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Graded-Mesh Difference Schemes
for Singularly Perturbed

Two-Point Boundary Value Problems*

By Eugene C. Gartland, Jr.

Abstract. This paper is concerned with the numerical approximation by compact finite-
difference schemes of differential operators of the form Leu = eu(m) + ^Jv=0 avv^
without turning points. The stability of L£ combined with various auxiliary conditions
is discussed, and a representation result for solutions of problems involving it is proven.
This representation decomposes the solution into a smooth outer component plus a
decaying exponential layer term along the lines of the Method of Multiple Scales.

The stability of compact difference analogues of L€ is studied, and a stability re-
sult is proven which generalizes earlier work. This result encompasses, for example,
discretizations of second-order problems that fail to possess a maximum principle. It
allows for standard polynomial-based differences in outer regions (away from boundary
layers) with uniform meshes, even though such schemes admit oscillatory solutions.

A family of finite-difference schemes based on an exponentially graded mesh and
local polynomial basis functions is discussed. These schemes can be constructed to have
arbitrarily high uniform order of convergence. To achieve a scheme of order 0(hK),
roughly K times as many points are distributed inside the layer as outside. The high
order is achieved by using extra local evaluations of the coefficient functions and source
term of the problem. A rigorous discretization error analysis of these schemes, using the
established stability and representation results, is given.

Numerical results exhibiting the performance of these schemes are presented and
generalizations of the results in the paper are discussed.

1. Introduction. This paper is concerned with the numerical approximation by
finite-difference methods of singularly perturbed two-point boundary value prob-
lems. It has its motivation in numerical evidence that suggests that one can (stably
and accurately) use standard central differences to approximate the solution of
model problems of the form eu" + u' = 0 in outer regions where the mesh spacing
is large compared to e provided that one does something better near the bound-
ary layer. This is true despite the fact that such a discretization violates certain
"reasonableness" conditions: it does not have a maximum principle and admits os-
cillatory solutions, contrary to the behavior of the underlying continuous problem.
We are thus led to consider under what circumstances such discretizations can be
stable and accurate and what tools can be used to analyze them.
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632 EUGENE C. GARTLAND, JR.

The analysis can be carried out for more general problems, and we therefore
consider linear operators Le and B£ of the form

m—1

(1.1) L£u:=£u^+ £ a,,«*"),        B£u:= (B£^u,.. .,B£,mu),
i/=0

where e is positive and conditions on the coefficient functions a„ and auxiliary
linear functionals B£<ll are given below. We are interested in solving problems of
the type

(1.2) Leu = f,        B£u = 7

for prescribed / in ¿^[0,1] and 7 in Rm. We wish for such problems to be "well
posed" in a strong sense (uniformly in e), which we now make precise.

Let 111-|| |e denote the weighted Sobolev norm

UHU, := maxfllulU ..., ||ii(m-2)||0o,e||u{m-1)||oo}.

We say that the pair (L£, Be) is strongly uniformly stable if there exist constants C
and £q such that

(1.3) |||u|||e<C{||Leti||i + |Beu|},        0<£<cto

for all sufficiently smooth functions u. Here || • ||i 's the usual L1-norm and | • |
denotes the 1-norm of the m-vector B£u.

Conditions that are sufficient to guarantee strong uniform stability can be estab-
lished by using the stability of the initial value problem. Let I£ denote the initial
data operator

I£u := (u(0),.. .,«(m_2)(0),eu(m-1)(0)).

We have the following.

THEOREM 1.1.   If the coefficients av in (1.1) satisfy
(1) av G L1[0,1], v = 0,... , m — 1, and
(2) am_i(i) >o>0,

then the initial value problem associated with L£ is strongly uniformly stable in the
sense that there exists a constant C such that for all £ > 0 and for all u sufficiently
smooth,

IIHHe <C{||Leu||i + |/eu|}.

Proof Using the integrating factor exp(j JQxam_i) for the leading terms of L£u,
we establish, for sufficiently smooth u,

uim-1Hx) = u(m-V(0)e-tf°Zam-i+£-1 í e"^ra"-'6(i)dt,
./o

where
m-2

b := L£u — 2_] Oi/W     ■
u=0

From this it follows that

£\u(m-^(x)\ <£|u(m-1'(0)|+ / \b\
Jo
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GRADED-MESH DIFFERENCE SCHEMES 633

and
/"V"*-0! < a_-lL\u(m-V(0)\ + fX\b\\.

Now from Taylor's formula we know that

\uM(x)\<(m-l)-      max     |u(")(o)| + /
f=0,. ..,m—2 Jq

,m-2

v=0.m-2

while
rX pX pX (   /"Wl — ̂  \ "\

/o|4|ííM+/„{(Sw)^=-l"",|f
The result follows from these using Gronwall's inequality. The constant C depends
on m, a-1, and ||a0||i,..., ||am_2||i.      □

The above theorem is proved in [17] for the case of continuous coefficients. From
the stability of the initial value problem, we can deduce the stability of the boundary
value problem if the auxiliary linear functional {B£<li} are linearly independent on
the null space of L£, N(L£), in this case in a sense that is uniform in e. The
following can be proven along the lines of Theorem 9 in [17].

THEOREM 1.2. Assume that the coefficients au satisfy the conditions of The-
orem 1.1 and that the linear functional B£tß satisfy, for 0 < e < so, some eq,

(1) \B£^u\ < C|||u|||e, p = 1,. • • ,m, for some absolute constant C and for all
sufficiently smooth functions u, and

(2) {Betfl}™=1 are uniformly linearly independent on N(L£),

in the sense that there exists a fundamental system {(fru}™=1 for L£ that satisfies

|||4v|||e<C, 0 <£<£(),
and is such that the matrix [B£¡li(f>l/] is nonsingular and has an inverse, the norm of
which can be bounded independently of £ for 0 < £ < £n.. Then (L£,B£) is strongly
uniformly stable in the sense of (1.3).

Notice that while it is customary to think in terms of boundary value problems,
with conditions specified at the endpoints x = 0 and x = 1, the auxiliary conditions
here can be more general than that and can include, in particular, multi-point
conditions. Solutions of problems of the type (1.2) admit boundary layers near
the endpoint x = 0, and these must be taken into account in the development
and analysis of approximation schemes. Asymptotic expansions for such solutions
can be obtained by various techniques; the one that is most useful for our present
purposes is the method of multiple scales (see, for example, [18] or [21]). We use it
now to characterize solutions of the homogeneous equation L£u = 0.

THEOREM 1.3. Granted sufficient smoothness of the coefficient functions au,
the differential operator L£ admits, for all £ sufficiently small, a fundamental system
of the form {<f>0, ■ ■ ■ ,<f>m-2,exp(-j ¡Qxam-i)ip}, where <j>o, ■■■ ,</>m- 2, and ip and
their derivatives through any prescribed finite order can be bounded independently
of £.

Proof. We first construct "outer" functions cpß, p — 1,..., m - 2, in the form of
truncated perturbation expansions plus remainders. Fix a positive integer K. Seek

4>p. = 4>p,o + £0M,i + • • • + £K4>p.,K + £K+1Rp.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



634 EUGENE C. GARTLAND, JR.

The component functions are defined recursively according to

Lo4>n,o = 0,    <^o(°) = &p.,u,       v = 0,... ,m - 2

and

¿O0M,* = -*¡3-i.    <O0) = °>        ^ = 0,...,m-2,    fc = l,...,iC
The remainder is then taken to satisfy

Lei2M = -¿¡3>    4l/)(0) = 0,        i/ = 0,...,m-l.

Here Lo is the reduced ((m - l)-st order) operator corresponding to £ = 0.
Now the functions qb^.^ are independent of s and will have bounded derivatives

up to any order if the data are sufficiently smooth. The stability of the initial value
problem associated with L£ (Theorem 1.1) guarantees us that

Rß, «;,..., Ä<m_2) = o(i),    Rpm~l) = o(£-%

while successive differentiations of the differential equation satisfied by Rß give that

R(m+v) = 0{e-"-%       v = 0,1,... .

It follows that £K+ÏRI1 (and hence </>M) has uniformly bounded derivatives through
the order m + K - 1.

The boundary layer function can be constructed in a similar way. Let E(x)
denote the exponential layer type function

E(x):=e~*/o*B—»,

and let L+ denote the differential operator defined by

L£[£m-2E(x)v\ = E(x)L+v.

This can be written in the form

L+v = £m~ Vm> + £m"2a+ ^v^-V + ■■■ + eo+v" + a+v' + a+v,

where the coefficients a+ are functions of the a„ and their derivatives and

at = (-l)m-1aZ\Z\+0(e).

It follows that a~l(x) ^ 0 for £ sufficiently small. Moreover, it can be shown by
simple estimates of the type used in the proof of Theorem 1.1, that Lf satisfies a
stability inequality of the form

IMUe|h/|U...,em->(m-1)l|oo
< C{\\Ltv\\i + \v(0)\ + £\v'(0)\ + ■■■ + em-Vm-1)(0)|}-

We now seek the layer solution in the form

<pm-i = £m-2£(x)Oo + £Vi + ■ • • + eKrpK + £K+1R}-

Substituting into L£qbm-i = 0 and balancing like powers of £ gives a sequence of
problems for the ipk functions of the form

afiP'o + ao V'o = 0,    Vo(0) = 1,
attp'k + a+i¡Jk = Fk(^o,---,4>k-i),    V/fc(0) = 0,        k = l,...,K.
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Here Fk is a complicated function of xpo, ■ ■ ■ ,tpk-i and their derivatives up to a
certain order. Note that since af(x) does not vanish (for all £ sufficiently small)
the solutions of these problems are well behaved and i>o(x) is also nonvanishing.
The remainder can then be taken to satisfy

L+R = F(tPo, ...,**),        R(0) = ■■■ = R{m-1] (0) = 0.

The stability inequality above for Lf plus successive differentiations of the equation
satisfied by R give

rW =0(£~k),       fc = 0,l,... .
So £m+K~1R (and hence tp) has uniformly bounded derivatives through order m +
K - 1. Since K was chosen arbitrarily, the only limitation is the smoothness of the
original coefficient functions a„.

The linear independence of these functions can be established directly by inspec-
tion of the Wronskian matrix W[qt>o,. ■ ■, <t>m-i]- In fact, the matrix

£expi-/  am-ijW[<t>o,---,<ßm-i]

is equal to an 0(e) perturbation of a matrix of the form

W[<t>o,0,---,<f>m-2,o] *
o (-ír-^iivo.

The determinant of this is nonzero because neither V'oiz) nor am-i(x) vanish and
because the leading order functions </>o,o, • • • ,<t>m-2,o are constructed to be a fun-
damental system for the reduced differential operator.     D

This method of constructing asymptotic solutions is well known, and the asymp-
totic nature of the infinite series so generated has been established for the case of
analytic data. It is also known in this case that these series can be differentiated
term by term and maintain their asymptotic character. See the references in [17,
Section 3.2], in particular [23]. The author was unable to find the precise informa-
tion contained above concerning the bounds on the derivatives and remainders in
the case of nonanalytic coefficients, and this is required in what follows.

Using this characterization of the null space of L£, we can prove a representation
result for solutions of problems of the form (1.2). This result will be used (instead
of the usual local Taylor expansions) to do the truncation error analysis for the
schemes derived in Section 3.

THEOREM 1.4.   The solution u of (1.2) admits the representation

u = v + £m 2we i/o-

where v and w and their derivatives up to any prescribed finite order can be bounded
independently of e, granted sufficient smoothness of the data ao,- ■ ■ ,am-i, and f.

Proof. An O(l), smooth particular integral for L£u — f can be constructed along
the lines of the construction of the outer solutions in the proof of Theorem 1.3. The
result then follows from Theorem 1.3 and the observation that if the layer function
is to have a (uniformly) bounded ||||||e-norm, as is implied by the assumed stability
of (¿e, B£), then it must be scaled as above.     D
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636 EUGENE C. GARTLAND, JR.

This result generalizes a related result corresponding to the case m = 2 proved
in [9] (see also [8]). Problems of the type (1.2), especially in the case m = 2,
have seen a lot of attention for some time now. See, for example, the references
in [9] for a list of some of the contributions. Much effort has been devoted to the
construction of uniform-mesh schemes, and the author was able to show in [9] how
one could construct such schemes of arbitrarily high order of convergence, uniform
in £. Here we concentrate on issues particular to mesh grading and its impact
specifically on finite-difference methods. We will see that classical polynomial-based
approaches are applicable in much greater generality than has been previously
supposed; the main obstacle to stability seems to be a need to do a sufficient
amount of "upwinding" when proceeding through the very narrow transition regions
between "inner" and "outer" mesh spacings.

This work then bears a relationship, at least in terms of topics addressed, to work
done in [4] and [24], for the case of finite-difference methods for scalar equations,
to [1], [2], and [3], for the case of collocation methods for first-order vector systems,
and to [14] for the case of difference methods for systems. We now take up the
issue of discrete approximations to problems of the form (1.2).

2. Stability of Compact Difference Schemes. We consider discretizations
of the differential operator (1.1) by finite differences that are compact (in the sense
of Kreiss, cf. [13]), that is, difference operators that involve the minimum number of
mesh points (in this case m + 1) necessary to consistently approximate the highest-
order derivative (in this case m). Give a (not necessarily uniform) mesh 0 = xo <
Xi < ■ ■ ■ < xn = 1, and define the notations

hl:=xl+l-xi,    h := max hi,    hk(xi) := -&-r--.

The difference operator associated with the subinterval [xi,x¿+m] will be of the
general form

Lh,eUi   ■= CtiflUi  H-1" Oi,mUÍ+m-

Such difference operators can be written in many different ways, and for our
purposes in what follows, two alternate forms are convenient. In these matters we
follow much of the notation and general ideas of [17]. Let D" denote the divided-
difference operator

Z?"u? :=v\uh\xi,...,xi+v\.

The difference operator Lh,£ can be written

(2.1) Lhi£uî = EDmuhl + ck-ifa) (OiD™-1^ + (1 - ez)Dm-luhl+l) + bh(uh)t

or

(2.2) Lh<euî = eriDmuî + aîn_1(xi)Dm-1uî+1+bh(uh)i,

6fc(tifc)i:=ojJl_3i0(xi)I^-V + c4-aaWom"3«î+i
m-3

+ ahm-2^(xl)Dm-2uï+2+ Yl *H&W<+v
v=0

where

(2.3)
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GRADED-MESH DIFFERENCE SCHEMES 637

Here the ah are some prescribed mesh functions. These last two representations
break the operator up into the leading-order parts plus a noncompact discretization
of the lower-order terms of the differential operator L£. The mesh function 0 serves
as an "upwind" / "downwind" weighting parameter. Many of our stability hypothe-
ses will involve conditions on #¿. The coefficients in these last two expressions for
LhiS are not uniquely determined. However, we do always have the relationship

,         „                    hm(xi)am_1(xi)
r% = 1 - piVi,        Px :=-•

The local dimensionless parameter p¿ represents the ratio of the local mesh spacing
to the singular-perturbation parameter e. Analogous discrete auxiliary functional

Bh<euh = (Bh<etluh,...,Bh,etmuh)

are assumed given; we will not go into the details of these.
We wish for our finite-difference operators to satisfy a strong uniform discrete sta-

bility property analogous to the one satisfied by the continuous operators (namely
(1.3)). We define the following discrete norms:

H^^lkoo :=max{\Dvu^\ : i = 0,... ,n- v)\
ML,hill        ._ vnoirJIL.hll \\r>rn—2„,hii c-ll nm_l^.h|| \.Ill« like •— max{||u \\h,oo,...,\\L>       u \\h,oc,£\\L>       u \\h,oo),

n—m

\\fh\\h,i ■= £ hm(Xi)\ft\.
i=0

We say that the pair (Lh,£, Bh,£) is strongly uniformly stable if there exist constants
C, £o, and ho such that

(2.4)        \\\uh\\\h,£<C{\\Lhi£uh\\htl + \Bni£uh\},        0<£<£0,0<h<ho

for all mesh functions uh.
Now for nonsingularly perturbed difference operators, we have general stability

results that tell us that if the original differential operator is stable and if the discrete
operator is compact and consistent, then the discrete operator is guaranteed to be
stable, for all h sufficiently small—see, for example, [6], [11], or [13], or other
references contained in [10]. Unfortunately, this is not the case here. It is easy
to construct examples of compact difference schemes that are uniformly consistent
but not uniformly stable. Consider, for instance, the simple differential equation
eu" + u' = 0 discretized using the Allen-Southwell scheme (which is exact for this
operator) on [0,1/2] while using downwind differences in the outer region [1/2,1].
This scheme is uniformly 0(h) consistent, but in the £ —► 0 limit, the discretization
matrix is singular, having two identical rows.

It is therefore necessary to add something extra to obtain strong uniform stabil-
ity for compact finite-difference schemes. Some necessary and sufficient conditions
for coerciveness and ellipticity for related operators (on one Hubert space to an-
other) are established in [7] using Fourier transforms and principal symbols and the
like. Fairly general stability results are presented in [17] subject to the following
conditions on the difference coefficients:

am-i(xi) > 6 > 0,     ||a*||fci00 < M,        0 < 0, < min{l, 1/pJ.
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638 EUGENE C. GARTLAND, JR.

It is shown there that if the difference scheme is in the form (2.1) (additionally with
am-2,o = aín-2,2 = 0) and nas coefficients that satisfy the conditions above, then
uniform consistency implies strong uniform stability (for all h sufficiently small).

Unfortunately, it is easy to construct stable schemes that fail to satisfy these
sufficient conditions. In particular, any discretization of eu" + u' = 0 that uses
standard central differences in an outer region like [1/2,1], say, will have 0, = 1/2
there, which does not go to zero as E/h —* 0, contrary to what the third condition
above necessarily implies. We will now generalize the stability results of [17].

The key to obtaining our discrete strong stability result, just as in the continuous
case, is the establishment of an a priori stability with respect to initial data. We
make use of the identity

1    1Dm-l„,h      —    *nm-l„h
H+l £>"

Si
X + -    -hm(xi)g-,

£    S^

where r¿ = 1 — p¿o¿ (as before) and

Si := 1 + Ml - 0i),        9i ■= Lh,eu* - bh(uh)

From this there follows, for any integers k < I,

(2.5) Dm-i„h    - tJl Dm-luh + i¿Am(Ii)iííil
Si Si+1i=k

7*-Si

Here and in the sequel we use the convention that

——-= 1,    when i = I.
Si+l        si

From these identities, one can appraise e\Dm~1uh\ and \Dm~2uh\, using

;
Dm~24+2 = Dm~2uhk+1 + X>m_ 1{xi+1)Dm-1uï+l,

i=k

and then the lower-order differences, using similar relationships. The main esti-
mates that are needed are somewhat technical and involve establishing inequalities
concerning certain sums of products of the ratios ri/si. We collect these in the
following lemma.

LEMMA 2.1. For mesh functions ri and s¿ defined as above and for v =
l,...,m, the following inequalities are valid subject to the stated conditions on
the parameter 6:

r_k_

Sk
(i) ¿M*+1)

i=k
I

(2) X>„te+i)|^
¿=* ISk

¿M*i+0?"
i=k

rk

Sk

< hv(xk+i),

<Ce,

< hu(xk+i),

1 _  hyjXj + l)
Pi      hv(xl+2)

<0i<0;

0 < 6i < — ;
Pi

1   *a  <r    ■   f l               ^(Xx-j) 1       1     \— < 0i < mm \ — + —- , — + -, l\Pi [Pi    Mzt-u + Mzt) Pi    2   j
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GRADED-MESH DIFFERENCE SCHEMES 639

Proof. The proofs of these three estimates all follow along the same lines; we
will do the proof for part (1). We proceed by doing an induction argument in k.
Fix /. For k = /, we have

2_]/i„(xi+1)
i=i

n...a
Si Si

hv(xi+i)— < hu(xi+i),
si

because |r¿/s¿| = ri/st < 1 for 0¿ < 0. Assuming the validity of the inequality for
a given k, we have

Y  K(xi+i)
i=k-l

rk-i     n
Sk-1 Sj

Tk-l

Sk-1

Tk-l

Sk-1

K(xk) + Y] hu(xi+1)—--

(K(xk) + K(xk+1)).

But
1 - Pk-lQk-l

1 + Pk-l(l - Ok-l)
(hu(xk) + K(xk+i)) < hu(xk)

is equivalent to
K(xk)

<0k-
Pk-i      hu(xk+i)

the assumed lower bound on 6k-i, and the inequality is established. In part (2),
it is convenient to first prove that the sum with hu(xi+i) replaced by hm(xi+i)-
am-iixi+i) (which is equal to £pi+i) can be bounded by e. The inequality in (2)
can then be established with C = m/a.

In part (3), essential use is made of the sign alternation of the successive terms
in the sum, which is implied by the condition 1 - piai < 0. What is actually
established (again by induction in k) is

hu(xk+i)— < Y]hv(xi+i)-l < 0.
Sk      r-f sk       Sii=k

The hypotheses on 0, are used in the following ways:

6i < 1 => Sl > 0,     — < 0i => n < 0,    6i < - + -
Pi Pi     2

< 1,

and
^ i K{xi ,) M     ) + M)!i>0

Pi      hu(xi-i) + hu(xi) Si

which is needed in the induction step.     D
With these estimates established, we are now in a position to prove our initial

value stability property. Let In<e denote the discrete initial data operator

In,£uh := (tig,...,Dm-2uh0, (e + hm(x0))Dm-1u^).

We have the following.
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THEOREM 2.2.   Assume that the difference coefficients in (2.1) and (2.3) satisfy
for some absolute constants 6 and C and for i = 0,..., n — m

(l)o*,_1(xi)>i>0,
/oí  ||„h il i|-,h n ||_h n s C\¿l   llam-2,0Ílh,oo,  llam-2,ll|h,l!  llam-2,2llh,oo ^ ^,

(3) ||o*||Ä,i < C,    i/ = 0,...,m-3,
hm-i(xi+i)(4) min kl-

{    Pi <"m—l{Xi+2)
<

1 hm-l(Xi-l) 1< mm -J — +-——-—, —
Pi      hm-i(Xi-i) + hm-i(Xi)  pi H'

Furthermore, assume that the number of changes that 6i makes from 6i < 0 to 0 < 0¿
and from Oi < 1/pi to 1/pi < 0, remains bounded independent of h and e, and that
the mesh is locally quasi-uniform (uniformly in h and e) at those interfaces. Then
the discrete initial value problem associated with Ln,£ is strongly uniformly stable
in the sense that there exists a constant C such that for all e > 0 and 0 < h < 1,

|||w"|||h,e<C{||Lft,eu'l||h,l + |/h,eW/l|}

for all mesh functions uh.

Proof. In what follows, we take C to denote a generic constant that does not
depend on h or e. We begin by establishing the validity of the inequality

l + e|£)m-1uf+1|\D'"  ~u¡"+2\-

(2.6) < CÍIIT"-2^! + £|öm-1ug| + ¿ hm(Xl)\g,
*■ i=0

for / = 0,..., n — m. First, it follows from (2.5) and the facts
11      1

<-h -- Pi      2 < 1, % < 1 => 0 < — < 1,

that

(2.7) £\Dm-lu^ï\<E\Dm-luh0\ + Ydhm(xlM
1=0

Next, by assumption the mesh consists of a finite number (which does not grow
with n) of intervals along which 0¿ falls into one of the three ranges in Lemma 2.1.
For any such interval [xk,xi], we have (from that lemma)

i
£hm-l( xi+l,

fk
I — < C(E + hm-i(xk+i)).

Now again using (2.5) and a change of order of summation, we obtain
i

Dm-2u1+2 = Dm-2uhk+l+Yhm-i(xi+i)Dm-lut;+l
i=k

I
= Dm~2uhk+l + Dm~luhk -Yhm-i(xl+i)- ■■■-

Sk $il = k

1 ' 1  '
+ -£"m(x¿)of— Yhm-l(Xj + l

i=k Si+l
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from which there follows

\Dm-2u>l+2\ < \Dm~2uhk+l\ + \Dm~luhk\ ■ C(e + hm-i(xk+i))

1   ■ 1
+ -Yh^x^\9i\—[hm-i(xi+i) + C(£ + hm-i(xl+2))).£ . , si

i = k

In this we now utilize the estimates

hm-i(xk+i)\Dm-lu>kl\ = hm-i(xk+i)
Dm-2uhk+l - Dm-2u\

hm-l(Xk)

<C(\Dm-2uhk+1\ + \Dm-2uhk\)

and
- • — hm-i(xi+i) < C—-—£    Si 1+Pi(l

<2C,

where this last inequality follows from the condition 0t < l/p¿ + 1/2, plus a similar
bound on the term in the sum involving hm-i(xl+2) to obtain

\Dm~2u?+2\ < c\\Dm-*uhk+l\ + \Dm~2uhk\ + e\Dm-1uhk\ +¿Am(xí)|í?||.
*- i=k '

The desired inequality, (2.6), follows by piecing together estimates like the above
across the interfaces between the regions where 0¿ changes from being less than zero
to greater than zero or from being less than 1/'p% to greater than 1/pi, combined
with (2.7).

From (2.6) we establish (using the definitions of gh and bh(uh))

(1 - Mz0|ai;-2,2(zi)l)|£m-%+2l + e|£>m-%+il
i

<C{yhm(xi)\LK£uh^
[±-Ki=0

i

+ /  J nm[Xi i

1=0
lam-2,o(^+l)l + |am-2,l(^)l

m-3

+ \am-2,2(xi-i)\+Yl la^^)l
v=0

max     \D^+1\ + \Dm-^\
L>=0,...,m — 2

m— 1 „,h i+ hm(xo) |<4_2,0(x0)| \Dm~2uho\ + e\D

Using the relationships

D»-'uhw = D»-'u\ + £M*¿+i )£>"«?+,
t=0

for i^   =   l,...,m — 2  together with the  inequality  above,   we establish,   for
h\\a:m-2,2 |h,oo < 1,

0M-1 < CÍ¿ hm{Xi)AWi + £ ÄmixOlIfc.,«? I + ¿0 V
•■¿=0 î=0 -1
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where
0? := max{|Uh+1|,..., \Dm-2u^1\,e\Dm-1u!>\}

and
m-3

¿Ï ■■= |Om-2,o(*¿+l)l + lam-2,l(^)l + l<&-2,a(*i-l)l + £ 1^(^)1-
u=0

It now follows from Gronwall's inequality that

Mh\\h,oo < Cexp(||Afc||fc,1){||LMufc||h,1 + \<ft\}

and finally
|||«',|||M<C'{||LM«',|U,1 + |/M«ft|}.    G

As a direct consequence of this theorem, we get the following, more easily appli-
cable corollary.

COROLLARY 2.3.   Suppose that the difference operator Lh,e can be written in
the form

Lht£uî = £Dmuhx + <&_1(xi)(0iDm-1u? + (1 - ei)Dm-1u^+1)
m-2

+ £ ahu(xi)D"uï+1,
u=0

where the difference coefficients satisfy the following assumptions:

(1) a'm_1(xi)>6>0,
(2) ||a5._ilk,oo < C,
(3) HaSllfc,! <C,is = 0,...,m-2, and
(4) 0 satisfies the condition (4) of Theorem 2.2 to leading order,

that is, 6 = 0 + 60, where 0 satisfies the condition and

\60i\ < Cmin{/im_1(x¿),/im_i(x¿+i)}.

Then the discrete initial value problem associated with Ln,£ is strongly uniformly
stable in the sense of Theorem 2.2.

Proof. The difference operator can be written in the form

LMii? = EDmu>i + ahm_l{xi){ëiDm-1uhi + (1 - 0<)Z>m-1u?+1)

+ ahm_1(xi)è0iDm-lu^-ahm-i(xi)S0lDm-1u^+i
m-2

+ Y ahv(Xi)D"v!!+1,
v=0

the second part of which is equal to

am-i(Xi)60i     m_2   h       am_l(Xi)60i     m_2   h       ,    \T^     hi     \ r\v   h
* ~h-J7TD       "' ~ ~h-T^-)D       u»+2 + ¿^ av(Xl)D ul+1-Axi) '      hm-i(xi+i)

,    \am-l{xi)^i   ,     h       :     ,   ,   CW
+     ~~T, TZ~\       h am-2\xi) "+" T 7~        C

«m-l(Xt) ftm_i(Xi+i)

This will now satisfy the assumptions of Theorem 2.2.      D

jyn-2   h
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The conditions of Theorem 2.2 and Corollary 2.3, especially the ones concerning
0¿, are rather complicated. What they say in certain extreme ranges is easy to
decipher. In outer regions, the situation is typically characterized by a uniform
mesh and a large ratio of h to e, equivalently, 1/pi « 0. In this case, condition (4)
essentially becomes

-l<0i<\.
While in the inner region (inside the boundary layer), we would have l/p¿ large
together with moderate local mesh ratios, which would combine to produce the
condition

0 < 0i < 1.
In transition regions, the "active" constraint will typically be

Pi     2
This condition can be somewhat restrictive, as we will see in some simple examples
in the next section.

Theorem 2.2 and Corollary 2.3 generalize the results of [17] (in particular Theo-
rem 3 of that paper) in substantive ways at the expense of certain mild restrictions
on the mesh. The requirement that 0¿ make a finite number of changes from one
range of values to another is not much of a constraint for the applications we have
in mind; typically, one of these ranges will apply throughout each of the interior,
transition, and outer regions constructed in Section 3. Also, all of the meshes of
that section are locally quasi-uniform; so the boundedness of local mesh ratios at
any interfaces is assured. The reward for these constraints over the results of [17],
which have no restrictions on the mesh, is a much broader allowable range for the
weighting parameter 0. In particular, it is not required that 0 —> 0 as EJh —► 0,
and all of the previously mentioned simple examples concerning standard central
differences and the like are covered by our theorem.

Now for one-dimensional problems like ours, this a priori stability estimate is
pretty much the main story, in the sense that the strong uniform stability of our
boundary value problem is equivalent to this, subject to the uniform linear inde-
pendence of the auxiliary functionals on the null space of Lh<£. To be precise, we
can use the approach of Theorem 11 of [17] to prove

THEOREM 2.4.   Assume the following:
(1) the continuous pair (L£,B£) is strongly uniformly stable in the sense of

(1.3),
(2) the discrete difference operator Lf,,£ satisfies the assumptions of Theorem

2.2,
(3) the discrete auxiliary operator Bn,£ satisfies

\Bn,eUh\<C\\\uh\\\n<£

for any mesh function uh and for some absolute constant C, and
(4) the discrete problem is uniformly consistent on N(L£),

in the sense that

\\(Lh,e - ££)<Mh,i, \(Bh,s - Be)4>v\ -»0, as h -y 0
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uniformly in £ for <f>v in the fundamental system for L£ satisfying

Le<t>u=Q,    B£^<f>v = <5Mi„,        p,u =l,...,m.

Then the discretization pair (Ln £,Bh £) is strongly uniformly stable in the sense of

(2.4).

3. Discretizations and Graded Meshes. We consider the construction of
polynomial-based, compact finite-difference discretizations of our problem on a par-
ticular graded mesh. Our goal is to lay out a procedure for the construction of
schemes that satisfy the stability theorems of the previous section and which have
an order of convergence that is uniform in £ and can be made as high as desired.

An exponentially graded mesh and its properties. We assume that the differential
operator L£ has been normalized so that am_i (0) = 1. Fix a positive integer K, and
let h be the prescribed outer mesh spacing. Construct the graded mesh according
to xo = 0, ho = £h, Xi = xq + ho, and

/„^ ht = mm{h, Ehe1*7 Jo a"n~1, ehi-i},

xl+1 = Xi + hi,        i = 1,2,... .

Except for a little adjusting that must be done at the endpoint, the construction is
simple and straightforward; its suitability for the discretizations we have in mind
will become apparent when we do our truncation error analysis later in this section.
The integer K will be related to the order of the scheme we wish to construct; it
determines that roughly K times as many mesh points go into the layer as outside
of it. A similar mesh was proposed in [4]; it is equivalent to a one-dimensional
version of mesh-grading schemes for finite-element approximations (see [20]).

We assume that we are in a range of parameters where Ke < h. We distinguish
two points x* and x' defined by

(3.2) he™ K a—« = K,        se™ £ am"' = 1.

It follows that x* < x' < 1, for £ sufficiently small, and

K 1
x*«sÄ'£ln—, x'ss if £ In-.h £

Essentially, these points subdivide the interval [0,1] into three regions: the inner
region, [0, x*], where the mesh spacing is computed from the formula

ht = £he1^foZ'a'n-\

the transition region, [x*,x'], where ht = e/it_i, and the outer region, [x', 1], where
the spacing is uniform, h% = h. These follow from the observations

xt <x* ^he~¿1foX'am-, <K,

and
h+i        ih r,+ 'am-i        fh.   .—2— - e     Jli s»eK»<e.

hx
The condition hi < e/i¿_i assures local quasi-uniformity: here

hi-i <K< eht-i.
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These meshes are not globally quasi-uniform, since

"max_"

"min £"■        £

In the absence of this mesh-ratio restriction, the final mesh ratio (at the interface
x = x'), which is the biggest mesh ratio, could get quite large and could cause
difficulties for the stability. In the case Ke > h, there is no transition region; the
mesh is graded according to the exponential formula until Xj+i > x', equivalently,
hi > h.

It is difficult to pin down exactly how many mesh points go into the various
regions. Numerical evidence indicates that the number of points in the graded
region, [0, x'], is roughly K/h (i.e., K times the number of outer mesh points) plus
a very slowly growing function of 1/h and l/£. It can be shown, by an induction
argument, that one can place K/h mesh points before getting to the point where
hi+i/hi is greater than e, which would put that point somewhere between Ke and
x*.

An idea of Markowich and Ringhofer [16] can be used to obtain a crude bound
on the number of points in the inner region.

PROPOSITION. The number of mesh points in the inner region is less than or
equal to Ke/ah.

Proof. Let N¡ denote the number of mesh points in this region. Then we have

i-.Xi<x' + i

e    fx'     s*      Ke
£h Jo ah

The transition region contains very few points, and this we can also verify.

PROPOSITION. The number of mesh points in the transition region is of the
order \n\n(h/K£).

Proof. Suppose we start at the point x* with xn = x*. Then

ho = £he~^$o  am-¡ =Ke,

by the definition of x*, and hk = Ksek, for k = 1,2,... , and

xk+i =x0 + /io +-H/ifc
= x* +K£(l + e+-\-ek)
> x* + K£ek.

It follows that the point xk+i will be beyond x' (» K£\ti(1/e)), if ek >
\n(h/K£).     D

The restriction /i¿+1 < e/i¿ does increase the width of the transition region a
little bit. In a similar way it can be shown that it requires on the order of \n(h/Ke)
mesh points to get from x* to the point where ht > h, thus putting the interface
between the graded and outer regions a small amount beyond x'.
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High-order difference schemes. We construct finite-difference schemes using a
general framework developed by Doedel [5] and Lynch and Rice [15]—see also [19].
Seek a discretization of the form

j
Lh,eUi = X)ftj7(&j)i        * = 0,...,n -m,

3 = 1

where Ln,£uh is a compact finite-difference expression supported on [x¿,..., x¿+fn]
with which we will usually work in the unique form of Corollary 2.3. The points
Çij are auxiliary evaluation points or HODIE points, in the terminology of [15];
they will typically fall in the subinterval [x¿,x¿+m] and may or may not be mesh
points. Actually these auxiliary points only need to be located within an 0(/im(x¿))
distance of the stencil points.

The difference coefficients a£ and 0 and the weights ßij are determined by the
conditions that the scheme be exact, in the sense that

Lh,s<t>(xi)
3 = 1

ßi,jL£(f>(£i,3 h

for all <j) in some (m + J)-dimensional space of approximating functions subject to
the normalization

Í>¿ = i-
3 = 1

For example, in the case m = 2, the one-point rule exact on {l,x,x2} for
x_i = — h, xn = 0, and xi = k is given by

LMu_i =ED2uh_i+ai(i)(0Duh_l + (l-0)Dul)

+ ao(e)
g(g-fc),
h(h + k)' + (i + h)(k - 0 , , (Ä + oe

hk «S + (h + k)k = /(O,
with

-2£ + fc
/i + fc

This contains as a special case, when £ = 0, the standard central difference scheme

k    „  u h
(3.3) £.D2t¿1-r-ai(0) -Dut, ^ -£>«a+ ao(0)ug = /(0)../i + fc /i + fc

It is interesting to examine these two simple schemes with respect to their stabil-
ity. For the central difference scheme above, we have 0 = k/(h + k), which always
satisfies 0 < 0 < 1. However, the difficult stability restriction from Theorem 2.2 is
given here by

11 4£0<- + ^ok<h + —-.
p     2 ai(0)

Since our graded mesh satisfies h < k, this says that in regions where e is small
compared to the local mesh spacing, the spacing must be nearly uniform.   This
is necessary in order to get sufficient cancellation in the sums of the type (3) in
Lemma 2.1.   Indeed, numerical evidence bears this out:  computations for model
problems, using a graded mesh as constructed in this section (with K = 1), and
with the standard central difference scheme (3.3), give rise to stability constants
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that grow with £—slowly at first, on the order of ln(l/£), but eventually blowing
up and destroying the computed results. Whereas experiments identical to the
above except with an upwinded scheme in the narrow transition region prove to
be uniformly stable. This suggests a degree of "tightness" or optimality in the
hypotheses of Theorem 2.2.

For the one-evaluation-point rule above, a sufficient condition for stability be-
comes

k — h        e k

This will be satisfied if the auxiliary evaluation point £ is situated appropriately in
the upwind part of the mesh cell, namely [0, k]. The restriction fc/4 < £ < fc/2, for
example, is sufficient. In fact, the conspicuous choice would seem to be £ = fc/2, in
which case 0 = 0 and the leading-order part of the difference operator becomes a
purely upwind approximation.

In general, these formulas are too complicated to work out by hand, and one
must compute them locally either symbolically or numerically. In [9], the author
considered implementing this procedure, for the case m = 2 with uniform meshes,
using local approximating functions of the form

{l,x,...,xK,e-i¡Óa-\xe-iIoa"'-\...,xLe-7foIa^}.

There it was shown that a uniform 0(hK) discretization could be constructed with
the choices L = K - 1 and J = 2K - 1. Here we consider discretizations based on
Pm+j_x, the space of polynomials of degree at most m + J - 1, which we will refer
to as purely polynomial-based schemes, and those based on Pm+j-2 plus the single
layer function exp(-j /0xam_i). These latter schemes we will refer to as augmented
polynomial-based schemes. In order to know that this procedure is well posed, we
must analyze the local linear-algebraic problem that results from the conditions of
exactness on these spaces.

To leading order in h and £, it is sufficient to look at the operator £iJm) +
am_i(xj)ij(m-1); for simplicity, we will consider eu^ + u^m~l\ which can be
accomplished by local scaling. It follows then, that for this simplified operator, the
conditions of exactness on {l, x,..., xm_1} imply

aho=-=ahm_2=Q,        <4_i = L

so that
Lht£u1 = £Dmu* + i,/)"1-1«? + (1 - 0î)£»m-1u?+1.

Consider first the purely polynomial-based schemes. The condition of exactness
on xm implies that

1        J
(3-4) fc = r-7TTI>,ifö-6,i),

itmyXi)   .

where
_ 2-t+l + ' ' ' + Xj-|-m
Xi := —

m
the "Gauss point" for the reduced operator u(m_1)—note, higher-order rules are
possible in this general procedure by appropriate choices of evaluation points, see
[15]. If the local mesh spacing is small compared to £, then our scheme is well
defined. In particular, we have the following.
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THEOREM 3.1. The finite-difference weights ßij in the purely polynomial-based
scheme are uniquely determined for all hm(xi) sufficiently small provided the ratio
hm(xi)/£ is sufficiently small. In this case, the resulting parameter 0t satisfies (to
leading order)

0 < 0i < 1,
which is sufficient to guarantee stability in this situation.

Proof. The system of linear equations to determine the weights results from the
conditions of exactness for functions <p m the collection {xm+1,..., xm+J~1} subject
to the restriction (p(xz) = • ■ • = (f>(xz+m) = 0 plus the normalization condition
V =1 ßij — 1. The nonsingularity of this system can be established for all hm(xl)
and pi (= hrn(xi)/£) sufficiently small along the lines of [15]. The conditions on 0¿
can be seen as follows.

Let xt denote the full "mesh cell mean"
=   . _ xi   '   ' ' '   '   Xi+m

X% " m+1
Exactness on the function cf> = (x — xz) ■ ■ ■ (x — x¿+m)/(m + 1)! implies

j J

0 = Y,ßi,jLe(t>(tij) = Y,ßi,i Wij -f0 + 0{h2m(xt))],
3 = 1 3 = 1

from which it follows that
j

^2ßi,j£i,j = x'i + 0(pihm(xl)).
3 = 1

Now we have from (3.4) and the above,

0 < 0i o 0 < xt - fi + 0(pihm(xi)),
which will be true for Pihm(xi) sufficiently small (by local quasi-uniformity of the
mesh). And, after some simplification,

Oi < 1 o 0(pihm(xl)) < (xl+m - Xi) H-1- (xl+m - xI+m_i),

which is also true for sufficiently small pthm(xt).     D
This essentially takes care of the inner region; because throughout most of that,

we have hi of the order of eh. So pi will be small if the outer (maximum) mesh
spacing h is small compared to 1.

When the ratio pi is large, it is possible for our local system to be inconsistent;
it is easy to see this by looking at the system corresponding to a two-point rule
for eu" + u' constructed to be exact on {l,x,x2,x3}. It is the case, however,
that the under-determined system, exact on Pm+j-2 instead of Pm+j_i, is always
consistent. This can be seen either by embedding this system in the augmented
system discussed below or by establishing a connection between the /3-subsystem
for this case with a well-posed interpolation problem. In fact, it is a consequence of
our analysis below that there are certain distributions of the auxiliary points £¿j
that admit nonnegative solutions ßij which give stable discretizations.

The nonsingularity of the full, purely polynomial-based system is very sensitive
to the location of the auxiliary points. While there certainly are always distribu-
tions of these points that work, it is difficult to pin them down and more difficult
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to determine when they give stable discretizations. If these points are situated
sufficiently "upwind," that is, towards the right end of the interval [x¿,x¿+m], then
everything seems to be all right. The natural way to implement this finite-difference
procedure in the transition and outer regions, is to work with the augmented poly-
nomial basis. In this case we get the following.

THEOREM 3.2. For all hm(xi) sufficiently small and for any e positive, the
local linear system associated with the J-point augmented polynomial-based scheme,
exact on {l,x,... ,xm+J~2,exp( — j J".?am_i)}, is nonsingular, and the resulting
parameter 0¿ satisfies

O<0i < —.
Pi

Proof. Again it is sufficient to consider the leading-order operator L£u = eu^ +
u(m-i) and local basis consisting of Pm+j-2 augmented by e~xle. As before,
exactness on Pm_i implies that Lhl£ must be of the form

LMuft = eDmuî + ôiZ?m-1«? + (1 - 0l)Dm~1u}¡+l;

while the requirement on E(x) := e~x/£ gives

Dm-1E(xi+iy1
Pi

1 + eDmE(ii)

We claim that the following relationship holds for all e > 0 and for any local
mesh distribution:

_1<Dm'1E(xi+i)
eDmE(xi)

That this quantity is negative follows from the fact that

D"E{xj) = EM(ri) = (-l)ve-ve-^e,

for some n in (xj, xJ+1/). To see that this quantity is greater than —1, define the
function

Dm~1E(xl+j)
U[E) ■        eD™E(Xi)    '

It can be verified that G(0+) = 0 and G(e) —► — 1, as e —> oo; while, after some
manipulations,

Dm-iE(xl+1)
G(£) = - £2DmE{Xi)   > O-

It follows that -1 < G(e) < 0 and 0 < 0¿ < 1/p».
The nonsingularity of the subsystem corresponding to the weights, /?,¿, can be

established as follows. This system can be written in this case
J

3 = 1
J

Yßi,3^m,3) = Lh,e4>(Xi), <pe{xm,...,Xm+J-2}.
3 = 1

Suppose that (ci,..., cj) is a left null vector of the associated matrix. This implies
that

ieV»(e<j) = 0,        j = l,...,J,
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where
rm-l

rP(x) := Ci-?—— + c2xm + ■■■ + cjXm+J-2.
(m - 1)!

This gives L£ip = 0, because L£ip is a polynomial of degree at most J — 1. Thus tp is
in the null space of L£, which is spanned by {l, x,..., xm~2, e~xlz). It then follows
that tp = 0, from which we get that ci = ■ ■ ■ — cj = 0, and the nonsingularity of
the matrix is established.     D

"We mention that the /3-subsystem can be analyzed from the standpoint of a
weighted quadrature rule, as in [15], with a weight function that is a generalized
spline associated with the differential operator L£. In this connection the positiv-
ity of the weights (and higher order of the scheme) for certain choices of auxiliary
points, "Gauss points," can be established. We will not go into that here. The
schemes for the augmented system are stable regardless; the positivity is of im-
portance only if we deal with the under-determined, pure polynomial system. In
summary we would say that while there certainly exist schemes constructed solely
using polynomial bases that are stable throughout, it is simpler to use the aug-
mented system in the transition and outer regions.

Truncation error analysis. We sketch some of the details illustrating how the
ideas that we have developed can be used to construct and rigorously analyze
graded-mesh difference schemes of arbitrarily high uniform rates of convergence,
that is, we will prove discretization error bounds of the form

|||«*|||m < ChK,
where C is independent of e. Fix a positive integer K, and construct a graded mesh
according to (3.1). We assume that our discretization is constructed, in each of our
three subregions, in the following way:

(1) inner region: exact on Pm+K ;
(2) transition   region:     exact   on   Pm+x-2   augmented   by   the   function

exp(-± fQxam-i); and
(3) outer region: exact on Pm+K-2 and stable.

Note that the inner and transition regions require (ii+l)-point and if-point rules,
respectively In the outer region one can get by with a purely polynomial-based
scheme using (if - 1) points, if the stability can be assured, or simply use the K-
point augmented polynomial-based scheme, extending what is done in the transition
region. The augmented, layer-type function is only used to insure stability; it is
not used in the truncation-error analysis for the outer region.

We assume that we have, in addition to the difference operator Ln,£, discrete
auxiliary functional {Bh<Etll}™=1. The details of constructing such functionals can
be found, for certain cases, in [5], [15], and [22]. For any such scheme, we define the
discretization error, the mesh function eh := u — uh, where u is the true solution of
(1.2) and uh is the computed finite-difference approximation to u that solves

j
(3-5) Lh,euh = ][>,;/(&,;),        Bht£uh = 1h.

3 = 1

It then follows that eh satisfies
Lh,£eh=rh,        BK£eh=Gh,
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where
j

Ti ■= Lh>eu(xi) - Yßi,jLMCi,j),
3 = 1

the truncation error, and ah is an appropriately defined truncation term related to
the consistency of the discrete auxiliary functionals on u.

For the scheme that we have laid out above, we can use our representation result,
Theorem 1.4, to establish bounds on the truncation error in the various subregions.
We obtain

LEMMA 3.3. There is a constant C such that for e sufficiently small, the trun-
cation error defined above satisfies

h?+1^+1 + ^T2e_i/°IÍam"1'    0<x,<x*,

fcf+ e"*/o"'B—», x*<xt<x',
hK      i r*i

h* + JRTÏ^io        .        *'<xt<l.

K\<c =

Proof. For a sufficiently smooth function <j>, define the truncation operator Th<£
by

j
Th,e<!>(xi) := Lh¡£(p(xi) - £ÄjLe0(£ij).

j=i
Recall from Theorem 1.4 that for all £ sufficiently small, the solution of (1.2) admits
the representation

u = t; + 6'm~2we~*Jo0m-1,

where v and w have uniformly bounded derivatives. From this it follows, in partic-
ular, that

(3-6) kM(x)|<c|i + £m-"-V^/oIa—i|.

In the inner region (0 < x¿ < x*), the discretization is exact on Pm+K, by
assumption; so the leading-order term in the truncation error there will be given
by

|r/l|«|U(m+^1)(xt)T,,e[(x-xtr+K+1]

^c{l^£m-21^e-^>^Yehf^+h^2 + -..)

^^{^r+1+^"/;'am-1}-

In the transition region, the discretization is exact on an augmented polynomial
basis, and the truncation error can be bounded:

k/l|<c|TM[(x-xtr^-1]+e-"/oI,a--'TM[£m-V"^am-1(x-xl)]}.

Now in this region, £ < hi, and we have

7h,e [(x - Xi)m+K~l] < C(£h*-1 + fcf + • • • ) < C'h?.
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This takes care of the outer part of the solution in this range; the layer part requires
a bit more care.

Let tp denote the local, leading-order term
-i C

ip(x) := (x - Xi)e   € Jz>        .

We claim that Tn,£[£m~2ip] = 0(1). This can be established as follows. Using the
representation (2.2) for Lh,E, this expression can be written

Í m_1 1
Th,e[£m-2V] =em~2   eriZ?"V(xi) + £ ahv(xi)D^(xl+i)\.

^ i/=0 '

The terms involving the derivatives through order (m — 1) can be bounded using
the Mean Value Theorem together with the fact pe~p < e"1 for 0 < £ < oo. To
control the leading term, we note (as in the proof of Theorem 3.2) that

Dm~1E(xi+1)
£n = -- DmE(xi)

where E(x) := exp(-^ f*am-i). Proceeding as in the proof of that theorem, we
obtain

£m-¿ErlDrn^(xi)\ = .m-2nm-l^_      ,D^(x%)'Dm-lE(xi+1)
DmE(xi)

1 ■*/i« m — 1
<Cem    ^ne        '        h,    some £e (x¿+i,xí+m)

£
This establishes the bound for the transition region.

In the outer region, we use only the exactness on Pm+K-2 to obtain

Ir/M tt<"+*-1>(*)rM[(*-x<)m+,f-1]

<c{l + e™-21J^e-if>^}(eh«-1 + h« + ...)

This completes the proof of the last of the desired inequalities.     G
We note that the estimates obtained in the lemma above are better than what one

gets from just a straightforward local Taylor expansion type of analysis. Full use is
made of the representation result, that is, we use the fact that u can be decomposed
into a uniformly smooth part plus a decaying exponential times another uniformly
smooth part, and not just the consequent fact that the derivatives of u can be
bounded as in (3.6)

The important consequence for us of the inequalities above is the fact that

\\rh\\h,i=0(hK).

We establish this as follows. In the inner region, we have

hl=£he^Jf°X'am-i.
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So

and

^r—e-iJo "— =hK+1£-1e^Jo °"-1,

II^HinnerAl  <c|/7K + /I/f+1£-1|X  e^-C^dx}

< C'j/i* + hK+1e^K am~1 \ = (K + l)C'hK.

Here we have used the definition of x* in (3.2). In a similar way we obtain in the
transition region

|^|<cjfc? + e-H*io-'j

<clhK + e~'fo am-11 = (M-* + l)ChK.

While in the outer region, we have (again using (3.2))

||rh|Uer,h,l<c|/l/f + ^r£e-'/oIa-'dx}

< c'ihK + ^e-7 £'B—» | = 2C'hK.

The discrete auxiliary functionals can be handled similarly. The uniform con-
sistency on N(L£) follows, and the strong stability of our discretization is assured.
We have established the following.

THEOREM 3.4. Under the assumption that the continuous problem (1.2) is well
posed in the sense o/(1.3), the discretization (3.5) is strongly uniformly convergent
of order K (provided the data of the problem are sufficiently smooth), in the sense
that there exist constants C and ho such that the discretization error satisfies

\\\eh\\\h,E<Chk,        0<£<£0,    0<h<h0.

The question arises as to whether or not we can get by with one less polynomial
element in the inner region, that is, make the scheme exact on Pm+K-i there
instead of on Pm+K- It turns out that in that case, the best uniform rate of
convergence we can establish is 0(hK ln(l//i)), which can be done using simple
estimates and the fact that the width of the inner region is 0(em(l/h)). This rate
can be observed numerically for the case of even K. When K is odd, however, the
smaller space of polynomials is sufficient; there is a local smoothing or cancellation
in the leading-order term of the discretization error, as is typical of finite differences.

Finally, we mention that this is just one realization of a family of graded-mesh
finite-difference schemes. There are many possible combinations of discretizations
and mesh-gradings that can be constructed, and the representation and stability
results of Sections 1 and 2 can be used to analyze them.

4. Numerical Results, Conclusions, and Generalizations. Below are re-
ported selected results from numerical experiments that illustrate the performance
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of these schemes. Consider the test problem

eu" + --u' = ,(4.1) 2-x        V      2-x,
u(0) = e + 2,        «(l) = l + 2-2/£,

the solution of which is given by

(-¿)^-

u(x) = e1-x + (2-x)(—^j
2/s

The discrete weighted Sobolev norm of the discretization error is listed in Tables
4.1, 4.2, and 4.3 along with the approximate convergence rate

V ••- log2 Ie   lllh.e
„h/2| |h,e

for h = 1/4,1/8,..., 1/1024. The problem (4.1) was discretized using the graded-
mesh schemes constructed as in Section 3 with K = 1, 2, and 3. The experiments
are reported for the cases e — h1^2, e = h, and e = h2 to cover small and large
ratios of h to £. The computations were done on an IBM 3081 D computer in
double-precision arithmetic, which gives around 14 decimal digit accuracy. The
predicted 0(hK) uniform accuracy is clearly observed.

TABLE 4.1
Convergence rates for problem (4.1) with K = 1

1/4
1/8
1/16
1/32
1/64
1/128
1/256
1/512
1/1024

£ = h1'2
|h,e

.25(-2)

.17(-2)
•10(-2)
.48(-3)
.20(-3)
.79(-4)
.30(-4)
.ll(-4)
.42(-5)

.6

.7
1.1
1.3
1.3
1.4
1.4
1.4

E = h
\h,e

.92(-2)

.88(-2)

.53(-2)
•31(-2)
■16(-2)
.87(-3)
.45(-3)
.23(-3)
•12(-3)

.1

.7

.8

.9

.9
1.0
1.0
1.0

- »,2

Ih.e

1)
1)

•62(-l)
.64(-l)
.45(-
.25(-
-13(1)
.66(2)
.33(2)
.17( 2)
.84(3)

.5

.9
1.0
1.0
1.0
1.0
1.0

TABLE 4.2
Convergence rates for problem (4.1) with K = 2

~=Wr

1/4
1/8
1/16
1/32
1/64
1/128
1/256
1/512
1/1024

nmiM
.53(-4)
.39(-4)
■12(-4)
•24(-5)
.37(-6)
.48(-7)
.61(-8)
.75(-9)
•10(-9)

.5
1.7
2.3
2.7
2.9
3.0
3.0
2.9

£ = fe

.16(-2)

.80(-3)

.30(3)

.74(-4)

.17(-4)

.41(-5)

.10( 5)

.26(6)
•61(-7)

1.0
1.4
2.1
2.1
2.1
2.0
2.0
2.1

E = h2
IIe   lllh.e
.60(2)
■41(-2)
.88(-3)
.20(3)
•70(-4)
.14(4)
.33(5)
.15(-5)
.23(-€)

.5
2.2
2.1
1.6
2.2
2.2
1.6
2.2
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TABLE 4.3
Convergence rates for problem (4.1) with K = 3

=7P72 £ = h = h2
|h,e P |h,e P \h,e P

1/4
1/8
1/16
1/32
1/64
1/128
1/256

.58(-7)

.97(-7)
■42(-7)
.92(^8)
•12H)
•12(-9)
.02 (-9)

1.2
2.2
2.9
3.3
2.9

.88(~5)

.38(-5)

.68(-6)

.77(-7)

.93 (-8)

.ll(-8)
•14(-9)

1.2
2.5
3.1
3.1
3.1
3.1

.40(-4)

.67(-5)

.54(-6)

.88(-7)

.92(-8)

.16(-8)
•17(-9)

2.6
3.6
2.6
3.3
2.5
3.3

We would cite two main conclusions of our work. First, while we do not have
as nice a stability theory for discretizations of singularly perturbed differential
equations as we do for nonsingularly perturbed equations (where consistency plus
compactness imply stability), we have shown that we do have strong uniform sta-
bility of these schemes over a much wider range than previously realized. Second,
it is possible to construct (and rigorously analyze) polynomial-based graded-mesh
finite-difference schemes of arbitrarily high order of accuracy, uniform in £.

We have not analyzed the most general situation to which these ideas can be
applied. Our results can be generalized in at least three ways. First, nonlinear
differential equations of the form

£UW + am-iu(m-V = f(x,u,... ym-2>)

can be shown to possess the same types of stability properties as the operators con-
sidered here provided their linearizations around an isolated solution are Lipschitz
continuous. The technique is due to Keller [12].

Second, the entire analysis can be carried out with respect to weaker norms.
Suppose that ||H||é is any norm that satisfies (for sufficiently smooth u)

iiNii:<ciiiiiin,.
We can establish continuous and discrete stability results involving such a norm
which are analogous to those of Theorems 1.2 and 2.4. We also get a representation
result of the form

u = v + ELwe~7 Jo""-1,

where L is a nonnegative integer that depends on the nature of the stability and
auxiliary conditions.

Consider for example the model problem

LEu = su{4) + u^,        BEu= (u(0),u'(0),u(l),u'(l)).

It is shown in [17] that this pair satisfies a strong uniform stability property of the
form

IH|i;<c{||ieu||i + l¿M}
for

or Mile =max{||u||oo,||u'||oo }
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but not for
IIMIIé = max{Hul|oo, ||w'||oo, IK'lloo}

or
|||u|||é = maxjUulloo, llu'Hoo, ||u"||oo,£|K"||oo}-

The representation result for the associated boundary value problem takes the form

u = v + £we~xle.

The same differential operator with the multipoint auxiliary conditions

fl,«=(ti(0),«(l/3),«(2/3),tt(l))

will be stable with respect to the L°°-norm but not with respect to any norms
involving higher derivatives. And for this problem, the solutions are represented by

u = v + we~x/e.

A third possible generalization would be to consider singularly perturbed differ-
ential operators of the form

L£u = eMu + Nu,

where M and TV are linear and of exact orders m and n (< m) with nonvanishing
leading coefficients. One can obtain analogous stability results with respect to
appropriate norms. The representation result involves several layer functions, the
exponent functions of which are related to a certain characteristic equation (cf. [18]
or [23]).
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