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Abstract

We propose an algorithm to compute a conforming De-
launay mesh of a polyhedral domain in three dimensions.
Arbitrarily small input angles are allowed. The output
mesh is graded and has bounded radius-edge ratio every-
where.

1 Introduction

In finite element analysis, a domain needs to be parti-
tioned into a cell complex for the purpose of numerical
simulation and analysis [7]. A simplicial complex is a
popular choice and it is also commonly known as a tetra-
hedral mesh. The mesh is required to be conforming:
each input edge appears as the union of some edges in the
mesh and each input facet appears as the union of some
faces of tetrahedra in the mesh. An important challenge
in mesh generation is to construct a mesh with good qual-
ity. Our contribution is a simple Delaunay refinement
algorithm that produces tetrahedra with provably good
edge lengths and radius-edge ratio. Our algorithm is dis-
tinguished from previous ones [2, 5, 8, 11, 13, 14] by its
ability to handle input angles less than ��� and its theo-
retical guarantees.

Our input domain is a bounded volume in 3D whose
boundary is specified by a piecewise-linear complex P.
The elements of P are vertices, edges and facets that in-
tersect properly. That is, the intersection of two elements
is either empty or an element ofP. The boundary of each
facet consists of one or more disjoint simple polygonal
cycles. Two elements of P are adjacent if their intersec-
tion is non-empty. Two elements of P are incident if one
is a boundary element of the other. We make the simpli-
fying assumption that each edge of P has two or more
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incident facets, e.g., polyhedron possibly with voids and
holes. This assumption is not critical and it can be re-
moved, with more work, without affecting our results.

Delaunay tetrahedralization is a popular tetrahedral
mesh in theory and practice [6, 7]. For results using
quadtree and octtree based methods, please refer to the
papers by Bern et al. [1] and Mitchell and Vavasis [10].
Ruppert [12] proposed the Delaunay refinement algo-
rithm to mesh a 2D polygonal domain. The mesh is
graded, i.e., the shortest edge incident to every vertex
v has length at least a constant factor of the local fea-
ture size at v. Every triangle has bounded aspect ra-
tio. The size of the mesh is asymptotically optimal.
Shewchuk [13] extended Delaunay refinement to 3D for
polyhedral domains. A graded conforming Delaunay
mesh is obtained but there are two differences. First,
when some input angle is less than ���, the algorithm
may or may not terminate depending on the specific input
instance. Second, for each tetrahedron � , its radius-edge
ratio (i.e., the ratio of the circumradius of � to the short-
est edge length of � ) is bounded by a constant. Radius-
edge ratio is a fairly good indicator of the tetrahedral
shape. If the radius-edge ratio is bounded, almost all
tetrahedra have bounded aspect ratio except for a class
known as slivers. Nevertheless, bounded radius-edge ra-
tio works well in some applications [9].

Recently, methods have been discovered to eliminate
slivers when every input angle is at least ���. Li and
Teng [8] improved Delaunay refinement with a random
point-placement strategy in line of Chew [4]. Cheng
et al. [3] introduced sliver exudation to eliminate sliv-
ers from a Delaunay mesh of a periodic point set with
bounded radius-edge ratio. Cheng and Dey [2] in-
troduced weighted Delaunay refinement which extends
sliver exudation to handle boundaries. Both algorithms
by Li and Teng [8] and Cheng and Dey [2] produce a
graded conforming Delaunay mesh with bounded aspect
ratio and asymptotically optimal size.

Much less is known about handling polyhedral do-
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mains with input angles less than ���. Murphy et
al. [11] showed the existence of a conforming Delau-
nay mesh, but their method produces tetrahedra of poor
shape and unnecessarily many vertices. Cohen-Steiner
et al. [5] proposed an improved method and they ex-
perimentally studied the effectiveness of their algorithm.
Shewchuk [14] attacked the problem differently and gen-
erated a constrained Delaunay tetrahedralization. In
the above results, gradedness is not guaranteed and the
radius-edge ratio is not guaranteed to be bounded every-
where. It is sometimes unavoidable that the edge length
and the shape of tetrahedra deteriorate near a small input
angle. Thus, it is conceivable that there are lower bound
on edge length and upper bound on radius-edge ratio that
use constant factors depending on the input angle. Nev-
ertheless, no such result is known till now.

For the purposes of this paper, we measure three types
of angles as follows. First, angles between adjacent
edges. Second, take an edge uv and a facet F such
that u � �F and uv and F are non-coplanar. Let
L be the plane through uv perpendicular to the sup-
porting plane of F . The angle between uv and F is
minf�puv � p � L � int�F �g. Third, take two adja-
cent and non-coplanar facets F� and F�. Let Hi be the
supporting plane of Fi. For each point u � H� �H�, let
Lu be the plane throughu perpendicular toH��H�. The
angle between F� and F� is minu�H��H�

f�puq � p �
Lu� int�F��� q � Lu� int�F��g. Throughout this paper,
� denotes the smallest angle in the domain measured as
described above. We assume that � � ��� as the other
case has been solved [2, 8].

We present an algorithm MESH that constructs a con-
forming unweighted Delaunay tetrahedralization given a
polyhedral domain. The mesh is graded and has bounded
radius-edge ratio everywhere (Theorem 1 in Section 10).
Let � � ��� ���� and �� 	 �� be two a priori chosen
constants. Our algorithm encloses the input edges within
a buffer zone whose size is proportional to local feature
size. For every tetrahedron � , if � does not lie inside the
buffer zone, its radius-edge ratio ��� � � ��; otherwise,
��� � � �� where �� depends on � and �. The shortest
edge incident to a vertex v has length at least a factor 

of the local feature size at v where 
 depends on � and �.

The rest of the paper is organized as follows. Sec-
tion 2 gives some basic definitions and an overview of
our algorithm. Section 3 describes the augmentation of
the input complex with the buffer zone before MESH pro-
cesses it. Section 4 describes MESH. Sections 5–7 prove
that the output mesh is conforming. Sections 8–10 prove
the bounds on edge length and radius-edge ratio. In Sec-
tion 11, we discuss some future work.

ca

b

x

g(x)
f(x)

Figure 1: The large and small circles have radii f�x� and
g�x� respectively.

2 Preliminaries and overview

For a point x, the local feature size f�x� is the radius of
the smallest ball centered at x that intersects two disjoint
elements of P. Local feature sizes satisfy the Lipschitz
property: f�x� � f�y� 	 kx � yk for any two points x
and y. It is inconvenient to use local feature sizes directly
when handling domains with acute angles. For a point x,
the local gap size g�x� is the radius of the smallest ball
centered at x that intersects two elements of P, at least
one of which does not containx. Figure 1 illustrates local
feature and gap sizes. Clearly, g�x� � f�x� and for each
vertex v of P, g�v� 
 f�v�. Moreover, we can prove
that g�x� 
 ��f�x�� for the points that we are interested
in (Lemmas 16 and 17 in Section 10). In general, local
gap sizes do not satisfy the Lipschitz property. However,
the Lipschitz property holds under certain conditions and
this sufficient for our purposes.

LEMMA 1 Let e be an edge of P. If x and y are two
points in e such that x � int�e�, then g�x� � g�y� 	
kx� yk.

Proof. Let B be the ball centered at x with radius
g�y� 	 kx� yk. So B intersects two elements of P, one
of which does not contain y. Denote this element by E.
Since y � e and x � int�e�, E does not contain x. So
radius�B� � g�x�.

We need concepts including weighted distance and or-
thogonality that are instrumental to obtaining our results.
Let S and S� denote two spheres centered at p and q re-
spectively. The weighted distance ��S� S�� is defined as
kp � qk� � radius�S�� � radius�S���. The weighted
distance ��x� S� between a point x and S is defined the
same way by treating x as a sphere of zero radius. S and
S� are orthogonal if ��S� S �� 
 �. In this case, S and S�

intersect and for any point x � S � S �, the normal to S
at x is tangent to S �. That is, S and S� intersect at right
angle. If S and S� are orthogonal, p lies outside S� and
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q lies outside S. The points at equal weighted distances
from S and S� lie on a plane. We call it the bisector plane
of S and S�. The bisector plane is perpendicular to the
line through p and q. If S and S � intersect, their bisector
plane is the plane containing the circle S � S�.

We enclose the edges of P with a buffer zone. We
compute spheres centered at points on edges of P. The
buffer zone boundary is the outer boundary of the union
of these spheres. P is then augmented with the buffer
zone boundary to yield a new complex Q. The idea is
to apply Delaunay refinement to Q to mesh the space
outside the buffer zone such that the tetrahedralization
of the space inside the buffer zone is automatically in-
duced. The spheres are judiciously chosen so that con-
secutive ones are orthogonal. The intuition is that the
space outside the buffer zone will have non-acute angle,
thus allowing the use of Delaunay refinement. There are
still two difficulties to overcome. First, we need to guar-
antee that unnecessarily short edges are not forced when
constructing the buffer zone. Second, we need a method
to triangulate the spherical buffer zone boundary.

3 Augmenting P

We describe the buffer zone and its merging with P
to yield Q. Several properties of the buffer zone and
Q are described in Lemmas 2–5. It suffices to know
the construction of the buffer zone and Q, Lemma 2
and Lemma 4 to understand MESH (Section 4), prove
boundary conformity (Sections 5–7) and prove termina-
tion of MESH (Sections 8 and 9). Lemma 3 is used with
Lemma 2 to prove Lemma 5 which is then used in Sec-
tion 10 to analyze the edge lengths and radius-edge ratio.

3.1 Protecting spheres

Let � be some fixed constant chosen from ��� �� �. For
each edge e of P, we create some spheres with centers
lying on e. We call these protecting spheres. First, for
each vertex v of P, we create a sphere Sv with center v
and radius � � g�v�. Second, for each edge uv of P, we
create two protecting spheres Suv and Svu with centers
uv and vu onuv as follows. Let �uuv be the smallest angle
between uv and an edge/facet of P incident to u. �vuv is
symmetrically defined. Define �uuv 
 minf���� �uuvg
and �vuv 
 minf���� �vuvg. The positions of uv and vu
and the radii of Suv and Svu are:

ku� uvk 
 � sec���uuv� � g�u�
radius�Suv � 
 ku� uvk � sin���uuv�

Figure 2: � 
 ��� and the base angle is ��.

kv � vuk 
 � sec���vuv� � g�v�
radius�Svu� 
 kv � vuk � sin���vuv�

By construction, Su and Suv are orthogonal and so are
Sv and Svu . Third, we call the following algorithm
Split�uv� vu� which returns a sequence of protecting
spheres that cover uvvu. We call two protecting spheres
consecutive if their centers are neighbors on some edge
of P.

Algorithm Split(x� y)
Input: The segment xy and protecting spheres Sx and

Sy.
Output: A sequence of protecting spheres, including Sx

and Sy , that cover xy. Every protecting sphere
has positive radius. Any two consecutive protect-
ing spheres are orthogonal.

1. Compute the point z on xy using the relation

kx�zk 
 kx� yk� 	 radius�Sx�
� � radius�Sy�

�

� � kx� yk

2. Set Z 

pkx� zk� � radius�Sx��

3. if Z 	 �� � g�z�
4. then create a protecting sphere Sz with center z

and radius � � g�z�
5. Split�x � z �
6. Split�z � y�
7. else create a protecting sphere Sz with center z

and radius Z

Note that the sphere with center z and radius Z com-
puted in lines 1 and 2 is orthogonal to both Sx and
Sy. Figure 2 shows the protecting spheres created for
the sides of an isosceles triangle. The following lemma
states that each protecting sphere Sx obtained has radius
��� � g�x��, the distance between two neighboring cen-
ters is lower bounded by their local gap sizes and the
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local gap sizes of two neighboring centers do not dif-
fer much. The proof of Lemma 2 can be found in Ap-
pendix 12.1.

LEMMA 2 Let c� 
 �����
p
�� 	 � and c� 


minfp���� sin�g � �. There exist constants c� � c�
and c� � � such that for each edge uv of P, the follow-
ing hold.

(i) Suv and Svu are orthogonal to Su and Sv respec-
tively. The two ratio radius�Suv �

g�uv�
and radius�Svu �

g�vu�
lie

in �c��� c���.

(ii) Split�uv� vu� terminates and returns a sequence S
of protecting spheres covering uvvu. Any two con-
secutive protecting spheres inS are orthogonal. For
any Sz � S � fSuv � Svug, the ratio radius�Sz �

g�z�
lies

in �c��� ���.

(iii) Let x and y be two neighboring centers of pro-
tecting spheres on uv. Then kx � yk 	 c�� �
maxfg�x�� g�y�g and g�y� � c�� � g�x�.

3.2 Buffer zone

Given a set S of spheres, we use Bd�
S
S�S S� to de-

note the outer boundary of
S
S�S S. Let B 
 Bd�

S
Sx�,

where Sx runs over all protecting spheres created. The
space inside B is the buffer zone. For each edge uv of P,
let Suv be the sequence of protecting spheres whose cen-
ters lie on uv. B�SSx�Suv

Sx consists of a sequence of
rings delimited by two spheres with holes. This decom-
position is obtained by cuttingB � SSx�Suv

Sx with the
bisector planes of consecutive protecting spheres. The
two delimiting spheres with holes are B�Su and B�Sv.
For each Sz � Suv � fSu� Svg, Sz contributes exactly
one ring B � Sz. For each ring, we define its width as
the distance between the parallel planes containing the
two holes. Lemma 3 states that the width of each ring is
lowered bounded by the local gap size and so is the ra-
dius of each hole on B�Sx for any protecting sphere Sx.
Moreover, B encloses the edges ofP withoutcausing any
unwanted self-intersection or intersection with P. The
proof of Lemma 3 can be found in Appendix 12.2.

LEMMA 3 Let Sx be a protecting sphere. There exist
constants c� � c� � c	 � c� such that:

(i) The radius of any hole on B � Sx is at least c	�� �
g�x�.

(ii) If B � Sx is a ring, its width is at least c��� � g�x�.

(iii) If E is a vertex, edge or facet of P disjoint from x,
the minimum distance between Sx and E is at least
��� ��� � g�x�.

(iv) Let Sy be a protecting sphere that is not consecutive
to Sx. The minimum distance between B � Sx and
B � Sy is at least c��� � g�x�.

3.3 The new complex Q

We merge B with P to produce a new complex Q. B
splits each facet of P into two smaller facets, one inside
B and one outsideB. These facets are the flat facets ofQ.
For each edge uv of P, each ring B � Sx where x � uv
is divided by the facets of P incident to uv into curved
rectangular patches; and for each vertex v of P, B � Sv
is divided by the facets of P incident to v into spherical
patches. These patches are the curved facets of Q. The
centers of protecting spheres split the edges of P into the
linear edges ofQ. The circular arcs on the boundaries of
curved facets are the curved edges of Q. The vertices of
Q consists of the endpoints of linear and curved edges.

For any protecting sphere Sx and any curved facet E
on B � Sx, �E consists of curved edges that lie at the
intersections between Sx and either facets of P or pro-
tecting spheres consecutive to Sx. Moreover, these two
kinds of curved edges alternate in �E. How many edges
can a facet F of P, where x � �F , contribute to �E? If
x is not a vertex of P, the answer is clearly at most one
as E is rectangular. Suppose that x is a vertex of P. Ob-
serve that x appears on exactly one simple cycle in �F .
Moreover, Sx is too small to intersect more than one cy-
cle in �F or intersect the same cycle more than twice.
Thus, Sx � F is connected. It follows that F contributes
at most one edge to �E. However, a hole on B �Sx may
contribute several edges to �E when x is a vertex of P.

By design, all angles in the space outside B are equal
to ���. The next lemma gives a precise statement.

LEMMA 4

(i) Let F be a curved facet. Let F � be a curved/flat
facet adjacent to F . If F and F � do not lie on the
same sphere, the normal toF � at any point inF�F �

is tangent to F .

(ii) Let e and e� be two adjacent curved edges that do
not lie on the same circle. Let � (resp. ��) be the line
through e � e� that is tangent to and coplanar with
e (resp. e�). Then � is perpendicular to ��.

(iii) Let F be a curved/flat facet. Let e be a curved edge
adjacent to F . If e and F do not lie on the same
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plane or sphere, then the normal to F at e � F is
tangent to and coplanar with e.

Lemma 4 motivates the use of Delaunay refinement in
the space outside B. In essence, we compute a mesh that
approximates Q and respects the input boundary. Due
to Delaunay refinement (modified to handle curved ele-
ments), the edge lengths in the final mesh will be pro-
portional to the local feature sizes with respect toQ. For
each point p, let bf �p� denote the local feature size at p
with respect to Q.1 Lemma 5 states that if p lies on or
outside B, bf�p� 
 ��g�p��. This will allow us to re-
late the edge lengths in the final mesh to the local fea-
ture sizes with respect to P in Section 10. The proof of
Lemma 5 can be found in Appendix 12.3.

LEMMA 5 For any point p on or outsideB, bf�p� � �
 �
g�p� for some constant  � �.

4 Algorithm MESH

We introduce some notations. Given a circle C on a
sphere S, the orthogonal sphere of S at C is the sphere
orthogonal to S that passes through C. We use

�
pq to

denote a circular arc with endpoints p and q.
MESH approximates Q by a Delaunay subcomplex.

We initialize a set V as the set of vertices of Q. The ini-
tial complex is the Delaunay tetrahedralization, DelV,
of V. V induces several types of geometric objects that
guide MESH to refine the mesh by inserting vertices into
V. We first define these objects.

Each curved edge e of Q is split by the vertices in V
into helper arcs. Let S be the equatorial sphere of e, i.e.,
e lies on an equator of S. Let

�
pq be a helper arc on e. The

circumcap K of
�
pq is the smallest cap on S that contains

�
pq. If the angular width of

�
pq is less than �, the normal

sphere of
�
pq is the orthogonal sphere of S at �K and

�
pq is encroached by a point v if v lies inside its normal
sphere. If the angular width of

�
pq is larger than ���,

�
pq

is wide.
Helper triangles are defined when no helper arc is wide

or encroached by a vertex in V. Let CHx denote the con-
vex hull of V � B � Sx for a protecting sphere Sx. If a
convex polygon P with more than three vertices appears
as a boundary facet of CHx, then we triangulateP as fol-
lows. Let L be the supporting plane ofP . The circumcap
of P is the cap on Sx that is bounded by L�Sx and sep-
arated from CHx by L. First, for each helper arc

�
pq such

1 bf�p� is the radius of the smallest ball centered at p that intersects
two disjoint elements of Q.

xS

Figure 3: The figure shows Sx and two protecting
spheres consecutive to Sx. Some boundary triangles of
CHx are shown. The non-shaded triangles are helper tri-
angles. The shaded ones are not as the vertices of each
shaded triangle lie on the boundary of the same hole on
B � Sx.

that p� q � �P and
�
pq lies on the circumcap of P , we in-

sert pq as a diagonal in P . Then we arbitrarily complete
the triangulation of P . Afterwards, a boundary triangle t
of CHx is a helper triangle if no hole on B�Sx contains
all vertices of t on its boundary. See Figure 3. Let H be
the plane containing a helper triangle t. The circumcap
of t is the cap K on Sx that is bounded by H � Sx and
separated from CHx by H. If the angular diameter of K
is less than �, the normal sphere of t is the orthogonal
sphere of Sx at �K and t is encroached by a point v if v
lies inside its normal sphere. If the angular diameter of
K is larger than ���, t is wide.

Subfacets are defined when no helper arc is wide or
encroached by a vertex in V. For every facet F of P, a
subfacet is a triangle on F in the 2D Delaunay triangula-
tion of V � F . Note that we define subfacet using facets
of P instead of flat facets of Q because MESH only ap-
proximates Q and it does not respect the curved bound-
ary edges of flat facets. The circumcap of a subfacet � is
the disk bounded by the circumcircle of � . The normal
sphere of � is the equatorial sphere of � . If a point v lies
inside the normal sphere of � , � is encroached by v.

We are ready to describe MESH. Starting withV as the
set of vertices of Q, MESH repeatedly invoke the appli-
cable rule of the least index in the following list. When
no rule is applicable, the subcomplex of DelV covering
the input domain is the final mesh. Recall that �� 	 ��
is an a priori chosen constant.

Rule 1: Pick a helper arc that is wide or encroached by a
vertex in V. Preference is given to wide helper arcs.
Insert the midpoint of the helper arc.

Rule 2: Pick a helper triangle t that is wide or en-
croached by a vertex in V. Preference is given to
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wide helper triangles. Let v be the center of the cir-
cumcap of t. If v does not encroach upon any helper
arc, insert v. Otherwise, reject v and apply Rule 1
to split the helper arcs encroached by v.

Rule 3: Let v be the center of the circumcap of a sub-
facet that is encroached by a vertex in V. If v does
not encroach upon any helper arc, insert v. Other-
wise, reject v and apply Rule 1 to split the helper
arcs encroached by v.

Rule 4: Let v be the circumcenter of a tetrahedron � such
that ��� � 	 �� and no vertex of � lies inside B.
If v does not encroach upon any helper arc, helper
triangle or subfacet, insert v. Otherwise, reject v,
apply Rule 1 to split the helper arcs encroached by
v, and then apply Rules 2 and 3 to split the helper
triangles and subfacets encroached by v.

This completes the description of MESH. The rest of
the paper focuses on proving the guarantees offered by
MESH. We will see that MESH never inserts a vertex in-
sideB, i.e., the vertices insideB are always the endpoints
of linear edges of Q.

5 Properties of orthogonality

This section presents three geometric results regarding
orthogonal spheres. We introduce some notations. Given
a sphere S and a point p outside S, K�p� S� denotes the
cap on S visible from p. Given a cap K on a sphere S, if
the angular diameter of K is less than �, we use K� to
denote the orthogonal sphere of S at �K. If S is a plane
(infinite sphere), then K� is the equatorial sphere of K.
For any point q � �K�p� S�, pq is tangent to S, so p is
the center of K�p� S��.

CLAIM 1 Let S be a sphere. Let S� be a sphere such
that S � S � is an equator of S �. For any point z on the
plane containing S � S � and outside S �, K�z� S��� is
orthogonal to S.

Proof. Let x and y be the centers of S and
S� respectively. Recall that z is the center of
K�z� S���. Let r be the radius of K�z� S���.
Since xyz is a right-angled triangle, we have
kx�zk� 
 kx�yk�	ky�zk�. By Pythagoras theorem
again, we have kx � yk� 
 radius�S�� � radius�S���.
Since S� and K�z� S��� are orthogonal, we have
ky � zk� 
 radius�S��� 	 r�. It follows that
kx � zk� 
 radius�S�� 	 r� and so K�z� S��� is

orthogonal to S.

CLAIM 2 Let p and q be two non-diametral points on
a sphere S centered at x. Let N be the set of spheres
orthogonal to S that pass through p and q. There exists
a unique circle C such that

(i) C is coplanar with pqx, C passes through p and q,
andN is the set of spheres that pass through C.

(ii) The locus of the centers of spheres inN is the line �
through the center of C perpendicular to the plane
containingC.

Proof. Let H be the plane containing p, q and x.
Take N � N . The two circles H � S and H � N are
orthogonal in the sense that they intersect at right angle.
It can be verified that there is a unique circle C on H that
is orthogonal to H�S and passes through p and q. Thus,
H�N 
 C andN is the set of spheres that pass through
C. This proves (i) and (ii) is an easy corollary of (i).

CLAIM 3 Let S be a sphere. Let K� and K� be caps on
S with angular diameter less than �. If K� � K�, K�

�

encloses K�
� .

Proof. Fix the center of K� and grow it to a cap K such
that �K is tangent to �K�. So K � K�. Clearly, K�

encloses K�
� . If we treat the contact point between �K

and �K� as a degenerate circle, K� and K�
� belong to

the system of orthogonal spheres as described in Claim 2
in the limiting case. So K�

� encloses K� and hence
K�

� .

6 Locations of centers

We study the locations of the circumcap centers when
MESH inserts them. To this end, we need to associate
helper arcs, helper triangles and subfacets with elements
of Q. We first introduce some notations. Given a helper
arc, helper triangle or subfacet �, let K� denote the cir-
cumcap of �. Hence, if the angular diameter of K� is
less than �, K�

� is the normal sphere of �. We extend
the definition for any circular arc �. The circumcap K�

is the smallest cap on the equatorial sphere of � that con-
tains �. K�

� is defined as before if the angular diameter
of K� is less than �.
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A helper arc belongs to the curved edge that contains
it. A subfacet � belongs to the flat facet F if F lies out-
side B and F contains the vertices of � . Note that it is
possible that � �� F . This definition does not cover all
subfacets but we are not concerned as we will see in Sec-
tion 7 that MESH never deals with subfacets that are not
covered. Clearly, a subfacet belongs to at most one flat
facet. A helper triangle t belongs to a curved facet F if
there exists a connected subset � � int�Kt��F such that
cl��� contains the vertices of t. This definition is some-
what complicated due to the fact that t does not lie on
B and the vertices of t may lie on the boundaries of two
curved facets. The following result shows that t belongs
to exactly one curved facet under the right conditions.

LEMMA 6 Assume that MESH has not inserted any ver-
tex inside B. If there is no wide or encroached helper
arc, each helper triangle belongs to exactly one curved
facet.

Proof. Let t be a helper triangle on CHx. Assume to
the contrary that t does not belong to any curved facet.
Then some helper arc � must cross Kt and cut �Kt into
two arcs A� and A� such that each int�Ai� contains a
vertex of t. Note that � does not lie on Sx � Sy for any
protecting sphere Sy consecutive to Sx. Otherwise, A�

or A� lies inside Sy which implies that a vertex of t lies
inside B, contradicting our assumption. It follows that �
lies at the intersection of Sx and a facet of P, i.e., Sx is
the equatorial sphere of �.

IfAi is less than a semicircle for some i, then K� con-
tains Ai. But then � is encroached by the vertex of t in
int�Ai�, contradicting our assumption that no helper arc
is encroached. Suppose that A� and A� are semicircles.
Then � passes through the center of Kt. If any endpoint
of � lies outside Kt, then K� contains Kt and so some
vertex of t encroaches upon �, contradiction. Otherwise,
both endpoints of � lie on �Kt. Thus, the vertices of t
and the endpoints of � are vertices of a boundary facet
of CHx. Recall that when triangulating the boundary of
CHx, we first connect the endpoints of � with a diago-
nal. But then this diagonal cuts t and so twould not exist,
contradiction. This completes the proof that t belongs to
at least one curved facet.

Lastly, t cannot belong to two curved facets, otherwise
the definition would imply that the interior of two curved
facets intersect.

Clearly, for a helper arc �, the center of K� lies on
the curved edge that � belongs to. In fact, the center is
the midpoint of �. The next two lemmas show that for a

subfacet (resp. helper triangle) �, the center of K� lies
on the flat facet (resp. curved facet) that � belongs to.
With slightly more work in Section 7, these two lemmas
will allow us to show that Rules 2 and 3 never insert a
vertex inside B.

LEMMA 7 Assume that MESH has not inserted any ver-
tex inside B and there is no wide or encroached helper
arc. Let � be a subfacet belonging to a flat facet F . The
center of K� lies on F .

Proof. Let v be the center of K� . Let H be the plane
containing F . If v �� F , K� intersects �F at an arc �
such that � cuts K� into two parts, one contains v and
the other contains K� � F . This implies that K� � F
lies inside K�

� . Since the vertices of � lie on K� � F ,
some vertex of � lies inside K�

� . The emptiness of K�

implies that � lies within a helper arc �. By Claim 3,
K�
� encloses K�

� , so � is encroached by some vertex of
� , contradiction.

LEMMA 8 Assume that MESH has not inserted any ver-
tex inside B and there is no wide or encroached helper
arc. Let t be a helper triangle belonging to a curved facet
F . The center of Kt lies on F .

Proof. Suppose that F � Sx for a protecting sphere Sx.
Let v be the center of Kt. Assume to the contrary that v
lies outside F .

Case 1: v lies outside B � Sx. So v lies inside
some protecting sphere Sy consecutive to Sx. Note that
v � K�y� Sx�. Let p be a vertex of t that does not lie on
Sx � Sy (such a vertex exists by the definition of helper
triangle). Since p lies outsideSy , Kt intersects Sx�Sy at
an arc �. The emptiness of Kt implies that � lies within
a helper arc �. Since � is not wide by assumption, the
angular width of � is less than �, soK�

� is defined. Since
� 
 Kt�Sx�Sy and v � K�y� Sx�, the angular diame-
ter of Kt is also less than �, otherwise the angular width
of � would be at least �. So the normal sphere of t is
K�
t . Let H be the plane through x and the endpoints

of �. By Claim 1, K�
� is orthogonal to Sx. Since Sy

and K�
t are also orthogonal to Sx, Claim 2 implies that

Sy, K�
t and K�

� intersect at the circle H �K�
� . It fol-

lows that the caps K�, Kt and K�y� Sx� contain � and
their boundaries pass through the endpoints of �. See
Figure 4. Using this and the fact that v � K�y� Sx�, we
get Kt � K� � K�y� Sx�. This implies that the vertex
p of t lies inside K� as p lies outside Sy . By Claim 3,
p lies inside K�

� , contradicting the assumption that � is
not encroached.
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Figure 4: The three solid line segments delimit the caps
K� , Kt and K�y� Sx� on Sx.

Case 2: v lies on a curved facet other than F on
B � Sx. We will reduce to case 1 by properly choosing
a vertex p of t and a sphere to play the role of Sy in
case 1. Let � be the shortest geodesic on Sx from v
to a vertex q of t. Clearly, � � Kt. We claim that �
does not cross Sx � Sw for any protecting sphere Sw
consecutive to Sx. Observe that K�w� Sx� does not lie
inside Kt, otherwise the emptiness of Kt would imply
that Kt � K�w� Sx� contains some wide helper arc.
Thus, Kt � int�K�w� Sx�� is star-shaped with respect
to v and shortest geodesics on Sx originating from v. So
our claim follows. Since v �� F , our claim implies that
� enters F from another curved facet at a curved edge
e where e is also incident on a flat facet F � adjacent to
F . Let L be the plane containing F �. Note that L passes
through x. Consider the infinite sphere bounded by L
with the halfspace containing v as its inside. We denote
this infinite sphere by L�. L� will play the role of Sy in
case 1. We claim that t has a vertex outside L�. Recall
that the destination of � is a vertex q of t and � intersects
L. If q �� L, then q �� L�, otherwise � would be more
than a semicircle and so Kt � L is a complete circle.
Since Kt is empty and e � Kt � L, this implies that e is
a complete circle, contradiction. If q � L, then q � e. If
t does not have any vertex outside L�, then Kt � L�.
Using this and the fact that t belongs to F , we conclude
that for any neighborhood N �q� around q, N �q� � F
has points inside L�. However, since � enters F at q,
for a sufficiently small neighborhood N �q� around q,
N �q� � F does not lie inside L�, contradiction. This
proves our claim that t has a vertex p outside L�. To
summarize, we have the same setting as in case 1 with
Sy substituted by L�: L� is orthogonal to Sx, v � L�,
p �� L�, and Kt � Sx � L is an arc within a helper arc
�. Thus, the argument in case 1 shows that p encroaches
upon �, contradiction.

7 Boundary conformity

We are ready to prove that DelV is conforming when-
ever no helper arc is wide or encroached and no sub-
facet is encroached. Thus, the output mesh is conform-
ing when MESH terminates (termination will be proved
in Sections 8 and 9). We start with a result characterizing
the subcomplex of DelV inside B.

LEMMA 9 Assume that MESH has not inserted any ver-
tex inside B. Let Sx and Sy be two consecutive protect-
ing spheres. When there is no wide or encroached helper
arc, (i)–(iii) hold. When there is no wide or encroached
helper arc/triangle, (i)–(iv) hold.

(i) For any flat facet F incident to x and any helper arc
�
pq � B � Sx � F , the equatorial sphere of pqx is
empty.

(ii) For any helper arc endpoint p � Sx �Sy, the equa-
torial sphere of pxy is empty.

(iii) For any helper arc
�
pq � Sx � Sy , the circumsphere

of pqxy is empty.

(iv) For any helper triangle pqr on CHx, the circum-
sphere of pqrx is empty.

Proof. Consider (i). Let � 

�
pq. Let S be the equatorial

sphere of pqx. Observe that the centers of Sx, S and
K�
� lie on a straight line. Since x lies on S but outside

K�
� , the center of S lies between x and the center of

K�
� . Thus, Bd�Sx � K�

� � encloses S. Since x is the
only vertex inside Bd�Sx �K�

� �, S is empty. Consider
(ii). Let S be the equatorial sphere of pxy. Since Sx and
Sy intersect at right angle, �xpy in triangle pxy is equal
to ���. Thus, xy is the diameter of S which implies
that Bd�Sx � Sy� encloses S. Since x and y are the
only vertices inside Bd�Sx � Sy�, S is empty. Consider
(iii). The circumsphere of pqxy is the equatorial sphere
of pxy which is empty by (ii). We can prove (iv) by
considering the circumcap and normal sphere of pqr and
employing the same arguments in proving (i).

Next, we bootstrap from Lemma 9 to show that MESH

never inserts any vertex inside B.

LEMMA 10 MESH never inserts any vertex inside B.

Proof. Assume to the contrary that MESH wants to insert
a vertex v inside B for the first time. MESH is not apply-
ing Rule 1 since Rule 1 never inserts a vertex inside B.
It follows that there is no wide or encroached helper arc.
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By Lemmas 6 and 8, v is not inserted by Rule 2. If v is in-
serted by Rule 3 to split an encroached subfacet � , then �
does not lie inside B by Lemma 9. In fact, Lemma 9 fur-
ther implies that � belongs to a flat facet outside B. But
then v does not lie inside B by Lemma 7, contradiction.
The remaining possibility is that Rule 4 wants to insert v
inside some protecting sphere Sx. It follows that there is
no wide or encroached helper arc/triangle. Let v be the
circumcenter of the tetrahedron � . By Rule 4, � has no
vertex inside B. At least one vertex of � is outside Sx as
Sx cannot be the empty circumsphere of � (x lies inside
Sx). Let S be the circumsphere of � . Let K be the cap
on Sx that is bounded by Sx �S and lies inside S. Since
x does not lie inside S, the angular diameter of K is less
than �, so K� is defined. IfK�Kt 
 	 for all helper tri-
angle t on CHx, then K � K�y� Sx� for some protecting
sphere Sy consecutive to Sx. It follows that Bd�Sx�Sy�
encloses S and hence � , contradicting the fact that MESH

has not inserted any vertex inside B. Next, take a helper
triangle t� on CHx such that K�Kt� �
 	. Starting from
t�, we visit a sequence of helper triangles t�� t�� t�� � � � to
derive a contradiction as follows.

Case 1: K � Kti . Clearly S lies inside Bd�Sx �K��.
So any vertex of � outside Sx lies inside K�. Since K�

ti

encloses K� by Claim 3, some vertex of � encroaches
upon ti, contradiction.

Case 2: K �� Kti . The vertices of ti divide �Kti into
three arcs and by emptiness of K, �K � �Kti lie on one
arc, say the one between vertices u and v of ti.

Case 2.1: There is a helper triangle ti�� on CHx that
shares uv with ti. IfK � Kti�Kti�� , (refer to Claim 2)
we move a point z from the center of K�

ti
towards the

center of K�
ti��

and stop as soon as �K�z� Sx� is tan-
gent to �K. Tangency implies that K � K�z� Sx�,
so Bd�Sx � K�z� Sx��� encloses S. Since z lies be-
tween the centers of K�

ti
and K�

ti��
, Claim 2 implies that

Bd�K�
ti
�K�

ti��
� encloses K�z� Sx�

�. So Bd�Sx�K�
ti
�

K�
ti��

� encloses Sx � K�z� Sx�
� and hence S. Hence,

some vertex of � encroaches upon ti or ti��, contradic-
tion. If K �� Kti �Kti�� , we continue to visit ti��. We
will never return to ti as K �Kti 
 K �Kti�� .

Case 2.2: If ti is the only helper triangle on CHx

incident to uv, u and v are the endpoints of a helper
arc � � Sx � Sy for some protecting sphere Sy
consecutive to Sx. Let z be the center of K�

� . By
Claim 1, K�

� is orthogonal to Sx, so K�
� 
 K�z� Sx�

�.
If K � Kti � K�z� Sx�, we conclude as in case
2.1 that Bd�Sx � K�

ti
� K�

� � encloses S. So some
vertex of � encroaches upon ti or �, contradiction. If

K �� Kti �K�z� Sx�, then K � K�z� Sx� �K�y� Sx�
which implies that Bd�Sx�K�

� �Sy� encloses S. Since
no vertex of � lies inside Sx or Sy, some vertex of �
encroaches upon �, contradiction.

Finally, we put together Lemmas 6–10 and summarize
the main results of this section.

COROLLARY 1 MESH never inserts a vertex inside B.

(i) Whenever no helper arc is wide or encroached, the
following hold.

(a) Subfacets inside B are not encroached.

(b) Each subfacet that does not lie inside B be-
longs to exactly one flat facet. Each helper
triangle belongs to exactly one curved facet.

(c) The center of the circumcap of a subfacet
(resp. helper triangle) � lies on the flat facet
(resp. curved facet) that � belongs to.

(ii) Whenever no helper arc/triangle is wide or en-
croached, the following hold.

(a) For any two consecutive protecting spheres Sx
and Sy and any helper arc

�
pq � Sx � Sy ,

pqxy � DelV.

(b) For any protecting sphere Sx and any helper
triangle pqr on CHx, pqrx � DelV.

(iii) Whenever no helper arc is wide or encroached and
no subfacet is encroached, DelV is conforming.

8 Between adjacent elements

The termination of MESH hinges on the fact that we will
not keep generating encroached helper arc, helper trian-
gle or subfacet. In particular, if a new vertex inserted
on one element encroaches upon something on an adja-
cent and non-incident element and if this happens indef-
initely, then algorithm will not terminate. In this section,
we show that this cannot happen. Lemmas 11, 12 and 13
analyze the cases for helper arc, helper triangle and sub-
facet respectively. Lemmas 11 and 12 are stated more
generally for their usage in Section 9.

LEMMA 11 Let � be an arc on a curved edge e such that
the angular width of � is less than �. If E is an element
of Q such that E is adjacent to e and e �� �E, then E
does not intersect the inside of K�

� .
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Proof. Case 1: e lies at the intersection between a pro-
tecting sphere Sx and a facet of P. Then E is a curved
edge or curved facet lying on a protecting sphere Sy
consecutive to Sx. Since e lies outside Sy and e meets
Sx � Sy at right angle, the cone of rays from x through
Sx � Sy and the cone of rays from x through �K� do
not cross. Observe that Sy and K�

� lie inside their cor-
responding cones. Thus, Sy does not intersect the inside
of K�

� and neither does E.
Case 2: e � Sx � Sy for two consecutive protecting

spheres Sx and Sy. The endpoints of e lie on two facets
F� and F� of P. Note that x� y � F� � F�. Let Hi be
the halfplane that is bounded by the supporting line of
xy and contains the endpoint of e on Fi. For i = 1 or
2, since e meets Hi at right angle, either Hi avoids K�

�

or Hi is tangent to K�
� . Observe that either E � Hi

for some i or E is separated from e by H� and H�. It
follows that E does not intersect the inside of K�

� .

LEMMA 12 Suppose that there is no wide or encroached
helper arc. Let t be a helper triangle belonging to a
curved facet F . Let K � Kt be a cap with the same
center as Kt and angular diameter less than �. Let E be
an element ofQ adjacent toF . For any vertex v � V�E,
v does not lie inside K�.

Proof. Let F � Sx for some protecting sphere Sx. As-
sume to the contrary that v lies inside K�. Observe that
E �� Sx, otherwise the emptiness of K would be contra-
dicted.

Case 1: E is a curved edge or curved facet lying on
a protecting sphere Sy consecutive to Sx. In order that
K� intersects E, K must cross Sx � Sy . Otherwise, the
cone from x through �K and the cone from x through
Sx �Sy do not cross, implying that Sy does not intersect
the inside of K�, contradiction. By emptiness of K,
K � Sx � Sy is an arc � within a helper arc �. Let z�
and z be the centers of K�

� and K� respectively. By
Claim 1, K�

� is orthogonal to Sx. Since Sy and K�

are also orthogonal to Sx, Claim 2 implies that Sy, K�

and K�
� intersect at the same circle and y, z� and z are

collinear. If y lies between z� and z, the subset of Sy
inside K�

� lies outside K�. Since � lies on the subset
of Sy inside K�

� , � is outside K�, contradicting the fact
that � � K. If y does not lie between z� and z, the
subset of Sy insideK� is equal to the subset of Sy inside
K�
� . Since v lies on the subset of Sy inside K�, v lies

inside K�
� and hence K�

� by Claim 3. This contradicts
the assumption that � is not encroached.

Case 2: E is a flat facet or a curved boundary edge
of a flat facet. Let H be the plane containing the
corresponding flat facet. Note that H passes through
x. Since v lies inside K�, K� intersects Sx � H at
an arc � within a helper arc �. Since K�

� and K� are
orthogonal to Sx, H � K�

� 
 H � K� by Claim 2.
Since v lies inside H �K�, v lies inside K�

� . But then
v also lies inside K�

� by Claim 3, contradiction.

LEMMA 13 Suppose that there is no wide or encroached
helper arc. Let � be a subfacet belonging to a flat facet
F . Let E be an element of Q adjacent to F . For any
vertex v � V �E, v does not lie inside K�

� .

Proof. The proof is similar to that of Lemma 12
by treating the supporting plane of F as an infinite
sphere.

9 Insertion radius

For each vertex v, we define the insertion radius of v as
follows. If v is a vertex ofQ, rv is the minimum distance
from v to another vertex ofQ. If v is inserted/rejected by
MESH, rv is the minimum distance to a vertex in V at
the time when v is inserted/rejected. In this section, we
prove a lower bound on the insertion radii of vertices.
Thus, MESH must terminate by a packing argument.

We first introduce some notations. Consider the time
when MESH inserts/rejects a vertex v using Rule i, � �
i � . We say that v has type i and we define the parent
of v as follows. If v is the center of K� for a wide helper
arc/triangle �, the parent of v is undefined. Suppose that
v is the center of K� where � is a non-wide encroached
helper arc/triangle or an encroached subfacet. If V has
a vertex encroaching upon � (i.e., lying inside K�

� ), the
the parent of v is the nearest encroaching vertex in V.
Otherwise, K�

� is empty. What happens is that MESH

rejected a vertex p because p encroached upon � and this
also prompted MESH to consider v. The parent of v is
p in this case. If v is the circumcenter of a tetrahedron
� , the parent of v is the endpoint of the shortest edge of
� that appeared in V the latest. Finally, the parents of
vertices of Q are undefined.

We will use induction. To this end, Lemma 14 relates
the insertion radius of v to the insertion radius of its par-
ent p and to kp � vk. The proof of Lemma 14 needs the
following claim.
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CLAIM 4 Let K be a cap with angular diameter at most
���. Let v be the center ofK. For any point p insideK�

and any point q on or outside K�, kq � vk 	 ���� �
maxfkp� vk� kp� qkg.

Proof. Let z be the center of K�. Since the angular
diameter of K is at most ���, kv � zk � radius�K�� �
cos����� which is at most kq � zk��. By triangle in-
equality, kq � vk � kq � zk � kv � zk. It follows that

kq � vk 	 kq � zk���

Since p and v lie inside K�, kq � zk � kp � vk��.
Thus, kq � vk 	 kp � vk�. By triangle inequality,
kp�qk � kp�zk	kq�zkwhich is at most � � kq�zk.
Thus, kq � vk 	 kp� qk�.

LEMMA 14 Let v be a vertex of Q or a vertex in-
serted/rejected by MESH. Let p be the parent of v.

(i) If p is undefined, rv � bf �v���.

(ii) Otherwise, rv 	 kp� vk� and if rv � bf �v��, the
following hold depending on the type of v:

Type 1: p has type 2, 3 or 4 and rv 	 rp�.

Type 2 or 3: p has type 4 and rv 	 rp�.

Type 4: rv 	 �� � rp.

Proof. Go back to the time when v appeared. If v is a
vertex of Q, then rv � bf �v� by definition. We analyze
the other cases below.

Case 1: v is the center of K� for a wide helper
arc/triangle �. The parent p is undefined in this case.
If � is a helper arc, let S be the equatorial sphere of �.
Note that S is either a protecting sphere or the equato-
rial sphere of the common hole between two consecutive
protecting spheres. If � is a helper triangle, let S be the
protecting sphere that contains the vertices of �. Let E
be the element of Q that � belongs to (i.e., E is a curved
edge or curved facet depending on whether � is a helper
arc or helper triangle). Note that E lies on S. By Corol-
lary 1, v � E. Let K � K� be the cap with center v
and angular diameter ���. Let B be the smallest ball
centered at v that contains K. Let z be the center of
S. Suppose that int�B� does not contain any vertex in
V. Then rv � radius�B� 
 kv � zk � � sin������ �
kv � zk��. Observe that z lies on some linear edge of
Q that stabs S. Since all linear edges are disjoint from
B, we have kv � zk � bf �v� by definition. It follows

that rv � bf�v���. Suppose that int�B� contains a vertex
w � V. Observe that Bd�S � K�� encloses B which
implies that w lies inside K�. If w is a vertex of Q,
then w �� E as vertices on E do not lie inside K�, so
kv � wk � bf �v� by definition. Otherwise, w was in-
serted by MESH. We claim that w lies on an element
E� of Q disjoint from E. If � is a wide helper arc, then
MESH has split helper arcs only so far, so w lies on some
curved edge E�. By Lemma 11, for K� to enclose w,
E� is disjoint from E. If � is a wide helper triangle, then
MESH has split helper arcs/triangles only so far, so w lies
on some element E� of Q. By Lemma 12, for K� to en-
close w, E� is disjoint from E. This proves the claim.
Our claim implies that kv � wk � bf �v�. It follows that
rv 
 minw�B kv �wk � bf �v�.

Case 2: v is the midpoint of a non-wide encroached
helper arc �. Note that v has type 1. Let e be the curved
edge that � belongs to. Let q be the vertex in V such that
rv 
 kq � vk. Recall that p is the parent of v. We first
relate rv to kp � vk. If q lies inside K�

� , then p 
 q
by definition of parent; otherwise, kq � vk 	 kp� vk�
by Claim 4. Hence, rv 
 kq � vk 	 kp � vk�. Next,
we relate rv to bf �v� and rp. If p is a vertex of Q, then
p �� e as vertices on e do not lie inside K�

� , so kp �
vk � bf �v�. If p lies on an element E of Q such that
e �� �E, Lemma 11 implies that e and E are disjoint
and so kp � vk � bf �v�. Since rv 	 kp � vk�, we get
rv 	 bf �v�� for the above two cases. The remaining
case is that p has type 4 or p lies on a curved/flat facet
whose boundary contains e. Note that p has type 2, 3
or 4. What happens is that MESH attempted to insert
p but since p encroached upon �, MESH rejected p and
inserts v to split� now. In this case, q does not lie inside
K�
� , otherwise the parent of v would be q instead. Since

q � V when p was rejected, rp � kp� qk. By Claim 4,
kq � vk 	 kp� qk�. It follows that rv 	 rp�.

Case 3: v is the center ofK� where � is a non-wide en-
croached helper triangle or an encroached subfacet. Note
that v has type 2 or 3. Let F be the curved facet or flat
facet that � belongs to, whichever is appropriate. Let q
be the vertex in V such that rv 
 kq � vk. We first re-
late rv to kp � vk. If q lies inside K�

� , then p 
 q by
definition of parent; otherwise, kq � vk 	 kp� vk� by
Claim 4. Hence, rv 
 kq � vk 	 kp� vk�. Next, we
relate rv to bf �v� and rp. Suppose that p is a vertex of Q
or p has type 1, 2 or 3. Vertices of type 1 are always in-
serted. If p has type 2 or 3, although p encroached upon
�, p was inserted as v has type 2 or 3. It follows that p is
a vertex in V � E for some element E of Q. We invoke

11



Lemma 12 if � is a helper triangle or Lemma 13 if � is
a subfacet. The implication is that E is disjoint from F .
Since v � F by Corollary 1, kp � vk � bf�v�. Since
rv 	 kp � vk�, we get rv 	 bf �v��. The remaining
case is that p has type 4. By Rule 4, p was rejected for
encroaching upon �. In this case, q does not lie inside
K�
� , otherwise the parent of v would be q instead. Since

q � V when p was rejected, rp � kp � qk. By Claim 4,
kq � vk 	 kp� qk�. It follows that rv 	 rp�.

Case 4: v is the circumcenter of a tetrahedron � . By
definition, p is an endpoint of the shortest edge of � . Let
q be the other endpoint of this edge. If p is a vertex ofQ,
by the definition of parent, q is also a vertex of Q. This
implies that rv 
 kp � vk 
 kq � vk 
 bf �v�.
If p is not a vertex of Q, since ��� � 	 ��,
rv 
 kp� vk 	 �� � kp� qk � ��rp.

We prove one more claim and then derive the lower
bounds for insertion radii in Lemma 15.

CLAIM 5 Let v be a vertex of Q or inserted/rejected by
MESH. Let p be the parent of v. If rv 	 c � rp, then
bf �v� � bf �p� � rv��c � rp� 	 rv.

Proof. Since p is defined, rv 	 kp � vk� by
Lemma 14. Using the Lipschitz property, we get
bf �v� � bf �p� 	 kp� vk � bf �p� � rv��c � rp� 	 rv.

LEMMA 15 Let v be a vertex of Q or inserted/rejected
by MESH. If v is a vertex of Q, then rv � bf �v�. Other-
wise, there are four constants C� 	 C� 
 C� 	 C� 	 
such that if v has type i, then rv 	 bf�v��Ci.

Proof. We prove the lemma by induction using the con-
stants C� 
 ������� � ���, C� 
 C� 
 ����� 	
������� � ��� and C� 
 ��� 	 ������� � ���. Before
MESH starts, rv � bf �v� for each vertex v of Q. In the
induction step, if rv 	 bf �v��, we are done as C� 	 .
Otherwise, Lemma 14 implies that the parent p of v is
defined.

If v has type 1, by Lemma 14, p has type 2, 3 or 4 and
rv 	 rp�. By induction assumption, bf�p� � C�rp. By
Claim 5, bf �v� � C�rv 	 rv 
 C�rv.

If v has type 2 or 3, by Lemma 14, p has type 4 and
rv 	 rp�. By induction assumption, bf�p� � C�rp. By
Claim 5, bf �v� � C�rv 	 rv 
 C�rv.

If v has type 4, then rv 	 ��rp by Lemma 14.
By induction assumption, bf �p� � C�rp regardless of
whether p is a vertex of Q or p was inserted/rejected. By

Claim 5, bf �v� � C�rv��� 	 rv 
 C�rv.

We are ready to prove that MESH terminates by a
packing argument.

COROLLARY 2 MESH terminates and for each output
vertex v, its shortest incident edge has length at leastbf�v���� 	 C��.

Proof. Let vw be the shortest edge incident to
v. If w appeared in V no later than v, then
kv � wk � rv � bf�v��C� by Lemma 15. If v

appeared in V before w, then kv�wk � rw � bf �w��C�

by Lemma 15. Using the Lipschitz condition, we get
bf�v� � bf�w�	kv�wk � ��	C�� � kv�wk. The edge
length bound implies that we can center disjoint balls
at the output vertices with radii bfmin��� 	 �C��, where
bfmin is the minimum local feature size with respect to
Q. Since bfmin 	 � and the input domain has bounded
volume, there is a finite number of output vertices. It
follows that MESH terminates.

10 Mesh quality

In this section, we relate the edge lengths to local feature
size with respect to P, bound the radius-edge ratio and
summarize the guarantees offered by MESH. We first
prove in Lemmas 16 and 17 that g�p� 
 ��f�p�� for
each output vertex p.

LEMMA 16 Let uv be an edge of P. Let q be a point on
uv. There exists a constant k� � � such that

(i) If kq�uk � ������f�u� and kq�vk � ������f�v�,
then g�q� � k�� � f�q�.

(ii) For any point p on or outside B, g�p� 	 kp� qk �
k�� � f�p�.

Proof. We prove the lemma for the constant
k� 
 sin��. Consider (i). Let B be the ball centered at
q with radius g�q�. If B intersects two disjoint elements
of P, g�q� 
 f�q�. Otherwise, we can assume that B
touches u or the interior of an edge/facet of P incident to
u. So g�q� � kq�uk � sin�. By the Lipschitz condition,
f�q� � f�u� 	 kq � uk. Since kq � uk � ����� � f�u�,
we get f�q� � ��� 	 ����� � kq � uk. So
f�q� � ��� 	 ����� sin��� � g�q� � g�q���k���.
Consider (ii). Suppose that kq � uk � ����� � f�u�.
Using the Lipschitz condition and the fact that
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kp � uk � � � f�u�, we get f�p� � f�u� 	 kp� uk �
��� 	 ����� � kp � uk. Since kq � uk � ����� � f�u�,
kq � uk � kp� uk��. Using triangle inequality, we get
kp � qk � kp � uk � kq � uk 	 kp � uk��. Thus,
f�p� � ���	������ � kp�qk � kp�qk��k���. We get
the same result for the case where kq�vk � ������f�v�.
If kq � uk 	 ����� � f�u� and kq � vk 	 ����� � f�v�,
then using f�p� � f�q�	kp� qk and (i), we get f�p� �
g�q���k��� 	 kp� qk � �g�q� 	 kp� qk���k���.

LEMMA 17 For each vertex p in the final mesh, g�p� �
k�� � f�p� for some constant k� � k�.

Proof. We prove the lemma for the constant
k� 
 minfk���� k� sin�������� 	 sin������g. If
p is a vertex of P, then g�p� 
 f�p�. Otherwise, if p
is a linear edge endpoint, then for each endpoint v of
the edge of P that contains p, kp � vk 	 ����� � f�v�.
By Lemma 16(i), g�p� � k�� � f�p�. The remaining
case is that p lies on or outside B. Let B be the
ball centered at p with radius g�p�. If B intersects
two disjoint elements of P, g�p� 
 f�p�. Suppose
not. If B intersects an edge uv, then for any point
q � B � uv, kp � qk � g�p�. Using Lemma 16(ii),
we get g�p� � �k����� � f�p�. Otherwise, B intersects
the interior of two adjacent facets F� and F� of P. Let
Hi be the plane containing Fi. Let r be the point in
H� �H� nearest to p. Since pr makes an angle at least
��� with H� or H�, we have kp� rk � sin����� � g�p�.
The orthogonal projections of pr onto H� and H� must
intersect �F� or �F� at some point q. Observe that
kp� qk � kp� rk, so kp� qk � g�p�� sin�����. Using
Lemma 16(ii), we get k�� � f�p� � g�p� 	 kp � qk �
g�p� � �� 	 sin������� sin�����.

We are ready to prove the main results of this paper.

THEOREM 1 MESH terminates and produces a Delau-
nay mesh M conforming to P. There exists two con-
stants 
 and �� depending on � and � such that

(i) For each vertex v of M, the length of the shortest
edge incident to v is at least 
 � f�v�.

(ii) Let � be a tetrahedron in M. If � does not have a
vertex inside B, then ��� � � ��; otherwise, ��� � �
��.

Proof. The termination of MESH has been proved in
Corollary 2. Since MESH terminates, Corollary 1 implies
that M is conforming.

We prove (i) for the constant 
 
 minfk������ 	
C��� k�c��

�g. Let v be a vertex of M. Consider the
case where v lies on or outside B. Lemmas 5 and 17
imply that bf �v� � k��

� � f�v�. By Corollary 2, the
shortest edge incident to v has length at least bf�v���� 	
C�� which is at least �k������	C��� � f�v�. Consider
the case where v lies inside B. Then v is a linear edge
endpoint. By Lemma 2(iii), the shortest edge incident
to v has length at least c�� � g�v�. By Lemma 17, c�� �
g�v� � k�c��

� � f�v�.
We prove (ii) for the constant �� 
 ����
�������. If

� does not have a vertex inside B, Rule 4 guarantees that
��� � � ��. Otherwise, Corollary 1 implies that there are
two possibilities.

Case 1: There exists a protecting sphere Sx such that
� 
 pqrx for some helper triangle pqr on CHx. Since
the angular diameter of the cap Kpqr is at most ���, the
circumradius of � is less than radius�Sx� � �� � g�x�.
Assume that p is an endpoint of the shortest edge of � . By
(i), the shortest edge length of � is at least 
 �f�p�. Using
the Lipschitz condition, we get f�p� � f�x��kp�xk �
f�x� � �� � g�x� � �� � ��� � f�x�. Thus, the shortest
edge length of � is at least 
�� � ��� � f�x�. It follows
that ��� � � ����
��� ����.

Case 2: There exists consecutive protecting spheres
Sx and Sy such that � 
 pqxy for some helper arc
�
pq on Sx � Sy. The circumradius of � is less than
radius�Sx� � �� � g�x�. Since x lies outside Sy and y
lies outside Sx, xy is longer than some edge of � (e.g.,
px or py). Thus, the shortest edge of � is incident to
p or q. Since p and q lie on Sx, case 1 shows that the
shortest edge length of � is at least 
��� ��� � f�x�. So
��� � � ����
��� ����.

11 Conclusion

The constants may be improvable using a more refined
analysis. We also plan an experimental study of the algo-
rithm. We will look into the possibility of incorporating
weighted Delaunay refinement [2] into our algorithm to
eliminate slivers and guarantee bounded aspect ratio in
the presence of small angles.
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12 Appendix

12.1 Proof of Lemma 2

We first prove Lemma 2(i) as a separate claim.

CLAIM 6 Let uv be an edge of P. Suv and Svu
are orthogonal to Su and Sv respectively. The two
ratio radius�Suv ��g�uv� and radius�Svu��g�vu� lie
in �c��� c���, where c� 
 �����

p
�� and c� 


minfp���� sin�g.

Proof. Suv and Svu are orthogonal to Su and Sv re-
spectively by construction. Let B be the ball centered
at uv with radius g�uv�. Let E be an element of P
such that uv �� E and E touches B. Let d be the mini-
mum distance between u and E. By triangle inequality,
d � ku � uvk 	 g�uv� which is at most � � ku � uvk
as g�uv� � ku � uvk. By the definition of ku � uvk,
we get d � �� sec���uuv� � g�u�. Since �� � cos���uuv�,
d � g�u� which implies that u � E. So either E 
 u or
E is an edge/facet incident to u.

We claim that ku�uvk�sin�uuv � g�uv� � ku�uvk.
If E 
 u, then g�uv� 
 ku � uvk and our claim is true.
Otherwise, let � be the angle between uv and E. Since
��� 	 � � �uuv and g�uv� 
 ku�uvk � sin�, our claim
is true. Let R 
 radius�Suv ��g�uv�. It follows that

R � �sin���uuv��
sin���uuv�

sin�uuv
� 
 �� sin �uuv�

��uuv
sin�uuv

��

Clearly, sin �uuv 
 minfsin������ sin�uuvg �
minfp���� sin�g. If �uuv � ���, then
��uuv� sin�

u
uv 
 ��uuv� sin�

u
uv which is maxi-

mized when �uuv 
 ���. If �uuv 	 ���, then
��uuv� sin�

u
uv � ����� sin������ 
 ������

p
��.

Next, we show that when Split�x� y� is called, there is
always a gap between Sx and Sy.

CLAIM 7 Let k 
 �����. Whenever Split�x� y� is
called, the spheres centered at x and y with radii k �
radius�Sx� and k � radius�Sy� do not intersect.

Proof. Given a sphere S, let S denote the sphere with
the same center as S and radius k � radius�S�. Let uv
be an edge of P. We first show that Suv � Svu 
 	.
Since �uuv � ��� and g�u� � ku � vk, it follows from
definition that ku� uvk � �� � g�u� � �� � ku� vk and
radius�Suv � � ������ � ku�uvk � �������� � ku�vk.
So ku�uvk	radius�Suv � � ���	��������ku�vk �
ku�vk��, implying that Suv does not reach the midpoint
of uv. The same holds for Svu . So Suv � Svu 
 	.
Consider the creation of a protecting sphere Sz in line 4
of Split�x� y�, assuming that Sx � Sy 
 	. Observe that
z lies outside Sx and Sy . Since ��z� Sx� 
 Z� and line
3 of Split is satisfied,

kx� zk 	 Z 	 �� � g�z�� (1)

Assume to the contrary that Sx intersects Sz. Then � �
g�z� � kx � zk�k � radius�Sx�. Substituting this into
(1), we get kx� zk 	 ���k� � kx� zk � � � radius�Sx�,
so

kx� zk � ��k���� k�� � radius�Sx�� (2)
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Let E be an element of P such that z �� E and
E touches the ball centered at z with radius g�z�.
Let d be the minimum distance between x and
E. By triangle inequality, (1) and (2), we get
d � kx � zk 	 g�z� � ��� 	 ��������� � kx � zk �
k�� 	 �������� � k�� � radius�Sx�. If x 
 uv,
then radius�Sx� � c�� � g�x� by Claim 6, oth-
erwise radius�Sx� 
 � � g�x�. Since c� 	 �,
d � �c�k�� 	 ������� k�� � g�x�. By our choices of k,
c� and �, one can verify that c�k�� 	 ������ � k� � �.
However, since x� z � int�uv� and z �� E, we have
x �� E which implies d � g�x�, contradiction.

The gap between Sx and Sy in Claim 7 implies that
when we create a protecting sphere Sz between Sx and
Sy, z cannot be too close to x and y and Sz cannot be
too small. This is the main idea behind the proof of
Lemma 2. The details are given below.

Proof of Lemma 2:

We prove the lemma for the constants c� 
 c��k �
�����	c�k� and c� 
 ���c�� �minfp���� sin�g, where
k is the constant in Claim 7. Clearly, (i) is equivalent to
Claim 6.

Consider (ii). If Split�uv� vu� does not terminate,
Claim 7 implies that infinitely many non-intersecting
protecting spheres are created in line 4 of Split. This is
impossible as there is a constant � 	 � such that g�z� � �
for any point z � uvvu. Lines 1, 2 and 7 of Split guaran-
tee that any two consecutive protecting spheres created
are orthogonal and hence overlapping. Thus, the spheres
in S cover uvvu. Take a sphere Sz � S � fSuv � Svug.
By lines 3 and 4, radius�Sz��g�z� � ��. If Sz was
created in line 4, then radius�Sz� 
 � � g�z�, oth-
erwise radius�Sz� 
 Z. So it suffices to prove that
Z � c�� � g�z� when Sz was created in line 7. Claim 7
implies that z is at distance at least �k � �� � radius�Sx�
from Sx or at least �k� �� � radius�Sy� from Sy, say the
former is true. Since Sx intersects Sz,

Z � �k � �� � radius�Sx�� (3)

It follows that kx�zk � Z	radius�Sx� � kZ��k���.
Using this and Lemma 1, we get

g�z� � g�x� 	 kx� zk � g�x� 	 kZ��k � ��� (4)

If x 
 uv, then radius�Sx� � c�� � g�x� by Claim 6,
otherwise radius�Sx� 
 � � g�x�. So (3) yields Z �
c���k����g�x�. Substituting this into (4), we get g�z� �

Z�� 	 c��k���c���k � ��� which is less than Z��c���.
Hence, Z � c�� � g�z�.

Consider (iii). Since Sx and Sy are orthogonal,
kx � yk 	 maxfradius�Sx�� radius�Sy�g � c�� �
maxfg�x�� g�y�g by (i) and (ii). Suppose that x 
 u
or v. Then y 
 uv or vu respectively. It follows from
definition that radius�Sy� 
 � tan���uuv� � g�x�. Note
that tan���uuv� � � sin �uuv � � �minfp���� sin�g 

c�c��. So radius�Sy� � c�c��

� � g�x�. Using this and
the fact that radius�Sy� � c�� � g�y� by Claim 6, we get
g�y� � c�� � g�x�. Suppose that x � int�uv�. Since Sx
intersects Sy, kx�yk � radius�Sx�	radius�Sy� which
is at most ���g�x�	g�y��. Using this and Lemma 1, we
get g�y� � g�x��kx�yk � ������ �g�x���� �g�y�,
so g�y� � ��� � ������ 	 ���� � g�x�. Observe that
��� ������ 	 ��� 	 � 	 c��.

12.2 Proof of Lemma 3

We prove the lemma for the constants c	 
 c�c��
p
�,

c� 
 c��c���� 	 �c�� and c� 
 c�c�.
Consider (i). Consider a hole on B � Sx

bounded by Sx � Sz for some protecting
sphere Sz consecutive to Sx. By Lemma 2(ii),
minfradius�Sx�� radius�Sz�g � c�� �minfg�x�� g�z�g.
By Lemma 2(iii), g�z� � c�� � g�x� which implies
that minfradius�Sx�� radius�Sz�g � c�c��

� � g�x�.
Since Sx intersects Sz at right angle, the radius of the
hole is at least minfradius�Sx�� radius�Sz�g�

p
� �

�c�c����
p
�� � g�x� 
 c	�

� � g�x�.
Consider(ii). Let B � Sz be a ring adjacent to B � Sx.

We have kx � zk � radius�Sx� 	 radius�Sz� which
is at most �� � g�x� 	 �� � g�z� by Lemma 2(ii). By
Lemma 2(iii), g�x� � c�� � g�z�. It follows that

kx� zk � ��� 	 ��c���c�� � g�x�� (5)

Let d be the distance between x and the bisector plane of
Sx and Sz. By orthogonality, d 
 radius�Sx���kx� zk.
Since radius�Sx� � c�� � g�x� by Lemma 2(ii), d �
�c�� �g�x����kx� zk. By (5), we get d � �c��c��

����	
��c��� � g�x� which is larger than c��� � g�x�.

(iii) follows from the facts that the distance between x
and E is at least g�x� and radius�Sx� � �� � g�x�.

Consider (iv). Let d be the minimum distance be-
tween B � Sx and B � Sy. If x and y do not lie on the
same edge of P, then d � kx � yk � radius�Sx� �
radius�Sy� � kx � yk � ���g�x� 	 g�y��. Since
kx�yk � maxfg�x�� g�y�g, we get d � ������ � kx�
yk � ��� ��� � g�x�. Observe that �� �� � � 	 c��

�.
If x and y lie on the same edge of P, then B � Sx
and B � Sy are separated by a ring B � Sz adjacent
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to B � Sx. By (ii), the width of B � Sz is at least
c��

� � g�z�. By Lemma 2(iii), g�z� � c�� � g�x�. There-
fore, d � c�c��

� � g�x� 
 c��
� � g�x�.

12.3 Proof of Lemma 5

We give an overview of our proof strategy. Let p be a
point on or outsideB. Let B be the ball centered at pwith
radius bf �p�. Let E and E� be two disjoint elements of Q
intersected by B. We analyze the distance d between E
and E�. The difficult cases are when E and E� lie on
the same protecting sphere or two consecutive protecting
spheres, or when E lies on a protecting sphere and E� is
an adjacent flat facet. We proceed in three steps. First,
we consider some geodesic � from E to E� on B and
show that length��� 
 O�d�. Second, we argue that
length��� is at least the distance between two disjoint
boundary elements of some curved facet. Third, we show
that this distance is at least a constant factor of the local
gap size. These three steps are described in the Claims 8–
10. Afterwards, we give the proof of Lemma 5.

CLAIM 8 Let F be a curved facet on B � Sx for some
protecting sphere Sx. The minimum distance between
two disjoint boundary elements ofF is at least c
���g�x�
for some constant c
 � c�.

Proof. We prove the claim for c
 
 minfc	 sin�� c�c�g.
Let d be the minimum distance between two disjoint
boundary elements of F . Since F has at least four
boundary edges, d is achieved by the minimum distance
between two disjoint boundary edges (including their
endpoints), say e and e�.

Case 1: e and e� lie on some facets E and E� of P
respectively. Note that x � E � E�. If E � E� 
 fxg,
x is a vertex of P. Since the angle between E and E�

is at least �, we get d � � sin����� � radius�Sx� 

�� sin����� � g�x� � � sin� � g�x�. If fxg 
 E � E�,
E � E� is an edge of P. Note that this edge passes
through hole(s) on B � Sx. So d � �r sin����� where
r is the minimum radius of the hole(s). By Lemma 3(i),
r � c	�

� � g�x�, so d � c	�
� sin� � g�x�.

Case 2: e lies on a facet E of P and e� lies on the
boundary of a hole on B�Sx. This case can happen only
when x is a vertex of P. (Otherwise, B � Sx is a ring.
Since all curved facets on a ring are rectangular, case 2
is impossible.) We have e� � Sx � Sz for a protecting
sphere Sz consecutive to Sx. If z �� E, by Lemma 3(iii)
and Lemma 2(iii), we get d � ������ �g�z� � c�����
��� �g�x�. If z � E, then xz � �E which implies thatE
intersects Sx�Sz. Since Sx�E is connected, it contains

only one edge in �F and that edge is e. Observe that the
adjacent edges of e in �F lie at the intersections between
Sx and protecting spheres consecutive to Sx. It follows
that one endpoint of e lies on Sx �Sz . Since e and e� are
disjoint, they are separated by a curved edge on Sx � Sz
whose endpoints lie on two different facets of P incident
to x. By case 1, we get d � minf� sin�� c	�� sin�g �
g�x�.

Case 3: e and e� lie on boundaries of holes on B � Sx.
If e and e� lie on the same hole boundary Sx � Sy for a
protecting sphere Sy consecutive to Sx, then e and e� are
separated by a curved edge on Sx � Sy whose endpoints
lie on two different facets of P incident to x. By case 1,
we get d � minf� sin�� c	�� sin�g�g�x�. If e and e� lie
on the boundaries of two holes Sx � Sy and Sx � Sz for
two protecting spheres Sy and Sz consecutive to Sx, by
Lemma 3(iv) and Lemma 2(iii), we get d � c��

� �g�y� �
c�c��

� � g�x�.
Finally, observe that c
�� is at most the minimum of

� sin�, c	�� sin�, c����� ��� and c�c���.

CLAIM 9 Let p and q be two points on two orthogonal
spheres S and S�. Let � be the shortest geodesic between
p and q on Bd�S�S��. Then kp�qk � length��������.

Proof. Let x and y be the centers of S and S� respec-
tively. Let H be the plane through q, x and y. Let Cx
and Cy be the circles H � S and H � S� respectively.

Case 1: p � H. Consider the case where p and q lie
on the same side of xy. Let r be the intersection point
of Cx and Cy on the same side of xy as p and q. The
length of � is at most the minimum tour length from p to
r on Cx and from r to q on Cy which is at most �kp �
rk 	 kq � rk����. Since Cx and Cy intersect at right
angle by orthogonality, �prq in triangle pqr is at least
���. So

p
� � kp � qk � kp � rk 	 kq � rk. This

implies that kp � qk � �
p
���� � length���. Consider

the case where p and q lie on opposite sides of xy. Let
r (resp. s) be the intersection point of Cx and Cy on
the same side of xy as p (resp. q). Let q� be the point
on Cy hit by a ray from q perpendicular to xy. Since p
and q� lie on the same side of xy, the previous argument
shows that

p
� � kp � q�k � kp � rk 	 kq� � rk. Since

kq� � rk 
 kq � sk and kp� qk � kp� q�k, we get

p
� � kp� qk � kp� rk	 kq � sk� (6)

Next, we compare kp � qk with kr � sk. Without loss
of generality, assume that triangle pqr contains the mid-
point of rs. If �prq in pqr is at least ���, pq is the
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longest side of pqr and so kp� qk � kr� sk��. If �prq
in pqr is less than ���, then �pxq in triangle pqx is at
least ��� and so kp� qk � kp� xk. Since px is a radial
of Cx, we get kr � sk�� � kp� xk � kp� qk. In all,

kp� qk � kr � sk��� (7)

The length of � is at most the minimum tour length from
p to r onCx, from r to s on S�S� and from s to q on Cy.
Thus, length��� � �kp�rk	kr�sk	kq�sk����. By
(6) and (7), we get length��� � �� 	 ��

p
��� � kp� qk.

Case 2: p �� H. Let p� be the point on Cx closest to p.
Let d be the distance from p toH. Note that d � kp�qk.
The length of � is at most the minimum tour length from
p to p� on S and from p� to q on Bd�S � S��. The tour
length from p to p� is at most �d�� � ����� � kp � qk.
By case 1, the tour length from p� to q is at most
�� 	 ��

p
��� � kp� � qk. Using triangle inequality, we

get kp�� qk � kp� p�k	 kp� qk � p
�d	 kp� qk �

�
p
� 	 �� � kp � qk. Hence, length��� � ����� � kp �

qk	 ��
p
� 	 �����

p
�� � kp� qk � �� � kp� qk.

CLAIM 10 Let E be an element ofQ onB�Sx for some
protecting sphere Sx. Let E� be an element of Q disjoint
from E such that either E� � B or E� is a flat facet. The
minimum distance between E and E� is at least c��
 �
g�x� for some constant c� � c
.

Proof. We prove the lemma for c� 
 c�c
�

�����

p
����.

Let d be the minimum distance between E and E�.

Case 1: E� � B. Let E� � Sy for some protecting
sphere Sy (y may be x). If Sx �
 Sy and Sx and Sy are
not consecutive, then by Lemma 3(iv), d � c��

� � g�x�
which is larger than c��
 � g�x�. Otherwise, Sx 
 Sy or
Sx and Sy are orthogonal. Let � be the shortest geodesic
between E and E� on Bd�Sx � Sy�. For each hole on
B � �Sx � Sy� crossed by �, we reroute around the hole
boundary using the shorter arc. This yields a curve �
between E and E� on B� �Sx�Sy�. If Sx 
 Sy, clearly
d � ����� � length���, otherwise d � length��������
by Claim 9. Observe that length��� � ������length���.
So we get

d � ��������� � length���� (8)

Case 1.1: � intersects two disjoint boundary elements
of some curved facet F on B � �Sx � Sy�. By Claim 8,
length��� � c
�

� �minfg�x�� g�y�g. Since g�y� � c�� �
g�x� by Lemma 2(iii), length��� � c�c
�

	 � g�x�. Sub-
stituting into (8), we get d � ��c�c
�	������� � g�x� 	
c��


 � g�x�.

Caes 1.2: every pair of curved edges that � intersects
consecutively are adjacent. Let e and e� be any such ad-
jacent pair of curved edges. Let p 
 ��e and q 
 ��e�.
We extend � by taking a detour on e from p to the closest
endpoint of e and back to p. We do the same on e�. This
yields a longer curve �. (� is self-intersecting but this is
not a problem.) � passes through more than one vertex
of Q on B since E and E� are disjoint. It follows that
� passes through two vertices of some curved facet on
B � �Sx � Sy�. Case 1.1 shows that

length��� � ��c�c
�
	������� � g�x�� (9)

It remains to bound length���. Assume without loss of
generality that e and e� bound a curved facet on Sx. Let
C and C� be the supporting circles of e and e� respec-
tively. Since e and e� meet at right angle (Lemma 4),
C � C� consists of two diametral points of C or C �,
say C�. Let B be the ball centered at p with radius
�c
�

�����g�x�. If q �� B, then kp�qk 	 �c
�
�����g�x�.

The detour on e or e� has length at most ���radius�Sx� �
��� � g�x� which is at most

������c
�
��� � kp� qk� (10)

If q � B, we show in the following that the detour on e
or e� has length at most

p
�� � kp � qk which is smaller

than (10). Let u be the common endpoint of e and e�. Let
v and v� be the other endpoints of e and e� respectively.
Let w be the point on C � diametrally opposite to u. Note
thatC�C � 
 fu�wg. Let H be the plane containingC�.
Since the center of B �H lies on the line containing uw,
B�H contains u or w. By Claim 8, kp�v�k and kq�vk
are at least c
�� � g�x� which implies that v� v� �� B. We
claim that u � B. Otherwise, w � B which implies
that the two arcs B � C and B � C� cross at w. Since
e and e� cannot meet at w, we have v � B or v� � B,
contradiction. By our claim thatu � B, we get kp�uk �
�c
�

�����g�x� and kq�uk � ��c
�
�����g�x�. Observe

that kp�uk � kp� v�k and kq�uk � kq�vk. So both
detours on e and e� pass through u. Since radius�Sx� �
c�� � g�x� by Lemma 2(ii), x is further from u than p and
q. Thus, �puq 	 �� and so maxfkp� uk� kq� ukg �p
� � kp � qk. It follows that the detour on e or e� has

length at most
p
�� � kp� qk.

By (10), we conclude that length��� �
������c
�

��� � length���. Substituting into (8) and (9),
we get d � �c�c

�

�


��������� � g�x� 	 c��

 � g�x�.

Case 2: E� is a flat facet. If Sx �E� 
 	, x is disjoint
from the facet of P that contains E�, so Lemma 3(iii)
implies that d � �� � ��� � g�x� 	 c��


 � g�x�.
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Figure 5: The shaded region is E�. The two dashed line
segments delimit the two holes on B�Sx passed through
by the boundary edges of E� incident to x. The bold
arc is the curved edge B � Sx � E�. Note that r cannot
lie outside the right-angled triangle aqx. Otherwise, the
point p, which is above r, would lie outside B � Sx.

Otherwise, let p � E and r � E� be the points such that
kp � rk 
 d. If r lies on a curved boundary edge e of
E�, then E � e 
 	 as E �E� 
 	. So we can let E� 
 e
and apply case 1 to finish the analysis. If r lies on a
linear boundary edge e of E�, then E� lies inside B and
so E� and e are incident to x. Then kp � rk is at least
the radius of the hole on B � Sx that e passes through.
By Lemma 3(i), kp � rk � c	�

� � g�x� 	 c��

 � g�x�.

It remains to consider r � int�E��. Observe that r is
the orthogonal projection of p onto E � which implies
that E� lies inside B and E� is incident to x. Since
the subset of E� inside Sx is a cone with apex x (the
angle of the cone may be greater than �), the ray
from x through r reaches a point q � Sx � E�. If
q � B � Sx � E�, we keep it. Otherwise, q lies on a
hole on B � Sx and we move q along Sx � E� until
q reaches B � Sx � E�. Figure 5 shows the situation.
Observe that in either case �pqr � ��. It follows
that kp � qk � p

� � kp � rk. Since E � E� 
 	, E is
disjoint from the curved edge B � Sx �E� that contains
q. By Case 1, kp � qk � �c�c

�

�


��������� � g�x�.
Hence, kp � rk � �c�c

�

�


�����
p
����� � g�x� 


c��

 � g�x�.

Proof of Lemma 5

We show that bf �p� � c���

�g�p� where c�� 
 c������	

��� 	 c��

�. The lemma thus follows by setting  


c��� which is smaller than c��. Recall that p lies on or
outside B. Let B be the ball centered at p with radiusbf �p�. If B � B 
 	, then B intersects two flat facets of
Q outside B. Since p lies on or outside B, at most one
facet of P contains p. It follows that radius�B� � g�p�.
Consider the case where B � B �
 	. Assume to the

contrary that radius�B� � c���

 � g�p�. We need two

facts.

FACT 1 Let p and q be two points. If p does not lie on
any edge of P, then g�p� � g�q� 	 kp� qk.

Proof. Let A be the ball centered at p with radius
g�q� 	 kp � qk. So A intersects the two elements of P
that defines g�q�. Since p does not lie on any edge of
P (including edge endpoints), at most one facet of P
contains p. Thus, at most one of the elements of P that
intersect A contains p, so g�p� � radius�A�. ut

FACT 2 If B intersects a protecting sphere Sx, then
radius�B� � �c��
��� � g�x�.
Proof. By Fact 1, g�p� � g�x� 	 kp � xk. Since B
intersects Sx, we get g�p� � g�x� 	 radius�Sx� 	
radius�B� � �� 	 ��� � g�x� 	 c���


 � g�p�. Thus,
g�p� � ��� 	 ������ � c���


�� � g�x� which implies
that radius�B� � �c���� 	 ����
��� � c���


�� � g�x�.
One can verify that c����	�������c���
� 
 c���. ut

Take two disjoint elements E and E� of Q intersected
by B. For any protecting sphere Sx intersected by B, by
Lemma 3(i), the distances between p and the linear edges
incident to x are at least c	�� � g�x� 	 �c��


��� � g�x�.
So neither E nor E� is a linear edge or an endpoint of a
linear edge.

If bothE and E� are flat facets, since they are disjoint,
they lie on different facets of P. Since at most one facet
of P can contain p, we have g�p� � radius�B�, contra-
dicting the assumption that radius�B� � c���


 � g�p�.
Without loss of generality, it remains to consider E �
B � Sx for some protecting sphere Sx. By Claim 10,
the minimum distance between E and E� is at least
c��


 � g�x� which is larger than � � radius�B� by Fact
2. Thus, B cannot intersect both E and E�, contradic-
tion.
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