Graded Conforming Delaunay Tetrahedralization with Bounded Radius-Edge Ratio*

Siu-Wing Cheng ${ }^{\dagger} \quad$ Sheung-Hung Poon ${ }^{\dagger}$

July 9, 2002

Abstract

We propose an algorithm to compute a conforming Delaunay mesh of a polyhedral domain in three dimensions. Arbitrarily small input angles are allowed. The output mesh is graded and has bounded radius-edge ratio everywhere.

1 Introduction

In finite element analysis, a domain needs to be partitioned into a cell complex for the purpose of numerical simulation and analysis [7]. A simplicial complex is a popular choice and it is also commonly known as a tetrahedral mesh. The mesh is required to be conforming: each input edge appears as the union of some edges in the mesh and each input facet appears as the union of some faces of tetrahedra in the mesh. An important challenge in mesh generation is to construct a mesh with good quality. Our contribution is a simple Delaunay refinement algorithm that produces tetrahedra with provably good edge lengths and radius-edge ratio. Our algorithm is distinguished from previous ones $[2,5,8,11,13,14]$ by its ability to handle input angles less than $\pi / 2$ and its theoretical guarantees.

Our input domain is a bounded volume in 3D whose boundary is specified by a piecewise-linear complex \mathcal{P}. The elements of \mathcal{P} are vertices, edges and facets that intersect properly. That is, the intersection of two elements is either empty or an element of \mathcal{P}. The boundary of each facet consists of one or more disjoint simple polygonal cycles. Two elements of \mathcal{P} are adjacent if their intersection is non-empty. Two elements of \mathcal{P} are incident if one is a boundary element of the other. We make the simplifying assumption that each edge of \mathcal{P} has two or more

[^0]incident facets, e.g., polyhedron possibly with voids and holes. This assumption is not critical and it can be removed, with more work, without affecting our results.

Delaunay tetrahedralization is a popular tetrahedral mesh in theory and practice [6, 7]. For results using quadtree and octtree based methods, please refer to the papers by Bern et al. [1] and Mitchell and Vavasis [10]. Ruppert [12] proposed the Delaunay refinement algorithm to mesh a 2D polygonal domain. The mesh is graded, i.e., the shortest edge incident to every vertex v has length at least a constant factor of the local feature size at v. Every triangle has bounded aspect ratio. The size of the mesh is asymptotically optimal. Shewchuk [13] extended Delaunay refinement to 3D for polyhedral domains. A graded conforming Delaunay mesh is obtained but there are two differences. First, when some input angle is less than $\pi / 2$, the algorithm may or may not terminate depending on the specific input instance. Second, for each tetrahedron τ, its radius-edge ratio (i.e., the ratio of the circumradius of τ to the shortest edge length of $\tau)$ is bounded by a constant. Radiusedge ratio is a fairly good indicator of the tetrahedral shape. If the radius-edge ratio is bounded, almost all tetrahedra have bounded aspect ratio except for a class known as slivers. Nevertheless, bounded radius-edge ratio works well in some applications [9].

Recently, methods have been discovered to eliminate slivers when every input angle is at least $\pi / 2$. Li and Teng [8] improved Delaunay refinement with a random point-placement strategy in line of Chew [4]. Cheng et al. [3] introduced sliver exudation to eliminate slivers from a Delaunay mesh of a periodic point set with bounded radius-edge ratio. Cheng and Dey [2] introduced weighted Delaunay refinement which extends sliver exudation to handle boundaries. Both algorithms by Li and Teng [8] and Cheng and Dey [2] produce a graded conforming Delaunay mesh with bounded aspect ratio and asymptotically optimal size.

Much less is known about handling polyhedral do-
mains with input angles less than $\pi / 2$. Murphy et al. [11] showed the existence of a conforming Delaunay mesh, but their method produces tetrahedra of poor shape and unnecessarily many vertices. Cohen-Steiner et al. [5] proposed an improved method and they experimentally studied the effectiveness of their algorithm. Shewchuk [14] attacked the problem differently and generated a constrained Delaunay tetrahedralization. In the above results, gradedness is not guaranteed and the radius-edge ratio is not guaranteed to be bounded everywhere. It is sometimes unavoidable that the edge length and the shape of tetrahedra deteriorate near a small input angle. Thus, it is conceivable that there are lower bound on edge length and upper bound on radius-edge ratio that use constant factors depending on the input angle. Nevertheless, no such result is known till now.

For the purposes of this paper, we measure three types of angles as follows. First, angles between adjacent edges. Second, take an edge $u v$ and a facet F such that $u \in \partial F$ and $u v$ and F are non-coplanar. Let L be the plane through $u v$ perpendicular to the supporting plane of F. The angle between $u v$ and F is $\min \{\angle p u v: p \in L \cap \operatorname{int}(F)\}$. Third, take two adjacent and non-coplanar facets F_{1} and F_{2}. Let H_{i} be the supporting plane of F_{i}. For each point $u \in H_{1} \cap H_{2}$, let L_{u} be the plane through u perpendicular to $H_{1} \cap H_{2}$. The angle between F_{1} and F_{2} is $\min _{u \in H_{1} \cap H_{2}}\{\angle p u q: p \in$ $\left.L_{u} \cap \operatorname{int}\left(F_{1}\right), q \in L_{u} \cap \operatorname{int}\left(F_{2}\right)\right\}$. Throughout this paper, ϕ denotes the smallest angle in the domain measured as described above. We assume that $\phi<\pi / 2$ as the other case has been solved [2,8].

We present an algorithm MESH that constructs a conforming unweighted Delaunay tetrahedralization given a polyhedral domain. The mesh is graded and has bounded radius-edge ratio everywhere (Theorem 1 in Section 10). Let $\mu \in(0,1 / 7]$ and $\rho_{0}>16$ be two a priori chosen constants. Our algorithm encloses the input edges within a buffer zone whose size is proportional to local feature size. For every tetrahedron τ, if τ does not lie inside the buffer zone, its radius-edge ratio $\rho(\tau) \leq \rho_{0}$; otherwise, $\rho(\tau) \leq \rho_{1}$ where ρ_{1} depends on μ and ϕ. The shortest edge incident to a vertex v has length at least a factor δ of the local feature size at v where δ depends on μ and ϕ.

The rest of the paper is organized as follows. Section 2 gives some basic definitions and an overview of our algorithm. Section 3 describes the augmentation of the input complex with the buffer zone before MESH processes it. Section 4 describes Mesh. Sections 5-7 prove that the output mesh is conforming. Sections $8-10$ prove the bounds on edge length and radius-edge ratio. In Section 11 , we discuss some future work.

Figure 1: The large and small circles have radii $f(x)$ and $g(x)$ respectively.

2 Preliminaries and overview

For a point x, the local feature size $f(x)$ is the radius of the smallest ball centered at x that intersects two disjoint elements of \mathcal{P}. Local feature sizes satisfy the Lipschitz property: $f(x) \leq f(y)+\|x-y\|$ for any two points x and y. It is inconvenient to use local feature sizes directly when handling domains with acute angles. For a point x, the local gap size $g(x)$ is the radius of the smallest ball centered at x that intersects two elements of \mathcal{P}, at least one of which does not contain x. Figure 1 illustrates local feature and gap sizes. Clearly, $g(x) \leq f(x)$ and for each vertex v of $\mathcal{P}, g(v)=f(v)$. Moreover, we can prove that $g(x)=\Omega(f(x))$ for the points that we are interested in (Lemmas 16 and 17 in Section 10). In general, local gap sizes do not satisfy the Lipschitz property. However, the Lipschitz property holds under certain conditions and this sufficient for our purposes.

Lemma 1 Let e be an edge of \mathcal{P}. If x and y are two points in e such that $x \in \operatorname{int}(e)$, then $g(x) \leq g(y)+$ $\|x-y\|$.

Proof. Let B be the ball centered at x with radius $g(y)+\|x-y\|$. So B intersects two elements of \mathcal{P}, one of which does not contain y. Denote this element by E. Since $y \in e$ and $x \in \operatorname{int}(e), E$ does not contain x. So $\operatorname{radius}(B) \geq g(x)$.

We need concepts including weighted distance and orthogonality that are instrumental to obtaining our results. Let S and S^{\prime} denote two spheres centered at p and q respectively. The weighted distance $\pi\left(S, S^{\prime}\right)$ is defined as $\|p-q\|^{2}-\operatorname{radius}(S)^{2}-\operatorname{radius}\left(S^{\prime}\right)^{2}$. The weighted distance $\pi(x, S)$ between a point x and S is defined the same way by treating x as a sphere of zero radius. S and S^{\prime} are orthogonal if $\pi\left(S, S^{\prime}\right)=0$. In this case, S and S^{\prime} intersect and for any point $x \in S \cap S^{\prime}$, the normal to S at x is tangent to S^{\prime}. That is, S and S^{\prime} intersect at right angle. If S and S^{\prime} are orthogonal, p lies outside S^{\prime} and
q lies outside S. The points at equal weighted distances from S and S^{\prime} lie on a plane. We call it the bisector plane of S and S^{\prime}. The bisector plane is perpendicular to the line through p and q. If S and S^{\prime} intersect, their bisector plane is the plane containing the circle $S \cap S^{\prime}$.

We enclose the edges of \mathcal{P} with a buffer zone. We compute spheres centered at points on edges of \mathcal{P}. The buffer zone boundary is the outer boundary of the union of these spheres. \mathcal{P} is then augmented with the buffer zone boundary to yield a new complex \mathcal{Q}. The idea is to apply Delaunay refinement to \mathcal{Q} to mesh the space outside the buffer zone such that the tetrahedralization of the space inside the buffer zone is automatically induced. The spheres are judiciously chosen so that consecutive ones are orthogonal. The intuition is that the space outside the buffer zone will have non-acute angle, thus allowing the use of Delaunay refinement. There are still two difficulties to overcome. First, we need to guarantee that unnecessarily short edges are not forced when constructing the buffer zone. Second, we need a method to triangulate the spherical buffer zone boundary.

3 Augmenting \mathcal{P}

We describe the buffer zone and its merging with \mathcal{P} to yield \mathcal{Q}. Several properties of the buffer zone and \mathcal{Q} are described in Lemmas $2-5$. It suffices to know the construction of the buffer zone and \mathcal{Q}, Lemma 2 and Lemma 4 to understand Mesh (Section 4), prove boundary conformity (Sections 5-7) and prove termination of MESH (Sections 8 and 9). Lemma 3 is used with Lemma 2 to prove Lemma 5 which is then used in Section 10 to analyze the edge lengths and radius-edge ratio.

3.1 Protecting spheres

Let μ be some fixed constant chosen from ($0, \frac{1}{7}$]. For each edge e of \mathcal{P}, we create some spheres with centers lying on e. We call these protecting spheres. First, for each vertex v of \mathcal{P}, we create a sphere S_{v} with center v and radius $\mu \cdot g(v)$. Second, for each edge $u v$ of \mathcal{P}, we create two protecting spheres $S_{u_{v}}$ and $S_{v_{u}}$ with centers u_{v} and v_{u} on $u v$ as follows. Let $\phi_{u v}^{u}$ be the smallest angle between $u v$ and an edge/facet of \mathcal{P} incident to $u . \phi_{u v}^{v}$ is symmetrically defined. Define $\theta_{u v}^{u}=\min \left\{\pi / 3, \phi_{u v}^{u}\right\}$ and $\theta_{u v}^{v}=\min \left\{\pi / 3, \phi_{u v}^{v}\right\}$. The positions of u_{v} and v_{u} and the radii of $S_{u_{v}}$ and $S_{v_{u}}$ are:

$$
\begin{aligned}
\left\|u-u_{v}\right\| & =\mu \sec \left(\mu \theta_{u v}^{u}\right) \cdot g(u) \\
\operatorname{radius}\left(S_{u_{v}}\right) & =\left\|u-u_{v}\right\| \cdot \sin \left(\mu \theta_{u v}^{u}\right)
\end{aligned}
$$

Figure 2: $\mu=1 / 7$ and the base angle is $\pi / 4$.

$$
\begin{aligned}
\left\|v-v_{u}\right\| & =\mu \sec \left(\mu \theta_{u v}^{v}\right) \cdot g(v) \\
\operatorname{radius}\left(S_{v_{u}}\right) & =\left\|v-v_{u}\right\| \cdot \sin \left(\mu \theta_{u v}^{v}\right)
\end{aligned}
$$

By construction, S_{u} and $S_{u_{v}}$ are orthogonal and so are S_{v} and $S_{v_{u}}$. Third, we call the following algorithm $\operatorname{Split}\left(u_{v}, v_{u}\right)$ which returns a sequence of protecting spheres that cover $u_{v} v_{u}$. We call two protecting spheres consecutive if their centers are neighbors on some edge of \mathcal{P}.

Algorithm $\operatorname{Split}(x, y)$
Input: The segment $x y$ and protecting spheres S_{x} and S_{y}.
Output: A sequence of protecting spheres, including S_{x} and S_{y}, that cover $x y$. Every protecting sphere has positive radius. Any two consecutive protecting spheres are orthogonal.

1. Compute the point z on $x y$ using the relation

$$
\|x-z\|=\frac{\|x-y\|^{2}+\operatorname{radius}\left(S_{x}\right)^{2}-\operatorname{radius}\left(S_{y}\right)^{2}}{2 \cdot\|x-y\|}
$$

2. Set $Z=\sqrt{\|x-z\|^{2}-\operatorname{radius}\left(S_{x}\right)^{2}}$
3. if $Z>3 \mu \cdot g(z)$
4. then create a protecting sphere S_{z} with center z and radius $\mu \cdot g(z)$
$\operatorname{Split}(x, z)$
$\operatorname{Split}(z, y)$
else create a protecting sphere S_{z} with center z and radius Z

Note that the sphere with center z and radius Z computed in lines 1 and 2 is orthogonal to both S_{x} and S_{y}. Figure 2 shows the protecting spheres created for the sides of an isosceles triangle. The following lemma states that each protecting sphere S_{x} obtained has radius $\Theta(\mu \cdot g(x))$, the distance between two neighboring centers is lower bounded by their local gap sizes and the
local gap sizes of two neighboring centers do not differ much. The proof of Lemma 2 can be found in Appendix 12.1.

LEMMA 2 Let $c_{1}=2 \pi /(3 \sqrt{3})>1$ and $c_{2}=$ $\min \{\sqrt{3} / 2, \sin \phi\}<1$. There exist constants $c_{3}<c_{2}$ and $c_{4}<1$ such that for each edge uv of \mathcal{P}, the following hold.
(i) $S_{u_{v}}$ and $S_{v_{u}}$ are orthogonal to S_{u} and S_{v} respectively. The two ratio $\frac{\operatorname{radius}\left(S_{u_{v}}\right)}{g\left(u_{v}\right)}$ and $\frac{\operatorname{radius}\left(S_{v_{u}}\right)}{g\left(v_{u}\right)}$ lie in $\left[c_{2} \mu, c_{1} \mu\right]$.
(ii) Split $\left(u_{v}, v_{u}\right)$ terminates and returns a sequence \mathcal{S} of protecting spheres covering $u_{v} v_{u}$. Any two consecutive protecting spheres in \mathcal{S} are orthogonal. For any $S_{z} \in \mathcal{S}-\left\{S_{u_{v}}, S_{v_{u}}\right\}$, the ratio $\frac{\operatorname{radius}\left(S_{z}\right)}{g(z)}$ lies in $\left[c_{3} \mu, 3 \mu\right]$.
(iii) Let x and y be two neighboring centers of protecting spheres on $u v$. Then $\|x-y\|>c_{3} \mu$. $\max \{g(x), g(y)\}$ and $g(y) \geq c_{4} \mu \cdot g(x)$.

3.2 Buffer zone

Given a set \mathcal{S} of spheres, we use $\operatorname{Bd}\left(\bigcup_{S \in \mathcal{S}} S\right)$ to denote the outer boundary of $\bigcup_{S \in \mathcal{S}} S$. Let $\mathcal{B}=\operatorname{Bd}\left(\bigcup S_{x}\right)$, where S_{x} runs over all protecting spheres created. The space inside \mathcal{B} is the buffer zone. For each edge $u v$ of \mathcal{P}, let $\mathcal{S}_{u v}$ be the sequence of protecting spheres whose centers lie on $u v . \mathcal{B} \cap \bigcup_{S_{x} \in \mathcal{S}_{u v}} S_{x}$ consists of a sequence of rings delimited by two spheres with holes. This decomposition is obtained by cutting $\mathcal{B} \cap \bigcup_{S_{x} \in \mathcal{S}_{u v}} S_{x}$ with the bisector planes of consecutive protecting spheres. The two delimiting spheres with holes are $\mathcal{B} \cap S_{u}$ and $\mathcal{B} \cap S_{v}$. For each $S_{z} \in \mathcal{S}_{u v}-\left\{S_{u}, S_{v}\right\}, S_{z}$ contributes exactly one ring $\mathcal{B} \cap S_{z}$. For each ring, we define its width as the distance between the parallel planes containing the two holes. Lemma 3 states that the width of each ring is lowered bounded by the local gap size and so is the radius of each hole on $\mathcal{B} \cap S_{x}$ for any protecting sphere S_{x}. Moreover, \mathcal{B} encloses the edges of \mathcal{P} without causing any unwanted self-intersection or intersection with \mathcal{P}. The proof of Lemma 3 can be found in Appendix 12.2.

Lemma 3 Let S_{x} be a protecting sphere. There exist constants $c_{7}<c_{6}<c_{5}<c_{4}$ such that:
(i) The radius of any hole on $\mathcal{B} \cap S_{x}$ is at least $c_{5} \mu^{2}$. $g(x)$.
(ii) If $\mathcal{B} \cap S_{x}$ is a ring, its width is at least $c_{6} \mu^{2} \cdot g(x)$.
(iii) If E is a vertex, edge or facet of \mathcal{P} disjoint from x, the minimum distance between S_{x} and E is at least $(1-3 \mu) \cdot g(x)$.
(iv) Let S_{y} be a protecting sphere that is not consecutive to S_{x}. The minimum distance between $\mathcal{B} \cap S_{x}$ and $\mathcal{B} \cap S_{y}$ is at least $c_{7} \mu^{3} \cdot g(x)$.

3.3 The new complex \mathcal{Q}

We merge \mathcal{B} with \mathcal{P} to produce a new complex \mathcal{Q}. \mathcal{B} splits each facet of \mathcal{P} into two smaller facets, one inside \mathcal{B} and one outside \mathcal{B}. These facets are the flat facets of \mathcal{Q}. For each edge $u v$ of \mathcal{P}, each ring $\mathcal{B} \cap S_{x}$ where $x \in u v$ is divided by the facets of \mathcal{P} incident to $u v$ into curved rectangular patches; and for each vertex v of $\mathcal{P}, \mathcal{B} \cap S_{v}$ is divided by the facets of \mathcal{P} incident to v into spherical patches. These patches are the curved facets of \mathcal{Q}. The centers of protecting spheres split the edges of \mathcal{P} into the linear edges of \mathcal{Q}. The circular arcs on the boundaries of curved facets are the curved edges of \mathcal{Q}. The vertices of \mathcal{Q} consists of the endpoints of linear and curved edges.

For any protecting sphere S_{x} and any curved facet E on $\mathcal{B} \cap S_{x}, \partial E$ consists of curved edges that lie at the intersections between S_{x} and either facets of \mathcal{P} or protecting spheres consecutive to S_{x}. Moreover, these two kinds of curved edges alternate in ∂E. How many edges can a facet F of \mathcal{P}, where $x \in \partial F$, contribute to ∂E ? If x is not a vertex of \mathcal{P}, the answer is clearly at most one as E is rectangular. Suppose that x is a vertex of \mathcal{P}. Observe that x appears on exactly one simple cycle in ∂F. Moreover, S_{x} is too small to intersect more than one cycle in ∂F or intersect the same cycle more than twice. Thus, $S_{x} \cap F$ is connected. It follows that F contributes at most one edge to ∂E. However, a hole on $\mathcal{B} \cap S_{x}$ may contribute several edges to ∂E when x is a vertex of \mathcal{P}.

By design, all angles in the space outside \mathcal{B} are equal to $\pi / 2$. The next lemma gives a precise statement.

LEmmA 4

(i) Let F be a curved facet. Let F^{\prime} be a curved/flat facet adjacent to F. If F and F^{\prime} do not lie on the same sphere, the normal to F^{\prime} at any point in $F \cap F^{\prime}$ is tangent to F.
(ii) Let e and e' be two adjacent curved edges that do not lie on the same circle. Let ℓ (resp. ℓ^{\prime}) be the line through $e \cap e^{\prime}$ that is tangent to and coplanar with e (resp. e^{\prime}). Then ℓ is perpendicular to ℓ^{\prime}.
(iii) Let F be a curved/flat facet. Let e be a curved edge adjacent to F. If e and F do not lie on the same
plane or sphere, then the normal to F at $\in \cap F$ is tangent to and coplanar with e.

Lemma 4 motivates the use of Delaunay refinement in the space outside \mathcal{B}. In essence, we compute a mesh that approximates \mathcal{Q} and respects the input boundary. Due to Delaunay refinement (modified to handle curved elements), the edge lengths in the final mesh will be proportional to the local feature sizes with respect to \mathcal{Q}. For each point p, let $\widehat{f}(p)$ denote the local feature size at p with respect to $\mathcal{Q} .{ }^{1}$ Lemma 5 states that if p lies on or outside $\mathcal{B}, \hat{f}(p)=\Omega(g(p))$. This will allow us to relate the edge lengths in the final mesh to the local feature sizes with respect to \mathcal{P} in Section 10. The proof of Lemma 5 can be found in Appendix 12.3.

Lemma 5 For any point p on or outside $\mathcal{B}, \hat{f}(p) \geq \lambda \mu^{8}$. $g(p)$ for some constant $\lambda<1$.

4 Algorithm Mesh

We introduce some notations. Given a circle C on a sphere S, the orthogonal sphere of S at C is the sphere orthogonal to S that passes through C. We use $\overparen{p q}$ to denote a circular arc with endpoints p and q.

MESH approximates \mathcal{Q} by a Delaunay subcomplex. We initialize a set \mathcal{V} as the set of vertices of \mathcal{Q}. The initial complex is the Delaunay tetrahedralization, $\operatorname{Del} \mathcal{V}$, of $\mathcal{V} . \mathcal{V}$ induces several types of geometric objects that guide MESH to refine the mesh by inserting vertices into \mathcal{V}. We first define these objects.

Each curved edge e of \mathcal{Q} is split by the vertices in \mathcal{V} into helper arcs. Let S be the equatorial sphere of e, i.e., e lies on an equator of S. Let $\overparen{p q}$ be a helper arc on e. The circumcap K of $\widehat{p q}$ is the smallest cap on S that contains $\overparen{p q}$. If the angular width of $\widehat{p q}$ is less than π, the normal sphere of $\overparen{p q}$ is the orthogonal sphere of S at ∂K and $\widehat{p q}$ is encroached by a point v if v lies inside its normal sphere. If the angular width of $\overparen{p q}$ is larger than $\pi / 3, \overparen{p q}$ is wide.

Helper triangles are defined when no helper arc is wide or encroached by a vertex in \mathcal{V}. Let $C H_{x}$ denote the convex hull of $\mathcal{V} \cap \mathcal{B} \cap S_{x}$ for a protecting sphere S_{x}. If a convex polygon P with more than three vertices appears as a boundary facet of CH_{x}, then we triangulate P as follows. Let L be the supporting plane of P. The circumcap of P is the cap on S_{x} that is bounded by $L \cap S_{x}$ and separated from $C H_{x}$ by L. First, for each helper arc $\overparen{p q}$ such

[^1]

Figure 3: The figure shows S_{x} and two protecting spheres consecutive to S_{x}. Some boundary triangles of $C H_{x}$ are shown. The non-shaded triangles are helper triangles. The shaded ones are not as the vertices of each shaded triangle lie on the boundary of the same hole on $\mathcal{B} \cap S_{x}$.
that $p, q \in \partial P$ and $\overparen{p q}$ lies on the circumcap of P, we insert $p q$ as a diagonal in P. Then we arbitrarily complete the triangulation of P. Afterwards, a boundary triangle t of CH_{x} is a helper triangle if no hole on $\mathcal{B} \cap S_{x}$ contains all vertices of t on its boundary. See Figure 3. Let H be the plane containing a helper triangle t. The circumcap of t is the cap K on S_{x} that is bounded by $H \cap S_{x}$ and separated from CH_{x} by H. If the angular diameter of K is less than π, the normal sphere of t is the orthogonal sphere of S_{x} at ∂K and t is encroached by a point v if v lies inside its normal sphere. If the angular diameter of K is larger than $\pi / 3, t$ is wide.

Subfacets are defined when no helper arc is wide or encroached by a vertex in \mathcal{V}. For every facet F of \mathcal{P}, a subfacet is a triangle on F in the 2D Delaunay triangulation of $\mathcal{V} \cap F$. Note that we define subfacet using facets of \mathcal{P} instead of flat facets of \mathcal{Q} because MESH only approximates \mathcal{Q} and it does not respect the curved boundary edges of flat facets. The circumcap of a subfacet τ is the disk bounded by the circumcircle of τ. The normal sphere of τ is the equatorial sphere of τ. If a point v lies inside the normal sphere of τ, τ is encroached by v.

We are ready to describe MESH. Starting with \mathcal{V} as the set of vertices of \mathcal{Q}, MESH repeatedly invoke the applicable rule of the least index in the following list. When no rule is applicable, the subcomplex of $\operatorname{Del} \mathcal{V}$ covering the input domain is the final mesh. Recall that $\rho_{0}>16$ is an a priori chosen constant.

Rule 1: Pick a helper arc that is wide or encroached by a vertex in \mathcal{V}. Preference is given to wide helper arcs. Insert the midpoint of the helper arc.

Rule 2: Pick a helper triangle t that is wide or encroached by a vertex in \mathcal{V}. Preference is given to
wide helper triangles. Let v be the center of the circumcap of t. If v does not encroach upon any helper arc, insert v. Otherwise, reject v and apply Rule 1 to split the helper arcs encroached by v.

Rule 3: Let v be the center of the circumcap of a subfacet that is encroached by a vertex in \mathcal{V}. If v does not encroach upon any helper arc, insert v. Otherwise, reject v and apply Rule 1 to split the helper arcs encroached by v.

Rule 4: Let v be the circumcenter of a tetrahedron τ such that $\rho(\tau)>\rho_{0}$ and no vertex of τ lies inside \mathcal{B}. If v does not encroach upon any helper arc, helper triangle or subfacet, insert v. Otherwise, reject v, apply Rule 1 to split the helper arcs encroached by v, and then apply Rules 2 and 3 to split the helper triangles and subfacets encroached by v.

This completes the description of MESH. The rest of the paper focuses on proving the guarantees offered by MESh. We will see that MESH never inserts a vertex inside \mathcal{B}, i.e., the vertices inside \mathcal{B} are always the endpoints of linear edges of \mathcal{Q}.

5 Properties of orthogonality

This section presents three geometric results regarding orthogonal spheres. We introduce some notations. Given a sphere S and a point p outside $S, K(p, S)$ denotes the cap on S visible from p. Given a cap K on a sphere S, if the angular diameter of K is less than π, we use K^{\perp} to denote the orthogonal sphere of S at ∂K. If S is a plane (infinite sphere), then K^{\perp} is the equatorial sphere of K. For any point $q \in \partial K(p, S), p q$ is tangent to S, so p is the center of $K(p, S)^{\perp}$.

Claim 1 Let S be a sphere. Let S^{\prime} be a sphere such that $S \cap S^{\prime}$ is an equator of S^{\prime}. For any point z on the plane containing $S \cap S^{\prime}$ and outside $S^{\prime}, K\left(z, S^{\prime}\right)^{\perp}$ is orthogonal to S.

Proof. Let x and y be the centers of S and S^{\prime} respectively. Recall that z is the center of $K\left(z, S^{\prime}\right)^{\perp}$. Let r be the radius of $K\left(z, S^{\prime}\right)^{\perp}$. Since $x y z$ is a right-angled triangle, we have $\|x-z\|^{2}=\|x-y\|^{2}+\|y-z\|^{2}$. By Pythagoras theorem again, we have $\|x-y\|^{2}=\operatorname{radius}(S)^{2}-\operatorname{radius}\left(S^{\prime}\right)^{2}$. Since S^{\prime} and $K\left(z, S^{\prime}\right)^{\perp}$ are orthogonal, we have $\|y-z\|^{2}=\operatorname{radius}\left(S^{\prime}\right)^{2}+r^{2}$. It follows that $\|x-z\|^{2}=\operatorname{radius}(S)^{2}+r^{2}$ and so $K\left(z, S^{\prime}\right)^{\perp}$ is
orthogonal to S.

Claim 2 Let p and q be two non-diametral points on a sphere S centered at x. Let \mathcal{N} be the set of spheres orthogonal to S that pass through p and q. There exists a unique circle C such that
(i) C is coplanar with $p q x, C$ passes through p and q, and \mathcal{N} is the set of spheres that pass through C.
(ii) The locus of the centers of spheres in \mathcal{N} is the line ℓ through the center of C perpendicular to the plane containing C.

Proof. Let H be the plane containing p, q and x. Take $N \in \mathcal{N}$. The two circles $H \cap S$ and $H \cap N$ are orthogonal in the sense that they intersect at right angle. It can be verified that there is a unique circle C on H that is orthogonal to $H \cap S$ and passes through p and q. Thus, $H \cap N=C$ and \mathcal{N} is the set of spheres that pass through C. This proves (i) and (ii) is an easy corollary of (i).

Claim 3 Let S be a sphere. Let K_{1} and K_{2} be caps on S with angular diameter less than π. If $K_{2} \subseteq K_{1}, K_{1}^{\perp}$ encloses K_{2}^{\perp}.

Proof. Fix the center of K_{2} and grow it to a cap K such that ∂K is tangent to ∂K_{1}. So $K \subseteq K_{1}$. Clearly, K^{\perp} encloses K_{2}^{\perp}. If we treat the contact point between ∂K and ∂K_{1} as a degenerate circle, K^{\perp} and K_{1}^{\perp} belong to the system of orthogonal spheres as described in Claim 2 in the limiting case. So K_{1}^{\perp} encloses K^{\perp} and hence K_{2}^{\perp}.

6 Locations of centers

We study the locations of the circumcap centers when Mesh inserts them. To this end, we need to associate helper arcs, helper triangles and subfacets with elements of Q. We first introduce some notations. Given a helper arc, helper triangle or subfacet σ, let K_{σ} denote the circumcap of σ. Hence, if the angular diameter of K_{σ} is less than π, K_{σ}^{\perp} is the normal sphere of σ. We extend the definition for any circular arc β. The circumcap K_{β} is the smallest cap on the equatorial sphere of β that contains $\beta . K_{\beta}^{\perp}$ is defined as before if the angular diameter of K_{β} is less than π.

A helper arc belongs to the curved edge that contains it. A subfacet τ belongs to the flat facet F if F lies outside \mathcal{B} and F contains the vertices of τ. Note that it is possible that $\tau \nsubseteq F$. This definition does not cover all subfacets but we are not concerned as we will see in Section 7 that MESH never deals with subfacets that are not covered. Clearly, a subfacet belongs to at most one flat facet. A helper triangle t belongs to a curved facet F if there exists a connected subset $\gamma \subseteq \operatorname{int}\left(K_{t}\right) \cap F$ such that $\operatorname{cl}(\gamma)$ contains the vertices of t. This definition is somewhat complicated due to the fact that t does not lie on \mathcal{B} and the vertices of t may lie on the boundaries of two curved facets. The following result shows that t belongs to exactly one curved facet under the right conditions.

Lemma 6 Assume that Mesh has not inserted any vertex inside \mathcal{B}. If there is no wide or encroached helper arc, each helper triangle belongs to exactly one curved facet.

Proof. Let t be a helper triangle on CH_{x}. Assume to the contrary that t does not belong to any curved facet. Then some helper arc α must cross K_{t} and cut ∂K_{t} into two arcs A_{1} and A_{2} such that each $\operatorname{int}\left(A_{i}\right)$ contains a vertex of t. Note that α does not lie on $S_{x} \cap S_{y}$ for any protecting sphere S_{y} consecutive to S_{x}. Otherwise, A_{1} or A_{2} lies inside S_{y} which implies that a vertex of t lies inside \mathcal{B}, contradicting our assumption. It follows that α lies at the intersection of S_{x} and a facet of \mathcal{P}, i.e., S_{x} is the equatorial sphere of α.

If A_{i} is less than a semicircle for some i, then K_{α} contains A_{i}. But then α is encroached by the vertex of t in $\operatorname{int}\left(A_{i}\right)$, contradicting our assumption that no helper arc is encroached. Suppose that A_{1} and A_{2} are semicircles. Then α passes through the center of K_{t}. If any endpoint of α lies outside K_{t}, then K_{α} contains K_{t} and so some vertex of t encroaches upon α, contradiction. Otherwise, both endpoints of α lie on ∂K_{t}. Thus, the vertices of t and the endpoints of α are vertices of a boundary facet of CH_{x}. Recall that when triangulating the boundary of $C H_{x}$, we first connect the endpoints of α with a diagonal. But then this diagonal cuts t and so t would not exist, contradiction. This completes the proof that t belongs to at least one curved facet.

Lastly, t cannot belong to two curved facets, otherwise the definition would imply that the interior of two curved facets intersect.

Clearly, for a helper arc α, the center of K_{α} lies on the curved edge that α belongs to. In fact, the center is the midpoint of α. The next two lemmas show that for a
subfacet (resp. helper triangle) σ, the center of K_{σ} lies on the flat facet (resp. curved facet) that σ belongs to. With slightly more work in Section 7, these two lemmas will allow us to show that Rules 2 and 3 never insert a vertex inside \mathcal{B}.

Lemma 7 Assume that Mesh has not inserted any vertex inside \mathcal{B} and there is no wide or encroached helper arc. Let τ be a subfacet belonging to a flat facet F. The center of K_{τ} lies on F.

Proof. Let v be the center of K_{τ}. Let H be the plane containing F. If $v \notin F, K_{\tau}$ intersects ∂F at an $\operatorname{arc} \beta$ such that β cuts K_{τ} into two parts, one contains v and the other contains $K_{\tau} \cap F$. This implies that $K_{\tau} \cap F$ lies inside K_{β}^{\perp}. Since the vertices of τ lie on $K_{\tau} \cap F$, some vertex of τ lies inside K_{β}^{\perp}. The emptiness of K_{τ} implies that β lies within a helper arc α. By Claim 3, K_{α}^{\perp} encloses K_{β}^{\perp}, so α is encroached by some vertex of τ, contradiction.

Lemma 8 Assume that Mesh has not inserted any vertex inside \mathcal{B} and there is no wide or encroached helper arc. Lett be a helper triangle belonging to a curved facet F. The center of K_{t} lies on F.

Proof. Suppose that $F \subseteq S_{x}$ for a protecting sphere S_{x}. Let v be the center of $\overline{K_{t}}$. Assume to the contrary that v lies outside F.

Case 1: v lies outside $\mathcal{B} \cap S_{x}$. So v lies inside some protecting sphere S_{y} consecutive to S_{x}. Note that $v \in K\left(y, S_{x}\right)$. Let p be a vertex of t that does not lie on $S_{x} \cap S_{y}$ (such a vertex exists by the definition of helper triangle). Since p lies outside S_{y}, K_{t} intersects $S_{x} \cap S_{y}$ at an arc β. The emptiness of K_{t} implies that β lies within a helper arc α. Since α is not wide by assumption, the angular width of β is less than π, so $K_{\beta} \frac{1}{}$ is defined. Since $\beta=K_{t} \cap S_{x} \cap S_{y}$ and $v \in K\left(y, S_{x}\right)$, the angular diameter of K_{t} is also less than π, otherwise the angular width of β would be at least π. So the normal sphere of t is K_{t}^{\perp}. Let H be the plane through x and the endpoints of β. By Claim 1, K_{β}^{\perp} is orthogonal to S_{x}. Since S_{y} and K_{t}^{\perp} are also orthogonal to S_{x}, Claim 2 implies that S_{y}, K_{t}^{\perp} and K_{β}^{\perp} intersect at the circle $H \cap K_{\beta}^{\perp}$. It follows that the caps K_{β}, K_{t} and $K\left(y, S_{x}\right)$ contain β and their boundaries pass through the endpoints of β. See Figure 4. Using this and the fact that $v \in K\left(y, S_{x}\right)$, we get $K_{t} \subseteq K_{\beta} \cup K\left(y, S_{x}\right)$. This implies that the vertex p of t lies inside K_{β} as p lies outside S_{y}. By Claim 3, p lies inside K_{α}^{\perp}, contradicting the assumption that α is not encroached.

Figure 4: The three solid line segments delimit the caps K_{β}, K_{t} and $K\left(y, S_{x}\right)$ on S_{x}.

Case 2: v lies on a curved facet other than F on $\mathcal{B} \cap S_{x}$. We will reduce to case 1 by properly choosing a vertex p of t and a sphere to play the role of S_{y} in case 1 . Let η be the shortest geodesic on S_{x} from v to a vertex q of t. Clearly, $\eta \subseteq K_{t}$. We claim that η does not cross $S_{x} \cap S_{w}$ for any protecting sphere S_{w} consecutive to S_{x}. Observe that $K\left(w, S_{x}\right)$ does not lie inside K_{t}, otherwise the emptiness of K_{t} would imply that $K_{t} \cap K\left(w, S_{x}\right)$ contains some wide helper arc. Thus, $K_{t}-\operatorname{int}\left(K\left(w, S_{x}\right)\right)$ is star-shaped with respect to v and shortest geodesics on S_{x} originating from v. So our claim follows. Since $v \notin F$, our claim implies that η enters F from another curved facet at a curved edge e where e is also incident on a flat facet F^{\prime} adjacent to F. Let L be the plane containing F^{\prime}. Note that L passes through x. Consider the infinite sphere bounded by L with the halfspace containing v as its inside. We denote this infinite sphere by $L^{+} . L^{+}$will play the role of S_{y} in case 1 . We claim that t has a vertex outside L^{+}. Recall that the destination of η is a vertex q of t and η intersects L. If $q \notin L$, then $q \notin L^{+}$, otherwise η would be more than a semicircle and so $K_{t} \cap L$ is a complete circle. Since K_{t} is empty and $e \subseteq K_{t} \cap L$, this implies that e is a complete circle, contradiction. If $q \in L$, then $q \in e$. If t does not have any vertex outside L^{+}, then $K_{t} \subseteq L^{+}$. Using this and the fact that t belongs to F, we conclude that for any neighborhood $N(q)$ around $q, N(q) \cap F$ has points inside L^{+}. However, since η enters F at q, for a sufficiently small neighborhood $N(q)$ around q, $N(q) \cap F$ does not lie inside L^{+}, contradiction. This proves our claim that t has a vertex p outside L^{+}. To summarize, we have the same setting as in case 1 with S_{y} substituted by $L^{+}: L^{+}$is orthogonal to $S_{x}, v \in L^{+}$, $p \notin L^{+}$, and $K_{t} \cap S_{x} \cap L$ is an arc within a helper arc α. Thus, the argument in case 1 shows that p encroaches upon α, contradiction.

7 Boundary conformity

We are ready to prove that $\operatorname{Del} \mathcal{V}$ is conforming whenever no helper arc is wide or encroached and no subfacet is encroached. Thus, the output mesh is conforming when Mesh terminates (termination will be proved in Sections 8 and 9). We start with a result characterizing the subcomplex of $\operatorname{Del} \mathcal{V}$ inside \mathcal{B}.

Lemma 9 Assume that Mesh has not inserted any vertex inside \mathcal{B}. Let S_{x} and S_{y} be two consecutive protecting spheres. When there is no wide or encroached helper arc, (i)-(iii) hold. When there is no wide or encroached helper arc/triangle, (i)-(iv) hold.
(i) For any flat facet F incident to x and any helper arc $\widehat{p q} \subseteq \mathcal{B} \cap S_{x} \cap F$, the equatorial sphere of $p q x$ is empty.
(ii) For any helper arc endpoint $p \in S_{x} \cap S_{y}$, the equatorial sphere of $p x y$ is empty.
(iii) For any helper arc $\overparen{p q} \subseteq S_{x} \cap S_{y}$, the circumsphere of $p q x y$ is empty.
(iv) For any helper triangle pqr on CH_{x}, the circumsphere of pqrx is empty.

Proof. Consider (i). Let $\alpha=\widehat{p q}$. Let S be the equatorial sphere of $p q x$. Observe that the centers of S_{x}, S and K_{α}^{\perp} lie on a straight line. Since x lies on S but outside K_{α}^{\perp}, the center of S lies between x and the center of K_{α}^{\perp}. Thus, $\operatorname{Bd}\left(S_{x} \cup K_{\alpha}^{\perp}\right)$ encloses S. Since x is the only vertex inside $\operatorname{Bd}\left(S_{x} \cup K_{\alpha}^{\perp}\right), S$ is empty. Consider (ii). Let S be the equatorial sphere of $p x y$. Since S_{x} and S_{y} intersect at right angle, $\langle x p y$ in triangle $p x y$ is equal to $\pi / 2$. Thus, $x y$ is the diameter of S which implies that $\operatorname{Bd}\left(S_{x} \cup S_{y}\right)$ encloses S. Since x and y are the only vertices inside $\operatorname{Bd}\left(S_{x} \cup S_{y}\right)$, S is empty. Consider (iii). The circumsphere of $p q x y$ is the equatorial sphere of $p x y$ which is empty by (ii). We can prove (iv) by considering the circumcap and normal sphere of $p q r$ and employing the same arguments in proving (i).

Next, we bootstrap from Lemma 9 to show that MESH never inserts any vertex inside \mathcal{B}.

Lemma 10 Mesh never inserts any vertex inside \mathcal{B}.

Proof. Assume to the contrary that MESH wants to insert a vertex v inside \mathcal{B} for the first time. MESH is not applying Rule 1 since Rule 1 never inserts a vertex inside \mathcal{B}. It follows that there is no wide or encroached helper arc.

By Lemmas 6 and $8, v$ is not inserted by Rule 2. If v is inserted by Rule 3 to split an encroached subfacet τ, then τ does not lie inside \mathcal{B} by Lemma 9. In fact, Lemma 9 further implies that τ belongs to a flat facet outside \mathcal{B}. But then v does not lie inside \mathcal{B} by Lemma 7, contradiction. The remaining possibility is that Rule 4 wants to insert v inside some protecting sphere S_{x}. It follows that there is no wide or encroached helper arc/triangle. Let v be the circumcenter of the tetrahedron τ. By Rule $4, \tau$ has no vertex inside \mathcal{B}. At least one vertex of τ is outside S_{x} as S_{x} cannot be the empty circumsphere of $\tau(x$ lies inside S_{x}). Let S be the circumsphere of τ. Let K be the cap on S_{x} that is bounded by $S_{x} \cap S$ and lies inside S. Since x does not lie inside S, the angular diameter of K is less than π, so K^{\perp} is defined. If $K \cap K_{t}=\emptyset$ for all helper triangle t on $C H_{x}$, then $K \subseteq K\left(y, S_{x}\right)$ for some protecting sphere S_{y} consecutive to S_{x}. It follows that $\operatorname{Bd}\left(S_{x} \cup S_{y}\right)$ encloses S and hence τ, contradicting the fact that MESH has not inserted any vertex inside \mathcal{B}. Next, take a helper triangle t_{0} on $C H_{x}$ such that $K \cap K_{t_{0}} \neq \emptyset$. Starting from t_{0}, we visit a sequence of helper triangles $t_{0}, t_{1}, t_{2}, \cdots$ to derive a contradiction as follows.

Case 1: $K \subseteq K_{t_{i}}$. Clearly S lies inside $\operatorname{Bd}\left(S_{x} \cup K^{\perp}\right)$. So any vertex of τ outside S_{x} lies inside K^{\perp}. Since $K_{t_{i}}^{\perp}$ encloses K^{\perp} by Claim 3, some vertex of τ encroaches upon t_{i}, contradiction.

Case 2: $K \nsubseteq K_{t_{i}}$. The vertices of t_{i} divide $\partial K_{t_{i}}$ into three arcs and by emptiness of $K, \partial K \cap \partial K_{t_{i}}$ lie on one arc, say the one between vertices u and v of t_{i}.

Case 2.1: There is a helper triangle t_{i+1} on $C H_{x}$ that shares $u v$ with t_{i}. If $K \subseteq K_{t_{i}} \cup K_{t_{i+1}}$, (refer to Claim 2) we move a point z from the center of $K_{t_{i}}^{\perp}$ towards the center of $K_{t_{i+1}}^{\perp}$ and stop as soon as $\partial K\left(z, S_{x}\right)$ is tangent to ∂K. Tangency implies that $K \subseteq K\left(z, S_{x}\right)$, so $\operatorname{Bd}\left(S_{x} \cup K\left(z, S_{x}\right)^{\perp}\right)$ encloses S. Since z lies between the centers of $K_{t_{i}}^{\perp}$ and $K_{t_{i+1}}^{\perp}$, Claim 2 implies that $\operatorname{Bd}\left(K_{t_{i}}^{\perp} \cup K_{t_{i+1}}^{\perp}\right)$ encloses $K\left(z, S_{x}\right)^{\perp} . \operatorname{So} \operatorname{Bd}\left(S_{x} \cup K_{t_{i}}^{\perp} \cup\right.$ $\left.K_{t_{i+1}}^{\perp}\right)$ encloses $S_{x} \cup K\left(z, S_{x}\right)^{\perp}$ and hence S. Hence, some vertex of τ encroaches upon t_{i} or t_{i+1}, contradiction. If $K \nsubseteq K_{t_{i}} \cup K_{t_{i+1}}$, we continue to visit t_{i+1}. We will never return to t_{i} as $K \cap K_{t_{i}} \subset K \cap K_{t_{i+1}}$.

Case 2.2: If t_{i} is the only helper triangle on CH_{x} incident to $u v, u$ and v are the endpoints of a helper $\operatorname{arc} \alpha \subseteq S_{x} \cap S_{y}$ for some protecting sphere S_{y} consecutive to S_{x}. Let z be the center of K_{α}^{\perp}. By Claim 1, K_{α}^{\perp} is orthogonal to S_{x}, so $K_{\alpha}^{\perp}=K\left(z, S_{x}\right)^{\perp}$. If $K \subseteq K_{t_{i}} \cup K\left(z, S_{x}\right)$, we conclude as in case 2.1 that ${ }^{-} \operatorname{Bd}\left(S_{x} \cup K_{t_{i}}^{\perp} \cup K_{\alpha}^{\perp}\right)$ encloses S. So some vertex of τ encroaches upon t_{i} or α, contradiction. If
$K \nsubseteq K_{t_{i}} \cup K\left(z, S_{x}\right)$, then $K \subseteq K\left(z, S_{x}\right) \cup K\left(y, S_{x}\right)$ which implies that $\operatorname{Bd}\left(S_{x} \cup K_{\alpha}^{\perp} \cup S_{y}\right)$ encloses S. Since no vertex of τ lies inside S_{x} or S_{y}, some vertex of τ encroaches upon α, contradiction.

Finally, we put together Lemmas 6-10 and summarize the main results of this section.

Corollary 1 Mesh never inserts a vertex inside \mathcal{B}.

(i) Whenever no helper arc is wide or encroached, the following hold.
(a) Subfacets inside \mathcal{B} are not encroached.
(b) Each subfacet that does not lie inside \mathcal{B} belongs to exactly one flat facet. Each helper triangle belongs to exactly one curved facet.
(c) The center of the circumcap of a subfacet (resp. helper triangle) σ lies on the flat facet (resp. curved facet) that σ belongs to.
(ii) Whenever no helper arc/triangle is wide or encroached, the following hold.
(a) For any two consecutive protecting spheres S_{x} and S_{y} and any helper arc $\widehat{p q} \subseteq S_{x} \cap S_{y}$, $p q x y \in \operatorname{Del} \mathcal{V}$.
(b) For any protecting sphere S_{x} and any helper triangle pqr on $\mathrm{CH}_{x}, p q r x \in \operatorname{Del} \mathcal{V}$.
(iii) Whenever no helper arc is wide or encroached and no subfacet is encroached, $\operatorname{Del} \mathcal{V}$ is conforming.

8 Between adjacent elements

The termination of MESH hinges on the fact that we will not keep generating encroached helper arc, helper triangle or subfacet. In particular, if a new vertex inserted on one element encroaches upon something on an adjacent and non-incident element and if this happens indefinitely, then algorithm will not terminate. In this section, we show that this cannot happen. Lemmas 11, 12 and 13 analyze the cases for helper arc, helper triangle and subfacet respectively. Lemmas 11 and 12 are stated more generally for their usage in Section 9.

LEMMA 11 Let β be an arc on a curved edge e such that the angular width of β is less than π. If E is an element of \mathcal{Q} such that E is adjacent to e and $e \not \subset \partial E$, then E does not intersect the inside of K_{β}^{\perp}.

Proof. Case 1: e lies at the intersection between a protecting sphere S_{x} and a facet of \mathcal{P}. Then E is a curved edge or curved facet lying on a protecting sphere S_{y} consecutive to S_{x}. Since e lies outside S_{y} and e meets $S_{x} \cap S_{y}$ at right angle, the cone of rays from x through $S_{x} \cap S_{y}$ and the cone of rays from x through ∂K_{β} do not cross. Observe that S_{y} and K_{β}^{\perp} lie inside their corresponding cones. Thus, S_{y} does not intersect the inside of K_{β}^{\perp} and neither does E.

Case 2: $e \subseteq S_{x} \cap S_{y}$ for two consecutive protecting spheres S_{x} and S_{y}. The endpoints of e lie on two facets F_{1} and F_{2} of \mathcal{P}. Note that $x, y \in F_{1} \cap F_{2}$. Let H_{i} be the halfplane that is bounded by the supporting line of $x y$ and contains the endpoint of e on F_{i}. For $i=1$ or 2, since e meets H_{i} at right angle, either H_{i} avoids K_{β}^{\perp} or H_{i} is tangent to K_{β}^{\perp}. Observe that either $E \subseteq H_{i}$ for some i or E is separated from e by H_{1} and \bar{H}_{2}. It follows that E does not intersect the inside of K_{β}^{\perp}.

Lemma 12 Suppose that there is no wide or encroached helper arc. Let t be a helper triangle belonging to a curved facet F. Let $K \subseteq K_{t}$ be a cap with the same center as K_{t} and angular diameter less than π. Let E be an element of \mathcal{Q} adjacent to F. For any vertex $v \in \mathcal{V} \cap E$, v does not lie inside K^{\perp}.

Proof. Let $F \subseteq S_{x}$ for some protecting sphere S_{x}. Assume to the contrary that v lies inside K^{\perp}. Observe that $E \nsubseteq S_{x}$, otherwise the emptiness of K would be contradicted.

Case 1: E is a curved edge or curved facet lying on a protecting sphere S_{y} consecutive to S_{x}. In order that K^{\perp} intersects E, K must cross $S_{x} \cap S_{y}$. Otherwise, the cone from x through ∂K and the cone from x through $S_{x} \cap S_{y}$ do not cross, implying that S_{y} does not intersect the inside of K^{\perp}, contradiction. By emptiness of K, $K \cap S_{x} \cap S_{y}$ is an $\operatorname{arc} \beta$ within a helper arc α. Let z_{β} and z be the centers of K_{β}^{\perp} and K^{\perp} respectively. By Claim 1, K_{β}^{\perp} is orthogonal to S_{x}. Since S_{y} and K^{\perp} are also orthogonal to S_{x}, Claim 2 implies that S_{y}, K^{\perp} and K_{β}^{\perp} intersect at the same circle and y, z_{β} and z are collinear. If y lies between z_{β} and z, the subset of S_{y} inside K_{β}^{\perp} lies outside K^{\perp}. Since β lies on the subset of S_{y} inside K_{β}^{\perp}, β is outside K^{\perp}, contradicting the fact that $\beta \subseteq K$. If y does not lie between z_{β} and z, the subset of S_{y} inside K^{\perp} is equal to the subset of S_{y} inside K_{β}^{\perp}. Since v lies on the subset of S_{y} inside K^{\perp}, v lies inside K_{β}^{\perp} and hence K_{α}^{\perp} by Claim 3. This contradicts the assumption that α is not encroached.

Case 2: E is a flat facet or a curved boundary edge of a flat facet. Let H be the plane containing the corresponding flat facet. Note that H passes through x. Since v lies inside K^{\perp}, K^{\perp} intersects $S_{x} \cap H$ at an arc β within a helper arc α. Since K_{β}^{\perp} and K^{\perp} are orthogonal to $S_{x}, H \cap K_{\beta}^{\perp}=H \cap K^{\perp}$ by Claim 2. Since v lies inside $H \cap K^{\perp}$, v lies inside K_{β}^{\perp}. But then v also lies inside K_{α}^{\perp} by Claim 3, contradiction.

LEMMA 13 Suppose that there is no wide or encroached helper arc. Let τ be a subfacet belonging to a flat facet F. Let E be an element of \mathcal{Q} adjacent to F. For any vertex $v \in \mathcal{V} \cap E$, v does not lie inside K_{τ}^{\perp}.

Proof. The proof is similar to that of Lemma 12 by treating the supporting plane of F as an infinite sphere.

9 Insertion radius

For each vertex v, we define the insertion radius of v as follows. If v is a vertex of \mathcal{Q}, r_{v} is the minimum distance from v to another vertex of \mathcal{Q}. If v is inserted/rejected by MESH, r_{v} is the minimum distance to a vertex in \mathcal{V} at the time when v is inserted/rejected. In this section, we prove a lower bound on the insertion radii of vertices. Thus, MESH must terminate by a packing argument.

We first introduce some notations. Consider the time when MESH inserts/rejects a vertex v using Rule $i, 1 \leq$ $i \leq 4$. We say that v has type i and we define the parent of v as follows. If v is the center of K_{σ} for a wide helper $\operatorname{arc} /$ triangle σ, the parent of v is undefined. Suppose that v is the center of K_{σ} where σ is a non-wide encroached helper arc/triangle or an encroached subfacet. If \mathcal{V} has a vertex encroaching upon σ (i.e., lying inside K_{σ}^{\perp}), the the parent of v is the nearest encroaching vertex in \mathcal{V}. Otherwise, K_{σ}^{\perp} is empty. What happens is that MESH rejected a vertex p because p encroached upon σ and this also prompted MESH to consider v. The parent of v is p in this case. If v is the circumcenter of a tetrahedron τ, the parent of v is the endpoint of the shortest edge of τ that appeared in \mathcal{V} the latest. Finally, the parents of vertices of \mathcal{Q} are undefined.

We will use induction. To this end, Lemma 14 relates the insertion radius of v to the insertion radius of its parent p and to $\|p-v\|$. The proof of Lemma 14 needs the following claim.

CLAIM 4 Let K be a cap with angular diameter at most $\pi / 3$. Let v be the center of K. For any point p inside K^{\perp} and any point q on or outside $K^{\perp},\|q-v\|>(1 / 4)$. $\max \{\|p-v\|,\|p-q\|\}$.

Proof. Let z be the center of K^{\perp}. Since the angular diameter of K is at most $\pi / 3,\|v-z\|<\operatorname{radius}\left(K^{\perp}\right)$. $\cos (\pi / 3)$ which is at most $\|q-z\| / 2$. By triangle inequality, $\|q-v\| \geq\|q-z\|-\|v-z\|$. It follows that

$$
\|q-v\|>\|q-z\| / 2
$$

Since p and v lie inside $K^{\perp},\|q-z\| \geq\|p-v\| / 2$. Thus, $\|q-v\|>\|p-v\| / 4$. By triangle inequality, $\|p-q\| \leq\|p-z\|+\|q-z\|$ which is at most $2 \cdot\|q-z\|$. Thus, $\|q-v\|>\|p-q\| / 4$.

LEMMA 14 Let v be a vertex of \mathcal{Q} or a vertex inserted/rejected by MESH. Let p be the parent of v.
(i) If p is undefined, $r_{v} \geq \hat{f}(v) / 2$.
(ii) Otherwise, $r_{v}>\|p-v\| / 4$ and if $r_{v} \leq \hat{f}(v) / 4$, the following hold depending on the type of v :

Type 1: p has type 2, 3 or 4 and $r_{v}>r_{p} / 4$.
Type 2 or 3: p has type 4 and $r_{v}>r_{p} / 4$.
Type 4: $r_{v}>\rho_{0} \cdot r_{p}$.
Proof. Go back to the time when v appeared. If v is a vertex of \mathcal{Q}, then $r_{v} \geq \hat{f}(v)$ by definition. We analyze the other cases below.

Case 1: v is the center of K_{σ} for a wide helper $\operatorname{arc} /$ triangle σ. The parent p is undefined in this case. If σ is a helper arc, let S be the equatorial sphere of σ. Note that S is either a protecting sphere or the equatorial sphere of the common hole between two consecutive protecting spheres. If σ is a helper triangle, let S be the protecting sphere that contains the vertices of σ. Let E be the element of Q that σ belongs to (i.e., E is a curved edge or curved facet depending on whether σ is a helper arc or helper triangle). Note that E lies on S. By Corollary $1, v \in E$. Let $K \subseteq K_{\sigma}$ be the cap with center v and angular diameter $\pi / 3$. Let B be the smallest ball centered at v that contains K. Let z be the center of S. Suppose that $\operatorname{int}(B)$ does not contain any vertex in \mathcal{V}. Then $r_{v} \geq \operatorname{radius}(B)=\|v-z\| \cdot 2 \sin (\pi / 12) \geq$ $\|v-z\| / 2$. Observe that z lies on some linear edge of \mathcal{Q} that stabs S. Since all linear edges are disjoint from \mathcal{B}, we have $\|v-z\| \geq \hat{f}(v)$ by definition. It follows
that $r_{v} \geq \hat{f}(v) / 2$. Suppose that $\operatorname{int}(B)$ contains a vertex $w \in \mathcal{V}$. Observe that $\operatorname{Bd}\left(S \cup K^{\perp}\right)$ encloses B which implies that w lies inside K^{\perp}. If w is a vertex of \mathcal{Q}, then $w \notin E$ as vertices on E do not lie inside K^{\perp}, so $\|v-w\| \geq \hat{f}(v)$ by definition. Otherwise, w was inserted by Mesh. We claim that w lies on an element E^{\prime} of \mathcal{Q} disjoint from E. If σ is a wide helper arc, then MESH has split helper arcs only so far, so w lies on some curved edge E^{\prime}. By Lemma 11, for K^{\perp} to enclose w, E^{\prime} is disjoint from E. If σ is a wide helper triangle, then Mesh has split helper arcs/triangles only so far, so w lies on some element E^{\prime} of \mathcal{Q}. By Lemma 12 , for K^{\perp} to enclose w, E^{\prime} is disjoint from E. This proves the claim. Our claim implies that $\|v-w\| \geq \hat{f}(v)$. It follows that $r_{v}=\min _{w \in B}\|v-w\| \geq \widehat{f}(v)$.

Case 2: v is the midpoint of a non-wide encroached helper arc α. Note that v has type 1 . Let e be the curved edge that α belongs to. Let q be the vertex in \mathcal{V} such that $r_{v}=\|q-v\|$. Recall that p is the parent of v. We first relate r_{v} to $\|p-v\|$. If q lies inside K_{α}^{\perp}, then $p=q$ by definition of parent; otherwise, $\|q-v\|>\|p-v\| / 4$ by Claim 4. Hence, $r_{v}=\|q-v\|>\|p-v\| / 4$. Next, we relate r_{v} to $\hat{f}(v)$ and r_{p}. If p is a vertex of \mathcal{Q}, then $p \notin e$ as vertices on e do not lie inside K_{α}^{\perp}, so $\| p-$ $v \| \geq \widehat{f}(v)$. If p lies on an element E of \mathcal{Q} such that $e \not \subset \partial E$, Lemma 11 implies that e and E are disjoint and so $\|p-v\| \geq \hat{f}(v)$. Since $r_{v}>\|p-v\| / 4$, we get $r_{v}>\hat{f}(v) / 4$ for the above two cases. The remaining case is that p has type 4 or p lies on a curved/flat facet whose boundary contains e. Note that p has type 2, 3 or 4. What happens is that MESH attempted to insert p but since p encroached upon α, MESH rejected p and inserts v to split α now. In this case, q does not lie inside K_{α}^{\perp}, otherwise the parent of v would be q instead. Since $q \in \mathcal{V}$ when p was rejected, $r_{p} \leq\|p-q\|$. By Claim 4, $\|q-v\|>\|p-q\| / 4$. It follows that $r_{v}>r_{p} / 4$.

Case 3: v is the center of K_{σ} where σ is a non-wide encroached helper triangle or an encroached subfacet. Note that v has type 2 or 3 . Let F be the curved facet or flat facet that σ belongs to, whichever is appropriate. Let q be the vertex in \mathcal{V} such that $r_{v}=\|q-v\|$. We first relate r_{v} to $\|p-v\|$. If q lies inside K_{σ}^{\perp}, then $p=q$ by definition of parent; otherwise, $\|q-v\|>\|p-v\| / 4$ by Claim 4. Hence, $r_{v}=\|q-v\|>\|p-v\| / 4$. Next, we relate r_{v} to $\hat{f}(v)$ and r_{p}. Suppose that p is a vertex of \mathcal{Q} or p has type 1,2 or 3 . Vertices of type 1 are always inserted. If p has type 2 or 3 , although p encroached upon σ, p was inserted as v has type 2 or 3 . It follows that p is a vertex in $\mathcal{V} \cap E$ for some element E of \mathcal{Q}. We invoke

Lemma 12 if σ is a helper triangle or Lemma 13 if σ is a subfacet. The implication is that E is disjoint from F. Since $v \in F$ by Corollary $1,\|p-v\| \geq \hat{f}(v)$. Since $r_{v}>\|p-v\| / 4$, we get $r_{v}>\hat{f}(v) / 4$. The remaining case is that p has type 4. By Rule $4, p$ was rejected for encroaching upon σ. In this case, q does not lie inside K_{α}^{\perp}, otherwise the parent of v would be q instead. Since $q \in \mathcal{V}$ when p was rejected, $r_{p} \leq\|p-q\|$. By Claim 4, $\|q-v\|>\|p-q\| / 4$. It follows that $r_{v}>r_{p} / 4$.

Case 4: v is the circumcenter of a tetrahedron τ. By definition, p is an endpoint of the shortest edge of τ. Let q be the other endpoint of this edge. If p is a vertex of \mathcal{Q}, by the definition of parent, q is also a vertex of \mathcal{Q}. This implies that $r_{v}=\|p-v\|=\|q-v\|=\hat{f}(v)$. If p is not a vertex of Q, since $\rho(\tau)>\rho_{0}$, $r_{v}=\|p-v\|>\rho_{0} \cdot\|p-q\| \geq \rho_{0} r_{p}$.

We prove one more claim and then derive the lower bounds for insertion radii in Lemma 15.

CLAIM 5 Let v be a vertex of \mathcal{Q} or inserted/rejected by MESH. Let p be the parent of v. If $r_{v}>c \cdot r_{p}$, then $\hat{f}(v)<\widehat{f}(p) \cdot r_{v} /\left(c \cdot r_{p}\right)+4 r_{v}$.

Proof. Since p is defined, $r_{v}>\|p-v\| / 4$ by Lemma 14. Using the Lipschitz property, we get $\widehat{f}(v) \leq \widehat{f}(p)+\|p-v\|<\hat{f}(p) \cdot r_{v} /\left(c \cdot r_{p}\right)+4 r_{v}$.

LEMMA 15 Let v be a vertex of \mathcal{Q} or inserted/rejected by Mesh. If v is a vertex of \mathcal{Q}, then $r_{v} \geq \hat{f}(v)$. Otherwise, there are four constants $C_{1}>C_{2}=C_{3}>C_{4}>4$ such that if v has type i, then $r_{v}>\hat{f}(v) / C_{i}$.

Proof. We prove the lemma by induction using the constants $C_{1}=84 \rho_{0} /\left(\rho_{0}-16\right), C_{2}=C_{3}=\left(20 \rho_{0}+\right.$ $16) /\left(\rho_{0}-16\right)$ and $C_{4}=\left(4 \rho_{0}+20\right) /\left(\rho_{0}-16\right)$. Before MESH starts, $r_{v} \geq \hat{f}(v)$ for each vertex v of \mathcal{Q}. In the induction step, if $r_{v}>\hat{f}(v) / 4$, we are done as $C_{4}>4$. Otherwise, Lemma 14 implies that the parent p of v is defined.

If v has type 1 , by Lemma $14, p$ has type 2,3 or 4 and $r_{v}>r_{p} / 4$. By induction assumption, $\widehat{f}(p)<C_{2} r_{p}$. By Claim 5, $\hat{f}(v)<4 C_{2} r_{v}+4 r_{v}=C_{1} r_{v}$.

If v has type 2 or 3 , by Lemma $14, p$ has type 4 and $r_{v}>r_{p} / 4$. By induction assumption, $\widehat{f}(p)<C_{4} r_{p}$. By Claim 5, $\hat{f}(v)<4 C_{4} r_{v}+4 r_{v}=C_{2} r_{v}$.

If v has type 4 , then $r_{v}>\rho_{0} r_{p}$ by Lemma 14. By induction assumption, $\hat{f}(p)<C_{1} r_{p}$ regardless of whether p is a vertex of \mathcal{Q} or p was inserted/rejected. By

Claim 5, $\widehat{f}(v)<C_{1} r_{v} / \rho_{0}+4 r_{v}=C_{4} r_{v}$.
We are ready to prove that MESH terminates by a packing argument.

Corollary 2 Mesh terminates and for each output vertex v, its shortest incident edge has length at least $\hat{f}(v) /\left(1+C_{1}\right)$.

Proof. Let $v w$ be the shortest edge incident to v. If w appeared in \mathcal{V} no later than v, then $\|v-w\| \geq r_{v} \geq \hat{f}(v) / C_{1}$ by Lemma 15. If v appeared in \mathcal{V} before w, then $\|v-w\| \geq r_{w} \geq \hat{f}(w) / C_{1}$ by Lemma 15. Using the Lipschitz condition, we get $\widehat{f}(v) \leq \hat{f}(w)+\|v-w\| \leq\left(1+C_{1}\right) \cdot\|v-w\|$. The edge length bound implies that we can center disjoint balls at the output vertices with radii $\hat{f}_{\text {min }} /\left(2+2 C_{1}\right)$, where $\hat{f}_{\text {min }}$ is the minimum local feature size with respect to \mathcal{Q}. Since $\hat{f}_{\text {min }}>0$ and the input domain has bounded volume, there is a finite number of output vertices. It follows that MESH terminates.

10 Mesh quality

In this section, we relate the edge lengths to local feature size with respect to \mathcal{P}, bound the radius-edge ratio and summarize the guarantees offered by Mesh. We first prove in Lemmas 16 and 17 that $g(p)=\Omega(f(p))$ for each output vertex p.

Lemma 16 Let uv be an edge of \mathcal{P}. Let q be a point on $u v$. There exists a constant $k_{1}<1$ such that
(i) $I f|\mid q-u \| \geq(\mu / 2) \cdot f(u)$ and $\|q-v\| \geq(\mu / 2) \cdot f(v)$, then $g(q) \geq k_{1} \mu \cdot f(q)$.
(ii) For any point p on or outside $\mathcal{B}, g(p)+\|p-q\| \geq$ $k_{1} \mu \cdot f(p)$.

Proof. We prove the lemma for the constant $k_{1}=\sin \phi / 4$. Consider (i). Let B be the ball centered at q with radius $g(q)$. If B intersects two disjoint elements of $\mathcal{P}, g(q)=f(q)$. Otherwise, we can assume that B touches u or the interior of an edge/facet of \mathcal{P} incident to u. So $g(q) \geq\|q-u\| \cdot \sin \phi$. By the Lipschitz condition, $f(q) \leq f(u)+\|q-u\|$. Since $\|q-u\| \geq(\mu / 2) \cdot f(u)$, we get $f(q) \leq((2+\mu) / \mu) \cdot\|q-u\|$. So $f(q) \leq((2+\mu) /(\mu \sin \phi)) \cdot g(q)<g(q) /\left(k_{1} \mu\right)$. Consider (ii). Suppose that $\|q-u\|<(\mu / 2) \cdot f(u)$. Using the Lipschitz condition and the fact that
$\|p-u\| \geq \mu \cdot f(u)$, we get $f(p) \leq f(u)+\|p-u\| \leq$ $((1+\mu) / \mu) \cdot\|p-u\|$. Since $\|q-u\|<(\mu / 2) \cdot f(u)$, $\|q-u\|<\|p-u\| / 2$. Using triangle inequality, we get $\|p-q\| \geq\|p-u\|-\|q-u\|>\|p-u\| / 2$. Thus, $f(p)<((2+2 \mu) / \mu) \cdot\|p-q\|<\|p-q\| /\left(k_{1} \mu\right)$. We get the same result for the case where $\|q-v\|<(\mu / 2) \cdot f(v)$. If $\|q-u\|>(\mu / 2) \cdot f(u)$ and $\|q-v\|>(\mu / 2) \cdot f(v)$, then using $f(p) \leq f(q)+\|p-q\|$ and (i), we get $f(p) \leq$ $g(q) /\left(k_{1} \mu\right)+\|p-q\|<(g(q)+\|p-q\|) /\left(k_{1} \mu\right)$.

Lemma 17 For each vertex p in the final mesh, $g(p) \geq$ $k_{2} \mu \cdot f(p)$ for some constant $k_{2}<k_{1}$.

Proof. We prove the lemma for the constant $k_{2}=\min \left\{k_{1} / 2, k_{1} \sin (\phi / 2) /(1+\sin (\phi / 2))\right\}$. If p is a vertex of \mathcal{P}, then $g(p)=f(p)$. Otherwise, if p is a linear edge endpoint, then for each endpoint v of the edge of \mathcal{P} that contains $p,\|p-v\|>(\mu / 2) \cdot f(v)$. By Lemma 16(i), $g(p) \geq k_{1} \mu \cdot f(p)$. The remaining case is that p lies on or outside \mathcal{B}. Let B be the ball centered at p with radius $g(p)$. If B intersects two disjoint elements of $\mathcal{P}, g(p)=f(p)$. Suppose not. If B intersects an edge $u v$, then for any point $q \in B \cap u v,\|p-q\| \leq g(p)$. Using Lemma 16(ii), we get $g(p) \geq\left(k_{1} \mu / 2\right) \cdot f(p)$. Otherwise, B intersects the interior of two adjacent facets F_{1} and F_{2} of \mathcal{P}. Let H_{i} be the plane containing F_{i}. Let r be the point in $H_{1} \cap H_{2}$ nearest to p. Since $p r$ makes an angle at least $\phi / 2$ with H_{1} or H_{2}, we have $\|p-r\| \cdot \sin (\phi / 2) \leq g(p)$. The orthogonal projections of $p r$ onto H_{1} and $\overline{H_{2}}$ must intersect ∂F_{1} or ∂F_{2} at some point q. Observe that $\|p-q\| \leq\|p-r\|$, so $\|p-q\| \leq g(p) / \sin (\phi / 2)$. Using Lemma 16(ii), we get $k_{1} \mu \cdot f(p) \leq g(p)+\|p-q\| \leq$ $g(p) \cdot(1+\sin (\phi / 2)) / \sin (\phi / 2)$.

We are ready to prove the main results of this paper.

Theorem 1 Mesh terminates and produces a Delaunay mesh \mathcal{M} conforming to \mathcal{P}. There exists two constants δ and ρ_{1} depending on μ and ϕ such that
(i) For each vertex v of \mathcal{M}, the length of the shortest edge incident to v is at least $\delta \cdot f(v)$.
(ii) Let τ be a tetrahedron in \mathcal{M}. If τ does not have a vertex inside \mathcal{B}, then $\rho(\tau) \leq \rho_{0}$; otherwise, $\rho(\tau) \leq$ ρ_{1}.

Proof. The termination of MESH has been proved in Corollary 2. Since MESH terminates, Corollary 1 implies that \mathcal{M} is conforming.

We prove (i) for the constant $\delta=\min \left\{k_{2} \lambda \mu^{9} /(1+\right.$ $\left.\left.C_{1}\right), k_{2} c_{3} \mu^{2}\right\}$. Let v be a vertex of \mathcal{M}. Consider the case where v lies on or outside \mathcal{B}. Lemmas 5 and 17 imply that $\widehat{f}(v) \geq \lambda k_{2} \mu^{9} \cdot f(v)$. By Corollary 2 , the shortest edge incident to v has length at least $\widehat{f}(v) /(1+$ $\left.C_{1}\right)$ which is at least $\left(\lambda k_{2} \mu^{9} /\left(1+C_{1}\right)\right) \cdot f(v)$. Consider the case where v lies inside \mathcal{B}. Then v is a linear edge endpoint. By Lemma 2(iii), the shortest edge incident to v has length at least $c_{3} \mu \cdot g(v)$. By Lemma 17, $c_{3} \mu$. $g(v) \geq k_{2} c_{3} \mu^{2} \cdot f(v)$.

We prove (ii) for the constant $\rho_{1}=3 \mu /(\delta(1-3 \mu))$. If τ does not have a vertex inside \mathcal{B}, Rule 4 guarantees that $\rho(\tau) \leq \rho_{0}$. Otherwise, Corollary 1 implies that there are two possibilities.

Case 1: There exists a protecting sphere S_{x} such that $\tau=p q r x$ for some helper triangle $p q r$ on $C H_{x}$. Since the angular diameter of the cap $K_{p q r}$ is at most $\pi / 3$, the circumradius of τ is less than radius $\left(S_{x}\right) \leq 3 \mu \cdot g(x)$. Assume that p is an endpoint of the shortest edge of τ. By (i), the shortest edge length of τ is at least $\delta \cdot f(p)$. Using the Lipschitz condition, we get $f(p) \geq f(x)-\|p-x\| \geq$ $f(x)-3 \mu \cdot g(x) \geq(1-3 \mu) \cdot f(x)$. Thus, the shortest edge length of τ is at least $\delta(1-3 \mu) \cdot f(x)$. It follows that $\rho(\tau)<3 \mu /(\delta(1-3 \mu))$.

Case 2: There exists consecutive protecting spheres S_{x} and S_{y} such that $\tau=p q x y$ for some helper arc $\widehat{p q}$ on $S_{x} \cap S_{y}$. The circumradius of τ is less than $\operatorname{radius}\left(S_{x}\right) \leq 3 \mu \cdot g(x)$. Since x lies outside S_{y} and y lies outside $S_{x}, x y$ is longer than some edge of τ (e.g., $p x$ or $p y$). Thus, the shortest edge of τ is incident to p or q. Since p and q lie on S_{x}, case 1 shows that the shortest edge length of τ is at least $\delta(1-3 \mu) \cdot f(x)$. So $\rho(\tau)<3 \mu /(\delta(1-3 \mu))$.

11 Conclusion

The constants may be improvable using a more refined analysis. We also plan an experimental study of the algorithm. We will look into the possibility of incorporating weighted Delaunay refinement [2] into our algorithm to eliminate slivers and guarantee bounded aspect ratio in the presence of small angles.

References

[1] M. Bern, D. Eppstein and J. Gilbert. Provably good mesh generation. J. Comput. Syst. Sci., 48 (1994), 384-409.
[2] S.-W. Cheng and T.K. Dey. Quality meshing with weighted Delaunay refinement. Proc. 13th ACM-SIAM Sympos. Discrete Alg., 2002, 137-146.
[3] S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello and S.-H. Teng. Sliver exudation. J. ACM, 47 (2000), 883-904.
[4] L. P. Chew. Guaranteed-quality Delaunay meshing in 3D. Proc. 13th ACM Sympos. Comput. Geom., 1997, 391393.
[5] D. Cohen-Steiner, E.C. de Verdiere and M. Yvinec. Conforming Delaunay Triangulations in 3D. Proc. 18th ACM Sympos. Comput. Geom., 2002, 199-208.
[6] H. Edelsbrunner. Geometry and topology for mesh generation. Cambridge University Press, 2001.
[7] P.L. George and H. Borouchaki. Delaunay triangulation and meshing : application to finite elements. Hermes, 1998.
[8] X.-Y. Li and S.-H. Teng. Generating well-shaped Delaunay meshes in 3D. Proc. 12th ACM-SIAM Sympos. Discrete Alg., 2001, 28-37.
[9] G.L. Miller, D. Talmor, S.-H. Teng, and N. Walkington. On the radius-edge condition in the control volume method. SIAM J. Numer. Analy., 36 (1999), 1690-1708.
[10] S. A. Mitchell and S. A. Vavasis. Quality mesh generation in higher dimensions. SIAM J. Comput., 29 (2000), 13341370.
[11] M. Murphy, D. M. Mount, C. W. Gable. A pointplacement strategy for conforming Delaunay tetrahedralization, Proc. 11th ACM-SIAM Sympos. Discrete Alg., 2000, 67-74.
[12] J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J. Algorithms, 18 (1995), 548-585.
[13] J. R. Shewchuk. Tetrahedral mesh generation by Delaunay refinement. Proc. 14th ACM Sympos. Comput. Geom., 1998, 86-95.
[14] J.R. Shewchuk. Mesh generation for domains with small angles. Proc. 16th ACM Sympos. Comput. Geom., 2000, $1-10$.

12 Appendix

12.1 Proof of Lemma 2

We first prove Lemma 2(i) as a separate claim.
Claim 6 Let $u v$ be an edge of $\mathcal{P} . S_{u_{v}}$ and $S_{v_{u}}$ are orthogonal to S_{u} and S_{v} respectively. The two ratio $\operatorname{radius}\left(S_{u_{v}}\right) / g\left(u_{v}\right)$ and $\operatorname{radius}\left(S_{v_{u}}\right) / g\left(v_{u}\right)$ lie in $\left[c_{2} \mu, c_{1} \mu\right]$, where $c_{1}=2 \pi /(3 \sqrt{3})$ and $c_{2}=$ $\min \{\sqrt{3} / 2, \sin \phi\}$.

Proof. $S_{u_{v}}$ and $S_{v_{u}}$ are orthogonal to S_{u} and S_{v} respectively by construction. Let B be the ball centered at u_{v} with radius $g\left(u_{v}\right)$. Let E be an element of \mathcal{P} such that $u_{v} \notin E$ and E touches B. Let d be the minimum distance between u and E. By triangle inequality, $d \leq\left\|u-u_{v}\right\|+g\left(u_{v}\right)$ which is at most $2 \cdot\left\|u-u_{v}\right\|$ as $g\left(u_{v}\right) \leq\left\|u-u_{v}\right\|$. By the definition of $\left\|u-u_{v}\right\|$, we get $d \leq 2 \mu \sec \left(\mu \theta_{u v}^{u}\right) \cdot g(u)$. Since $2 \mu<\cos \left(\mu \theta_{u v}^{u}\right)$, $d<g(u)$ which implies that $u \in E$. So either $E=u$ or E is an edge/facet incident to u.

We claim that $\left\|u-u_{v}\right\| \cdot \sin \phi_{u v}^{u} \leq g\left(u_{v}\right) \leq\left\|u-u_{v}\right\|$. If $E=u$, then $g\left(u_{v}\right)=\left\|u-u_{v}\right\|$ and our claim is true. Otherwise, let ψ be the angle between $u v$ and E. Since $\pi / 2>\psi \geq \phi_{u v}^{u}$ and $g\left(u_{v}\right)=\left\|u-u_{v}\right\| \cdot \sin \psi$, our claim is true. Let $R=\operatorname{radius}\left(S_{u_{v}}\right) / g\left(u_{v}\right)$. It follows that

$$
R \in\left[\sin \left(\mu \theta_{u v}^{u}\right), \frac{\sin \left(\mu \theta_{u v}^{u}\right)}{\sin \phi_{u v}^{u}}\right] \subset\left[\mu \sin \theta_{u v}^{u}, \frac{\mu \theta_{u v}^{u}}{\sin \phi_{u v}^{u}}\right] .
$$

Clearly, $\sin \theta_{u v}^{u}=\min \left\{\sin (\pi / 3), \sin \phi_{u v}^{u}\right\} \geq$ $\min \{\sqrt{3} / 2, \sin \phi\}$. If $\phi_{u v}^{u} \leq \pi / 3$, then $\mu \theta_{u v}^{u} / \sin \phi_{u v}^{u}=\mu \phi_{u v}^{u} / \sin \phi_{u v}^{u}$ which is maximized when $\phi_{u v}^{u}=\pi / 3$. If $\phi_{u v}^{u}>\pi / 3$, then $\mu \theta_{u v}^{u} / \sin \phi_{u v}^{u}<\pi \mu /(3 \sin (\pi / 3))=2 \pi \mu /(3 \sqrt{3})$.

Next, we show that when $\operatorname{Split}(x, y)$ is called, there is always a gap between S_{x} and S_{y}.

Claim 7 Let $k=1.099$. Whenever $\operatorname{Split}(x, y)$ is called, the spheres centered at x and y with radii k. $\operatorname{radius}\left(S_{x}\right)$ and $k \cdot \operatorname{radius}\left(S_{y}\right)$ do not intersect.
Proof. Given a sphere S, let \bar{S} denote the sphere with the same center as S and radius $k \cdot \operatorname{radius}(S)$. Let $u v$ be an edge of \mathcal{P}. We first show that $\overline{S_{u_{v}}} \cap \overline{S_{v_{u}}}=\emptyset$. Since $\theta_{u v}^{u} \leq \pi / 3$ and $g(u) \leq\|u-v\|$, it follows from definition that $\left\|u-u_{v}\right\|<2 \mu \cdot g(u) \leq 2 \mu \cdot\|u-v\|$ and $\operatorname{radius}\left(S_{u_{v}}\right) \leq(\mu \pi / 3) \cdot\left\|u-u_{v}\right\|<\left(2 \pi \mu^{2} / 3\right) \cdot\|u-v\|$. So $\left\|u-u_{v}\right\|+\operatorname{radius}\left(S_{u_{v}}\right)<\left(2 \mu+2 \pi \mu^{2} / 3\right) \cdot\|u-v\|<$ $\|u-v\| / 2$, implying that $\overline{S_{u_{v}}}$ does not reach the midpoint of $u v$. The same holds for $\overline{S_{v_{u}}}$. So $\overline{S_{u_{v}}} \cap \overline{S_{v_{u}}}=\emptyset$. Consider the creation of a protecting sphere S_{z} in line 4 of Split (x, y), assuming that $\overline{S_{x}} \cap \overline{S_{y}}=\emptyset$. Observe that z lies outside S_{x} and S_{y}. Since $\pi\left(z, S_{x}\right)=Z^{2}$ and line 3 of Split is satisfied,

$$
\begin{equation*}
\|x-z\|>Z>3 \mu \cdot g(z) \tag{1}
\end{equation*}
$$

Assume to the contrary that $\overline{S_{x}}$ intersects $\overline{S_{z}}$. Then μ. $g(z) \geq\|x-z\| / k-\operatorname{radius}\left(S_{x}\right)$. Substituting this into (1), we get $\|x-z\|>(3 / k) \cdot\|x-z\|-3 \cdot \operatorname{radius}\left(S_{x}\right)$, so

$$
\begin{equation*}
\|x-z\|<(3 k /(3-k)) \cdot \operatorname{radius}\left(S_{x}\right) \tag{2}
\end{equation*}
$$

Let E be an element of \mathcal{P} such that $z \notin E$ and E touches the ball centered at z with radius $g(z)$. Let d be the minimum distance between x and E. By triangle inequality, (1) and (2), we get $d \leq\|x-z\|+g(z)<((1+3 \mu) /(3 \mu)) \cdot\|x-z\|<$ $k(1+3 \mu) /(\mu(3-k)) \cdot \operatorname{radius}\left(S_{x}\right)$. If $x=u_{v}$, then radius $\left(S_{x}\right) \leq c_{1} \mu \cdot g(x)$ by Claim 6, otherwise $\operatorname{radius}\left(S_{x}\right)=\mu \cdot g(x)$. Since $c_{1}>1$, $d<\left(c_{1} k(1+3 \mu) /(3-k)\right) \cdot g(x)$. By our choices of k, c_{1} and μ, one can verify that $c_{1} k(1+3 \mu) /(3-k)<1$. However, since $x, z \in \operatorname{int}(u v)$ and $z \notin E$, we have $x \notin E$ which implies $d \geq g(x)$, contradiction.

The gap between S_{x} and S_{y} in Claim 7 implies that when we create a protecting sphere S_{z} between S_{x} and S_{y}, z cannot be too close to x and y and S_{z} cannot be too small. This is the main idea behind the proof of Lemma 2. The details are given below.

Proof of Lemma 2:

We prove the lemma for the constants $c_{3}=c_{2}(k-$ 1) $/\left(1+c_{2} k\right)$ and $c_{4}=\left(1 / c_{1}\right) \cdot \min \{\sqrt{3} / 2, \sin \phi\}$, where k is the constant in Claim 7. Clearly, (i) is equivalent to Claim 6.

Consider (ii). If $\operatorname{Split}\left(u_{v}, v_{u}\right)$ does not terminate, Claim 7 implies that infinitely many non-intersecting protecting spheres are created in line 4 of Split. This is impossible as there is a constant $\epsilon>0$ such that $g(z) \geq \epsilon$ for any point $z \in u_{v} v_{u}$. Lines 1,2 and 7 of Split guarantee that any two consecutive protecting spheres created are orthogonal and hence overlapping. Thus, the spheres in \mathcal{S} cover $u_{v} v_{u}$. Take a sphere $S_{z} \in \mathcal{S}-\left\{S_{u_{v}}, S_{v_{u}}\right\}$. By lines 3 and 4 , radius $\left(S_{z}\right) / g(z) \leq 3 \mu$. If S_{z} was created in line 4 , then radius $\left(S_{z}\right)=\mu \cdot g(z)$, otherwise $\operatorname{radius}\left(S_{z}\right)=Z$. So it suffices to prove that $Z \geq c_{3} \mu \cdot g(z)$ when S_{z} was created in line 7. Claim 7 implies that z is at distance at least $(k-1) \cdot \operatorname{radius}\left(S_{x}\right)$ from S_{x} or at least $(k-1) \cdot \operatorname{radius}\left(S_{y}\right)$ from S_{y}, say the former is true. Since S_{x} intersects S_{z},

$$
\begin{equation*}
Z \geq(k-1) \cdot \operatorname{radius}\left(S_{x}\right) \tag{3}
\end{equation*}
$$

It follows that $\|x-z\| \leq Z+\operatorname{radius}\left(S_{x}\right) \leq k Z /(k-1)$. Using this and Lemma 1 , we get

$$
\begin{equation*}
g(z) \leq g(x)+\|x-z\| \leq g(x)+k Z /(k-1) \tag{4}
\end{equation*}
$$

If $x=u_{v}$, then radius $\left(S_{x}\right) \geq c_{2} \mu \cdot g(x)$ by Claim 6, otherwise $\operatorname{radius}\left(S_{x}\right)=\mu \cdot g(x)$. So (3) yields $Z \geq$ $c_{2} \mu(k-1) \cdot g(x)$. Substituting this into (4), we get $g(z) \leq$
$Z\left(1+c_{2} \mu k\right) /\left(c_{2} \mu(k-1)\right)$ which is less than $Z /\left(c_{3} \mu\right)$. Hence, $Z \geq c_{3} \mu \cdot g(z)$.

Consider (iii). Since S_{x} and S_{y} are orthogonal, $\|x-y\|>\max \left\{\operatorname{radius}\left(S_{x}\right), \operatorname{radius}\left(S_{y}\right)\right\} \geq c_{3} \mu$. $\max \{g(x), g(y)\}$ by (i) and (ii). Suppose that $x=u$ or v. Then $y=u_{v}$ or v_{u} respectively. It follows from definition that radius $\left(S_{y}\right)=\mu \tan \left(\mu \theta_{u v}^{u}\right) \cdot g(x)$. Note that $\tan \left(\mu \theta_{u v}^{u}\right) \geq \mu \sin \theta_{u v}^{u} \geq \mu \cdot \min \{\sqrt{3} / 2, \sin \phi\}=$ $c_{1} c_{4} \mu$. So radius $\left(S_{y}\right) \geq c_{1} c_{4} \mu^{2} \cdot g(x)$. Using this and the fact that radius $\left(S_{y}\right) \leq c_{1} \mu \cdot g(y)$ by Claim 6, we get $g(y) \geq c_{4} \mu \cdot g(x)$. Suppose that $x \in \operatorname{int}(u v)$. Since S_{x} intersects $S_{y},\|x-y\| \leq \operatorname{radius}\left(S_{x}\right)+\operatorname{radius}\left(S_{y}\right)$ which is at most $3 \mu(g(x)+g(y))$. Using this and Lemma 1, we get $g(y) \geq g(x)-\|x-y\| \geq(1-3 \mu) \cdot g(x)-3 \mu \cdot g(y)$, so $g(y) \geq((1-3 \mu) /(1+3 \mu)) \cdot g(x)$. Observe that $(1-3 \mu) /(1+3 \mu)>\mu>c_{4} \mu$.

12.2 Proof of Lemma 3

We prove the lemma for the constants $c_{5}=c_{3} c_{4} / \sqrt{2}$, $c_{6}=c_{3}^{2} c_{4} /\left(3+3 c_{4}\right)$ and $c_{7}=c_{4} c_{6}$.

Consider (i). Consider a hole on $\mathcal{B} \cap S_{x}$ bounded by $S_{x} \cap S_{z}$ for some protecting sphere S_{z} consecutive to S_{x}. By Lemma 2(ii), $\min \left\{\operatorname{radius}\left(S_{x}\right), \operatorname{radius}\left(S_{z}\right)\right\} \geq c_{3} \mu \cdot \min \{g(x), g(z)\}$. By Lemma 2(iii), $g(z) \geq c_{4} \mu \cdot g(x)$ which implies that $\min \left\{\operatorname{radius}\left(S_{x}\right)\right.$, $\left.\operatorname{radius}\left(S_{z}\right)\right\} \geq c_{3} c_{4} \mu^{2} \cdot g(x)$. Since S_{x} intersects S_{z} at right angle, the radius of the hole is at least $\min \left\{\operatorname{radius}\left(S_{x}\right), \operatorname{radius}\left(S_{z}\right)\right\} / \sqrt{2} \geq$ $\left(c_{3} c_{4} \mu^{2} / \sqrt{2}\right) \cdot g(x)=c_{5} \mu^{2} \cdot g(x)$.

Consider(ii). Let $\mathcal{B} \cap S_{z}$ be a ring adjacent to $\mathcal{B} \cap S_{x}$. We have $\|x-z\| \leq \operatorname{radius}\left(S_{x}\right)+\operatorname{radius}\left(S_{z}\right)$ which is at most $3 \mu \cdot g(x)+3 \mu \cdot g(z)$ by Lemma 2(ii). By Lemma 2(iii), $g(x) \geq c_{4} \mu \cdot g(z)$. It follows that

$$
\begin{equation*}
\|x-z\| \leq\left(\left(3+3 \mu c_{4}\right) / c_{4}\right) \cdot g(x) \tag{5}
\end{equation*}
$$

Let d be the distance between x and the bisector plane of S_{x} and S_{z}. By orthogonality, $d=\operatorname{radius}\left(S_{x}\right)^{2} /\|x-z\|$. Since radius $\left(S_{x}\right) \geq c_{3} \mu \cdot g(x)$ by Lemma 2(ii), $d \geq$ $\left(c_{3} \mu \cdot g(x)\right)^{2} /\|x-\bar{z}\|$. By (5), we get $d \geq\left(c_{3}^{2} c_{4} \mu^{2} /(3+\right.$ $\left.\left.3 \mu c_{4}\right)\right) \cdot g(x)$ which is larger than $c_{6} \mu^{2} \cdot g(x)$.
(iii) follows from the facts that the distance between x and E is at least $g(x)$ and $\operatorname{radius}\left(S_{x}\right) \leq 3 \mu \cdot g(x)$.

Consider (iv). Let d be the minimum distance between $\mathcal{B} \cap S_{x}$ and $\mathcal{B} \cap S_{y}$. If x and y do not lie on the same edge of \mathcal{P}, then $d \geq\|x-y\|-\operatorname{radius}\left(S_{x}\right)-$ $\operatorname{radius}\left(S_{y}\right) \geq\|x-y\|-3 \mu(g(x)+g(y))$. Since $\|x-y\| \geq \max \{g(x), g(y)\}$, we get $d \geq(1-6 \mu) \cdot \| x-$ $y \| \geq(1-6 \mu) \cdot g(x)$. Observe that $1-6 \mu \geq \mu>c_{7} \mu^{3}$. If x and y lie on the same edge of \mathcal{P}, then $\mathcal{B} \cap S_{x}$ and $\mathcal{B} \cap S_{y}$ are separated by a ring $\mathcal{B} \cap S_{z}$ adjacent
to $\mathcal{B} \cap S_{x}$. By (ii), the width of $\mathcal{B} \cap S_{z}$ is at least $c_{6} \mu^{2} \cdot g(z)$. By Lemma 2(iii), $g(z) \geq c_{4} \mu \cdot g(x)$. Therefore, $d \geq c_{4} c_{6} \mu^{3} \cdot g(x)=c_{7} \mu^{3} \cdot g(x)$.

12.3 Proof of Lemma 5

We give an overview of our proof strategy. Let p be a point on or outside \mathcal{B}. Let B be the ball centered at p with radius $\hat{f}(p)$. Let E and E^{\prime} be two disjoint elements of \mathcal{Q} intersected by B. We analyze the distance d between E and E^{\prime}. The difficult cases are when E and E^{\prime} lie on the same protecting sphere or two consecutive protecting spheres, or when E lies on a protecting sphere and E^{\prime} is an adjacent flat facet. We proceed in three steps. First, we consider some geodesic γ from E to E^{\prime} on \mathcal{B} and show that length $(\gamma)=O(d)$. Second, we argue that length (γ) is at least the distance between two disjoint boundary elements of some curved facet. Third, we show that this distance is at least a constant factor of the local gap size. These three steps are described in the Claims 810. Afterwards, we give the proof of Lemma 5.

CLAIM 8 Let F be a curved facet on $\mathcal{B} \cap S_{x}$ for some protecting sphere S_{x}. The minimum distance between two disjoint boundary elements of F is at least $c_{8} \mu^{4} \cdot g(x)$ for some constant $c_{8}<c_{7}$.

Proof. We prove the claim for $c_{8}=\min \left\{c_{5} \sin \phi, c_{4} c_{7}\right\}$. Let d be the minimum distance between two disjoint boundary elements of F. Since F has at least four boundary edges, d is achieved by the minimum distance between two disjoint boundary edges (including their endpoints), say e and e^{\prime}.

Case 1: e and e^{\prime} lie on some facets E and E^{\prime} of \mathcal{P} respectively. Note that $x \in E \cap E^{\prime}$. If $E \cap E^{\prime}=\{x\}$, x is a vertex of \mathcal{P}. Since the angle between E and E^{\prime} is at least ϕ, we get $d \geq 2 \sin (\phi / 2) \cdot \operatorname{radius}\left(S_{x}\right)=$ $2 \mu \sin (\phi / 2) \cdot g(x) \geq \mu \sin \phi \cdot g(x)$. If $\{x\} \subset E \cap E^{\prime}$, $E \cap E^{\prime}$ is an edge of \mathcal{P}. Note that this edge passes through hole(s) on $\mathcal{B} \cap S_{x}$. So $d \geq 2 r \sin (\phi / 2)$ where r is the minimum radius of the hole(s). By Lemma 3(i), $r \geq c_{5} \mu^{2} \cdot g(x)$, so $d \geq c_{5} \mu^{2} \sin \phi \cdot g(x)$.

Case 2: e lies on a facet E of \mathcal{P} and e^{\prime} lies on the boundary of a hole on $\mathcal{B} \cap S_{x}$. This case can happen only when x is a vertex of \mathcal{P}. (Otherwise, $\mathcal{B} \cap S_{x}$ is a ring. Since all curved facets on a ring are rectangular, case 2 is impossible.) We have $e^{\prime} \subseteq S_{x} \cap S_{z}$ for a protecting sphere S_{z} consecutive to S_{x}. If $z \notin E$, by Lemma 3(iii) and Lemma 2(iii), we get $d \geq(1-3 \mu) \cdot g(z) \geq c_{4} \mu(1-$ $3 \mu) \cdot g(x)$. If $z \in E$, then $x z \subseteq \partial E$ which implies that E intersects $S_{x} \cap S_{z}$. Since $S_{x} \cap E$ is connected, it contains
only one edge in ∂F and that edge is e. Observe that the adjacent edges of e in ∂F lie at the intersections between S_{x} and protecting spheres consecutive to S_{x}. It follows that one endpoint of e lies on $S_{x} \cap S_{z}$. Since e and e^{\prime} are disjoint, they are separated by a curved edge on $S_{x} \cap S_{z}$ whose endpoints lie on two different facets of \mathcal{P} incident to x. By case 1 , we get $d \geq \min \left\{\mu \sin \phi, c_{5} \mu^{2} \sin \phi\right\}$. $g(x)$.

Case 3: e and ϵ^{\prime} lie on boundaries of holes on $\mathcal{B} \cap S_{x}$. If e and e^{\prime} lie on the same hole boundary $S_{x} \cap S_{y}$ for a protecting sphere S_{y} consecutive to S_{x}, then e and e^{\prime} are separated by a curved edge on $S_{x} \cap S_{y}$ whose endpoints lie on two different facets of \mathcal{P} incident to x. By case 1 , we get $d \geq \min \left\{\mu \sin \phi, c_{5} \mu^{2} \sin \phi\right\} \cdot g(x)$. If e and e^{\prime} lie on the boundaries of two holes $S_{x} \cap S_{y}$ and $S_{x} \cap S_{z}$ for two protecting spheres S_{y} and S_{z} consecutive to S_{x}, by Lemma 3(iv) and Lemma 2(iii), we get $d \geq c_{7} \mu^{3} \cdot g(y) \geq$ $c_{4} c_{7} \mu^{4} \cdot g(x)$.

Finally, observe that $c_{8} \mu^{4}$ is at most the minimum of $\mu \sin \phi, c_{5} \mu^{2} \sin \phi, c_{4} \mu(1-3 \mu)$ and $c_{4} c_{7} \mu^{4}$.

Claim 9 Let p and q be two points on two orthogonal spheres S and S^{\prime}. Let η be the shortest geodesic between p and q on $\operatorname{Bd}\left(S \cup S^{\prime}\right)$. Then $\|p-q\| \geq \operatorname{length}(\eta) /(5 \pi)$.

Proof. Let x and y be the centers of S and S^{\prime} respectively. Let H be the plane through q, x and y. Let C_{x} and C_{y} be the circles $H \cap S$ and $H \cap S^{\prime}$ respectively.

Case 1: $p \in H$. Consider the case where p and q lie on the same side of $x y$. Let r be the intersection point of C_{x} and C_{y} on the same side of $x y$ as p and q. The length of η is at most the minimum tour length from p to r on C_{x} and from r to q on C_{y} which is at most $(\| p-$ $r\|+\| q-r \|) \pi / 2$. Since C_{x} and C_{y} intersect at right angle by orthogonality, $\angle p r q$ in triangle $p q r$ is at least $\pi / 2$. So $\sqrt{2} \cdot\|p-q\| \geq\|p-r\|+\|q-r\|$. This implies that $\|p-q\| \geq(\sqrt{2} / \pi) \cdot$ length (η). Consider the case where p and q lie on opposite sides of $x y$. Let r (resp. s) be the intersection point of C_{x} and C_{y} on the same side of $x y$ as p (resp. q). Let q^{\prime} be the point on C_{y} hit by a ray from q perpendicular to $x y$. Since p and q^{\prime} lie on the same side of $x y$, the previous argument shows that $\sqrt{2} \cdot\left\|p-q^{\prime}\right\| \geq\|p-r\|+\left\|q^{\prime}-r\right\|$. Since $\left\|q^{\prime}-r\right\|=\|q-s\|$ and $\|p-q\| \geq\left\|p-q^{\prime}\right\|$, we get

$$
\begin{equation*}
\sqrt{2} \cdot\|p-q\| \geq\|p-r\|+\|q-s\| \tag{6}
\end{equation*}
$$

Next, we compare $\|p-q\|$ with $\|r-s\|$. Without loss of generality, assume that triangle $p q r$ contains the midpoint of $r s$. If $\angle p r q$ in $p q r$ is at least $\pi / 2, p q$ is the
longest side of $p q r$ and so $\|p-q\| \geq\|r-s\| / 2$. If $\angle p r q$ in $p q r$ is less than $\pi / 2$, then $\angle p x q$ in triangle $p q x$ is at least $\pi / 2$ and so $\|p-q\| \geq\|p-x\|$. Since $p x$ is a radial of C_{x}, we get $\|r-s\| / 2 \leq\|p-x\| \leq\|p-q\|$. In all,

$$
\begin{equation*}
\|p-q\| \geq\|r-s\| / 2 \tag{7}
\end{equation*}
$$

The length of η is at most the minimum tour length from p to r on C_{x}, from r to s on $S \cap S^{\prime}$ and from s to q on C_{y}. Thus, length $(\eta) \leq(\|p-r\|+\|r-s\|+\|q-s\|) \pi / 2$. By (6) and (7), we get length $(\eta) \leq(1+1 / \sqrt{2}) \pi \cdot\|p-q\|$.

Case 2: $p \notin H$. Let p^{\prime} be the point on C_{x} closest to p. Let d be the distance from p to H. Note that $d \leq\|p-q\|$. The length of η is at most the minimum tour length from p to p^{\prime} on S and from p^{\prime} to q on $\operatorname{Bd}\left(S \cup S^{\prime}\right)$. The tour length from p to p^{\prime} is at most $\pi d / 2 \leq(\pi / 2) \cdot\|p-q\|$. By case 1 , the tour length from p^{\prime} to q is at most $(1+1 / \sqrt{2}) \pi \cdot\left\|p^{\prime}-q\right\|$. Using triangle inequality, we get $\left\|p^{\prime}-q\right\| \leq\left\|p-p^{\prime}\right\|+\|p-q\| \leq \sqrt{2} d+\|p-q\| \leq$ $(\sqrt{2}+1) \cdot\|p-q\|$. Hence, length $(\eta) \leq(\pi / 2) \cdot \| p=$ $q\left\|+\left((\sqrt{2}+1)^{2} \pi / \sqrt{2}\right) \cdot\right\| p-q\|<5 \pi \cdot\| p-q \|$.

CLAim 10 Let E be an element of \mathcal{Q} on $\mathcal{B} \cap S_{x}$ for some protecting sphere S_{x}. Let E^{\prime} be an element of \mathcal{Q} disjoint from E such that either $E^{\prime} \subseteq \mathcal{B}$ or E^{\prime} is a flat facet. The minimum distance between E^{-}and E^{\prime} is at least $c_{9} \mu^{8}$. $g(x)$ for some constant $c_{9}<c_{8}$.
Proof. We prove the lemma for $c_{9}=c_{4} c_{8}^{2} /\left(225 \sqrt{2} \pi^{4}\right)$. Let d be the minimum distance between E and E^{\prime}.

Case 1: $E^{\prime} \subseteq \mathcal{B}$. Let $E^{\prime} \subseteq S_{y}$ for some protecting sphere $S_{y}(y$ may be $x)$. If $S_{x} \neq S_{y}$ and S_{x} and S_{y} are not consecutive, then by Lemma 3(iv), $d \geq c_{7} \mu^{3} \cdot g(x)$ which is larger than $c_{9} \mu^{8} \cdot g(x)$. Otherwise, $S_{x}=S_{y}$ or S_{x} and S_{y} are orthogonal. Let η be the shortest geodesic between E and E^{\prime} on $\operatorname{Bd}\left(S_{x} \cup S_{y}\right)$. For each hole on $\mathcal{B} \cap\left(S_{x} \cup S_{y}\right)$ crossed by η, we reroute around the hole boundary using the shorter arc. This yields a curve γ between E and E^{\prime} on $\mathcal{B} \cap\left(S_{x} \cup S_{y}\right)$. If $S_{x}=S_{y}$, clearly $d \geq(2 / \pi) \cdot$ length (η), otherwise $d \geq$ length $(\eta) /(5 \pi)$ by Claim 9. Observe that length $(\gamma) \leq(\pi / 2) \cdot$ length (η). So we get

$$
\begin{equation*}
d \geq\left(2 /\left(5 \pi^{2}\right)\right) \cdot \text { length }(\gamma) \tag{8}
\end{equation*}
$$

Case 1.1: γ intersects two disjoint boundary elements of some curved facet F on $\mathcal{B} \cap\left(S_{x} \cup S_{y}\right)$. By Claim 8, length $(\gamma) \geq c_{8} \mu^{4} \cdot \min \{g(x), g(y)\}$. Since $g(y) \geq c_{4} \mu$. $g(x)$ by Lemma 2(iii), length $(\gamma) \geq c_{4} c_{8} \mu^{5} \cdot g(x)$. Substituting into (8), we get $d \geq\left(2 c_{4} c_{8} \mu^{5} /\left(5 \pi^{2}\right)\right) \cdot g(x)>$ $c_{9} \mu^{8} \cdot g(x)$.

Caes 1.2: every pair of curved edges that γ intersects consecutively are adjacent. Let e and e^{\prime} be any such adjacent pair of curved edges. Let $p=\gamma \cap e$ and $q=\gamma \cap e^{\prime}$. We extend γ by taking a detour on e from p to the closest endpoint of e and back to p. We do the same on e^{\prime}. This yields a longer curve ψ. (ψ is self-intersecting but this is not a problem.) ψ passes through more than one vertex of \mathcal{Q} on \mathcal{B} since E and E^{\prime} are disjoint. It follows that ψ passes through two vertices of some curved facet on $\mathcal{B} \cap\left(S_{x} \cup S_{y}\right)$. Case 1.1 shows that

$$
\begin{equation*}
\operatorname{length}(\psi) \geq\left(2 c_{4} c_{8} \mu^{5} /\left(5 \pi^{2}\right)\right) \cdot g(x) \tag{9}
\end{equation*}
$$

It remains to bound length (ψ). Assume without loss of generality that e and e^{\prime} bound a curved facet on S_{x}. Let C and C^{\prime} be the supporting circles of e and e^{\prime} respectively. Since e and e^{\prime} meet at right angle (Lemma 4), $C \cap C^{\prime}$ consists of two diametral points of C or C^{\prime}, say C^{\prime}. Let B be the ball centered at p with radius $\left(c_{8} \mu^{4} / 3\right) \cdot g(x)$. If $q \notin B$, then $\|p-q\|>\left(c_{8} \mu^{4} / 3\right) \cdot g(x)$. The detour on e or e^{\prime} has length at most $2 \pi \cdot \operatorname{radius}\left(S_{x}\right) \leq$ $6 \pi \mu \cdot g(x)$ which is at most

$$
\begin{equation*}
\left(18 \pi /\left(c_{8} \mu^{3}\right)\right) \cdot\|p-q\| \tag{10}
\end{equation*}
$$

If $q \in B$, we show in the following that the detour on e or e^{\prime} has length at most $\sqrt{2} \pi \cdot\|p-q\|$ which is smaller than (10). Let u be the common endpoint of e and e^{\prime}. Let v and v^{\prime} be the other endpoints of e and e^{\prime} respectively. Let w be the point on C^{\prime} diametrally opposite to u. Note that $C \cap C^{\prime}=\{u, w\}$. Let H be the plane containing C^{\prime}. Since the center of $B \cap H$ lies on the line containing $u w$, $B \cap H$ contains u or w. By Claim $8,\left\|p-v^{\prime}\right\|$ and $\|q-v\|$ are at least $c_{8} \mu^{4} \cdot g(x)$ which implies that $v, v^{\prime} \notin B$. We claim that $u \in B$. Otherwise, $w \in B$ which implies that the two arcs $B \cap C$ and $B \cap C^{\prime}$ cross at w. Since e and e^{\prime} cannot meet at w, we have $v \in B$ or $v^{\prime} \in B$, contradiction. By our claim that $u \in B$, we get $\|p-u\| \leq$ $\left(c_{8} \mu^{4} / 3\right) \cdot g(x)$ and $\|q-u\| \leq\left(2 c_{8} \mu^{4} / 3\right) \cdot g(x)$. Observe that $\|p-u\|<\left\|p-v^{\prime}\right\|$ and $\|q-u\|<\|q-v\|$. So both detours on e and e^{\prime} pass through u. Since radius $\left(S_{x}\right) \geq$ $c_{3} \mu \cdot g(x)$ by Lemma 2(ii), x is further from u than p and q. Thus, $\angle p u q>\pi / 4$ and so $\max \{\|p-u\|,\|q-u\|\} \leq$ $\sqrt{2} \cdot\|p-q\|$. It follows that the detour on e or e^{\prime} has length at most $\sqrt{2} \pi \cdot\|p-q\|$.

By (10), we conclude that length $(\psi) \leq$ $\left(36 \pi /\left(c_{8} \mu^{3}\right)\right) \cdot$ length (γ). Substituting into (8) and (9), we get $d \geq\left(c_{4} c_{8}^{2} \mu^{8} /\left(225 \pi^{4}\right)\right) \cdot g(x)>c_{9} \mu^{8} \cdot g(x)$.

Case 2: E^{\prime} is a flat facet. If $S_{x} \cap E^{\prime}=\emptyset, x$ is disjoint from the facet of \mathcal{P} that contains E^{\prime}, so Lemma 3(iii) implies that $d \geq(1-3 \mu) \cdot g(x)>c_{9} \mu^{8} \cdot g(x)$.

Figure 5: The shaded region is E^{\prime}. The two dashed line segments delimit the two holes on $\mathcal{B} \cap S_{x}$ passed through by the boundary edges of E^{\prime} incident to x. The bold arc is the curved edge $\mathcal{B} \cap S_{x} \cap E^{\prime}$. Note that r cannot lie outside the right-angled triangle $a q x$. Otherwise, the point p, which is above r, would lie outside $\mathcal{B} \cap S_{x}$.

Otherwise, let $p \in E$ and $r \in E^{\prime}$ be the points such that $\|p-r\|=d$. If r lies on a curved boundary edge e of E^{\prime}, then $E \cap e=\emptyset$ as $E \cap E^{\prime}=\emptyset$. So we can let $E^{\prime}=e$ and apply case 1 to finish the analysis. If r lies on a linear boundary edge e of E^{\prime}, then E^{\prime} lies inside \mathcal{B} and so E^{\prime} and e are incident to x. Then $\|p-r\|$ is at least the radius of the hole on $\mathcal{B} \cap S_{x}$ that e passes through. By Lemma 3(i), $\|p-r\| \geq c_{5} \mu^{2} \cdot g(x)>c_{9} \mu^{8} \cdot g(x)$. It remains to consider $r \in \operatorname{int}\left(E^{\prime}\right)$. Observe that r is the orthogonal projection of p onto E^{\prime} which implies that E^{\prime} lies inside \mathcal{B} and E^{\prime} is incident to x. Since the subset of E^{\prime} inside S_{x} is a cone with apex x (the angle of the cone may be greater than π), the ray from x through r reaches a point $q \in S_{x} \cap E^{\prime}$. If $q \in \mathcal{B} \cap S_{x} \cap E^{\prime}$, we keep it. Otherwise, q lies on a hole on $\mathcal{B} \cap S_{x}$ and we move q along $S_{x} \cap E^{\prime}$ until q reaches $\mathcal{B} \cap S_{x} \cap E^{\prime}$. Figure 5 shows the situation. Observe that in either case $\angle p q r \geq \pi / 4$. It follows that $\|p-q\| \leq \sqrt{2} \cdot\|p-r\|$. Since $E \cap E^{\prime}=\emptyset, E$ is disjoint from the curved edge $\mathcal{B} \cap S_{x} \cap E^{\prime}$ that contains q. By Case $1,\|p-q\| \geq\left(c_{4} c_{8}^{2} \mu^{8} /\left(225 \pi^{4}\right)\right) \cdot g(x)$. Hence, $\|p-r\| \geq\left(c_{4} c_{8}^{2} \mu^{8} /\left(225 \sqrt{2} \pi^{4}\right)\right) \cdot g(x)=$ $c_{9} \mu^{8} \cdot g(x)$.
contrary that radius $(B)<c_{10} \mu^{8} \cdot g(p)$. We need two facts.

FACT 1 Let p and q be two points. If p does not lie on any edge of \mathcal{P}, then $g(p) \leq g(q)+\|p-q\|$.

Proof. Let A be the ball centered at p with radius $g(q)+\|p-q\|$. So A intersects the two elements of \mathcal{P} that defines $g(q)$. Since p does not lie on any edge of \mathcal{P} (including edge endpoints), at most one facet of \mathcal{P} contains p. Thus, at most one of the elements of \mathcal{P} that intersect A contains p, so $g(p) \leq \operatorname{radius}(A)$.

FACT 2 If B intersects a protecting sphere S_{x}, then $\operatorname{radius}(B)<\left(c_{9} \mu^{8} / 2\right) \cdot g(x)$.

Proof. By Fact $1, g(p) \leq g(x)+\|p-x\|$. Since B intersects S_{x}, we get $g(\bar{p}) \leq g(x)+\operatorname{radius}\left(S_{x}\right)+$ $\operatorname{radius}(B)<(1+3 \mu) \cdot g(\bar{x})+c_{10} \mu^{8} \cdot g(p)$. Thus, $g(p)<\left((1+3 \mu) /\left(1-c_{10} \mu^{8}\right)\right) \cdot g(x)$ which implies that $\operatorname{radius}(B)<\left(c_{10}(1+3 \mu) \mu^{8} /\left(1-c_{10} \mu^{8}\right)\right) \cdot g(x)$. One can verify that $c_{10}(1+3 \mu) /\left(1-c_{10} \mu^{8}\right)=c_{9} / 2$.

Take two disjoint elements E and E^{\prime} of \mathcal{Q} intersected by B. For any protecting sphere S_{x} intersected by B, by Lemma 3(i), the distances between p and the linear edges incident to x are at least $c_{5} \mu^{2} \cdot g(x)>\left(c_{9} \mu^{8} / 2\right) \cdot g(x)$. So neither E nor E^{\prime} is a linear edge or an endpoint of a linear edge.

If both E and E^{\prime} are flat facets, since they are disjoint, they lie on different facets of \mathcal{P}. Since at most one facet of \mathcal{P} can contain p, we have $g(p) \leq \operatorname{radius}(B)$, contradicting the assumption that radius $(B)<c_{10} \mu^{8} \cdot g(p)$. Without loss of generality, it remains to consider $E \subseteq$ $\mathcal{B} \cap S_{x}$ for some protecting sphere S_{x}. By Claim 10, the minimum distance between E and E^{\prime} is at least $c_{9} \mu^{8} \cdot g(x)$ which is larger than $2 \cdot \operatorname{radius}(B)$ by Fact 2. Thus, B cannot intersect both E and E^{\prime}, contradiction.

Proof of Lemma 5

We show that $\hat{f}(p) \geq c_{10} \mu^{8} \cdot g(p)$ where $c_{10}=c_{9} /(2(1+$ $3 \mu)+c_{9} \mu^{8}$). The lemma thus follows by setting $\lambda=$ $c_{9} / 9$ which is smaller than c_{10}. Recall that p lies on or outside \mathcal{B}. Let B be the ball centered at p with radius $\hat{f}(p)$. If $B \cap \mathcal{B}=\emptyset$, then B intersects two flat facets of \mathcal{Q} outside \mathcal{B}. Since p lies on or outside \mathcal{B}, at most one facet of \mathcal{P} contains p. It follows that radius $(B) \geq g(p)$. Consider the case where $B \cap \mathcal{B} \neq \emptyset$. Assume to the

[^0]: *This work has been supported by the Research Grant Council, Hong Kong, China (HKUST6088/99E and HKUST6190/02E).
 ${ }^{\dagger}$ Department of Computer Science, HKUST, Clear Water Bay, Hong Kong. Email: \{scheng, hung\}@cs.ust.hk

[^1]: ${ }^{1} \widehat{f}(p)$ is the radius of the smallest ball centered at p that intersects two disjoint elements of \mathcal{Q}.

