triangles are defined when no hel per arciswide
or encroached by avertex in ). Let CH,, denotethe con-
vex hull of V N B NS, for a protecting sphere S,. If a
convex polygon P with more than three vertices appears
as aboundary facet of CH,, then wetriangulate P asfol-
lows. Let 7 bethesupporting plane of P. The circumcap
of P isthecap on S, thatisbounded by . N S,. and sep-
arated from CH,, by L. First, for each helper arc pq such

1f(p) is the radius of the smallest ball centered at p that intersects
two digoint elementsof Q.

Figure 3: The figure shows S, and two protecting
spheres consecutive to S,,. Some boundary triangles of
CH_,, are shown. The non-shaded triangles are helper tri-
angles. The shaded ones are not as the vertices of each
shaded triangle lie on the boundary of the same hole on
BNS,.

that p, ¢ € 9P and pq lies on the circumcap of P, wein-
sert pq as adiagonal in P. Then we arbitrarily complete
thetriangulation of P. Afterwards, aboundary trianglet
of CH,, isahelper triangleif no holeon BN S, contains
all vertices of ¢ on itsboundary. See Figure 3. Let H be
the plane containing a helper triangle t. The circumcap
of t isthe cap K on S, that isbounded by # N S, and
separated from CH,. by H. If theangular diameter of K
is less than =, the normal sphere of ¢ is the orthogonal
sphereof S, at 0K and+t isencroached by apointv if v
liesinside its normal sphere. If the angular diameter of
K islarger than /3, t iswide.

Subfacets are defined when no helper arc is wide or
encroached by a vertex in V. For every facet F of P, a
subfacet isatriangleon F' inthe 2D Delaunay triangula-
tionof V N F. Note that we define subfacet using facets
of P instead of flat facets of Q because MESH only ap-
proximates @ and it does not respect the curved bound-
ary edges of flat facets. The circumcap of a subfacet 7 is
the disk bounded by the circumcircle of . The normal
sphere of T isthe equatoria sphere of 7. If apoint v lies
inside the normal sphere of r, r isencroached by v.

We are ready to describe MESH. Startingwith ) asthe
set of vertices of Q, MESH repeatedly invoke the appli-
cable rule of the least index in the following list. When
no ruleis applicable, the subcomplex of Del V covering
the input domain is the final mesh. Recall that pq > 16
isan apriori chosen constant.

Rule 1. Pick ahelper arc that iswide or encroached by a
vertex in V. Preference is given to wide helper arcs.
Insert the midpoint of the helper arc.

Rule2: Pick a helper triangle ¢ that is wide or en-
croached by a vertex in V. Preference is given to



wide helper triangles. Let v be the center of the cir-
cumcap of ¢. If v does not encroach upon any helper
arc, insert v. Otherwise, reject v and apply Rule 1
to split the hel per arcs encroached by v.

Rule 3: Let v be the center of the circumcap of a sub-
facet that is encroached by a vertex in V. If v does
not encroach upon any helper arc, insert v. Other-
wise, regject v and apply Rule 1 to split the helper
arcs encroached by v.

Rule 4: Let v bethecircumcenter of atetrahedron r such
that p(7) > po and no vertex of 7 lies inside .
If v does not encroach upon any helper arc, helper
triangle or subfacet, insert v. Otherwise, reject v,
apply Rule 1 to split the helper arcs encroached by
v, and then apply Rules 2 and 3 to split the helper
triangles and subfacets encroached by v.

This completes the description of MESH. The rest of
the paper focuses on proving the guarantees offered by
MESH. We will see that MESH never inserts a vertex in-
side s, i.e, theverticesinside 5 are alwaysthe endpoints
of linear edges of Q.

5 Propertiesof orthogonality

This section presents three geometric results regarding
orthogonal spheres. We introduce some notations. Given
asphere S and a point p outside S, K (p, S) denotes the
cap on S visiblefrom p. Givenacap K onasphere S, if
the angular diameter of K islessthan =, we use K+ to
denote the orthogonal sphere of S at O K. If S isaplane
(infinite sphere), then K+ isthe equatorial sphere of K.
For any point ¢ € K (p, S), pg istangentto S, so p is
the center of K (p, S)*.

CLAIM 1 Let S be a sphere. Let S’ be a sphere such
that S N .S’ is an equator of S’. For any point z on the
plane containing S N S’ and outside S/, K(z,5)* is
orthogonal to S.

Proof. Let x and y be the centers of S and
S’ respectively.  Recal that - is the center of
K(z,8)*. Let r be the radius of K(z,5)*.
Since xyz is a right-angled triangle, we have
2 — 212 = ||z — y|[? +| y— =I|?. By Pythagorastheorem
again, we have ||z — y||* = radius(S)? — radius(S’)?.
Since 5 and K(z,S')1 are orthogona, we have
lly — z||? = radius(5")? + r% It follows that
[z — z||? = radius(S)? + 2 and s0 K(z,5)t is

orthogonal to S.

CLAIM 2 Let p and ¢ be two non-diametral points on
a sphere S centered at z. Let AV be the set of spheres
orthogonal to .S that pass through p and q. There exists
a uniquecircle C such that

(i) C iscoplanar with pga, C' passes through p and ¢,
and NV isthe set of spheres that pass through C'.

(ii) Thelocusof the centers of spheresin A istheline ¢
through the center of C' perpendicular to the plane
containing C'.

Proof. Let H be the plane containing p, ¢ and .
Take N € V. Thetwocircles H NS and H N N are
orthogonal in the sense that they intersect at right angle.
It can be verified that thereisa uniquecircle C' on H that
isorthogonal to H NS and passes through p and ¢. Thus,
HNN = C and V isthe set of spheres that pass through
C'. Thisproves (i) and (ii) isan easy corollary of (i).

CLAIM 3 Let S beasphere. Let K; and K, be capson
S with angular diameter lessthan 7. If Ky C Ky, Ki
encloses K.

Proof. Fix the center of K, and grow ittoacap K such
that 9K istangentto 9K,. So K C K;. Clearly, K+
encloses K;-. If we treat the contact point between § K
and 9K, as a degenerate circle, K+ and K+ belong to
the system of orthogonal spheres as described in Claim 2
in the limiting case. So Ki- encloses K+ and hence
K.

6 Locationsof centers

We study the locations of the circumcap centers when
MESH inserts them. To this end, we need to associate
helper arcs, helper triangles and subfacets with elements
of . Wefirst introduce some notations. Given a helper
arc, helper triangle or subfacet o, let K, denote the cir-
cumcap of ¢. Hence, if the angular diameter of K, is
less than =, K2 is the normal sphere of &. We extend
the definition for any circular arc 5. The circumcap A5
isthe smallest cap on the equatorial sphere of 5 that con-
tains 3. Kg is defined as before if the angular diameter
of K islessthan .



A helper arc belongs to the curved edge that contains
it. A subfacet ~ belongsto the flat facet 7' if /' lies out-
side B and /' contains the vertices of 7. Note that it is
possible that = ¢ F'. This definition does not cover al
subfacets but we are not concerned aswe will seein Sec-
tion 7 that MESH never deals with subfacets that are not
covered. Clearly, a subfacet belongs to at most one flat
facet. A helper triangle ¢ belongsto a curved facet I if
there existsaconnected subset v C int( ;)N F such that
cl(v) contains the vertices of ¢. This definition is some-
what complicated due to the fact that ¢ does not lie on
B and the vertices of ¢t may lie on the boundaries of two
curved facets. The following result shows that ¢ belongs
to exactly one curved facet under the right conditions.

LEMMA 6 Assume that MESH has not inserted any ver-
tex inside B. If there is no wide or encroached helper
arc, each helper triangle belongs to exactly one curved
facet.

Proof. Let ¢ be a helper triangle on CH,.. Assume to
the contrary that ¢ does not belong to any curved facet.
Then some helper arc « must cross K; and cut 9K, into
two arcs A; and A, such that each int(A;) contains a
vertex of ¢. Note that « does not lieon S, N S, for any
protecting sphere S5, consecutive to S,. Otherwise, A;
or A, liesinside S, which impliesthat a vertex of ¢ lies
inside B, contradicting our assumption. It followsthat «
lies at the intersection of S, and afacet of P, i.e, S, is
the equatorial sphere of «.

If A; islessthanasemicirclefor some¢, then K, con-
tains A;. But then « is encroached by the vertex of ¢ in
int(A4;), contradicting our assumption that no helper arc
is encroached. Supposethat 4; and A, are semicircles.
Then « passes through the center of K. If any endpoint
of « liesoutside K, then K, contains K; and so some
vertex of ¢ encroaches upon «, contradiction. Otherwise,
both endpoints of « lieon 9K ;. Thus, the vertices of ¢
and the endpoints of « are vertices of a boundary facet
of CH,;. Recall that when triangulating the boundary of
CH_, we first connect the endpoints of « with a diago-
nal. But then thisdiagonal cutst and so¢ would not exist,
contradiction. This completes the proof that ¢t belongsto
at least one curved facet.

Lastly, ¢ cannot belong to two curved facets, otherwise
the definition would imply that the interior of two curved
facets intersect.

Clearly, for a helper arc «, the center of K, lies on
the curved edge that o belongs to. In fact, the center is
the midpoint of «. The next two lemmas show that for a

subfacet (resp. helper triangle) o, the center of K, lies
on the flat facet (resp. curved facet) that o belongs to.
With dlightly more work in Section 7, these two lemmas
will alow us to show that Rules 2 and 3 never insert a
vertex inside 5.

LEMMA 7 Assume that MESH has not inserted any ver-
tex inside B and there is no wide or encroached helper
arc. Let = be a subfacet belonging to a flat facet #'. The
center of K, lieson F.

Proof. Let v bethe center of K. Let H be the plane
containing £'. If v ¢ F, K, intersects 0F at an arc
such that 5 cuts K, into two parts, one contains v and
the other contains K, N I'. Thisimpliesthat K, N F
liesinside KﬁL. Since the vertices of r lieon K, N I,
some vertex of 7 liesinside K. The emptiness of K,
implies that 3 lies within a helper arc . By Claim 3,
Kt encloses K g, S0 « is encroached by some vertex of
7, contradiction.

LEMMA 8 Assume that MESH has not inserted any ver-
tex inside B and there is no wide or encroached helper
arc. Lett beahelper trianglebelongingto a curved facet
F. The center of K; lieson F.

Proof. Supposethat /' C S, for aprotecting sphere S,.
Let v be the center of K;. Assume to the contrary that v
liesoutside F'.

Case 1. v lies outside B N S;. So v lies inside
some protecting sphere S, consecutive to S,,. Note that
v € K(y,S;). Let p beavertex of ¢ that does not lie on
Sz N Sy (such avertex exists by the definition of helper
triangle). Sincep liesoutside S, K intersects 5, NS, at
an arc 5. The emptiness of K; impliesthat 5 lies within
a helper arc «. Since « is not wide by assumption, the
angular width of 3 islessthan 7, so K + isdefined. Since
B=KNS:NSyandv € K(y,S:), theangular diame-
ter of /{; isalsolessthan =, otherwise the angular width
of 3 would be at least 7. So the normal sphere of ¢ is
K. Let H be the plane through = and the endpoints
of 5. By Claim 1, K is orthogonal to .S,.. Since S,
and K} are also orthogonal to S,,, Claim 2 implies that
Sy, K and Kg intersect at the circle H N Kg. It fol-
lows that the caps K3, K; and K (y, S,) contain 5 and
their boundaries pass through the endpoints of 3. See
Figure 4. Using this and the fact that v € K (y, S;), we
get Ky C K U K(y,S). Thisimplies that the vertex
p of t liesinside K5 as p liesoutside S,. By Claim 3,
p liesinside K}, contradicting the assumption that o is
not encroached.
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Figure 4: The three solid line segments delimit the caps
Kg, Ky and K (y, S;) on S,..

Case 2. v lies on a curved facet other than /' on
BN S;. We will reduce to case 1 by properly choosing
a vertex p of ¢ and a sphere to play the role of 5, in
case 1. Let n be the shortest geodesic on .S, from v
to a vertex ¢ of ¢. Clearly, n C K;. We claim that »
does not cross S, N S, for any protecting sphere S,
consecutive to .S,. Observe that K (w, S,) does not lie
inside i;, otherwise the emptiness of K; would imply
that Ay N K(w,S;) contains some wide helper arc.
Thus, K; — int(K(w, S;)) is star-shaped with respect
to v and shortest geodesics on S, originating from v. So
our claim follows. Since v ¢ F, our claim implies that
n enters /' from another curved facet at a curved edge
e where e is also incident on a flat facet F’ adjacent to
F'. Let L betheplane containing 7. Note that /. passes
through =. Consider the infinite sphere bounded by L
with the halfspace containing v asitsinside. We denote
thisinfinite sphereby L*. L* will play therole of S, in
case 1. We claim that ¢ has a vertex outside . Recall
that the destination of 7 isavertex ¢ of t and » intersects
L. 1fq & L,thenq € LT, otherwise n would be more
than a semicircle and so A; N L is a complete circle.
Since K; isempty ande C K; N L, thisimpliesthat e is
acomplete circle, contradiction. If ¢ € L, then g € e. If
t does not have any vertex outside L, then K, C L*.
Using this and the fact that ¢ belongs to I, we conclude
that for any neighborhood N (¢) around ¢, N(¢) N F
has pointsinside ,*. However, since 5 enters F' a ¢,
for a sufficiently small neighborhood N (¢) around g,
N(q) N F does not lie inside L™, contradiction. This
proves our claim that ¢ has a vertex p outside L*. To
summarize, we have the same setting as in case 1 with
S, substituted by L*: L* isorthogonal to S, v € LT,
p & Lt,and Ky NS, N L isan arc within a helper arc
«. Thus, the argument in case 1 shows that p encroaches
upon «, contradiction.

7 Boundary conformity

We are ready to prove that Del V is conforming when-
ever no helper arc is wide or encroached and no sub-
facet is encroached. Thus, the output mesh is conform-
ing when MESH terminates (termination will be proved
in Sections 8 and 9). We start with aresult characterizing
the subcomplex of Del V inside 5.

LEMMA 9 Assume that MESH has not inserted any ver-
texinside 5. Let S, and S, be two consecutive protect-
ing spheres. When there isno wide or encroached helper
arc, (i)—iii) hold. When there is no wide or encroached
helper arc/triangle, (i)—(iv) hold.

(i) For any flat facet /" incident to « and any helper arc
pq C BN S, N F, the equatorial sphere of pgz is
empty.

(ii) For any helper arc endpoint p € S, N .Sy, the equa-
torial sphere of pzy isempty.

(iii) For any helper arc pg C S, N S,, the circumsphere
of pgay isempty.

(iv) For any helper triangle pgr on CH,, the circum-
sphere of pgrz isempty.

Proof. Consider (i). Let o = pq. Let S bethe equatorial
sphere of pgx. Observe that the centers of S,, S and
KX lieonastraight line. Since z lieson S but outside
KX, the center of S lies between x and the center of
KZL. Thus, Bd(S, U K1) encloses S. Since z is the
only vertex inside Bd(S,, U K1), S isempty. Consider
(ii). Let S be the equatorial sphere of pzy. Since S, and
Sy intersect at right angle, Zzpy intriangle pzy is equal
to 7/2. Thus, zy is the diameter of S which implies
that Bd(S,; U S,) encloses S. Since « and y are the
only vertices inside Bd (.S, U Sy), S isempty. Consider
(iii). The circumsphere of pgzy is the equatorial sphere
of pxy which is empty by (ii). We can prove (iv) by
considering the circumcap and normal sphere of pgr and
employing the same argumentsin proving (i).

Next, we bootstrap from Lemma 9 to show that MESH
never inserts any vertex inside 5.

LEMMA 10 MESH never inserts any vertex inside 3.

Proof. Assumeto the contrary that MESH wantsto insert
avertex v inside B for thefirst time. MESH is not apply-
ing Rule 1 since Rule 1 never inserts a vertex inside B.
It followsthat there is no wide or encroached helper arc.



By Lemmas 6 and 8, v isnotinserted by Rule 2. If v isin-
serted by Rule 3 to split an encroached subfacet r, then =
doesnot lieinside 5 by Lemma 9. In fact, Lemma 9 fur-
ther implies that = belongsto a flat facet outside 5. But
then v does not lie inside B by Lemma 7, contradiction.
The remaining possibility isthat Rule 4 wantsto insert v
inside some protecting sphere S,.. It followsthat thereis
no wide or encroached helper arc/triangle. Let v be the
circumcenter of the tetrahedron . By Rule 4, = has no
vertex inside B. At least one vertex of T isoutside S, as
S, cannot be the empty circumsphere of 7 (« liesinside
S). Let S be the circumsphere of r. Let K be the cap
on S, that isbounded by S, NS andliesinside S. Since
x does not lieinside S, the angular diameter of K isless
than , so K+ isdefined. If KNK; = {§ for al helper tri-
anglet onCH,, then K’ C K (y, S, ) for some protecting
sphere S, consecutiveto S,. It followsthat Bd (S, U Sy)
encloses S and hence 7, contradicting the fact that MESH
has not inserted any vertex inside 5. Next, take a helper
trianglet, on CH,. suchthat K N K, # 0. Starting from
to, wevisit asequence of helper trianglesty, t1, ¢, - - - t0
derive a contradiction as follows.

Cael: K C K;,. Clearly S liesinsde Bd(S, U K1).
So any vertex of 7 outside S, liesinside K+ Since K-
encloses K+ by Claim 3, some vertex of T encroaches
upont;, contradiction.

Case 2. K ¢ Ki,. The vertices of ¢; divide 0K, into
three arcs and by emptiness of K, 0K N J K, lieon one
arc, say the one between vertices « and v of ¢;.

Case 2.1: There is ahelper triangle ¢;,, on CH,. that
sharesuv witht;. If K C K;, UK, ,, (refertoClaim 2)
we move a point z from the center of K towards the
center of K-, and stop as soon as 9K (z, S;) is tan-
gent to K. Tangency implies that K C K(z,S;),
s0 Bd(S, U K(z,S,)*) encloses S. Since » lies be-
tween the centersof ;- and K-, Claim 2impliesthat
Bd(K{UK, ) encloses K (z, S;)*. SOBA(S, UK U
K, ) encloses S, U K(z,5,)" and hence 5. Hence,
some vertex of T encroaches upon ¢; or ¢;1, contradic-
tion. If K ¢ K, U K;,,,, wecontinueto visitt; ;. We
will never returntot; as K N Ky, C KN Ky, ;.

Case 2.2: If t; is the only helper triangle on CH,,
incident to wv, v and v are the endpoints of a helper
ac o C S NS, for some protecting sphere S,
consecutive to S,. Let » be the center of K. By
Claim 1, K1 isorthogonal to S, 0 KL = K(z,5,)%.
If K C K; U K(%,S;), we conclude as in case
2.1 that Bd(S, U Kt U KT) encloses 5. So some
vertex of T encroaches upon ¢; or «, contradiction. If

K ¢ K, UK(z,S;),then K C K(z,S;)UK(y,S:)
whichimpliesthat Bd(S, U K+ U S,) encloses.S. Since
no vertex of  lies inside S, or S, some vertex of =
encroaches upon «, contradiction.

Finally, we put together Lemmas 6-10 and summarize
the main results of this section.

COROLLARY 1 MESH never inserts a vertex inside 5.

(i) Whenever no helper arc iswide or encroached, the
following hold.

(a) Subfacetsinside B are not encroached.

(b) Each subfacet that does not lie inside 55 be-
longs to exactly one flat facet. Each helper
triangle belongsto exactly one curved facet.

(c) The center of the circumcap of a subfacet
(resp. helper triangle) o lies on the flat facet
(resp. curved facet) that o belongsto.

(ii) Whenever no helper arc/triangle is wide or en-
croached, the following hold.

(a) For any two consecutive protegti ng spheres S,
and S, and any helper arc pg C S: N Sy,
pqxy € Del V.

(b) For any protecting sphere S, and any helper
triangle pgr on CH,;, pgre € Del V.

(iii) Whenever no helper arc iswide or encroached and
no subfacet is encroached, Del V is conforming.

8 Between adjacent elements

The termination of M ESH hinges on the fact that we will

not keep generating encroached helper arc, helper trian-
gle or subfacet. In particular, if a new vertex inserted
on one element encroaches upon something on an adja-
cent and non-incident element and if this happens indef-
initely, then algorithm will not terminate. In this section,

we show that this cannot happen. Lemmas 11, 12 and 13
analyze the cases for helper arc, helper triangle and sub-
facet respectively. Lemmas 11 and 12 are stated more
generaly for their usagein Section 9.

LEMMA 11 Let 5 beanarcona curved edge e such that
theangular width of 3 islessthan . If £/ isan element
of Q such that £ isadjacenttoe and e ¢ JOF, then E
does not intersect the inside of K 5.



Proof. Case 1. e lies at the intersection between a pro-
tecting sphere S, and a facet of P. Then F isa curved
edge or curved facet lying on a protecting sphere .S,
consecutive to .S;.. Since e lies outside S, and e meets
Sz NSy at right angle, the cone of rays from « through
Sz NSy and the cone of rays from 2« through 0Kz do
not cross. Observe that S, and X g lie inside their cor-
responding cones. Thus, .5, does not intersect theinside
of K7 and neither does E.

Case 2: ¢ C S, NSy for two consecutive protecting
spheres S, and S,,. The endpointsof ¢ lie on two facets
Iy and Fs of P. Notethat x,y € Fy N Fs. Let H; be
the halfplane that is bounded by the supporting line of
zy and contains the endpoint of e on F;. For i = 1 or
2, since e meets H; at right angle, either H; avoids Kg
or H; istangent to K ;. Observe that either £ C H,
for some ¢ or F' is separated from e by H; and H,. It
followsthat £ does not intersect the inside of Kg.

LEMMA 12 Supposethat thereisnowide or encroached
helper arc. Let ¢t be a helper triangle belonging to a
curved facet F'. Let K C K; be a cap with the same
center as K; and angular diameter lessthan =. Let £ be
an element of Q adjacentto I'. For anyvertex v € VN E,
v doesnot lieinside K +.

Proof. Let /' C S, for some protecting sphere S,.. As-
sume to the contrary that v liesinside X +. Observe that
E ¢ S, otherwise the emptiness of X would be contra-
dicted.

Case 1. F isacurved edge or curved facet lying on
a protecting sphere 5, consecutive to S,.. In order that
K* intersects £, K must cross 5, N ;. Otherwise, the
cone from z through 0 K and the cone from z through
S NSy do not cross, implyingthat S, does not intersect
the inside of K+, contradiction. By emptiness of K,
KNS, NSy isanarc 8 withinahelper arc «. Let 25
and > be the centers of K; and K* respectively. By
Clam 1, K is orthogonal to S,. Since 5, and K+
are also orthogonal to S, Claim 2 impliesthat 5, K+
and K intersect at the same circle and y, z; and z are
collinear. If y lies between z3 and z, the subset of S,
inside K- lies outside K. Since (3 lies on the subset
of S, inside K, 3 isoutside K+, contradicting the fact
that 5 C K. If y does not lie between z5 and z, the
subset of S, inside K+ isequal to the subset of S, inside
K. Since v lies on the subset of 5, inside K+, v lies
inside 5 and hence K- by Claim 3. This contradicts
the assumption that « is not encroached.
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Case 2. F is aflat facet or a curved boundary edge
of a flat facet. Let H be the plane containing the
corresponding flat facet. Note that H passes through
x. Since v liesinsde K+, K' intersects S, N H at
an arc 3 within a helper arc a. Since Kz and K are
orthogonal to S, H N Kz = H N K* by Clam 2,
Since v liesinside H N K, v liesinside K 5. But then
v aso liesinside K} by Claim 3, contradiction.

LEMMA 13 Supposethat thereisnowideor encroached
helper arc. Let 7 be a subfacet belonging to a flat facet
F'. Let E be an element of @ adjacent to /'. For any
vertex v € VN F, v doesnot lieinside K.

Proof.  The proof is similar to that of Lemma 12
by treating the supporting plane of F' as an infinite
sphere.

9

For each vertex v, we define the insertion radius of v as
follows. If v isavertex of @, r, istheminimum distance
from v to another vertex of Q. If v isinserted/rejected by
MESH, 7, isthe minimum distance to a vertex in V at
the time when v is inserted/rejected. In this section, we
prove a lower bound on the insertion radii of vertices.
Thus, MESH must terminate by a packing argument.

We first introduce some notations. Consider the time
when MESH inserts/rejects a vertex v using Rule 4, 1 <
i < 4. We say that v hastype ¢ and we define the parent
of v asfollows. If v isthe center of K, for awide helper
arc/triangle o, the parent of v isundefined. Suppose that
v isthe center of K, where ¢ isa non-wide encroached
helper arc/triangle or an encroached subfacet. If V has
avertex encroaching upon o (i.e., lyinginside K1), the
the parent of v is the nearest encroaching vertex in V.
Otherwise, K+ is empty. What happens is that MESH
rejected a vertex p because p encroached upon o and this
also prompted MESH to consider v. The parent of v is
pinthiscase. If v isthe circumcenter of a tetrahedron
7, the parent of v is the endpoint of the shortest edge of
7 that appeared in V the latest. Finaly, the parents of
vertices of Q are undefined.

We will use induction. To thisend, Lemma 14 relates
the insertion radius of v to the insertion radius of its par-
ent p and to ||p — v||. The proof of Lemma 14 needs the
following claim.

| nsertion radius



CLAIM 4 Let K beacap withangular diameter at most
7/3. Let v bethe center of K. For any point p inside K+
and any point ¢ on or outside K+, ||g — v|| > (1/4) -
max{|lp — [, |[p — ¢l[}-

Proof. Let z be the center of K. Since the angular
diameter of K isat most 7/3, ||v — z|| < radius(KL) -
cos(m/3) which is at most ||¢ — z||/2. By trianglein-
equality, ||¢ — v|| > ||l¢ — z|| — ||v — 2]|. It followsthat

llg — |l > Ilg — =[|/2.

Since p and v lie inside K+, |lg — z|| > |[p — v||/2.
Thus, |lg — v|| > |[p — v||/4. By triangle inequality,
llp—qll <llp—=||+]lg —=|| whichisat most 2 ||q — z]|.
Thus, |lg — v > [lp — qll/4-

LEMMA 14 Let v be a vertex of Q@ or a vertex in-
serted/rejected by MESH. Let p be the parent of v.

~

(i) If pisundefined, r, > f(v)/2.
(i) Otherwise, r, > ||p— v||/4 andif r, < f(v)/4, the
following hold depending on the type of v:

Typel: p hastype2, 3or 4and r, > r,/4.
Type2or3: phastypedandr, > r,/4.
Typed:. ry, > po - 7p.

Proof. Go back to the time when v appeared. If v isa

vertex of Q, thenr, > f(v) by definition. We analyze
the other cases below.

Case 1: v is the center of K, for a wide helper
arc/triangle . The parent p is undefined in this case.
If o isahelper arc, let S be the equatoria sphere of o.
Note that S is either a protecting sphere or the equato-
rial sphere of the common hol e between two consecutive
protecting spheres. If o isahelper triangle, let S be the
protecting sphere that contains the vertices of . Let F
be the element of () that & belongsto (i.e.,, £ isacurved
edge or curved facet depending on whether o isa helper
arc or helper triangle). Notethat ' lieson S. By Corol-
lay 1, v € E. Let K C K, be the cap with center v
and angular diameter /3. Let B be the smallest ball
centered at v that contains K. Let z be the center of
S. Suppose that int(B) does not contain any vertex in
V. Then r, > radius(B) = ||v — z|| - 2sin(7/12) >
|lv — z||/2. Observe that = lies on some linear edge of
Q that stabs S. Since al linear edges are digoint from

~

B, we have ||v — z|| > f(v) by definition. It follows
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that », > f(v)/2. Supposethat int(B) containsa vertex
w € V. Observe that Bd(S U K*) encloses B which
implies that w lies inside K+. If w is a vertex of Q,
then w ¢ E as vertices on E do not lieinside K+, so
[lv —w|| > f(v) by definition. Otherwise, w was in-
serted by MESH. We claim that w lies on an element
E’ of @ digoint from E. If ¢ is awide helper arc, then
MESH has split helper arcs only so far, so w lieson some
curved edge £/. By Lemma 11, for K+ to enclose w,
E’isdigointfrom E. If o isawide helper triangle, then
MESH has split hel per arcs/triangles only so far, so w lies
onsome element £ of Q. By Lemma 12, for K+ to en-
close w, £’ isdigoint from E. This proves the claim.

~

Our claim impliesthat ||v — w|| > f(v). It followsthat

Ty = Milyep ||v - w” > f(v)

Case 2: v isthe midpoint of a non-wide encroached
helper arc «. Notethat v has type 1. Let e be the curved
edge that « belongsto. Let ¢ bethe vertex in V' such that
r, = |lg — v||. Recadl that p isthe parent of v. We first
relate r, to |[p — v||. If ¢ liesinside K, thenp = ¢
by definition of parent; otherwise, ||¢ — v|| > ||p — v]|/4
by Claim 4. Hence, r, = ||l¢ — v|| > ||p — v||/4. Next,
we relate r, to f(v) and r,. If p isavertex of Q, then
p ¢ e as vertices on e do not lie inside K1, so |[p —

Fl If p lieson an element £ of @ such that

ol > Flv).
e ¢ OF, Lemma 11 implies that e and £ are digoint
and o ||p — v|| > f(v). Sincer, > ||p — v||/4, we get
ry > f(v)/4 for the above two cases. The remaining
case is that p has type 4 or p lies on a curved/flat facet
whose boundary contains e. Note that p has type 2, 3
or 4. What happens is that MESH attempted to insert
p but since p encroached upon «, MESH rejected p and
inserts v to split & now. Inthiscase, ¢ doesnot lieinside
K2, otherwise the parent of v would be ¢ instead. Since
g € V when p was rejected, r, < ||p — ¢||. By Claim 4,

llg — v > |lp — qll/4. Itfollowsthat r, > r, /4.

Case 3: visthecenter of K, wheres isanon-wideen-
croached helper triangleor an encroached subfacet. Note
that v hastype 2 or 3. Let /' be the curved facet or flat
facet that o belongs to, whichever is appropriate. Let g
be the vertex in ¥ such that », = ||¢ — v||. Wefirst re-
late r, to |[p — v||. If ¢ liesinside K}, thenp = ¢ by
definition of parent; otherwise, ||¢ — v|| > ||p — v||/4 by
Claim 4. Hence, r, = ||g — v|| > ||p — v||/4. Next, we
relate r, to f(v) and r,. Suppose that p is avertex of Q
or p hastype 1, 2 or 3. Vertices of type 1 are always in-
serted. If p hastype 2 or 3, athough p encroached upon
o, pwasinserted asv hastype 2 or 3. It followsthat p is
avertex in Y N £ for some element £ of Q. We invoke



Lemma 12 if o isa helper triangle or Lemma 13 if ¢ is
a subfacet. The implicationisthat £ isdigoint from F'.
Since v € F by Corollary 1, ||[p — v|| > f(v). Since
ro > ||p — v||/4, we get r, > f(v)/4. The remaining
case isthat p has type 4. By Rule 4, p was rejected for
encroaching upon o. In this case, ¢ does not lie inside
KX, otherwise the parent of v would be ¢ instead. Since
g € V when p wasrejected, r, < ||p — ¢||. By Clam 4,
llg — v|| > ||lp — ¢||/4. It followsthat 7, > r, /4.

Case 4: v isthe circumcenter of a tetrahedron r. By
definition, p is an endpoint of the shortest edge of . Let
q bethe other endpoint of thisedge. If p isavertex of Q,
by the definition of parent, ¢ is aso avertex of Q. Ihis
implies that », = |lp —v|| = |l¢ — v|| = f(v).
If p is not a vertex of @, since p(r) > po,
ro = [lp =l > po-llp = qll > porp.

We prove one more claim and then derive the lower
boundsfor insertion radii in Lemma 15.

CLAIM 5 Let v be a vertex of Q or inserted/rejected by
MESH. Let p be the parent of v. If r, > ¢ - rp, then

~ ~

F) < f(p)-ro/(c-rp) +4r,.

Proof.  Since p is defined, r, > ||p — v||/4 by
Lemma 14. Using the Lipschitz property, we get

F@) < Fp)+1lp—vll < F(p) 1o/ (c-1p) + 47

LEMMA 15 Let v be a vertex of Q or inserted/rejected
by MEsH. If v isa vertex of Q, thenr, > f(v). Other-
wisg, there are four constants €'y > Cy = C3 > Cy > 4
such that if v hastype ¢, thenr, > f(v)/C;.

Proof. We prove the lemma by induction using the con-
stants ] = 84p0/(p0 — 16), Cy = (O3 = (20p0 +
16)/(p0 — 16) and C,; = (4p0 + 20)/(p0 — 16) Before
MESH starts, r, > f(v) for each vertex v of Q. In the
induction step, if r, > f(v)/4, we aredoneas C; > 4.
Otherwise, Lemma 14 implies that the parent p of v is
defined.

If v hastype 1, by Lemma 14, p hastype 2, 3 or 4 and
ry > 7p/4. By induction assumption, f(p) < Carp. By
Clam$5, f(v) < 4Cyry + 4r, = Ciry,.

If v has type 2 or 3, by Lemma 14, p has type 4 and
ry > 7p/4. By induction assumption, f(p) < Carp. By
Clam5, f(v) < ACyry + 4r, = Cory,.

If v has type 4, then r, > pgr, by Lemma 14.
By induction assumption, f(p) < Chrp regardiess of
whether p isavertex of Q or p was inserted/rejected. By
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Clam5, f(v) < Ciry/po + 41y, = Cury.
We are ready to prove that MESH terminates by a
packing argument.

COROLLARY 2 MESH terminates and for each output
vertex v, its shortest incident edge has length at least

flo)/(1+ ).

Proof. Let vw be the shortest edge incident to
v. If w appeared in V no later than v, then
lv — w|| > r, > f(v)/C; by Lemma 15. If v
appeared inV beforew, then |[v — w|| > r, > f(w)/Ch
by Lemma 15. Using the Lipschitz condition, we get
F(0) < Flw)+]lo—wl| < (1+C1) - [l —w]|. The edge
length bound implies that we can center digjoint balls
at the output vertices with radii fuin/(2 + 2C1), where
fmm is the minimum local feature size with respect to
Q. Since fmm > 0 and the input domain has bounded
volume, there is a finite number of output vertices. It
followsthat MESH terminates.

10 Mesh quality

In thissection, we relate the edge lengthsto local feature
size with respect to P, bound the radius-edge ratio and
summarize the guarantees offered by MESH. We first
prove in Lemmas 16 and 17 that ¢(p) = Q(f(p)) for
each output vertex p.

LEMMA 16 Let uv bean edge of P. Let ¢ be a point on
uv. There exists a constant £; < 1 such that

(i) 1fflg—ull > (p/2) f(u) and|[g—v|| > (1/2)-f(v),
then g(q) > kipt - f(q).

(ii) For any point p onor outside 3, g(p) + ||lp — ¢l| >
kyp - f(p).

Proof. We prove the lemma for the constant
k1 = sin ¢ /4. Consider (i). Let B bethe ball centered at
q withradius g(g¢). If B intersects two digoint elements
of P, y(¢) = f(g). Otherwise, we can assume that B
touches u or theinterior of an edge/facet of P incident to
u. S0 g(q) > |l¢ — u|| - sin ¢. By the Lipschitz condition,
Fla) < F(u) + llg — ull. Since flg — ul| > (1/2) - F(u),
we get f(q) < ((2+ p)/p) -llg —ull. So
flo) < (2 + p)/(using)) - g(a) < g(g)/(kip).
Consider (ii). Suppose that |lg — ul| < (1/2) - f(u).
Using the Lipschitz condition and the fact that



lp —ull > p- flu), weget f(p) < f(u) +|lp—ul| <
(L +)/p) - lp = ull. Sincellg — ul[ < (1/2) - f(u),
llg — u]] < ||lp — u||/2. Using triangleinequality, we get
llp —qll > llp — ull = |lg = || > |lp — u|l/2. Thus,
fp) < (2+2p)/p) - llp—all <Ilp—qll/(k1p). We get
the same result for the case where | |g —v|| < (11/2)- f(v).
If llg — || > (p/2) - fu) and|lg — v|| > (p/2) - f(
thenusing f(p) < f(q) +lp — ¢l and (i), we get f(p)

v),
<
9(a)/ (ki) + lp = qll < (9(a) + |lp — qll)/ (k1p).

LEMMA 17 For each vertex p inthe final mesh, g(p) >
kost - f(p) for some constant k2 < ;.

Proof. We prove the lemma for the constant
ko min{ky/2, k1 sin(¢/2)/(1 + sin(¢/2))}. |If
p is avertex of P, then g(p) = f(p). Otherwise, if p
is a linear edge endpoint, then for each endpoint v of
the edge of P that containsp, ||p — v|| > (p/2) - f(v).
By Lemma 16(i), g(p) > kip - f(p). The remaining
case is that p lies on or outside B. Let B be the
ball centered a p with radius g(p). If B intersects
two digoint elements of P, g(p) = f(p). Suppose
not. If B intersects an edge uw, then for any point
q € Bnuw, |lp—q|| < g(p). Using Lemma 16(ii),
we get g(p) > (kip/2) - f(p). Otherwise, B intersects
the interior of two adjacent facets Iy and F, of P. Let
H; be the plane containing F;. Let r be the point in
Hy N Hy nearest to p. Since pr makes an angle at least
¢/2with Hy or H,, wehave ||p — || - sin(¢/2) < g(p).
The orthogonal projections of pr onto A, and H2 must
intersect 0F; or F, a some point ¢q. Observe that
llp—qll < llp—rll. s0lp— gl < g(p)/sin(¢/2). Using
Lemma 16(ii), we get ki - f(p) < g(p) + |lp — ¢l| <
g(p) - (1 +sin(6/2))/sin(6/2).

We are ready to prove the main results of this paper.

THEOREM 1 MESH terminates and produces a Delau-
nay mesh M conforming to P. There exists two con-
stantsé and p; depending on . and ¢ such that

(i) For each vertex v of M, the length of the shortest
edgeincidenttov isatleasté - f(v).

(ii) Let  be a tetrahedron in M. If = does not have a
vertex inside 3, then p(7) < po; otherwise, p(7) <
P1-

Proof. The termination of MESH has been proved in

Corollary 2. Since MESH terminates, Corollary 1implies
that M is conforming.
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We prove (i) for the constant § = min{ksAp”/(1 +
C1), kacsp®}. Let v be a vertex of M. Consider the
case where v lies on or outside B. Lemmas 5 and 17
imply that f(v) > Ak2p® - f(v). By Corollary 2, the
shortest edge incident to v has length at least f(v)/(1 +
C1) whichisat least (Ak2p®/(1+ C1)) - f(v). Consider
the case where v liesinside 5. Then v is alinear edge
endpoint. By Lemma 2(iii), the shortest edge incident
to v has length at least e3p - g(v). By Lemma 17, s -
9(v) > kacap® - f(v).

We prove (ii) for the constant p1 = 34/(6(1—3u)). If
7 does not have avertex inside 3, Rule 4 guarantees that
p(7) < po. Otherwise, Corollary 1 impliesthat there are
two possibilities.

Case 1: There exists a protecting sphere S, such that
T = pqrz for some helper triangle pgr on CH,.. Since
the angular diameter of the cap K, isat most 7/3, the
circumradius of 7 is less than radius(S;) < 3p - g(z).
Assumethat p isan endpoint of the shortest edge of 7. By
(i), the shortest edge length of risat leastd - f(p). Using
the Lipschitz condition, we get f(p) > f(z)—|lp—=| >
flx) = 3p-g(x) > (1 —3u) - f(x). Thus, the shortest
edge length of T isat least §(1 — 3u) - f(x). It follows
that p(7) < 3p/(6(1 — 3p)).

Case 2: There exists consecutive protecting spheres
S, and Sy such that 7 pgxy for some helper arc
pg on S, N S,. The circumradius of 7 is less than
radius(S;) < 3p - g(x). Since « lies outside S, and y
lies outside S, zy is longer than some edge of r (e.g.,
px or py). Thus, the shortest edge of  isincident to
porg. Since p and ¢ lieon S, case 1 shows that the
shortest edge length of 7 isat least 6(1 — 3u) - f(x). So
p(r) < 3/ (3(1 = 3p)).

11 Conclusion

The constants may be improvable using a more refined
analysis. We aso plan an experimenta study of the algo-
rithm. We will look into the possibility of incorporating
weighted Delaunay refinement [2] into our algorithm to
eliminate slivers and guarantee bounded aspect ratio in
the presence of small angles.
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12 Appendix

12.1 Proof of Lemma 2

We first prove Lemma 2(i) as a separate claim.

CLAIM 6 Let wv be an edge of P. S,, and S,,
are orthogonal to S, and S, respectively. The two
ratio radius(Sy,)/g(u,) and radius(S,,)/g(vy) lie
in [cop, cip], where ¢ = 271'/(3\/3) and ¢y =
min{\/3/2,sin ¢ }.
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Proof. S,, and S,, are orthogonal to S, and S, re-
spectively by construction. Let B be the ball centered
at u, with radius ¢g(u,). Let ' be an element of P
such that «,, ¢ F and F touches B. Let d be the mini-
mum distance between « and E. By triangle inequality,
d < ||u — uy|| + g(uy) Whichisa most 2 - ||u — u,]|
as g(uy) < ||u — uy||. By the definition of ||u — u,||,
weget d < 2usec(pb,) - g(u). Since 2u < cos(pbs, ),
d < g(u) whichimpliesthat u € E. So either E = v or
FE isan edge/facet incident to u.
Weclaimthat ||« —uy || -sin @2, < g(uy) < ||u—uy]|.
If E = u, then g(u,) = ||u — u,|| and our claimistrue.
Otherwise, let ¢ be the angle between v and E. Since
/2> ¢ > ¥, andg(uy,) = ||u—uy||-sin ¢, our claim
istrue. Let R = radius(Sy,)/g(u, ). Itfollowsthat

gy SI(HOG,) g M4,

Re [Sln(ﬂguv)’ m] C [/’L sin guv’ m]
Clearly, sin6¥, = min{sin(n/3),sin¢¥ } >
min{\/3/2,sin ¢}. If ¢, < «/3, then
plt, /singl, = pued,/singl, which is maxi-
mized when ¢¥, = =/3. If ¢%, > x/3, then
pbi, [ sin ¢, < mp/(3sin(r/3)) = 27/ (3/3).

Next, we show that when Split(z, y) iscaled, thereis
aways a gap between S, and .S,,.

CLAIM 7 Let & = 1.099. Whenever Split(z,y) is
called, the spheres centered at « and y with radii % -

radius(S;) and k - radius(.S, ) do not intersect.

Proof. Given a sphere S, let S denote the sphere with
the same center as S and radius & - radius(S). Let uv
be an edge of P. We first show that S,, N .S,, = 0.
Since 8%, < n/3 and g(u) < ||u — v||, it follows from
definitionthat ||u — u,|| < 2 - g(u) < 2p - |Ju— v|| and
radins(Sy,) < (um/3) - |Ju—u,|| < (2mp/3) -|[u—vl].
S0 [~y ||+ radins(Sy, ) < (2p+ 277 /3) [[u—2]| <
|u—v]||/2, implyingthat S, does not reach the midpoint
of uv. The same holdsfor S,,. S0 S,, N S,, = 0.
Consider the creation of a protecting sphere S, inline4
of Split(x, y), assuming that S, N S, = . Observe that
z liesoutside S, and S,,. Since 7(z,.5;) = Z? and line
3 of Flitissatisfied,

lz =zl > Z > 3u-g(2). 1)

Assume to the contrary that S, intersects S,. Then p -
g(z) > ||# — z||/k — radius(S;). Substituting thisinto
(1), weget ||z — z|| > (3/k) - ||z — z|| — 3 - radius(S,),
SO

||z — z|| < (3k/(3 — k)) - radius(S,). 2



Let £ be an element of P such that = ¢ £ and
E touches the ball centered at z with radius g(z).
Let d be the minimum distance between = and
E. By triangle inequaity, (1) and (2), we get
d <z = 2l + g(z) < ((1+30)/(3p) -l — 2|l <
k(L + 3u)/(1(3 = k)) - radius(S,). If « Uy,
then radius(S;) g clu - g(x) by Clam 6, oth-
erwise radius(S;) = g(z). Snce e > 1,
d < (crk(1+3u)/(3— )) g(z). By our choices of ,
¢1 and p, one can verify that 1 k(1 + 3u)/(3 — k) < 1.
However, since z,z € int(uv) and z ¢ FE, we have
x ¢ E whichimpliesd > g(x), contradiction.

The gap between S, and S, in Claim 7 implies that
when we create a protecting sphere S, between S, and
Sy, z cannot be too close to « and y and .S, cannot be
too smal. This is the main idea behind the proof of
Lemma 2. The details are given below.

Proof of Lemma 2:

We prove the lemma for the constants ¢z = co(k —
1)/(14cok) and ey = (1/c1) -min{+/3/2,sin ¢}, where
k isthe constant in Claim 7. Clearly, (i) is equivalent to
Claim 6.

Consider (ii). If Split(u,,v,) does not terminate,
Claim 7 implies that infinitely many non-intersecting
protecting spheres are created in line 4 of Split. Thisis
impossibleasthereisaconstant ¢ > 0 suchthat g(z) > ¢
for any point z € u,v,. Lines1, 2 and 7 of Split guaran-
tee that any two consecutive protecting spheres created
are orthogonal and hence overlapping. Thus, the spheres
in S cover u,v,. Takeasphere S, € S — {Su,, S, }-
By lines 3 and 4, radius(S;)/g(z) < 3u. If S, was
created in line 4, then radius(S,) = p - g(z), oth-
erwise radius(S;) = Z. So it suffices to prove that
7 > esp - g(z) when S, was created inline 7. Clam 7
impliesthat ~ isat distance at least (k — 1) - radius(Sy)
from S, or atleast (k — 1) - radius(Sy) from S, say the
former istrue. Since S, intersects S,

7Z > (k —1) - radius(Sy). (3)
Itfollowsthat ||z —z|| < Z4radius(S,) < kZ/(k—1).
Using thisand Lemma 1, we get

9(2) < 4

If © = uy, then radius(S;) > capt - g() by Claim 6,
otherwise radius(S;) = u - g(z). So (3) yields 7 >
eapt(k—1)-g(z). Substitutingthisinto (4), we get g(z) <

9(x) + ||z = 2|l < g(e) + k2/(k—1).
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Z(1 + copk)/(cap(k — 1)) whichislessthan Z/(cap).
Hence, 7 > c3p - g(z).

Consider (iii). Since S, and S, are orthogonal,
||z — y|| > max{radius(Sy),radius(Sy)} > ecsu -
max{g(z),g(y)} by (i) and (ii). Supposethat z = u
orv. Theny = u, or v, respectively. It follows from
definition that radius(S,) = ptan(ufy,) - g(z). Note
that tan(p6%,) > psin 0%, > p - min{y/3/2,sin ¢} =
creap. Soradius(Sy) > ereap? - g(x). Using thisand
thefact that radius(Sy) < c1p - g(y) by Claim 6, we get
g(y) > capt - g(x). Supposethat # € int(uv). Since S,
intersects Sy, ||z —y|| < radius(S;)+radius(.S,) which

isat most 31(g(x) + g(y)). Using thisand Lemma 1, we
getg(y) > g(x) —lle —yll > (1 =3pu) - g(z) = 3u-g(y),
0 g(y) > ((1 —3u)/(1 + 3u)) - g(x). Observe that
(1= 3u)/(143u) > pt > eap.

12.2 Proof of Lemma 3

We prove the lemma for the constants c5 = cseq/V/2,
c6 = c3ea/(3 + 3eq) and ez = cace.

Consider (i). Consider a hole on B N S,
bounded by S, n S, for some protecting
sphere S, consecutive to S,. By Lemma 2(ii),
min{radius(S;), radius(S;)} > esp-min{g(z), g(z)}.
By Lemma 2(iii), g(z) > cap - g(x) which implies
that min{radius(S; ), radius(S,)} > escap® - g(a).
Since S, intersects S, at right angle, the radius of the
hole is at least min{radius(Sx),radius(Sz)}/\/i >
(cacap®/V2) - g(x) = csp” - g(x).

Consider(ii). Let BN S, bearing adjacentto 5N S,..
We have ||z — z|]| < radius(Sy) + radius(S,) which
isat most 3u - g(x ) + 3u - g(z) by Lemma 2(ii). By
Lemma 2(iii), g(x) > capt - g(2). 1t followsthat

g9(z). 5

Let d be the distance between = and the bisector plane of
S, and S,. By orthogonality, d = radius(S;)?/||z — z||.
Since radius(Sy) > cap - g(x) by Lemma 2(ii), d >
(cap- g(x))?/l|e — =||. By (5), weget d > (Geap®/ (3 +
3pes)) - g(x) whichislarger than cp? - g(z).

(iii) follows from the facts that the distance between «
and F isat least g(«) and radius(Sy) < 3p - g(z).

Consider (iv). Let d be the minimum distance be-
tween 5N .S, and BN Sy. If # and y do not lie on the
same edge of P, thend > ||z — y|| — radius(S;) —
radius(Sy) > |lo — y|[ = 3u(g(x) + g(y)). Since
llz —yll > max{g(z), g(y)}, wegetd > (1—6u)-|[x—
yl| > (1 —6u) - g(x). Observethat 1 — 6u > p > crp>.
If « and y lie on the same edge of P, then B N S,
and B NS, are separated by a ring B N S, adjacent

[l = 2|l < (3 4 3pea)/ca) -



to BN S;. By (i), the width of BN S, is at least
cop? - g(z). By Lemma 2(iii), g(2) > cap - g(z). There-
fore, d > cacop® - g(x) = czp® - g(x).

12.3 Proof of Lemma5b

We give an overview of our proof strategy. Let p be a
pointonor outside 5. Let B betheball centered at p with
radius f(p). Let F and E’ be two digjoint elements of Q
intersected by B. We analyze the distance d between F
and E’. The difficult cases are when F and F’ lie on
the same protecting sphere or two consecutive protecting
spheres, or when F' lies on a protecting sphere and £’ is
an adjacent flat facet. We proceed in three steps. First,
we consider some geodesic v from £ to £/ on B and
show that length(y) = O(d). Second, we argue that
length(v) is at least the distance between two disjoint
boundary elements of some curved facet. Third, we show
that this distance is at least a constant factor of the local
gap size. Thesethree steps are described inthe Claims 8-
10. Afterwards, we give the proof of Lemma 5.

CLAIM 8 Let F' be a curved facet on B N .S, for some
protecting sphere S,.. The minimum distance between
two disjioint boundary elements of F' isatleast csu?- g()
for some constant cg < c7.

Proof. Weprovetheclaim for cs = min{cs sin ¢, cac7}.
Let d be the minimum distance between two disjoint
boundary elements of F'. Since F' has at least four
boundary edges, d is achieved by the minimum distance
between two disjoint boundary edges (including their
endpoints), say e and ¢'.

Case 1: ¢ and ¢’ lie on some facets £ and £’ of P
respectively. Notethat » € ENE'. If ENE = {x},
r is avertex of P. Since the angle between F and F’
is a least ¢, we get d > 2sin(¢/2) - radius(Sy)
2usin(¢/2) - g(x) > psing - g(x). f {z} C ENE,
E N E' isan edge of P. Note that this edge passes
through hole(s) on BN S,. So d > 2rsin(¢/2) where
7 is the minimum radius of the hole(s). By Lemma 3(i),
r>csp?-g(x),s0d > esp?sing - g(x).

Case 2: ¢ lieson afacet F of P and ¢’ lies on the
boundary of aholeon BN S,. This case can happen only
when z is a vertex of P. (Otherwise, 5N .S, isaring.
Since dl curved facets on aring are rectangular, case 2
isimpossible) We have ¢/ C S, N .S, for a protecting
sphere S, consecutiveto S,. If z € E, by Lemma 3(iii)
and Lemma 2(iii),wegetd > (1 —=3u) - g(z) > capp(1 —
3u)-g(x). If z € E, thenzz C §F whichimpliesthat F
intersects S, N.S,. Since S, N F isconnected, it contains
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only one edgein 9/ and that edge is e. Observe that the
adjacent edges of e in 0 F' lie at the intersections between
S, and protecting spheres consecutive to S,.. It follows
that one endpoint of e lieson S, NS,. Sincee and ¢’ are
digoint, they are separated by a curved edge on S, N .S,
whose endpointslie on two different facets of 7 incident
tox. By case 1, we get d > min{psin ¢, csu?sin ¢} -
g(z).

Case 3: e and ¢’ lie on boundaries of holeson BN S,;..
If ¢ and e’ lie on the same hole boundary .S, N .S, for a
protecting sphere S, consecutiveto S,, thene and e’ are
separated by acurved edge on S, N .S, whose endpoints
lie on two different facets of P incident to . By case 1,
wegetd > min{psin ¢, csp? sin ¢ }-g(x). If e and ¢’ lie
on the boundaries of two holes S, N S, and S, N S, for
two protecting spheres S, and .S, consecutive to .S, by
Lemma 3(iv) and Lemma 2(jii), we get d > c7p®-g(y) >
cacrpt - g(x).

Finally, observe that cgp* is at most the minimum of
psin g, esp? sin @, cap(1 — 3p) and caerp.

CLAIM 9 Let p and ¢ be two points on two orthogonal
spheres S and S’. Let 1) be the shortest geodesic between
pand qonBd(SUS’). Then||p—q|| > length(n)/(5).

Proof. Let xz and y be the centers of S and 5’ respec-
tively. Let H be the plane through ¢, # and y. Let C,
and Cy, bethecircles H N S and H N .S’ respectively.

Case 1. p € H. Consider the case where p and ¢ lie
on the same side of zy. Let r be the intersection point
of C, and Cy, on the same side of zy as p and ¢. The
length of 7 isat most the minimum tour length from p to
r on C and from r to ¢ on C', which isat most (|[p —
|| + |l¢g — r||)7/2. Since C; and Cy intersect at right
angle by orthogonality, Zprq in triangle pgr is at least
7/2. S0N2 lp—qll > |lp = rll + |lg — r|I. This
implies that ||p — ¢q|| > (v/2/7) - length(). Consider
the case where p and ¢ lie on opposite sides of zy. Let
r (resp. s) be the intersection point of ¢, and C, on
the same side of xy as p (resp. ¢). Let ¢ be the point
on C, hit by aray from ¢ perpendicular to zy. Since p
and ¢’ lie on the same side of zy, the previous argument
showsthat v/2 - [[p — ¢'|| > |lp — 7| + Il¢’ - r||. Since
llg’ =l = llg — sl and ||p — gl| > [lp — ¢'l], we get

V2-lp=all > llp =l +1lg = sll- (6)
Next, we compare ||p — ¢|| with ||» — s||. Without loss
of generality, assume that triangle pgr contains the mid-
point of rs. If Zprq in pqr is at least 7/2, pq is the



longest side of pgr and so ||p — q|| > ||r — s||/2. If Lprq
in pqr isless than 7/2, then Zpaq in triangle pgx is at
least r/2 and so ||p — q|| > ||p — «||- Since px isaradia
of C, we get [[r — s/|/2 < |lp — ]| < |lp — qll. Inall,

llp = qll > I[r — s|l/2. M

The length of # is at most the minimum tour length from
ptoronC,,fromrtoson.SNS” andfromstoqonCy.
Thus, length(n) < (|lp—r||+[[r —s|[+|lg — s|[) 7/2. By
(6) and (7), we get length(n) < (1+1/v/2)7 - |[p— ql].

Case2: p ¢ H. Let p’ bethepoint on C,, closest to p.
Let d bethedistancefrompto H. Notethat d < |[p—¢l|.
The length of # is at most the minimum tour length from
ptop’ on S and from p’ to ¢ on BA(S U S”). The tour
length from p to p’ isat most 7d/2 < (7/2) - ||p — 4||.
By case 1, the tour length from p’ to ¢ is at most
(1 4+ 1/v/2)7 - ||p’ — q||- Using triangle inequality, we
get||p' —gll < |lp—P'|I+llp—gll < V2d+|lp—ql| <
(V2+1) - |lp — ql|. Hence, length(y) < (m/2) -|Ip =
gl + (V24 1)*7/V2) - |Ip = all < 57 - lp = qll.

CLAIM 10 Let F beanelement of @ on BN.S, for some
protecting sphere S,.. Let F’ be an element of Q digjoint
from E such that either £/ C B or £’ isaflat facet. The
minimum distance between £ and £’ is at least cqpu® -
g(z) for some constant ¢y < cs.

Proof. We prove the lemmafor ¢y = cac2/(225v/271%).
Let d be the minimum distance between F and EF'.

Cesel: E' C B. Let E' C S, for some protecting
sphere Sy (y may be z). If S, # 5, and S, and S, are
not consecutive, then by Lemma 3(iv), d > ezp® - g(x)
whichis larger than cop® - g(x). Otherwise, S, = S, or
S, and Sy are orthogonal. Let 77 be the shortest geodesic
between E and £’ on Bd(S, U Sy). For each hole on
BN (S; US,y) crossed by #, we reroute around the hole
boundary using the shorter arc. This yields a curve ~
between E' and £ on BN (S, U Sy). If S; = S, clearly
d > (2/m) - length(n), otherwise d > length(n)/(5m)
by Claim 9. Observe that length(7y) < (7/2)-length(n).
So we get

d> (2/(57%) - length (). ®

Case 1.1: v intersects two digjoint boundary elements
of some curved facet £ on B N (S; U Sy). By Claim 8,
length(y) > esp min{g(x), g(y)}. Sinceg(y) > capr-
g(z) by Lemma 2(iii), length () > cacsp® - g(x). Sub-
stitutinginto (8), we get d > (2c4csp®/(57%)) - g(x) >
copt® - g(x).
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Caes 1.2: every pair of curved edges that ~ intersects
consecutively are adjacent. Let e and ¢ be any such ad-
jacent pair of curved edges. Let p = vNe andg = vNe'.
We extend ~ by taking a detour on e from p to the closest
endpoint of e and back to p. We dothe sameon ¢’. This
yieldsalonger curve v. (v isself-intersecting but thisis
not a problem.) « passes through more than one vertex
of @ on B since F and E’ are digoint. It follows that
1 passes through two vertices of some curved facet on
BN (SeUSy). Case 1.1 showsthat

length(¥) > (2eacs®/(57%) - g(a).  (9)

It remains to bound length (). Assume without |oss of
generality that e and ¢’ bound a curved facet on S,.. Let
C and C’ be the supporting circles of ¢ and ¢’ respec-
tively. Since e and ¢/ meet at right angle (Lemma 4),
C' N ¢ consists of two diametral points of C' or C7,
say C’. Let B be the ball centered at p with radius
(cs*/3)-g(x). 1T & B, then|[p—ql > (cs®/3)-g(x).
Thedetour one or ¢’ haslength at most 27 -radius(S;) <
6mu - g(x) whichisat most

(187/(csp®)) - llp — qll.

If ¢ € B, we show in the following that the detour on e
or ¢’ has length at most /27 - ||p — ¢|| which is smaller
than (10). Let u be the common endpoint of e and ¢’. Let
v and v’ be the other endpoints of ¢ and ¢’ respectively.
Let w be the point on C” diametrally oppositeto «. Note
that CNC’ = {u, w}. Let H betheplane containing C".
Since the center of BN H lieson theline containing uw,
BN H containsu or w. By Claim8, ||p—'|| and ||¢ — ||
are at least cgpu* - g(x) whichimpliesthat v, v’ € B. We
claim that « € B. Otherwise, w € B which implies
that thetwo arcs B N ¢ and B N ' cross a w. Since
e and ¢’ cannot meet at w, we havev € Borv € B,
contradiction. By our claimthat w € B, weget |[p—u|| <
(esp*/3)-g(x) and||g —ul| < (2esp*/3)-g(x). Observe
that||p — ul| < |[p—+'|| and | — ul| < [l¢ — v]|. Soboth
detourson e and e’ pass through . Sinceradius(S,) >
esft - g(x) by Lemma 2(ii), # isfurther from « than p and
q. Thus, Zpug > m/4 and somax{||p — u||, ||¢ — u]|} <
V2 - |lp — g||. 1t follows that the detour on e or ¢’ has
length at most /27 - ||p — q|.

By (10), we conclude that length(t) <
(367/(csp®)) - length(v). Substitutinginto (8) and (9),
weget d > (cqcdp®/(2257Y) - g(x) > cop® - g(x).

(10)

Case 2: F’ isaflat facet. If S, N E' = 0, z isdigoint
from the facet of P that contains E’, so Lemma 3(iii)
implies that d > (1 — 3u) - g(z) > cop® - g(x).



&.

Figure 5: The shaded region is E’. The two dashed line
segments delimit the two holeson 51 S, passed through
by the boundary edges of E’ incident to . The bold
arc isthe curved edge B N S, N E’. Note that » cannot
lie outside the right-angled triangle ag«. Otherwise, the
point p, which is above », would lie outside BN 5.

Otherwise, let p € F and r € E' be the points such that
lp — 7|| = d. If r lies on a curved boundary edge e of
E' thenEnNne=0fasENE = ). Sowecanlet F' — e
and apply case 1 to finish the analysis. If » lieson a
linear boundary edge ¢ of E’, then £’ liesinside B and
so F’ and e are incident to =. Then ||p — || is at least
the radius of the hole on B N S, that e passes through.
By Lemma 3(i), |[p — || > esp® - g(x) > cop® - g(2).
It remains to consider » € int(E’). Observe that r is
the orthogonal projection of p onto E’ which implies
that £’ lies inside B and E’ is incident to . Since
the subset of E’ inside S, is a cone with apex z (the
angle of the cone may be greater than x), the ray
from z through r reaches a point ¢ € S, N E’. If
qg € BN S, N E', wekeep it. Otherwise, ¢ lieson a
hole on B N .S, and we move ¢ aong S, N E’ until
q reaches BN S, N E’. Figure 5 shows the situation.
Observe that in either case Zpgr > =/4. It follows
that |[p—q| < V2 |lp—7r|. Snce ENE' =, E is
disoint from the curved edge B N S, N £’ that contains

g. By Cese 1, |lp — ql| > (cacgp®/(2257%)) - g(z).
Hence, |[p — rl| > (cacgu®/(225v27%)) - g(x) =
cop® - g(z).

Proof of Lemma5

We show that f(p) > c10p8-g(p) Whereeyp = co/(2(1+
3p) + cop®). The lemma thus follows by setting A =
¢9/9 which is smaller than ¢1,. Recall that p lies on or
outside 5. Let B be the ball centered at p with radius
f(p). If BN B =0, then B intersects two flat facets of
Q outside B. Since p lies on or outside 3, at most one
facet of P contains p. It followsthat radius(B) > ¢(p).
Consider the case where B N B # . Assume to the
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contrary that radius(B) < ciop® -
facts.

g(p). We need two

FACT 1 Let p and ¢ be two points. If p does not lie on
any edge of P, then g(p) < g(q) + Ilp — 4l|-

Proof. Let A be the ball centered at p with radius
g(q) + |lp — ¢||- So A intersects the two elements of P
that defines ¢(¢). Since p does not lie on any edge of
P (including edge endpoints), at most one facet of P
contains p. Thus, at most one of the elements of P that
intersect A contains p, so ¢(p) < radius(A4). O

FAacT 2 If B intersects a protecting sphere S;, then

radius(B) < (egu®/2) - g(x).

Proof. By Fact 1, g(p) < g(x) + ||p — z||. Since B
intersects S, we get g(p) < g(x) + radius(S;) +
radius(B) < (1 + 3p) - g(x) + c1op® - g(p). Thus,
g(p) < ((1+3p)/(1 — crou®)) - (x) which implies
that radius(B) < (e10(1 + 3u)p®/(1 — Cloﬂ ) - g(x).
Onecan verify that c1o(1+3u)/(1—ciop®) = co/2. O

Take two digoint elements £/ and £’ of Q intersected
by B. For any protecting sphere ;. intersected by B, by
Lemma 3(i), the distances between p and the linear edges
incident to = are at least csu” - g(x) > (cop®/2) - g(x).
So neither E nor £’ is alinear edge or an endpoint of a
linear edge.

If both £ and E’ areflat facets, since they are digoint,
they lie on different facets of . Since at most one facet
of P can contain p, we have g(p) < radius(B), contra-
dicting the assumption that radius(B) < ec1op® - g(p).
Without loss of generality, it remains to consuder E C
B N S, for some protecting sphere S,. By Claim 10,
the minimum distance between £ and F’ is at least
cop® - g(x) which is larger than 2 - radius(B) by Fact
2. Thus, B cannot intersect both £ and E’, contradic-
tion.



