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1. Introduction

Let Y → X be a smooth fiber bundle and J∞Y the Fréchet manifold of infinite
order jets of its sections. The differential calculus on J∞Y and its cohomology
provide the adequate mathematical description of Lagrangian theories on Y → X

in terms of the variational bicomplex [1,13,28]. This description has been extended
to Lagrangian theories on graded manifolds in terms of the Grassmann-graded
variational bicomplex of differential forms on a graded infinite order jet manifold
[3, 5, 6, 14].

Different geometric models of odd variables are phrased in terms of both graded
manifolds and supermanifolds. Note that graded manifolds are characterized by
sheaves on smooth manifolds, while supermanifolds are defined by gluing of sheaves
on supervector spaces [4,15]. Treating odd variables on smooth manifolds, we follow
the Serre–Swan theorem for graded manifolds (Theorem 14). It states that a graded
commutative C∞(X)-ring is isomorphic to an algebra of graded functions on a
graded manifold with a body X iff it is the exterior algebra of some projective
C∞(X)-module of finite rank. By virtues of the Batchelor theorem [4], any graded
manifold (Z, A) with a body Z and a structure sheaf A of graded functions is
isomorphic to a graded manifold (Z, AQ) modeled over some vector bundle Q → Z,
i.e. its structure sheaf AQ is the sheaf of sections of the exterior bundle ∧Q∗, where
Q∗ is the dual of Q → Z. Our goal is the following differential bigraded algebra
(henceforth DBGA) S∗

∞[F ; Y ] and its relevant cohomology.
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Let F → Y → X be a composite bundle where F → Y is a vector bundle.
Jet manifolds JrF of F → X are also vector bundles over JrY . Let (JrY, Ar) be
a graded manifold modeled over JrF → JrY , and let S∗

r [F ; Y ] be the DBGA of
Grassmann-graded differential forms on the graded manifold (JrY, Ar). There is
the inverse system of jet manifolds

Y
π←J1Y ← · · · Jr−1Y

πr
r−1←− JrY ← · · · . (1)

Its projective limit J∞Y is a paracompact Fréchet manifold, called the infinite
order jet manifold. This inverse system yields the direct system of DBGAs

S∗[F ; Y ] π∗
→S∗

1 [F ; Y ]→· · · S∗
r−1[F ; Y ]

πr∗
r−1−→ S∗

r [F ; Y ]→· · · , (2)

where πr∗
r−1 is the pull-back monomorphisms. Its direct limit is the above-mentioned

DBGA S∗
∞[F ; Y ] of all Grassmann-graded differential forms on graded mani-

folds (JrY, Ar) modulo the pull-back identification. One can think of elements
of S∗

∞[F ; Y ] as being Grassmann-graded differential forms on a graded manifold
(J∞Y, A∞), called the graded infinite order jet manifold, whose body is J∞Y and
the structure sheaf A∞ is the sheaf of germs of elements of S∗

∞[F ; Y ].
The DBGA S∗

∞[F ; Y ] is split into the above-mentioned Grassmann-graded vari-
ational bicomplex, describing Lagrangian theories of even and odd variables on
a smooth manifold X . Grassmann-graded Lagrangians and their Euler–Lagrange
operators are elements of this bicomplex. Its cohomology results in the global first
variational formula, the first Noether theorem and defines a class of variationally
trivial Lagrangians.

It should be emphasized that this description of Grassmann-graded Lagrangian
systems differs from that phrased in terms of fibered graded manifolds [19,24], but
reproduces the heuristic formulation of Lagrangian BRST theory [3, 7]. Namely,
(J∞Y, A∞) is a graded manifold of jets of smooth fiber bundles, but not jets of
fibered graded manifolds.

2. Technical Preliminary

Throughout the paper, smooth manifolds are real and finite-dimensional. They
are Hausdorff and second-countable topological spaces (i.e. have a countable base
for topology). Consequently, they are paracompact, separable (i.e. have a count-
able dense subset) and locally compact topological spaces, which are countable at
infinity. Unless otherwise stated, smooth manifolds are assumed to be connected
and, consequently, arcwise connected. It is essential for our consideration that a
paracompact smooth manifold admits the partition of unity by smooth functions.
Real-analytic manifolds are also considered as smooth ones because they need not
possess the partition of unity by real-analytic functions.

Only proper covers U = {Uι} of smooth manifolds are considered, i.e. Uι �= Uι′

if ι �= ι′. A cover U′ is said to be a refinement of a cover U if, for each U ′ ∈ U′,
there exists U ∈ U such that U ′ ⊂ U . For any cover U of an n-dimensional smooth
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manifold X , there exists a countable atlas {(U ′
ι , ϕι)} of X such that: (i) the cover

{U ′
ι} refines U, (ii) ϕι(U ′

ι) = R
n and (iii) the closure U

′
ι of any Uι is compact [18].

Let π : Y → X be a smooth fiber bundle. There exist the following particular
covers of X which one can choose for its bundle atlas [18].

(i) There is a bundle atlas of Y over a countable cover U of X where each
member Uι of U is a domain (i.e. a contractible open subset) and its closure U ι is
compact.

(ii) There exists a bundle atlas of Y over a finite cover of X . Indeed, let Ψ be
a bundle atlas of Y → X over a cover U of X . For any cover U of a manifold X ,
there exists its refinement {Uij}, where j ∈ N and i runs through a finite set such
that Uij ∩ Uik = ∅, j �= k. Let {(Uij , ψij)} be the corresponding bundle atlas of a
fiber bundle Y → X . Then Y has the finite bundle atlas Ui = ∪jUij , ψi(x)= ψij(x),
x ∈ Uij ⊂ Ui, whose members Ui, however, need not be contractible and connected.

Without a loss of generality, we further assume that a cover U for a bundle atlas
of Y → X is also a cover for a manifold atlas of its base X . Given such an atlas, a
fiber bundle Y is provided with the associated bundle coordinates (xλ, yi), where
(xλ) are coordinates on X .

Given a manifold X , its tangent and cotangent bundles TX and T ∗X are
endowed with the bundle coordinates (xλ, ẋλ) and (xλ, ẋλ) with respect to holo-
nomic frames {∂λ} and {dxλ}, respectively. Given a smooth bundle Y → X , its
vertical tangent and cotangent bundles V Y and V ∗Y are provided with the bundle
coordinates (xλ, yi, ẏi) and (xλ, yi, yi), respectively.

By Λ = (λ1 . . . λk), |Λ| = k, λ + Λ = (λλ1 . . . λk) are denoted symmetric multi-
indices. Summation over a multi-index Λ means separate summation over each of
its index λi. The notation

dλ = ∂λ +
∑

0≤|Λ|
yi

λ+Λ∂Λ
i , dΛ = dλr ◦ · · · ◦ dλ1 , (3)

stands for the total derivatives.

3. Finite Order Jet Manifolds

Given a smooth fiber bundle Y → X , its r-order jet jr
xs is defined as the equivalence

class of sections s of Y identified by their r + 1 terms of their Taylor series at a
point x ∈ X . The disjoint union JrY =

⋃
x∈X jr

xs of these jets is a smooth manifold
provided with the adapted coordinates

(xλ, yi, yi
Λ)|Λ|≤r, (xλ, yi

Λ) ◦ s = (xλ, ∂Λsi(x)), y′i
λ+Λ =

∂xµ

∂x′λ dµy′i
Λ.

For the sake of brevity, the index r = 0 further stands for Y . The jet manifolds of
Y → X form the inverse system (1), where πr

r−1, r > 0 are affine bundles.
Given fiber bundles Y and Y ′ over X , every bundle morphism Φ : Y → Y ′ over

a diffeomorphism f of X admits the r-order jet prolongation to the morphism of
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the r-order jet manifolds

JrΦ : JrY � jr
xs �→ jr

f(x)(Φ ◦ s ◦ f−1) ∈ JrY ′.

If Φ is an injection or surjection, so is JrΦ. It preserves an algebraic structure. If
Y → X is a vector bundle, JrY → X is also a vector bundle. If Y → X is an affine
bundle modeled over a vector bundle Y → X , then JrY → X is an affine bundle
modeled over the vector bundle JrY → X .

Every section s of a fiber bundle Y → X admits the r-order jet prolongation to
the section (Jrs)(x) = jr

xs of the jet bundle JrY → X .
Every exterior form φ on the jet manifold JkY gives rise to the pull-back form

πk+i
k

∗φ on the jet manifold Jk+iY . Let O∗
k be the differential graded algebra (hence-

forth DGA) of exterior forms on the jet manifold JkY . We have the direct system
of DGAs

O∗X π∗→O∗Y
π1
0
∗

−→O∗
1 → · · ·O∗

r−1

πr
r−1

∗
−→ O∗

r → · · · . (4)

Every projectable vector field u = uµ∂µ + ui∂i on a fiber bundle Y → X has
the k-order jet prolongation onto JkY to the vector field

jku = uλ∂λ + ui∂i +
∑

0<|Λ|≤k

[dΛ(ui − yi
µuµ) + yi

µ+Λuµ]. (5)

Jet manifold provides the conventional language of theory of nonlinear differ-
ential equations and differential operators on fiber bundles [9,22]. A k-order differ-
ential equation on a fiber bundle Y → X is defined as a closed subbundle E of the
jet bundle JkY → X . Its classical solution is a (local) section s of Y → X whose
k-order jet prolongation Jks lives in E.

Differential equations can come from differential operators. Let E → X be
a vector bundle coordinated by (xλ, vA), A = 1, . . . , m. A bundle morphism E :
JkY → E over X is called a k-order differential operator on a fiber bundle Y → X .
It sends each section s of Y → X onto the section (E ◦Jks)A(x) of the vector bundle
E → X . Let us suppose that the canonical zero section 0̂(X) of the vector bundle
E → X belongs to E(JkY ). Then the kernel of a differential operator E is defined
as Ker E = E−1(0̂(X)) ⊂ JkY . If Ker E is a closed subbundle of the jet bundle
JkY → X , it is a k-order differential equation, associated to the differential operator
E . For instance, the kernel of an Euler–Lagrange operator need not be a closed
subbundle. Therefore, it may happen that associated Euler–Lagrange equations
are not a differential equation in a strict sense.

4. Infinite Order Jet Manifold

Given the inverse system (1) of jet manifolds, its projective limit J∞Y is defined
as a minimal set such that there exist surjections

π∞ : J∞Y → X, π∞
0 : J∞Y → Y, π∞

k : J∞Y → JkY, (6)

obeying the commutative diagrams π∞
r = πk

r ◦π∞
k for any admissible k and r < k. A

projective limit of the inverse system (1) always exists. It consists of those elements
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(. . . , zr, . . . , zk, . . .), zr ∈ JrY , zk ∈ JkY , of the Cartesian product
∏

k JkY which
obey the relations zr = πk

r (zk) for all k > r. One can think of elements of J∞Y as
being infinite order jets of sections of Y → X identified by their Taylor series at
points of X .

The set J∞Y is provided with the projective limit topology. This is the coars-
est topology such that the surjections π∞

r (6) are continuous. Its base consists
of inverse images of open subsets of JrY , r = 0, . . . , under the mappings π∞

r .
With this topology, J∞Y is a paracompact Fréchet (complete metrizable, but not
Banach) manifold modeled on a locally convex vector space of formal number series
{aλ, ai, ai

λ, . . .} [28]. Moreover, the surjections π∞
r are open maps, i.e. J∞Y → JrY

are topological bundles. A bundle coordinate atlas {UY , (xλ, yi)} of Y → X pro-
vides J∞Y with the manifold coordinate atlas

{(π∞
0 )−1(UY ), (xλ, yi

Λ)}0≤|Λ|, y′i
λ+Λ =

∂xµ

∂x′λ dµy′i
Λ. (7)

It is essential for our consideration that Y is a strong deformation retract of
J∞Y [1, 13] (see Appendix A). This result follows from the fact that a base of
any affine bundle is a strong deformation retract of its total space. Consequently, a
fiber bundle Y is a strong deformation retract of any finite order jet manifold JrY .
Therefore by virtue of the Vietoris–Begle theorem [8], there are isomorphisms

H∗(J∞Y, R) = H∗(JrY, R) = H∗(Y, R) (8)

of cohomology groups of J∞Y , JrY , 0 < r and Y with coefficients in the constant
sheaf R.

Though J∞Y fails to be a smooth manifold, one can introduce the differential
calculus on J∞Y as follows. Let us consider the direct system (4) of DGAs. Its
direct limit O∗∞ exists, and consists of all exterior forms on finite order jet manifolds
modulo the pull-back identification. It is a DGA, inheriting the DGA operations of
O∗

r [23].

Theorem 1. The cohomology H∗(O∗
∞) of the de Rham complex

0 → R → O0
∞

d→O1
∞

d→· · · (9)

of the DGA O∗
∞ equals the de Rham cohomology of a fiber bundle Y [1].

Proof. By virtue of the well-known theorem, the operation of taking homology
groups of cochain complexes commutes with the passage to a direct limit [23].
Since the DGA O∗

∞ is a direct limit of DGAs O∗
r , its cohomology is isomorphic to

the direct limit of the direct system

H∗
DR(Y ) → H∗

DR(J1Y ) → · · ·H∗
DR(Jr−1Y ) → H∗

DR(JrY ) → · · · (10)

of the de Rham cohomology groups H∗
DR(JrY ) = H∗(O∗

r ) of finite order jet man-
ifolds JrY . By virtue of the de Rham theorem [20], the de Rham cohomology
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H∗
DR(JrY ) of JrY equals its cohomology H∗(JrY, R) with coefficients in the con-

stant sheaf R. Since Y is a strong deformations retract of JrY , this cohomology
coincides with the cohomology H∗(Y, R) of Y . Consequently, the direct limit of the
direct system (10) is the de Rham cohomology H∗(Y, R) = H∗

DR(Y ) of Y .

Corollary 2. Any closed form φ ∈ O∗
∞ is decomposed into the sum φ = σ + dξ,

where σ is a closed form on Y .

One can think of elements of O∗
∞ as being differential forms on the infinite order

jet manifold J∞Y as follows. Let O∗
r be the sheaf of germs of exterior forms on JrY

and O
∗
r the canonical presheaf of local sections of O∗

r (we follow the terminology of
Ref. 20). Since πr

r−1 are open maps, there is the direct system of presheaves

O
∗
0

π1
0
∗

−→O
∗
1 · · ·

πr
r−1

∗
−→ O

∗
r → · · · .

Its direct limit O
∗
∞ is a presheaf of DGAs on J∞Y . Let T∗∞ be the sheaf of DGAs

of germs of O
∗
∞ on J∞Y . The structure module Q∗

∞ = Γ(T∗
∞) of global sections

of T∗
∞ is a DGA such that, given an element φ ∈ Q∗

∞ and a point z ∈ J∞Y ,
there exist an open neighborhood U of z and an exterior form φ(k) on some finite
order jet manifold JkY so that φ|U = π∞∗

k φ(k)|U . Therefore, there is the DGA
monomorphism O∗

∞ → Q∗
∞. It should be emphasized that the paracompact space

J∞Y admits a partition of unity by elements of the ring Q0
∞, but not O0

∞.
Since elements of the DGA Q∗

∞ are locally exterior forms on finite order jet
manifolds, the following Poincaré lemma holds.

Lemma 3. For closed element φ ∈ Q∗
∞, there exists a neighborhood U of each point

z ∈ J∞Y such that φ|U is exact.

Theorem 4. The cohomology H∗(Q∗
∞) of the de Rham complex

0 → R → Q0
∞

d→Q1
∞

d→· · · . (11)

of the DGA Q∗
∞ equals the de Rham cohomology of a fiber bundle Y [28].

Proof. Let us consider the de Rham complex of sheaves

0 → R → T0
∞

d→T1
∞

d→· · · (12)

on J∞Y . By virtue of Lemma 3, it is exact at all terms, except R. Being the
sheaves of Q0

∞-modules, the sheaves Tr
∞ are fine and, consequently acyclic because

the paracompact space J∞Y admits the partition of unity by elements of the ring
Q0

∞ [20]. Thus, the complex (12) is a resolution of the constant sheaf R on J∞Y .
In accordance with the abstract de Rham theorem (see Appendix B), cohomology
H∗(Q∗

∞) of the complex (11) equals the cohomology H∗(J∞Y, R) of J∞Y with
coefficients in the constant sheaf R. Since Y is a strong deformation retract of
J∞Y , we obtain

H∗(Q∗
∞) = H∗(J∞Y, R) = H∗(Y, R) = H∗

DR(Y ).
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Due to the monomorphism O∗
∞ → Q∗

∞, one can restrict O∗
∞ to the coordinate

chart (7) where horizontal forms dxλ and contact one-forms θi
Λ = dyi

Λ − yi
λ+Λdxλ

make up a local basis for the O0∞-algebra O∗∞. Though J∞Y is not a smooth man-
ifold, elements of O∗∞ are exterior forms on finite order jet manifolds and, there-
fore, their coordinate transformations are smooth. Moreover, there is the canonical
decomposition O∗

∞ = ⊕Ok,m
∞ of O∗

∞ into O0
∞-modules Ok,m

∞ of k-contact and
m-horizontal forms together with the corresponding projectors

hk : O∗
∞ → Ok,∗

∞ , hm : O∗
∞ → O∗,m

∞ .

Accordingly, the exterior differential on O∗
∞ is split into the sum d = dH + dV of

the total and vertical differentials

dH ◦ hk = hk ◦ d ◦ hk, dH ◦ h0 = h0 ◦ d, dH(φ) = dxλ ∧ dλ(φ),

dV ◦ hm = hm ◦ d ◦ hm, dV(φ) = θi
Λ ∧ ∂Λ

i φ, φ ∈ O∗
∞,

such that dH ◦ dH = 0, dV ◦ dV = 0, dH ◦ dV + dV ◦ dH = 0. These differentials make
O∗,∗

∞ into a bicomplex.
Let ϑ ∈ dO0∞ be the O0∞-module of derivations of the R-ring O0∞.

Proposition 5. The derivation module dO0
∞ is isomorphic to the O0

∞-dual (O1
∞)∗

of the module of one-forms O1
∞.

Proof. At first, let us show that O∗
∞ is generated by elements df , f ∈ O0

∞. It suf-
fices to justify that any element of O1

∞ is a finite O0
∞-linear combination of ele-

ments df , f ∈ O0
∞. Indeed, every φ ∈ O1

∞ is an exterior form on some finite order
jet manifold JrY . By virtue of the Serre–Swan theorem extended to non-compact
manifolds [15, 26], the C∞(JrY )-module O1

r of one-forms on JrY is a projective
module of finite rank, i.e. φ is represented by a finite C∞(JrY )-linear combination
of elements df , f ∈ C∞(JrY ) ⊂ O0∞. Any element Φ ∈ (O1∞)∗ yields a derivation
ϑΦ(f) = Φ(df) of the R-ring O0∞. Since the module O1∞ is generated by elements
df , f ∈ O0∞, different elements of (O1∞)∗ provide different derivations of O0∞, i.e.
there is a monomorphism (O1∞)∗ → dO0∞. By the same formula, any derivation
ϑ ∈ dO0∞ sends df �→ ϑ(f) and, since O0∞ is generated by elements df , it defines
a morphism Φϑ : O1

∞ → O0
∞. Moreover, different derivations ϑ provide different

morphisms Φϑ. Thus, we have a monomorphism and, consequently, an isomorphism
dO0

∞ → (O1
∞)∗.

The proof of Proposition 5 gives something more. The DGA O∗
∞ is a mini-

mal Chevalley–Eilenberg differential calculus over the R-ring O0
∞ of smooth real

functions on finite order jet manifolds of Y → X .

Remark 1. Let K be a commutative ring and A a commutative K-ring. The mod-
ule dA of derivations of A is a Lie K-algebra. The Chevalley–Eilenberg complex
of the Lie algebra dA with coefficients in the ring A contains a subcomplex of
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A-multilinear skew-symmetric maps [15]. It is called the Chevalley–Eilenberg dif-
ferential calculus over a K-ring A. The minimal Chevalley–Eilenberg calculus is
generated by monomials a0da1 ∧ · · · ∧ dak, ai ∈ A. For instance, the DGA of exte-
rior forms on a smooth manifold Z is the minimal Chevalley–Eilenberg differential
calculus over the R-ring C∞(Z).

Restricted to a coordinate chart (7), O1
∞ is a free O0

∞-module generated by the
exterior forms dxλ, θi

Λ. Since dO0
∞ = (O1

∞)∗, any derivation of the R-ring O0
∞ takes

the coordinate form

ϑ = ϑλ∂λ + ϑi∂i +
∑

0<|Λ|
ϑi

Λ∂Λ
i , (13)

where ∂Λ
i (sj

Σ) = ∂Λ
i �dsj

Σ = δj
i δ

Λ
Σ up to permutations of multi-indices Λ and Σ. Its

coefficients ϑλ, ϑi, ϑi
Λ are local smooth functions of finite jet order possessing the

transformation law

ϑ′λ =
∂x′λ

∂xµ
ϑµ, ϑ′i =

∂y′i

∂yj
ϑj +

∂y′i

∂xµ
ϑµ, ϑ′i

Λ =
∑

|Σ|≤|Λ|

∂y′i
Λ

∂yj
Σ

ϑj
Σ +

∂y′i
Λ

∂xµ
ϑµ.

Extended to the DGA O∗∞, the interior product obeys the rule

ϑ�(φ ∧ σ) = (ϑ�φ) ∧ σ + (−1)|φ|φ ∧ (ϑ�σ).

Any derivation ϑ (13) of the ring O0
∞ yields a derivation (a Lie derivative Lϑ) of

the DGA O∗
∞ given by the relations

Lϑφ = ϑ�dφ + d(ϑ�φ), Lϑ(φ ∧ φ′) = Lϑ(φ) ∧ φ′ + φ ∧ Lϑ(φ′).

In particular, the total derivatives (3) are defined as the local derivations of O0
∞

and the corresponding Lie derivatives dλφ = Ldλ
φ of O∗

∞.
A derivation ϑ (13) is called contact if the Lie derivative Lυ preserves the contact

ideal of the DGA O∗
∞, i.e. the Lie derivative Lυ of a contact form is a contact form.

Proposition 6. A derivation ϑ (13) is contact iff it takes the form

ϑ = ϑλ∂λ + ϑi∂i +
∑
|Λ|>0

[dΛ(ϑi − yi
µϑµ) + yi

µ+Λϑµ]. (14)

Proof. The expression (14) results from a direct computation similar to that of
the first part of Bäcklund’s theorem [21].

A glance at the expression (5) enables one to regard a contact derivation (14)
as an infinite order jet prolongation of its restriction

υ = ϑλ∂λ + ϑi∂i (15)

to the ring C∞(Y ). Since coefficients ϑλ and ϑi depend on jet coordinates yi
Λ, 0 <

|Λ|, in general, one calls υ (15) a generalized vector field. Generalized symmetries of
differential equations and Lagrangians have been intensively studied [2, 21, 22, 25].



December 6, 2007 14:25 WSPC/IJGMMP-J043 00258

Graded Infinite Order Jet Manifolds 1343

Any contact derivation admits the horizontal splitting

ϑ = υH + υV = ϑλdλ +

ϑi∂i +
∑

0<|Λ|
dΛ(ϑi − yi

µϑµ)∂Λ
i

 (16)

relative to the canonical connection ∇ = dxλ ⊗ dλ on the C∞(X)-ring O0
∞. One

can show [14] that a vertical contact derivation

υ = υi∂i +
∑

0<|Λ|
dΛυi∂Λ

i

obeys the relations

υ�dHφ = −dH(υ�φ), Lυ(dHφ) = dH(Lυφ), φ ∈ O∗
∞. (17)

They follow from the equalities

υ�θi
Λ = υi

Λ, dH(υi
Λ) = υi

λ+Λdxλ, dHθi
λ = dxλ ∧ θi

λ+Λ,

dλ ◦ vi
Λ∂Λ

i = vi
Λ∂Λ

i ◦ dλ.
(18)

5. Variational Bicomplex on Fiber Bundles

In order to transform the bicomplex O∗,∗∞ into the variational bicomplex, one intro-
duces the R-module projector

� =
∑
k>0

1
k
� ◦ hk ◦ hn, �(φ) =

∑
|Λ|≥0

(−1)|Λ|θi ∧ [dΛ(∂Λ
i �φ)], φ ∈ O>0,n

∞ , (19)

such that � ◦ dH = 0 and the nilpotent variational operator δ = � ◦ d on O∗,n∞ which
obeys the relation

δ ◦ � − � ◦ d = 0. (20)

Let us denote Ek = �(Ok,n
∞ ). Then the DGA O∗

∞ is split into the variational
bicomplex

...
...

...
...

...

dV � dV � dV � dV � −δ �

0 → O1,0∞
dH→ O1,1∞

dH→ · · · O1,m∞
dH→ · · · O1,n∞

�→ E1 → 0

dV � dV � dV � dV � −δ �

0 → R → O0∞
dH→ O0,1∞

dH→ · · · O0,m∞
dH→ · · · O0,n∞ ≡ O0,n∞

π∞∗ � π∞∗ � π∞∗ � π∞∗ �

0 → R → O0X
d→ O1X

d→ · · · OmX
d→ · · · On(X)

d→ 0

� � � �
0 0 0 0

(21)

Its relevant cohomology has been obtained as follows [13, 27]. One starts from the
algebraic Poincaré lemma [25,29].
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Lemma 7. If Y is a contractible bundle R
n+p → R

n, the variational bicomplex
(21) is exact at all terms, except R.

Proof. The homotopy operators for dV, dH, δ and � are given by the formulas
(5.72), (5.109), (5.84) in [25] and (4.5) in [29], respectively.

Theorem 8. (i) The second row from the bottom and the last column of this bicom-
plex make up the variational complex

0 → R → O0
∞

dH→O0,1
∞ · · · dH→O0,n

∞
δ→E1

δ→E2 →· · · . (22)

Its cohomology is isomorphic to the de Rham cohomology of the fiber bundle Y,

namely,

Hk<n(dH;Q∗
∞) = Hk<n(Y ), Hk−n(δ;Q∗

∞) = Hk≥n(Y ). (23)

(ii) The rows of contact forms of the bicomplex (21) are exact sequences.

Proof. Let T∗
∞ be the sheaf of germs of differential forms on J∞Y . It is split

into the variational bicomplex T∗,∗
∞ . Let Q∗

∞ be the DGA of global sections of T∗
∞.

It is also decomposed into the variational bicomplex Q∗,∗
∞ . Since the paracompact

space J∞Y admits a partition of unity by elements of the ring Q0
∞, the dH- and

δ-cohomology of Q∗,∗
∞ can be obtained as follows [1, 13, 27, 28]. Let us consider the

variational subcomplex of T∗,∗
∞ and the subcomplexes of sheaves of contact forms

0 → R → T0
∞

dH→T0,1
∞ · · · dH→T0,n

∞
δ→E1

δ→E2 → · · · , Ek = �(Tk,n
∞ ), (24)

0 → Tk,0
∞

dH→Tk,1
∞ · · · dH→Tk,n

∞
�→Ek → 0. (25)

By virtue of Lemma 7, these complexes are exact at all terms, except R. Since
Tm,k∞ are sheaves of Q0∞-modules, they are fine. The sheaves Ek are also proved
to be fine (see Appendix C). Consequently, all sheaves, except R, in the complexes
(24) and (25) are acyclic. Therefore, these complexes are resolutions of the constant
sheaf R and the zero sheaf over J∞Y , respectively. Let us consider the corresponding
subcomplexes

0 → R → Q0
∞

dH→Q0,1
∞ · · · dH→Q0,n

∞
δ→Γ(E1)

δ→Γ(E2) → · · · , (26)

0 → Qk,0
∞

dH→Qk,1
∞ · · · dH→Qk,n

∞
�→Γ(Ek) → 0 (27)

of the DGA Q∗
∞. In accordance with the abstract de Rham theorem (see

Appendix B), cohomology of the complex (26) equals the cohomology of J∞Y

with coefficients in the constant sheaf R, while the complex (27) is exact. Since Y

is a strong deformation retract of J∞Y , cohomology of the complex (26) equals
the de Rham cohomology of Y by virtue of the isomorphisms (8). Note that, in
order to prove the exactness of the complex (27), the acyclicity of the sheaves Ek

need not be justified. Finally, the subalgebra O∗∞ ⊂ Q∗∞ is proved to have the same
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dH- and δ-cohomology as Q∗
∞ [12, 27] (see Appendix D). Similarly, one can show

that, restricted to Ok,n
∞ , the operator � remains exact.

Note that the cohomology isomorphism (23) gives something more. The rela-
tion (20) for � and the relation h0d = dHh0 for h0 define a cochain morphism of
the de Rham complex (1) of the DGA O∗∞ to its variational complex (22). The
corresponding homomorphism of their cohomology groups is an isomorphism by
virtue of Theorem 1 and item (i) of Theorem 8. Then the splitting of a closed form
φ ∈ O∗

∞ in Corollary 2 leads to the following decompositions:

Proposition 9. Any dH-closed form φ ∈ O0,m, m < n, is represented by a sum

φ = h0σ + dHξ, ξ ∈ Om−1
∞ , (28)

where σ is a closed m-form on Y . Any δ-closed form φ ∈ Ok,n is split into

φ = h0σ + dHξ, k = 0, ξ ∈ O0,n−1
∞ , (29)

φ = �(σ) + δ(ξ), k = 1, ξ ∈ O0,n
∞ , (30)

φ = �(σ) + δ(ξ), k > 1, ξ ∈ Ek−1, (31)

where σ is a closed (n + k)-form on Y .

One can think of the elements

L = Lω ∈ O0,n
∞ , δL =

∑
|Λ|≥0

(−1)|Λ|dΛ(∂Λ
i L)θi ∧ ω ∈ E1, ω = dx1 ∧ · · · ∧ dxn,

of the variational complex (22) as being a finite order Lagrangian and its Euler–
Lagrange operator, respectively. Then the following are corollaries of Theorem 8:

Corollary 10. (i) A finite order Lagrangian L ∈ O0,n
∞ is variationally trivial, i.e.

δ(L) = 0 iff

L = h0σ + dHξ, ξ ∈ O0,n−1
∞ , (32)

where σ is a closed n-form on Y .

(ii) A finite order Euler–Lagrange-type operator E ∈ E1 satisfies the Helmholtz
condition δ(E) = 0 iff

E = δ(L) + �(σ), L ∈ O0,n
∞ ,

where σ is a closed (n + 1)-form on Y .

Corollary 11. The exactness of the row of one-contact forms of the variational
bicomplex (21) at the term O1,n

∞ relative to the projector � provides the R-module
decomposition

O1,n
∞ = E1 ⊕ dH(O1,n−1

∞ ).

Given a Lagrangian L ∈ O0,n
∞ , we have the corresponding decomposition

dL = δL − dHΞ. (33)
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The form Ξ in the decomposition (33) is not uniquely defined. It reads

Ξ =
∑
s=0

Fλνs...ν1
i θi

νs...ν1
∧ ωλ, F νk...ν1

i = ∂νk...ν1
i L − dλFλνk...ν1

i + hνk...ν1
i ,

ωλ = ∂λ�ω,

where local functions h ∈ O0∞ obey the relations hν
i = 0, h

(νkνk−1)...ν1
i = 0. It follows

that ΞL = Ξ + L is a Lepagean equivalent of a finite order Lagrangian L [17].
The decomposition (33) leads to the global first variational formula and the first

Noether theorem as follows:

Theorem 12. Given a Lagrangian L = Lω ∈ O0,n
∞ , its Lie derivative LυL along a

contact derivation υ (16) fulfils the first variational formula

LϑL = υV�δL + dH(h0(ϑ�ΞL)) + LdV(υH�ω), (34)

where ΞL is a Lepagean equivalent.

Proof. The formula (34) comes from the splitting of (33) and the relation (17) as
follows:

LϑL = ϑ�dL + d(ϑ�L) = [υV�dL − dVL ∧ υH�ω] + [dH(υH�L) + dV(LυH�ω)]

= υV�dL + dH(υH�L) + LdV(υH�ω) = υV�δL − υV�dHΞ + dH(υH�L)

+LdV(υH�ω)

= υV�δL + dH(υV�Ξ + υH�L) + LdV(υH�ω),

where υV�Ξ = h0(ϑ�Ξ) since Ξ is a one-contact form, υH�L = h0(υ�L), and
ΞL = Ξ + L.

A contact derivation ϑ (14) is called a variational symmetry of a Lagrangian L

if the Lie derivative LϑL = dHξ is dH-exact. A glance at the expression (34) shows
that: (i) a contact derivation ϑ is a variational symmetry only if it is projected onto
X (i.e. its components ϑλ depend only on coordinates of X), (ii) ϑ is a variational
symmetry iff its vertical part υV is well, (iii) it is a variational symmetry iff the
density υV�δL is dH-exact.

Theorem 13. If a contact derivation ϑ (14) is a variational symmetry of a
Lagrangian L, the first variational formula (34) restricted to Ker δL leads to the
weak conservation law

0 ≈ dH(h0(ϑ�ΞL) − ξ).

Remark 2. Let a contact derivation ϑ (14) be the jet prolongation of a vector field
ϑλ∂λ + ϑi∂i on Y . If ϑ is a variational symmetry of a Lagrangian L, then it is also
a symmetry of the Euler–Lagrange operator δL of L, i.e. LϑδL = 0 by virtue of
the equality LϑδL = δ(LϑL). However, this equality fails to be true in the case of
generalized symmetries [25].
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6. Polynomial Variational Bicomplex

Let Y → X be an affine bundle. Since X is a strong deformation retract of Y , the de
Rham cohomology of Y and, consequently, J∞Y equals that of X . An immediate
consequence of this fact is the following cohomology isomorphisms:

H<n(dH;O∗
∞) = H<n(X), H0(δ;O∗

∞) = Hn(X), Hk(δ;O∗
∞) = 0.

It follows that every dH-closed form φ ∈ O0,m<n∞ is represented by the sum

φ = σ + dHξ, ξ ∈ O0,m−1
∞ , (35)

where σ is a closed form on X . Similarly, any variationally trivial Lagrangian takes
the form

L = σ + dHξ, ξ ∈ O0,n−1
∞ ,

where σ is a closed n-form on X .
Let us restrict our consideration to the short variational complex

0 → R → O0
∞

dH→O0,1
∞ · · · dH→O0,n

∞
δ→E1 (36)

and the similar complex of sheaves

0 → R → T0
∞

dH→T0,1
∞ · · · dH→T0,n

∞
δ→E1. (37)

In the case of an affine bundle Y → X , we can lower this complex onto the base X

as follows.
Let us consider the open surjection π∞ : J∞Y → X and the direct image

X∗
∞ = π∞

∗ T∗
∞ on X of the sheaf T∗

∞. Its stalk over a point x ∈ X consists of the
equivalence classes of sections of the sheaf T∗∞ which coincide on the inverse images
(π∞)−1(Ux) of neighborhoods Ux of x. Since π∞∗ R = R, we have the following
complex of sheaves on X :

0 → R → X0
∞

dH→X0,1
∞

dH→· · · dH→X0,n
∞

δ→π∞
∗ E1. (38)

Every point x ∈ X has a base of open contractible neighborhoods {Ux} such that
the sheaves T0,∗

∞ of Q∗
∞-modules are acyclic on the inverse images (π∞)−1(Ux) of

these neighborhoods. Then, in accordance with the Leray theorem [16], cohomol-
ogy of J∞Y with coefficients in the sheaves T0,∗

∞ are isomorphic to that of X with
coefficients in their direct images X0,∗

∞ , i.e. the sheaves X0,∗
∞ on X are acyclic. Fur-

thermore, Lemma 7 also shows that the complexes of sections of sheaves T0,∗
∞ over

(π∞
0 )−1(Ux) are exact. It follows that the complex (38) on X is exact at all terms,

except R, and it is a resolution of the constant sheaf R on X . Due to the R-algebra
isomorphism Q∗∞ = Γ(X∗∞), one can think of the short variational subcomplex of
the complex (24) as being the complex of the structure algebras of the sheaves in
the complex (38) on X .

Given the sheaf X∗∞ on X , let us consider its subsheaf P∗∞ of germs of exterior
forms which are polynomials in the fiber coordinates yi

Λ, |Λ| ≥ 0, of the topological



December 6, 2007 14:25 WSPC/IJGMMP-J043 00258

1348 G. Sardanashvily

fiber bundle J∞Y → X . This property is coordinate-independent due to the tran-
sition functions (7). The sheaf P∗∞ is a sheaf of C∞(X)-modules. The DGA P ∗∞ of
its global sections is a C∞(X)-subalgebra of Q∗∞. We have the subcomplex

0 → R→P0
∞

dH→P0,1
∞

dH→· · · dH→P0,n
∞

δ→π∞
∗ E1 (39)

of the complex (38) on X . As a particular variant of the algebraic Poincaré lemma,
the exactness of the complex (39) at all terms, except R, follows from the form
of the homotopy operator for dH or can be proved in a straightforward way [3].
Since the sheaves P0,∗

∞ of C∞(X)-modules on X are acyclic, the complex (39) is a
resolution of the constant sheaf R on X . Hence, cohomology of the complex

0 → R→P 0
∞

dH→P 0,1
∞

dH→· · · dH→P 0,n
∞

δ→Γ(E1) (40)

of the DGAs P 0,<n
∞ equals the de Rham cohomology of X . It follows that every

dH-closed polynomial form φ ∈ P 0,m<n
∞ is decomposed into the sum

φ = σ + dHξ, ξ ∈ P0,m−1
∞ , (41)

where σ is a closed form on X .
Let P∗

∞ be C∞(X)-subalgebra of the polynomial algebra P ∗
∞ which consists of

exterior forms which are polynomials in the fiber coordinates yi
Λ. Obviously, P∗

∞
is a subalgebra of O∗

∞. Finally, one can show that P∗
∞ have the same cohomology

as P ∗
∞, i.e. if φ in the decomposition (41) is an element of P0,∗

∞ then ξ is so. The
proof of this fact follows the proof in Appendix D, but differential forms on X (not
J∞Y ) are also considered.

7. Differential Calculus on Graded Manifolds

We restrict our consideration to graded manifolds (Z, A) with structure sheaves A

of Grassmann algebras of finite rank [4, 15]. By a Grassmann algebra over a ring
K is meant a Z2-graded exterior algebra of some K-module. The symbol [ · ] stands
for the Grassmann parity.

Treating Lagrangian systems of odd variables on a smooth manifold, we are
based on the following variant of the Serre–Swan theorem [6].

Theorem 14. Let Z be a smooth manifold. A graded commutative C∞(Z)-algebra
A is isomorphic to the algebra of graded functions on a graded manifold with a body
Z iff it is the exterior algebra of some projective C∞(Z)-module of finite rank.

Proof. The proof follows at once from the Batchelor theorem [4] and the classical
Serre–Swan theorem generalized to an arbitrary smooth manifold [15,26]. By virtue
of the first one, any graded manifold (Z, A) with a body Z is isomorphic to the one
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(Z, AQ), modeled over some vector bundle Q → Z, whose structure sheaf AQ is the
sheaf of germs of sections of the exterior bundle

∧Q∗ = R⊕
Z

Q∗ ⊕
Z

2∧Q∗ ⊕
Z
· · · , (42)

where Q∗ is the dual of Q → Z. The structure ring AQ of graded functions (sections
of AQ) on a graded manifold (Z, AQ) consists of sections of the exterior bundle (42).
The classical Serre–Swan theorem states that a C∞(Z)-module is isomorphic to the
module of sections of a smooth vector bundle over Z iff it is a projective module of
finite rank.

Assuming that Batchelor’s isomorphism is fixed from the beginning, we associate
to (Z, AQ) the following DBGA S∗[Q; Z] [4, 15]. Let us consider the sheaf dAQ of
graded derivations of AQ. One can show that its sections over an open subset U ⊂ Z

exhaust all graded derivations of the graded commutative R-ring AU of graded
functions on U [4]. Global sections of dAQ make up the real Lie superalgebra dAQ

of graded derivations of the R-ring AQ, i.e.

u(ff ′) = u(f)f ′ + (−1)[u][f ]fu(f ′), f, f ′ ∈ AQ, u ∈ AQ.

Then one can construct the Chevalley–Eilenberg complex of dAQ with coefficients in
AQ [11]. Its subcomplex S∗[Q; Z] of AQ-linear morphism is the Grassmann-graded
Chevalley–Eilenberg differential calculus

0 → R → AQ
d→S1[Q; Z] d→· · · Sk[Q; Z] d→· · · (43)

over a graded commutative R-ring AQ [15]. The Chevalley–Eilenberg coboundary
operator d and the graded exterior product ∧ make S∗[Q; Z] into a DBGA whose
elements obey the relations

φ ∧ φ′ = (−1)|φ||φ
′|+[φ][φ′]φ′ ∧ φ, d(φ ∧ φ′) = dφ ∧ φ′ + (−1)|φ|φ ∧ dφ′. (44)

Given the DGA O∗Z of exterior forms on Z, there are the canonical monomorphism
O∗Z → S∗[Q; Z] and the body epimorphism S∗[Q; Z] → O∗Z which are cochain
morphisms.

Lemma 15. The DBGA S∗[Q; Z] is a minimal differential calculus over AQ, i.e.
it is generated by elements df, f ∈ AQ.

Proof. One can show that elements of dAQ are represented by sections of some
vector bundle over Z, i.e. dAQ is a projective C∞(Z)- and AQ-module of finite rank,
and so is its AQ-dual S1[Q; Z] [14,15]. Hence, dAQ is the AQ-dual of S1[Q; Z] and,
consequently, S1[Q; Z] is generated by elements df , f ∈ AQ [15].

This fact is essential for our consideration because of the following [15]:

Lemma 16. Given a ring R, let K, K′ be R-rings and A, A′ the Grassmann
algebras over K and K′, respectively. Then any homomorphism ρ : A → A′ yields



December 6, 2007 14:25 WSPC/IJGMMP-J043 00258

1350 G. Sardanashvily

the homomorphism of the minimal Chevalley–Eilenberg differential calculus over a
Z2-graded R-ring A to that over A′ given by the map da �→ d(ρ(a)), a ∈ A. This
map provides a monomorphism if ρ is a monomorphism of R-algebras.

One can think of elements of the DBGA S∗[Q; Z] as being Grassmann-graded or,
simply, graded) differential forms on Z as follows. Given an open subset U ⊂ Z, let
AU be the Grassmann algebra of sections of the sheaf AQ over U , and let S∗[Q; U ] be
the corresponding Chevalley–Eilenberg differential calculus over AU . Given an open
set U ′ ⊂ U , the restriction morphisms AU → AU ′ yield the restriction morphism of
the DBGAs S∗[Q; U ] → S∗[Q; U ′]. Thus, we obtain the presheaf {U,S∗[Q; U ]} of
DBGAs on a manifold Z and the sheaf S∗[Q; Z] of DBGAs of germs of this presheaf.
Since {U,AU} is the canonical presheaf of the sheaf AQ, the canonical presheaf of
S∗[Q; Z] is {U,S∗[Q; U ]}. In particular, S∗[Q; Z] is the DBGA of global sections of
the sheaf S∗[Q; Z], and there is the restriction morphism S∗[Q; Z] → S∗[Q; U ] for
any open U ⊂ Z.

Due to this restriction morphism, elements of the DBGA S∗[Q; Z] can be writ-
ten in the following local form. Given bundle coordinates (zA, qa) on Q and the
corresponding fiber basis {ca} for Q∗ → X , the tuple (zA, ca) is called a local
basis for the graded manifold (Z, AQ) [4]. With respect to this basis, the graded
functions read

f =
∑
k=0

1
k!

fa1...ak
ca1 · · · cak , (45)

where fa1···ak
are smooth real functions on Z, and we omit the symbol of the exterior

product of elements ca. Due to the canonical splitting V Q = Q×Q, the fiber basis
{∂a} for vertical tangent bundle V Q → Q of Q → Z is the dual of {ca}. Then
graded derivations take the local form u = uA∂A +ua∂a, where uA and ua are local
graded functions. They act on graded functions (45) by the rule

u(fa...bc
a · · · cb) = uA∂A(fa...b)ca · · · cb + udfa...b∂d�(ca · · · cb). (46)

Relative to the dual local bases {dzA} for T ∗Z and {dcb} for Q∗, graded one-forms
read φ = φAdzA + φadca. The duality morphism is given by the interior product

u�φ = uAφA + (−1)[φa]uaφa, u ∈ dAQ, φ ∈ S1[Q; Z].

The Chevalley–Eilenberg coboundary operator d, called the graded exterior dif-
ferential, reads

dφ = dzA ∧ ∂Aφ + dca ∧ ∂aφ,

where the derivations ∂A and ∂a act on coefficients of graded differential forms by
the formula (46), and they are graded commutative with the graded differential
forms dzA and dca.

Since S∗[Q; Z] is a DBGA of graded differential forms on Z, one can obtain its
de Rham cohomology by means of the abstract de Rham theorem as follows:
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Theorem 17. The cohomology of the de Rham complex (43) of the DBGA S∗[Q; Z]
equals the de Rham cohomology of the body Z.

Proof. We have the complex

0 → R→S0[Q; Z] d→S1[Q; Z] d→· · ·Sk[Q; Z] d→· · · (47)

of sheafs of germs of graded differential forms on Z. Its members Sk[Q; Z] are
sheaves of C∞(Z)-modules on Z and, consequently, are fine and acyclic. Further-
more, the Poincaré lemma for graded differential forms holds [4]. It follows that the
complex (47) is a fine resolution of the constant sheaf R on the manifold Z. Then,
by virtue of Theorem 26, there is an isomorphism

H∗(S∗[Q; Z]) = H∗(Z; R) = H∗
DR(Z) (48)

of the cohomology of the complex (43) to the de Rham cohomology of Z. Moreover,
the cohomology isomorphism (48) accompanies the cochain monomorphism of the
de Rham complex of O∗Z to the complex (43). Hence, any closed graded differential
form is split into a sum φ = σ + dξ of a closed exterior form σ on Z and an exact
graded differential form.

8. Graded Infinite Order Jet Manifold

As was mentioned above, we consider graded manifolds of jets of smooth fiber bun-
dles, but not jets of fibered graded manifolds. To motivate this construction, let us
return to the case of even variables when Y → X is a vector bundle. The jet bundles
JkY → X are also vector bundles. Let P∗∞ ⊂ O∗∞ be a subalgebra of exterior forms
on these bundles whose coefficients are polynomial in fiber coordinates. In partic-
ular, P0

∞ is the ring of polynomials of these coordinates with coefficients in the
ring C∞(X). One can associate to such a polynomial of degree m, a section of the
symmetric product ∨m(JkY )∗ of the dual to some jet bundle JkY → X , and vice
versa. Moreover, any element of P∗

∞ is an element of the Chevalley–Eilenberg dif-
ferential calculus over P0

∞. Following this example, let F → X be a vector bundle,
and let us consider graded manifolds (X,AJrF ) modeled over the vector bundles
JrF → X . There is a direct system of the corresponding DBGAs

S∗[F ; X ]→S∗[J1F ; X ]→· · · S∗[JrF ; X ]→· · · ,

whose direct limit S∗
∞[F ; X ] is the Grassmann-graded counterpart of an even

DGA P∗
∞.

In a general setting, let us consider a composite bundle F → Y → X where F →
Y is a vector bundle provided with bundle coordinates (xλ, yi, qa). Jet manifolds
JrF of F → X are vector bundles JrF → JrY coordinated by (xλ, yi

Λ, qa
Λ), 0 ≤

|Λ| ≤ r. Let (JrY, Ar) be a graded manifold modeled over this vector bundle.
Its local basis is (xλ, yi

Λ, ca
Λ), 0 ≤ |Λ| ≤ r. Let S∗

r [F ; Y ] be the DBGA of graded
differential forms on the graded manifold (JrY, Ar).
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There is an epimorphism of graded manifolds (Jr+1Y, Ar+1) → (JrY, Ar),
seen as local-ringed spaces. It consists of the surjection πr+1

r and the sheaf
monomorphism πr+1∗

r Ar → Ar+1, where πr+1∗
r Ar is the pull-back onto Jr+1Y

of the topological fiber bundle Ar → JrY . This sheaf monomorphism induces the
monomorphism of the canonical presheaves Ar → Ar+1, which associates to each
open subset U ⊂ Jr+1Y the ring of sections of Ar over πr+1

r (U). Accordingly,
there is the monomorphism of graded commutative rings Ar → Ar+1. By virtue of
Lemmas 15 and 16, this monomorphism yields the monomorphism of DBGAs

S∗
r [F ; Y ] → S∗

r+1[F ; Y ]. (49)

As a consequence, we have the direct system (2) of DBGAs. Its direct limit S∗∞[F ; Y ]
is a DBGA of all graded differential forms φ ∈ S∗[Fr; JrY ] on graded manifolds
(JrY, Ar) modulo monomorphisms (49). Its elements obey the relations (44).

The monomorphisms O∗
r → S∗

r [F ; Y ] provide a monomorphism of the direct
system (4) to the direct system (2) and, consequently, the monomorphism

O∗
∞Y → S∗

∞[F ; Y ] (50)

of their direct limits. In particular, S∗
∞[F ; Y ] is an O0

∞Y -algebra. Accordingly, the
body epimorphisms S∗

r [F ; Y ] → O∗
r yield the epimorphism of O0

∞-algebras

S∗
∞[F ; Y ] → O∗

∞. (51)

The morphisms (50) and (51) are cochain morphisms between the de Rham complex
(9) of the DGA O∗∞ and the de Rham complex

0 → R→S0
∞[F ; Y ] d→S1

∞[F ; Y ] · · · d→Sk
∞[F ; Y ]→· · · (52)

of the DBGA S0
∞[F ; Y ]. Moreover, the corresponding homomorphisms of cohomol-

ogy groups of these complexes are isomorphisms as follows:

Theorem 18. There is an isomorphism

H∗(S∗
∞[F ; Y ]) = H∗(Y ) (53)

of cohomology H∗(S∗
∞[F ; Y ]) of the de Rham complex (52) to the de Rham coho-

mology H∗
DR(Y ) of Y .

Proof. The complex (52) is the direct limit of the de Rham complexes of the
DBGAs S∗

r [F ; Y ]. Therefore, the direct limit of cohomology groups of these com-
plexes is the cohomology of the de Rham complex (52). By virtue of Theorem 17,
cohomology of the de Rham complex of S∗

r [F ; Y ] for any r equals the de Rham
cohomology of JrY and, consequently, that of Y , which is the strong deformation
retract of any JrY . Hence, the isomorphism (53) holds.

It follows that any closed graded differential form φ ∈ S∗∞[F ; Y ] is split into the
sum φ = dσ + dξ of a closed exterior form σ on Y and an exact graded differen-
tial form.
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One can think of elements of S∗
∞[F ; Y ] as being graded differential forms on

the infinite order jet manifold J∞Y . Indeed, let S∗
r [F ; Y ] be the sheaf of DBGAs

on JrY and S
∗
r [F ; Y ] its canonical presheaf. Then the above-mentioned presheaf

monomorphisms Ar → Ar+1, yield the direct system of presheaves

S
∗
[F ; Y ]→S

∗
1[F ; Y ]→· · ·S∗

r [F ; Y ]→· · · , (54)

whose direct limit S
∗
∞[F ; Y ] is a presheaf of DBGAs on the infinite order jet mani-

fold J∞Y . Let T∗
∞[F ; Y ] be the sheaf of DBGAs of germs of the presheaf S

∗
∞[F ; Y ].

One can think of the pair (J∞Y, T0∞[F ; Y ]) as being a graded manifold, whose body
is the infinite order jet manifold J∞Y and the structure sheaf T0∞[F ; Y ] is the sheaf
of germs of graded functions on graded manifolds (JrY, Ar). We agree to call it
the graded infinite order jet manifold. The structure module Q∗∞[F ; Y ] of sections
of T∗∞[F ; Y ] is a DBGA such that, given an element φ ∈ Q∗∞[F ; Y ] and a point
z ∈ J∞Y , there exist an open neighborhood U of z and a graded exterior form
φ(k) on some finite order jet manifold JkY so that φ|U = π∞∗

k φ(k)|U . In particular,
there is the monomorphism S∗

∞[F ; Y ] → Q∗
∞[F ; Y ].

Due to this monomorphism, one can restrict S∗
∞[F ; Y ] to the coordinate chart

(7) and say that S∗
∞[F ; Y ] as an O0

∞Y -algebra is locally generated by the elements

(1, ca
Λ, dxλ, θa

Λ = dca
Λ − ca

λ+Λdxλ, θi
Λ = dyi

Λ − yi
λ+Λdxλ), 0 ≤ |Λ|,

where ca
Λ, θa

Λ are odd and dxλ, θi
Λ are even. We agree to call (yi, ca) the local basis

for S∗
∞[F ; Y ]. Let the collective symbol sA stand for its elements. Accordingly, the

notation sA
Λ and θA

Λ = dsA
Λ − sA

λ+Λdxλ is introduced. For the sake of simplicity, we
further denote [A] = [sA].

Similarly to O∗
∞, the DBGA S∗

∞[F ; Y ] is decomposed into S0
∞[F ; Y ]-modules

Sk,r
∞ [F ; Y ] of k-contact and r-horizontal graded forms. Accordingly, the graded

exterior differential d on S∗
∞[F ; Y ] falls into the sum d = dH + dV of the total

and vertical differentials, where

dH(φ) = dxλ ∧ dλ(φ), dλ = ∂λ +
∑

0≤|Λ|
sA

λ+Λ∂Λ
A.

Let dS0
∞[F ; Y ] be a S0

∞[F ; Y ]-module of graded derivation of the R-ring
S0
∞[F ; Y ]. It is a real Lie superalgebra. Similarly to Proposition 5, one can show

that the DBGA S∗∞[F ; Y ] is minimal differential calculus over the graded com-
mutative R-ring S0∞[F ; Y ]. The interior product ϑ�φ and the Lie derivative Lϑφ,
φ ∈ S∗∞[F ; Y ], ϑ ∈ dS0∞[F ; Y ], obey the relations

ϑ�(φ ∧ σ) = (ϑ�φ) ∧ σ + (−1)|φ|+[φ][ϑ]φ ∧ (ϑ�σ), φ, σ ∈ S∗
∞[F ; Y ]

Lϑφ = ϑ�dφ + d(ϑ�φ), Lϑ(φ ∧ σ) = Lϑ(φ) ∧ σ + (−1)[ϑ][φ]φ ∧ Lϑ(σ).

A graded derivation ϑ ∈ dS0∞[F ; Y ] is called contact if the Lie derivative Lϑ pre-
serves the ideal of contact graded forms of the DBGA S∗∞[F ; Y ]. With respect to the
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local basis (xλ, sA
Λ , dxλ, θA

Λ ) for the DBGA S∗
∞[F ; Y ], any contact graded derivation

takes the form

ϑ = υH + υV = ϑλdλ +

ϑA∂A +
∑
|Λ|>0

dΛ(ϑA − sA
µ ϑµ)∂Λ

A

 , (55)

where υH and υV denotes its horizontal and vertical parts. Furthermore, one can
justify that any vertical contact graded derivation

ϑ = ϑA∂A +
∑
|Λ|>0

dΛϑA∂Λ
A (56)

satisfies the relations

ϑ�dHφ = −dH(ϑ�φ), Lϑ(dHφ) = dH(Lϑφ), φ ∈ S∗
∞[F ; Y ]. (57)

9. Grassmann-Graded Variational Bicomplex

Similarly to the DGA O∗∞, the DBGA S∗∞[F ; Y ] is provided with the graded pro-
jection endomorphism

� =
∑
k>0

1
k

� ◦ hk ◦ hn, �(φ) =
∑

0≤|Λ|
(−1)|Λ|θA ∧ [dΛ(∂Λ

A�φ)], φ ∈ S>0,n
∞ [F ; Y ],

such that � ◦ dH = 0 and the nilpotent graded variational operator δ = � ◦ d. With
these operators the bicomplex BGDA S∗,∞[F ; Y ] is completed to the Grassmann-
graded variational bicomplex. We restrict our consideration to its short variational
subcomplex

0→R→S0∞[F ; Y ] dH→S0,1∞ [F ; Y ] · · · dH→S0,n∞ [F ; Y ] δ→E1,

E1 = �(S1,n
∞ [F ; Y ]), (58)

and its subcomplex of one-contact graded forms

0 → S1,0
∞ [F ; Y ] dH→S1,1

∞ [F ; Y ] · · · dH→S1,n
∞ [F ; Y ]

�→E1 → 0. (59)

One can think of its even elements

L = Lω ∈ S0,n
∞ [F ; Y ], δL = θA ∧ EAω =

∑
0≤|Λ|

(−1)|Λ|θA ∧ dΛ(∂Λ
AL)ω ∈ E1 (60)

as being a Grassmann-graded Lagrangian and its Euler–Lagrange operator,
respectively.

Theorem 19. Cohomology of the complex (58) equals the de Rham cohomology
H∗

DR(Y ) of Y . The complex (59) is exact.

The proof of Theorem 19 follows the scheme of the proof of Theorem 8. It falls
into three steps.

(i) We start with showing that the complexes (58) and (59) are locally exact.
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Lemma 20. If Y = R
n+k → R

n, the complex (58) at all terms, except R, is exact.

Proof. Referring to [3, 10] for the proof, we summarize a few formulas. Any hori-
zontal graded form φ ∈ S0,∗∞ admits the decomposition

φ = φ0 + φ̃, φ̃ =
∫ 1

0

dλ

λ

∑
0≤|Λ|

sA
Λ∂Λ

Aφ, (61)

where φ0 is an exterior form on R
n+k. Let φ ∈ S0,m<n∞ be dH-closed. Then its

component φ0 (61) is an exact exterior form on R
n+k and φ̃ = dHξ, where ξ is

given by the following expressions. Let us introduce the operator

D+ν φ̃ =
∫ 1

0

dλ

λ

∑
0≤k

kδν
(µ1

δα1
µ2

· · · δαk−1
µk) λsA

(α1...αk−1)∂
µ1...µk

A φ̃(xµ, λsA
Λ , dxµ). (62)

The relation [D+ν , dµ]φ̃ = δν
µφ̃ holds, and leads to the desired expression

ξ =
∑
k=0

(n − m − 1)!
(n − m + k)!

D+νPk∂ν�φ̃, P0 = 1, Pk = dν1 · · ·dνk
D+ν1 · · ·D+νk . (63)

Now, let φ ∈ S0,n
∞ be a graded density such that δφ = 0. Then its component φ0

(61) is an exact n-form on R
n+k and φ̃ = dHξ, where ξ is given by the expression

ξ =
∑
|Λ|≥0

∑
Σ+Ξ=Λ

(−1)|Σ|sA
ΞdΣ∂µ+Λ

A φ̃ωµ. (64)

Since elements of S∗
∞ are polynomials in sA

Λ , the sum in the expression (63) is
finite. However, the expression (63) contains a dH-exact summand which prevents
its extension to O∗

∞. In this respect, we also quote the homotopy operator (5.107)
in [25] which leads to the expression

ξ =
∫ 1

0

I(φ)(xµ, λsA
Λ , dxµ)

dλ

λ
, (65)

I(φ) =
∑

0≤|Λ|

∑
µ

Λµ + 1
n − m + |Λ| + 1

dΛ

 ∑
0≤|Ξ|

(−1)Ξ
(µ + Λ + Ξ)!
(µ + Λ)!Ξ!

sAdΞ∂µ+Λ+Ξ
A (∂µ�φ)

 ,

where Λ! = Λµ1 ! · · ·Λµn ! and Λµ denotes the number of occurrences of the index µ

in Λ [25]. The graded forms (64) and (65) differ in a dH-exact graded form.

Lemma 21. If Y = R
n+k → R

n, the complex (59) is exact.
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Proof. The fact that a dH-closed graded (1, m)-form φ ∈ S1,m<n
∞ is dH-exact is

derived from Lemma 20 as follows. We write

φ =
∑

φΛ
A ∧ θA

Λ , (66)

where φΛ
A ∈ S0,m∞ are horizontal graded m-forms. Let us introduce additional vari-

ables sA
Λ of the same Grassmann parity as sA

Λ . Then one can associate to each
graded (1, m)-form φ (66) a unique horizontal graded m-form

φ =
∑

φΛ
AsA

Λ , (67)

whose coefficients are linear in the variables sA
Λ , and vice versa. Let us consider the

modified total differential

dH = dH + dxλ ∧
∑

0<|Λ|
sA

λ+Λ∂
Λ

A,

acting on graded forms (67), where ∂
Λ

A is the dual of dsA
Λ . Comparing the equality

dHsA
Λ = dxλsA

λ+Λ and the last equality (18), one can easily justify that dHφ = dHφ.
Let a graded (1, m)-form φ (66) be dH-closed. Then the associated horizontal graded
m-form φ (67) is dH-closed and, by virtue of Lemma 20, it is dH-exact, i.e. φ = dHξ,
where ξ is a horizontal graded (m−1)-form given by the expression (63) depending
on additional variables sA

Λ . A glance at this expression shows that, since φ is linear
in the variables sA

Λ , so is ξ =
∑

ξΛ
AsA

Λ . It follows that φ = dHξ where ξ =
∑

ξΛ
A∧θA

Λ .
It remains to prove the exactness of the complex (59) at the last term E1. If

�(σ) =
∑

0≤|Λ|
(−1)|Λ|θA ∧ [dΛ(∂Λ

A�σ)] =
∑

0≤|Λ|
(−1)|Λ|θA ∧ [dΛσΛ

A]ω = 0, σ ∈ S1,n
∞ ,

a direct computation gives

σ = dHξ, ξ = −
∑

0≤|Λ|

∑
Σ+Ξ=Λ

(−1)|Σ|θA
Ξ ∧ dΣσµ+Λ

A ωµ. (68)

Remark 3. The proof of Lemma 21 fails to be extended to complexes of higher
contact forms because the products θA

Λ ∧ θB
Σ and sA

ΛsB
Σ obey different commuta-

tion rules.

(i) Let us now prove Theorem 19 for the DBGA Q∗∞[F ; Y ]. Similarly to
S∗∞[F ; Y ], the sheaf T∗∞[F ; Y ] and the DBGA Q∗∞[F ; Y ] are split into the
Grassmann-graded variational bicomplexes. We consider their subcomplexes

0→R→T0
∞[F ; Y ] dH→T0,1

∞ [F ; Y ] · · · dH→T0,n
∞ [F ; Y ] δ→E1, (69)

0 → T1,0
∞ [F ; Y ] dH→T1,1

∞ [F ; Y ] · · · dH→T1,n
∞ [F ; Y ]

�→E1 → 0, (70)

0→R→Q0
∞[F ; Y ] dH→Q0,1

∞ [F ; Y ] · · · dH→Q0,n
∞ [F ; Y ] δ→Γ(E1), (71)

0 → Q1,0
∞ [F ; Y ] dH→Q1,1

∞ [F ; Y ] · · · dH→Q1,n
∞ [F ; Y ]

�→Γ(E1) → 0, (72)
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where E1 = �(T1,n
∞ [F ; Y ]). By virtue of Lemmas 20 and 21, the complexes (69)

and (70) at all terms, except R, are exact. The terms T∗,∗
∞ [F ; Y ] of the complexes

(69) and (70) are sheaves of Q0
∞-modules. Since J∞Y admits the partition of unity

just by elements of Q0
∞, these sheaves are fine and, consequently, acyclic. By virtue

of the abstract de Rham theorem (see Appendix B), cohomology of the complex
(71) equals the cohomology of J∞Y with coefficients in the constant sheaf R and,
consequently, the de Rham cohomology of Y in accordance with isomorphisms (8).
Similarly, the complex (72) is proved to be exact.

(ii) It remains to prove that cohomology of the complexes (58) and (59) equals
that of the complexes (71) and (72). The proof of this fact straightforwardly follows
the proof of Theorem 8, and it is a slight modification of the proof of [14], Theorem
4.1, where graded exterior forms on the infinite order jet manifold J∞Y of an affine
bundle are treated as those on X .

Proposition 22. Every dH-closed graded form φ ∈ S0,m<n
∞ [F ; Y ] falls into the sum

φ = h0σ + dHξ, ξ ∈ S0,m−1
∞ [F ; Y ], (73)

where σ is a closed m-form on Y . Any δ-closed graded density (e.g. a variationally
trivial Grassmann-graded Lagrangian) L ∈ S0,n

∞ [F ; Y ] is the sum

L = h0σ + dHξ, ξ ∈ S0,n−1
∞ [F ; Y ], (74)

where σ is a closed n-form on Y . In particular, an odd δ-closed graded density is
always dH-exact.

Proof. The complex (58) possesses the same cohomology as the short variational
complex

0 → R → O0
∞

dH→O0,1
∞ · · · dH→O0,n

∞
δ→E1 (75)

of the DGA O∗∞. The monomorphism (50) and the body epimorphism (51) yield
the corresponding cochain morphisms of the complexes (58) and (75). Therefore,
cohomology of the complex (58) is the image of the cohomology of O∗∞.

The global exactness of the complex (59) at the term S1,n∞ [F ; Y ] results in the
following [14].

Proposition 23. Given a Grassmann-graded Lagrangian L = Lω, there is the
decomposition

dL = δL − dHΞ, Ξ ∈ S1,n−1
∞ [F ; Y ], (76)

Ξ =
∑
s=0

θA
νs...ν1

∧ Fλνs...ν1
A ωλ, F νk...ν1

A = ∂νk...ν1
A L − dλFλνk...ν1

A + hνk...ν1
A , (77)

where local graded functions h obey the relations hν
a = 0, h

(νkνk−1)...ν1
a = 0.
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Note that, locally, one can always choose Ξ (77) where all functions h vanish.
The decomposition (76) leads to the global first variational formula for

Grassmann-graded Lagrangians as follows [5, 14].

Proposition 24. Let ϑ ∈ dS0
∞[F ; Y ] be a contact graded derivation (55) of the

R-ring S0∞[F ; Y ]. Then the Lie derivative LϑL of a Lagrangian L fulfills the first
variational formula

LϑL = ϑV�δL + dH(h0(ϑ�ΞL)) + dV(ϑH�ω)L, (78)

where ΞL = Ξ + L is a Lepagean equivalent of L given by the coordinate expres-
sion (77).

Proof. The proof follows from the splitting (76) similarly to the proof of
Proposition 12.

A contact graded derivation ϑ (55) is called a variational symmetry of a
Lagrangian L if the Lie derivative LϑL = dHξ is dH-exact. A glance at the expres-
sion (78) shows that: (i) a contact graded derivation ϑ is a variational symmetry
only if it is projected onto X , (ii) ϑ is a variational symmetry iff its vertical part
υV is well, (iii) it is a variational symmetry iff the density υV�δL is dH-exact.

Theorem 25. If a contact graded derivation ϑ (55) is a variational symmetry of
a Lagrangian L, the first variational formula (34) restricted to Ker δL leads to the
weak conservation law

0 ≈ dH(h0(ϑ�ΞL) − ξ).

Remark 4. If Y → X is an affine bundle, one can consider the subalgebra
P [F ; Y ] ⊂ S[F ; Y ] of graded differential forms whose coefficients are polynomi-
als in fiber coordinates of Y → X and their jets. This subalgebra is also split into
the Grassmann-graded variational bicomplex. One can show that, the cohomology
of its short variational subcomplex as like as that of the complex (40) equals the
de Rham cohomology of X .

10. Appendixes

10.1. Appendix A

To show that Y is a strong deformation retract of J∞Y , let us construct a homotopy
from J∞Y to Y in an explicit form. Let γ(k), k ≤ 1, be a global sections of the
affine jet bundles JkY → Jk−1Y . Then, we have a global section

γ : Y � (xλ, yi) → (xλ, yi, yi
Λ = γ(|Λ|)i

Λ ◦ γ(|Λ|−1) ◦ · · · ◦ γ(1)) ∈ J∞Y (79)
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of the open surjection π∞
0 : J∞Y → Y . Let us consider the map

[0, 1]× J∞Y � (t; xλ, yi, yi
Λ) → (xλ, yi, y′i

Λ) ∈ J∞Y, 0 < |Λ|,
y′i
Λ = fk(t)yi

Λ + (1 − fk(t))γ(k)
i
Λ(xλ, yi, yi

Σ), |Σ| < k = |Λ|,
(80)

where fk(t) is a continuous monotone real function on [0, 1] such that

fk(t) =

{
0 t ≤ 1 − 2−k,

1 t ≥ 1 − 2−(k+1).
(81)

A glance at the transition functions (7) shows that, although written in a coordinate
form, this map is globally defined. It is continuous because, given an open subset
Uk ⊂ JkY , the inverse image of the open set (π∞

k )−1(Uk) ⊂ J∞Y , is the open
subset

(tk, 1] × (π∞
k )−1(Uk) ∪ (tk−1, 1] × (π∞

k−1)
−1(πk

k−1[Uk ∩ γ(k)(Jk−1Y )]) ∪ · · ·
∪ [0, 1] × (π∞

0 )−1(πk
0 [Uk ∩ γ(k) ◦ · · · ◦ γ(1)(Y )])

of [0, 1]× J∞Y , where [tr, 1] = supp fr. Then, the map (80) is a desired homotopy
from J∞Y to Y which is identified with its image under the global section (79).

10.2. Appendix B

We quote the following minor generalization of the abstract de Rham theorem ( [20],
Theorem 2.12.1) [13, 28]. Let

0 → S
h→S0

h0→S1
h1→· · · hp−1→ Sp

hp→Sp+1, p > 1,

be an exact sequence of sheaves of Abelian groups over a paracompact topological
space Z, where the sheaves Sq, 0 ≤ q < p, are acyclic, and let

0 → Γ(Z, S) h∗→Γ(Z, S0)
h0
∗→Γ(Z, S1)

h1
∗→· · · hp−1

∗→ Γ(Z, Sp)
hp
∗→Γ(Z, Sp+1) (82)

be the corresponding cochain complex of sections of these sheaves.

Theorem 26. The q-cohomology groups of the cochain complex (82) for 0 ≤ q ≤ p

are isomorphic to the cohomology groups Hq(Z, S) of Z with coefficients in the
sheaf S.

10.3. Appendix C

The sheaves Ek in proof of Theorem 8 are fine as follows [13]. Though the R-modules
Γ(Ek>1) fail to be Q0∞-modules [29], one can use the fact that the sheaves Ek>0 are
projections �(Tk,n∞ ) of sheaves of Q0∞-modules. Let {Ui}i∈I be a locally finite open
covering of J∞Y and {fi ∈ Q0∞} the associated partition of unity. For any open
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subset U ⊂ J∞Y and any section ϕ of the sheaf Tk,n
∞ over U , let us put hi(ϕ) = fiϕ.

The endomorphisms hi of Tk,n
∞ yield the R-module endomorphisms

hi = � ◦ hi : Ek
in→Tk,n

∞
hi→Tk,n

∞
�→Ek

of the sheaves Ek. They possess the properties required for Ek to be a fine sheaf.
Indeed, for each i ∈ I, supp fi ⊂ Ui provides a closed set such that hi is zero outside
this set, while the sum

∑
i∈I hi is the identity morphism.

10.4. Appendix D

Let the common symbol D stand for dH and δ. Bearing in mind decompositions
(28)–(31), it suffices to show that if an element φ ∈ O∗

∞ is D-exact in the algebra
Q∗

∞, then it is so in the algebra O∗
∞. Lemma 7 states that, if Y is a contractible

bundle and a D-exact form φ on J∞Y is of finite jet order [φ] (i.e. φ ∈ O∗
∞), there

exists a differential form ϕ ∈ O∗∞ on J∞Y such that φ = Dϕ. Moreover, a glance at
the homotopy operators for dH and δ shows that the jet order [ϕ] of ϕ is bounded
by an integer N([φ]), depending only on the jet order of φ. Let us call this fact the
finite exactness of the operator D. Given an arbitrary bundle Y , the finite exactness
takes place on J∞Y |U over any domain U ⊂ Y . Let us prove the following.

(i) Given a family {Uα} of disjoint open subsets of Y , let us suppose that the
finite exactness takes place on J∞Y |Uα over every subset Uα from this family. Then,
it is true on J∞Y over the union ∪

α
Uα of these subsets.

(ii) Suppose that the finite exactness of the operator D takes place on J∞Y

over open subsets U , V of Y and their non-empty overlap U ∩ V . Then, it is also
true on J∞Y |U∪V .

Proof of (i). Let φ ∈ O∗∞ be a D-exact form on J∞Y . The finite exactness on
(π∞

0 )−1(∪Uα) holds since φ = Dϕα on every (π∞
0 )−1(Uα) and [ϕα] < N([φ]).

Proof of (ii). Let φ = Dϕ ∈ O∗∞ be a D-exact form on J∞Y . By assumption,
it can be brought into the form DϕU on (π∞

0 )−1(U) and DϕV on (π∞
0 )−1(V ),

where ϕU and ϕV are differential forms of bounded jet order. Let us consider their
difference ϕU − ϕV on (π∞

0 )−1(U ∩ V ). It is a D-exact form of bounded jet order
[ϕU − ϕV] < N([φ]) which, by assumption, can be written as ϕU − ϕV = Dσ,
where σ is also of bounded jet order [σ] < N(N([φ])). Lemma 27 below shows that
σ = σU + σV, where σU and σV are differential forms of bounded jet order on
(π∞

0 )−1(U) and (π∞
0 )−1(V ), respectively. Then, putting

ϕ′|U = ϕU − DσU , ϕ′|V = ϕV + DσV,

we have the form φ, equal to Dϕ′
U on (π∞

0 )−1(U) and Dϕ′
V on (π∞

0 )−1(V ), respec-
tively. Since the difference ϕ′

U −ϕ′
V on (π∞

0 )−1(U ∩V ) vanishes, we obtain φ = Dϕ′
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on (π∞
0 )−1(U ∪ V ) where

ϕ′ def=

{
ϕ′|U = ϕ′

U ,

ϕ′|V = ϕ′
V

is of bounded jet order [ϕ′] < N(N([φ])).
To prove the finite exactness of D on J∞Y , it remains to choose an appropriate

cover of Y . A smooth manifold Y admits a countable cover {Uξ} by domains Uξ,
ξ ∈ N, and its refinement {Uij}, where j ∈ N and i runs through a finite set, such
that Uij ∩ Uik = ∅, j �= k [18]. Then Y has a finite cover {Ui = ∪jUij}. Since the
finite exactness of the operator D takes place over any domain Uξ, it also holds
over any member Uij of the refinement {Uij} of {Uξ} and, in accordance with item
(i) above, over any member of the finite cover {Ui} of Y . Then by virtue of item
(ii) above, the finite exactness of D takes place over Y .

Lemma 27. Let U and V be open subsets of a bundle Y and σ ∈ O∗∞ a differential
form of bounded jet order on (π∞

0 )−1(U ∩ V ) ⊂ J∞Y . Then, σ is split into a sum
σU + σV of differential forms σU and σV of bounded jet order on (π∞

0 )−1(U) and
(π∞

0 )−1(V ), respectively.

Proof. By taking a smooth partition of unity on U ∪ V subordinate to the cover
{U, V } and passing to the function with support in V , one gets a smooth real
function f on U∪V which is 0 on a neighborhood of U−V and 1 on a neighborhood
of V − U in U ∪ V . Let (π∞

0 )∗f be the pull-back of f onto (π∞
0 )−1(U ∪ V ). The

differential form ((π∞
0 )∗f)σ is 0 on a neighborhood of (π∞

0 )−1(U) and, therefore, can
be extended by 0 to (π∞

0 )−1(U). Let us denote it σU . Accordingly, the differential
form (1 − (π∞

0 )∗f)σ has an extension σV by 0 to (π∞
0 )−1(V ). Then, σ = σU + σV

is a desired decomposition because σU and σV are of the jet order which does not
exceed that of σ.
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