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Graded quantum cluster algebras and an application
to quantum Grassmannians

Jan E. Grabowski and Stéphane Launois

Abstract

We introduce a framework for Z-gradings on cluster algebras (and their quantum analogues)
that are compatible with mutation. To do this, one chooses the degrees of the (quantum) cluster
variables in an initial seed subject to a compatibility with the initial exchange matrix, and then
one extends this to all cluster variables by mutation. The resulting grading has the property that
every (quantum) cluster variable is homogeneous.

In the quantum setting, we use this grading framework to give a construction that behaves
somewhat like twisting, in that it produces a new quantum cluster algebra with the same cluster
combinatorics but with different quasi-commutation relations between the cluster variables.

We apply these results to show that the quantum Grassmannians Kq[Gr(k, n)] admit quantum
cluster algebra structures, as quantizations of the cluster algebra structures on the classical
Grassmannian coordinate ring found by Scott. This is done by lifting the quantum cluster algebra
structure on quantum matrices due to Geiß–Leclerc–Schröer and completes earlier work of the
authors on the finite-type cases.

1. Introduction

Since cluster algebras were introduced by Fomin and Zelevinsky [9], it has been recognized
that cluster algebra structures on homogeneous coordinate rings on Grassmannians are among
the most important classes of examples. The demonstration of the existence of such a structure
is due to Scott [26] and one reason for the importance of this is that these cluster structures
are typically of infinite mutation type but have combinatorics under tight control, because
they are a realization of certain aspects of Grassmannian combinatorics. We note for example
that Fomin and Pylyavskyy [7] have recently advocated further study of Grassmannian cluster
structures for precisely these reasons.

Among those who study quantized coordinate rings, it is also widely acknowledged that
Grassmannians have a special place. Again, the intricate geometric structures associated to
Grassmannians, due in part to their Lie-theoretic origins, give a rich structure of their quantized
coordinate rings, the quantum Grassmannians Kq[Gr(k, n)]. Linking these two points of view, it
has long been expected that quantum Grassmannians should possess quantum cluster algebra
structures, the definition of the latter being due to Berenstein and Zelevinsky [3]. In earlier
work, the present authors showed that this is the case when the cluster structure was expected
to be of finite type, namely the cases Kq[Gr(2, n)] and Kq[Gr(3, n)] for n = 6, 7, 8. However,
a general proof was not given at that time: one aim of this paper was to give such a general
proof and this is achieved in Theorem 7.6.

In the course of attempting to generalize our earlier work on quantum cluster algebra
structures, it became apparent that new techniques would be required to handle the general
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case. The main tools needed were ways to transfer quantum cluster algebra structures between
related algebras. In the commutative setting, many of these operations are easy to carry out but
the non-commutative situation is considerably more delicate, as one must be sure not to destroy
the property of quantum clusters consisting of pairwise quasi-commuting elements. (That is,
variables in the same quantum cluster should commute up to a power of the deformation
parameter q.)

Examination of these problems showed that the correct way to keep control of this problem
in the quantum setting is, as often in quantum groups, to introduce gradings. While the
definition and constructions here were originally formed with a view to solving the quantum
Grassmannian problem, we believe that the framework we introduce here should be of
significance to researchers interested in cluster algebras more generally. In particular, this
framework applies to classical commutative cluster algebras as well as their quantum analogues
and yields in a natural way statements about the homogeneity of (quantum) cluster variables in
a variety of settings. We remark that these results sit among a surprisingly small number that
deal with cluster algebras and properties of their cluster variables in infinite types alongside
finite types. The definition of a graded cluster algebra also sits separately from the categorical
setting (that is, cluster categories and related constructions), though, as here, it is fully
compatible with categorification and indeed the two can illuminate each other.

We therefore devote the first two main sections of this work to graded (quantum) cluster
algebras, following some essential recollections. The first gives the definition of a graded cluster
algebra: it is obtained from an initial seed by adding an additional piece of data, an assignment
of integer degrees to each initial cluster variable, subject to a compatibility condition with the
initial exchange matrix. (This compatibility is only with the exchange matrix, which is why
the notion immediately extends to the quantum setting.) This initial data are propagated to
the whole cluster algebra by mutation, the key point being that we can mutate the grading
data in a natural way. An immediate consequence of the definition is that every (quantum)
cluster variable is homogeneous for the resulting algebra grading. We note that Berenstein
and Zelevinsky have introduced a similar notion of grading in [3]. However, this was not an
algebra grading but only a module grading. Their definition helped inspire ours but the two
are different.

We then give a number of constructions that use the grading to alter a given quantum cluster
algebra structure; some of these constructions are trivial for commutative cluster algebras. For
example, one may re-scale every initial quantum cluster variable for a graded quantum cluster
algebra by q1/2 to the power of its degree and obtain an isomorphic quantum cluster algebra.
We also show how to naturally extend a quantum cluster algebra to a skew-Laurent extension of
that algebra. Furthermore, we can combine these ideas to ‘re-scale’ a quantum cluster algebra
structure using a skew-Laurent extension, namely Theorem 4.6. This theorem is a twisting-like
result, in that the new quantum cluster algebra structure so obtained has the same cluster
combinatorics but different quasi-commutation relations. The existence of gradings is key for
that result and in turn Theorem 4.6 is key to the application we describe below, to the quantum
Grassmannian.

The problem of lifting the cluster algebra structure on the coordinate ring of the big cell of a
partial flag variety has been solved by Geiß, Leclerc and Schröer in [11, § 10]. The approach is
straightforward: one can view the coordinate ring of the cell as the quotient of the coordinate
ring of the partial flag variety by certain elements (minors), and this quotient allows one to
lift certain distinguished elements from the quotient to homogeneous elements in a minimal
(and hence unique) way. Then [11, Proposition 10.1] shows that every cluster variable has
the required property and hence the lifting procedure for the whole cluster algebra structure
is possible. Recalling that the cluster algebra structure on the coordinate ring of the cell is
obtained categorically, one notes that the appropriate data for the lifting are also encoded
categorically, giving rise to a hope that this may be used in the quantum setting also.
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However, it is not possible to follow the strategy of [11] directly in the quantum setting. It
is well known that in the non-commutative setting, factors of rings by normal but not central
elements can be ‘too small’ and so the appropriate construction is localization, in the form of
non-commutative dehomogenization (see [18, § 3], for example). Therefore, our methods are
necessarily different to, and indeed more technically complicated than, the approach of [11].

This necessitated the introduction of the graded methods described above. As an application
of these, we are able to give a non-commutative version of the lifting of Geiß–Leclerc–
Schröer and prove that the quantum Grassmannians Kq[Gr(k, n)] admit graded quantum
cluster algebra structures. The main prior results used are the existence of a quantum
cluster algebra structure on Kq[M(k, n − k)], as shown by Geiß–Leclerc–Schröer [13], and the
dehomogenization isomorphism, due originally to Kelly–Lenagan–Rigal [18], though we use
a version given by Lenagan–Russell [23]. The dehomogenization isomorphism makes the key
link between quantum matrices and the quantum Grassmannian and is the non-commutative
expression of the former as the quantum coordinate ring of the big cell of the latter. That is,
it is an isomorphism

α : Kq[M(k, n − k)][Y ±1;σ] −→ Kq[Gr(k, n)][[12 · · · k]−1],

between a certain skew-Laurent extension of the quantum matrices and a certain localization of
the quantum Grassmannian. The main goal is to transfer a quantum cluster algebra structure
through this isomorphism α and show that it can be lifted from the localization to the quantum
Grassmannian Kq[Gr(k, n)] itself.

As this construction is rather technical, for the benefit of the reader we give a detailed
breakdown of the structure of the proof, as follows.

(A) Analysis of the quantum cluster algebra structure on Kq[M(k, n − k)] given by [13]
(§ 5).

(A1) Proof of the existence of a graded quantum cluster algebra structure on
Kq[M(k, n − k)] (Lemma 5.4).
(A2) Observation of the existence of an ‘almost-grading’ θ, arising from the categori-
fication of Kq[M(k, n − k)] (end of Section 5).

(B) Identification of the image of the quantum cluster algebra structure on a skew-Laurent
extension of Kq[M(k, n − k)] under the dehomogenization isomorphism α described above,
giving a quantum cluster algebra structure on a localization of Kq[Gr(k, n)] (§ 6).

(B1) Identification of the images of quantum cluster variables (Theorem 6.6).
(B2) In particular, identification of the images of quantum minors (Corollary 6.7).

(C) ‘Re-homogenization’ by transferring of the quantum cluster algebra structure from the
localization to the unlocalized algebra (§ 7).

(C1) Alteration of the quantum cluster algebra structure on the localization of
Kq[Gr(k, n)] such that the ‘almost-grading’ θ becomes an honest grading (beginning
of Section 7).
(C2) Use of Theorem 4.6 to produce a new quantum cluster algebra with the same
cluster combinatorics but whose quasi-commuting relations now match those of the
quantum Grassmannian. The quantum cluster variables of the new algebra are shown
to be products of elements of Kq[Gr(k, n)] multiplied by a power of a certain central
element (that power being controlled by θ) (Proposition 7.3 and Lemma 7.4).
(C3) The quotient that sets the above central element to 1 inherits a quantum cluster
algebra structure (with the same cluster combinatorics) (Proposition 7.5).
(C4) Demonstration that this quotient is isomorphic to Kq[Gr(k, n)] (Theorem 7.6).
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(C4a) Conditions (B1), (B2) and (C2) above collectively imply that there exists
a surjective homomorphism.
(C4b) The equalities of the Gel’fand–Kirillov dimensions of the two algebras
shows that this epimorphism is an isomorphism.

(C5) Finally, the powers of q appearing in the expressions for the quantum cluster
variables can be removed, as another consequence of the grading (after Theorem 7.6).

This construction does indeed yield the same results as the authors’ earlier work [16] but now
in arbitrary, and in particular far from finite, type, in a universal way. Other consequences of the
approach taken here include the fact that every quantum cluster variable for this structure on
Kq[Gr(k, n)] is homogeneous for the standard grading, with the quantum Plücker coordinates
in degree 1. It is hard to see how this property could be established in infinite type without
the framework presented here. We note that we do not deduce this from any explicit formulae;
indeed, we have no such formulae, though it would be interesting to understand the forms
of the quantum cluster variables in tame types (Kq[Gr(3, 9)] and Kq[Gr(4, 8)]), now that the
existence of the quantum cluster algebra structure is proved.

We also note that the above proof does not in fact rely on any particularly special properties
of the quantum Grassmannian. Indeed, many of the steps outlined above have analogues for
quantum coordinate rings of big cells of partial flag varieties in full generality; by the latter, we
mean the algebras Aq(n(w0w

K
0 )) discussed in [13, § 12.5]. In particular, Corollary 12.12 of that

paper gives us a quantum cluster algebra structure to take as ‘input’ to the process described
above. Similarly, corresponding dehomogenization isomorphisms in this more general case are
known [27, 28].

However, some adjustments may be needed in the general case. From the quantum
Grassmannian Kq[Gr(k, n)], we localize by the Ore set {[1 · · · k]n | n ∈ N}, which naturally
gives the localization a Z-grading. Then we obtain Kq[M(k, n − k)] as the degree zero part of
this. In general, we will need to localize by powers of several elements, leading to multi-gradings
on the localization. Hence, we will need to work with multi-gradings on the quantum cluster
algebras Aq(n(w0w

K
0 )), to lift that structure to the quantized coordinate ring of the partial

flag variety itself. We intend to return to this topic in more detail in future work.

2. Preliminaries

2.1. Quantum matrices and quantum Grassmannians

Throughout, C denotes the field of complex numbers and K denotes the field Q(q1/2). Then
in particular, the indeterminate q is not a root of unity and has a square root in K. Let C
be an l × l generalized Cartan matrix with columns indexed by a set I. Let (H,Π,Π∨) be a
minimal realization of C, where H ∼= C2|I|−rank(C), Π = {αi | i ∈ I} ⊂ H∗ (the simple roots)
and Π∨ = {hi | i ∈ I} ⊂ H (the simple coroots). Then we say C = (C, I,H,Π,Π∨) is a root
datum associated to C. (Lusztig [24] has a more general definition of a root datum but this
one will suffice for our purposes.)

If G = G(C) is a connected semisimple complex algebraic group associated to C, then G has
a (standard) parabolic subgroup PJ associated to any choice of subset J ⊆ I. From this, we
can form G/PJ , a partial flag variety; the choice J = ∅ gives G/P∅ = G/B, the full flag variety.
We set D = I \ J .

The partial flag variety G/PJ is a projective variety, via the well-known Plücker embed-
ding G/PJ ↪→∏

d∈D P(L(ωd)). (Here, L(λ) is the irreducible G-module corresponding to
a dominant integral weight λ and {ωi}i∈I are the fundamental weights.) Via the Plücker
embedding, we may form the corresponding ND-graded multi-homogeneous coordinate algebra
C[G/PJ ] =

⊕
λ∈ND L(λ)∗. The case we consider is that of the partial flag variety obtained
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from G = G(An) = SLn+1(C) and J = I \ {k}, namely G/PJ = Gr(k, n), the Grassmannian of
k-dimensional subspaces in Cn.

The coordinate ring C[G] has a quantum analogue, Kq[G] (see, for example, [4], where this
algebra is denoted by Oq(G)). Via this quantized coordinate ring, we can define a quantization
Kq[G/PJ ] of K[G/PJ ].

We recall that the quantum matrix algebra Kq[M(k, n)] is the K-algebra generated by the
set {Xij | 1 � i � k, 1 � j � n} subject to the quantum 2 × 2 matrix relations on each 2 × 2
submatrix of ⎛⎜⎝X11 X12 · · · X1n

...
...

. . .
...

Xk1 Xk2 · · · Xkn

⎞⎟⎠ .

The quantum 2 × 2 matrix relations on
(

a b
c d

)
are

ab = qba, ac = qca, bc = cb,

bd = qdb, cd = qdc, ad − da = (q − q−1)bc.

Recall that the k × k quantum minor ΔI
q associated to the k-subset I = {i1 < i2 < · · · < ik}

of {1, . . . , n} is defined to be

ΔI
q

def=
∑

σ∈Sk

(−q)l(σ)X1iσ(1) · · ·Xkiσ(k) ,

where Sk is the symmetric group of degree k and l is the usual length function on this. This
defines the quantum minor ΔI

{1,...,k} but quantum minors of smaller degree or for different
choices of the row set are defined analogously in the obvious way.

Our notation for a quantum minor with row set I and column set J will be
[
J
I

]
; note that

we suppress q, as all our minors will be quantum minors unless otherwise stated. For example,
when k = 2, we will write the quantum minor Δij

q for i < j as
[

ij
12

]
; written in terms of the

generators of Kq[M(2, 2)] this is equal to X1iX2j − qX1jX2i. Similarly, we will often denote
the generator Xij of Kq[M(k, n)] by (ij).

Then we denote by Pq the set of all quantum Plücker coordinates, that is,

Pq = {ΔI
q | I ⊆ {1, . . . , n}, |I| = k}.

Definition 2.1. The quantum Grassmannian Kq[Gr(k, n)] is the subalgebra of the
quantum matrix algebra Kq[M(k, n)] generated by the quantum Plücker coordinates Pq.

When working with minors in the quantum Grassmannian Kq[Gr(k, n)], where the row set
is necessarily {1, . . . , k}, we will write [I] for ΔI

q , for example, [ij] for Δij
q as above.

It is well known that Kq[Gr(k, n)] is a Noetherian domain with Gel’fand–Kirillov dimension
k(n − k) + 1. (Further ring-theoretic properties of quantum Grassmannians are established in
[6, 18, 21, 22].)

We remark that the above definitions are natural in the following sense. First, the definition
of the quantum matrix algebra above arises from consideration of the natural coaction on
quantum affine space, following Drinfel’d’s philosophy (see [4, Chapter I.1]). The definition of
the quantum Grassmannian is made by analogy with the classical case, where an alternative
algebraic realization of the homogeneous coordinate ring of the Grassmannian Gr(k, n) is given
by taking the subalgebra of O(Mat(k, n)) generated by all k × k minors. Alternative approaches
are possible (for example, [5]) but these are known to yield isomorphic algebras in this
specific case.
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2.2. Cluster algebras

The construction of a cluster algebra of geometric type from an initial seed (x,B), due to
Fomin and Zelevinsky [9], is now well known. Here x is a transcendence base for a certain field
of fractions of a polynomial ring and B is a skew-symmetric integer matrix; often B is replaced
by the quiver Q = Q(B) it defines in the natural way. We refer the reader who is unfamiliar
with this construction to the survey of Keller [17] and the recent book of Gekhtman, Shapiro
and Vainshtein [14] for an introduction to the topic and summaries of the main related results
in this area.

2.3. Quantum cluster algebras

Berenstein and Zelevinsky [3] have given a definition of a quantum cluster algebra. These
algebras are non-commutative but not so far from being commutative. A quantum seed
(x,B,L) consists of x = (X1, . . . , Xr), simultaneously a transcendence base and generating
set for the skew-field of fractions F of a quantum torus (over the field K), a skew-symmetric
integer matrix B (the exchange matrix) and a second skew-symmetric integer matrix L = (lij)
that determines the aforementioned quantum torus. That is, the matrix L describes quasi-
commutation relations between the variables in the cluster, where quasi-commuting means the
existence of a relation of the form XiXj = qlij XjXi.

The matrix B is mutated as usual and there is also a mutation rule for the quasi-commutation
matrices (see the beginning of Section 3). The exchange relations are modified to include
coefficients that are powers of q derived from B and L, which we describe now. For k a mutable
index, set

b+
k = −ek +

∑
bik>0

bikei

and

b−k = −ek −
∑

bik<0

bikei,

where the vector ei ∈ Cr (r being the number of rows of B) is the ith standard basis vector.
Note that the kth row of B may be recovered as Bk = b+

k − b−k .
Then given a quantum cluster x = (X1, . . . , Xr), exchange matrix B and quasi-commutation

matrix L, the exchange relation for mutation in the direction k is given by

X ′
k = M(b+

k ) + M(b−k ),

with

M(a1, . . . , ar)
def= q(1/2)

∑
i<j aiaj ljiXa1

1 · · ·Xar
r .

By construction, the integers ai are all non-negative except for ak = −1. The monomial M (as
we have defined it here) is related to the concept of a toric frame, also introduced in [3]. The
latter is a technical device used to make the general definition of a quantum cluster algebra.
For our examples, where we start with a known algebra and want to exhibit a quantum cluster
algebra structure on this, it will suffice to think of M simply as a rule determining the exchange
monomials.

The quantum cluster algebra Aq = Aq(x,B,L) defined by the initial data (x,B,L) is the
subalgebra of F generated by the set of all quantum cluster variables, that is, those elements of
F obtained from the initial cluster variables by iterated mutation. We note that the presence
of the factor 1

2 in the quantum exchange relations is the reason for assuming that the element
q ∈ K has a square root.
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We will need to work with quantum cluster algebras with coefficients (also called frozen
variables). That is, we designate some of the elements of the initial cluster to be mutable (that
is, we are allowed to mutate these) and the remainder to be non-mutable. We will also talk
about the corresponding indices for the variables as being mutable or not; in [3] the former are
referred to as exchangeable indices. The rank of the quantum cluster algebra is the number of
mutable variables in a cluster; we will refer to the total number of variables, mutable and not,
as the cardinality of the cluster.

Note that we will adopt the convention that B will be a square matrix. In the literature
it is more common to let B have as column indices just the mutable indices ([14] adopts the
transpose convention, of having the rows indexed by the mutable indices). At some points,
notably in the next paragraph, we will need the submatrix Bmut of B given by taking only
the columns of B with mutable indices. The matrix Bmut is often referred to as the extended
exchange matrix and its submatrix Bmut

mut with row set also the mutable indices is what is
usually called the principal part of B. Our square matrix B is simply the ‘skew-symmetric
extension’ of Bmut, that is, completing Bmut to a square matrix in the unique way so that B
is skew-symmetric and so that if i and j are non-mutable indices, then bij = 0. (The latter
choice accords with the convention that the exchange quiver has no arrows between frozen
vertices.)

The natural requirement that all mutated quantum clusters also quasi-commute leads to a
compatibility condition between B and L, namely that (Bmut)

T
L consists of two blocks, one

a positive integer scalar multiple of the identity, with a scalar we will call d, and one zero.
The non-zero block must correspond exactly to the mutable (column) indices. However, these
blocks need not be contiguous, depending on the ordering of the row and column labels. (Only
one positive integer is required, as the principal part of B is assumed to be skew-symmetric; if
one assumes just skew-symmetrizability, then the non-zero block is only required to be diagonal
with positive integer diagonal entries.)

Let us say that an arbitrary skew-symmetric matrix A is d-compatible with B if (Bmut)
T
A

has the form described above for some non-negative integer d. It will suit our purposes later
to allow d = 0 (that is, (Bmut)

T
A = 0), even though 0-compatibility is not permitted for the

compatibility of a quasi-commutation matrix L with B.
Importantly, Berenstein and Zelevinsky show that the exchange graph (whose vertices are

the clusters and edges are mutations) remains unchanged in the quantum setting. That is,
the matrix L does not influence the exchange graph. It follows that quantum cluster algebras
of finite type are classified by Dynkin types in exactly the same way as the classical cluster
algebras.

Known or conjectured examples of quantum cluster algebras include

(1) quantum symmetric algebras (necessarily of cluster algebra rank 0);
(2) quantum Grassmannians of finite cluster algebra type (that is, Kq[Gr(2, n)] and

Kq[Gr(3, 6)], Kq[Gr(3, 7)] and Kq[Gr(3, 8)]) [16];
(3) Schubert cells of the quantum Grassmannians Kq[Gr(2, n)] (see [13, 16]);
(4) the quantum coordinate ring of the unipotent subgroup N(w) of a symmetric Kac–

Moody group G associated with a Weyl group element w [13], and hence as special
cases of this

(a) the quantum coordinate ring of the big cell of a partial flag variety associated to G
and

(b) quantum matrices Kq[M(k, n)]; and

(5) conjecturally, quantum double Bruhat cells of semisimple Lie groups [3].

We note that recently Goodearl and Yakimov [15] have studied the existence of initial seeds
in a large class of algebras, the so-called CGL extensions.
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3. Graded seeds and graded quantum cluster algebras

Berenstein and Zelevinsky [3, Definition 6.5] have given a definition of graded quantum seeds,
which give rise to module gradings but not algebra gradings. In what follows, we will have need
of algebra gradings on quantum cluster algebras and so we now give a different definition of a
graded seed, inspired by that of Berenstein and Zelevinsky but not equivalent to it.

Definition 3.1. A graded quantum seed is a quadruple (x,B,L,G) such that

(1) (x = (X1, . . . , Xr), B, L) is a quantum seed of cardinality r and
(2) G ∈ Zr is an integer (column) vector such that for all mutable indices j, the jth row of

B, denoted by Bj , satisfies BjG = 0.

We will set degG(Xi) = Gi for all Xi belonging to the cluster x. Then the second condition
of the definition is equivalent to asking that every exchange relation (as encoded by the rows
Bj) is homogeneous with respect to this degree, in the sense that the two Laurent monomials
determining X ′

j are of the same homogeneous degree. From the quiver perspective, this asks
that the sum of the degrees of the variables with arrows to a given mutable vertex is equal to
the sum of the degrees of the variables at the end of arrows leaving that vertex.

In contrast to the definition of Berenstein and Zelevinsky, the above can be extended to an
algebra grading on the quantum torus associated to (x,B,L), simply by setting degG(X−1

i ) =
−degG(Xi) and extending degG additively to all (Laurent) monomials.

We also need to be able to mutate our grading in a sensible fashion and it is clear what we
ought to do. Let (x′, B′, L′) be the quantum seed given by mutation of (x,B,L) in the direction
j. We set G′

i = Gi for i �= j (that is, the degrees of variables we are not mutating at this
point remain the same). Then the homogeneity of the exchange relation X ′

j = M(b+
k ) + M(b−k )

implies that we should set

G′
j = degG′(X ′

j) = degG(M(b+
k )) = degG(M(b−k )).

As discussed in [2, 3], the mutation operations can also be expressed in terms of row and
column operations, or more concisely as corresponding matrix multiplications. To this end, we
recall the definition of a matrix E (denoted by E+ in [3]) that encodes mutation of a seed with
exchange matrix B in the direction j as follows:

Ers =

⎧⎪⎨⎪⎩
δrs if s �= j,

−1 if r = s = j,

max(0,−brj) if r �= s = j.

Then B′ = EBET and L′ = ET LE. Our mutation of G can be written in terms of E similarly.

Lemma 3.2. G′ = ET G.

Proof. This is straightforward to check directly.

We may also re-express this in terms of the vectors b±k defined above:

G′
i =

{
Gi if i �= k,

b−k · G if i = k.
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Since Bk = b+
k − b−k and G is a grading, so BkG = 0, we have b+

k · G = b−k · G so that we may
use b+

k instead of b−k in calculating G′.
We also need to know that this mutation operation does indeed produce another graded

seed.

Lemma 3.3. For each mutable index j, (B′)jG
′ = 0.

Proof. As noted in [3, Proposition 3.4], E2 = 1 and so

(B′)jG
′ = (EBET )j(ET G)

= (EB(ET )2G)j

= (EBG)j

= Ej(BG)
= 0,

since (BG)j = BjG = 0. Here, ( )j refers to the jth row for matrices and column vectors as
appropriate.

That is, (x′, B′, L′, G′) is again a graded seed. Furthermore, this mutation is involutive (cf.
[3, Proposition 4.10]). Then we see that repeated mutation propagates a grading on an initial
seed to every quantum cluster variable and hence to the associated quantum cluster algebra,
as every exchange relation is homogeneous.

Corollary 3.4. The quantum cluster algebra Aq(x,B,L,G) associated to an initial
graded quantum seed (x,B,L,G) is a Z-graded algebra.

We note in particular that this construction, by definition, says that every quantum cluster
variable of a graded quantum cluster algebra is homogeneous for this grading.

Remark 3.5. It is clear that all of the above is insensitive to replacing G with −G,
that is, reversing the sign of every degree. Indeed for each graded quantum cluster algebra
Aq(x,B,L,G), we have an isomorphic graded quantum cluster algebra A−

q = Aq(x,B,L,−G)
(where ‘isomorphic’ here means as quantum cluster algebras, not just as algebras).

Remark 3.6. In none of the above have we used the quasi-commutation matrix L. Indeed
all of the above goes through for classical cluster algebras too.

One consequence of the existence of a grading for a quantum cluster algebra is that this
allows us to re-scale elements of the initial seed by powers of q determined by the grading and
obtain an isomorphic quantum cluster algebra, as follows.

Proposition 3.7. Let Aq = Aq(x = (X1, . . . , Xr), B, L,G) be a graded quantum cluster
algebra. Let x̃ = (X̃1, . . . , X̃r) be defined by X̃i = qGi/2Xi. Then there is an isomorphism of
graded quantum cluster algebras between Ãq = Aq(x̃, B, L,G) and Aq = Aq(x,B,L,G).
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Proof. First note that x and x̃ determine the same quantum torus and hence the
corresponding quantum cluster algebras Aq and Ãq can be viewed as subalgebras of the same
skew-field of fractions F of this quantum torus. We show that if y and ỹ are quantum cluster
variables for Aq and Ãq, respectively, that are obtained from their respective initial seeds by
the same sequence of mutations, then ỹ = qdeg(y)/2y where deg is the degree induced by the
grading G.

More precisely, let (x = (X1, . . . , Xr), B, L,G) be any graded quantum seed (not necessarily
equal to the initial data for Aq; we abuse notation here). Let x̃ = (qG1/2X1, . . . , q

Gr/2Xr).
We claim that if X ′

k is the variable obtained from x by mutation in the direction k, then
X̃ ′

k = qG′
k/2X ′

k, where G′ is obtained from G by mutation in the direction k, as above (prior
to Lemma 3.2).

First, recall the definition of the exchange monomial M(a1, . . . , ar) as

M(a1, . . . , ar)
def= q(1/2)

∑
i<j aiaj ljiXa1

1 · · ·Xar
r .

Then letting a = (a1, . . . , ar) and

M̃(a) = q(1/2)
∑

i<j aiaj ljiX̃a1
1 · · · X̃ar

r ,

we have that

M̃(a) = q(1/2)
∑

i<j aiaj ljiq(1/2)
∑r

i=1 aiGiXa1
1 · · ·Xar

r

= q(a·G/2)M(a).

Hence,

X̃ ′
k = M̃(b+

k ) + M̃(b−k )

= q(b+k ·G/2)M(b+
k ) + q(b−k ·G/2)M(b−k )

= q(b+k ·G/2)(M(b+
k ) + M(b−k ))

= qG′
k/2X ′

k,

as required. Here we have used that G being a grading for B implies that b+
k · G = b−k · G and

the equality of both of these with the kth entry of the mutated grading G′, as shown after
Lemma 3.2.

Now since the initial data for Aq and Ãq differ only in the choice of initial cluster and, by
the above, the subalgebras of F generated by the respective sets of quantum cluster variables
are equal, it follows that these are isomorphic quantum cluster algebras.

We note that this construction does not have a counterpart in the classical setting of
commutative cluster algebras. However, it should have a semi-classical counterpart, for cluster
algebras with compatible Poisson structures (in the sense of Gekhtman–Shapiro–Vainshtein).

4. Skew-Laurent extensions of quantum cluster algebras

In this section, we consider two constructions that produce graded quantum cluster algebra
structures on skew-Laurent extensions of a given graded quantum cluster algebra. The first
simply adds the extending variable and its inverse as extra coefficients, while the second ‘re-
scales’ the original structure by multiplying each quantum cluster variable by a power of the
extending variable. This second construction is similar to that in Proposition 3.7 but in general
produces a new quantum cluster algebra not isomorphic to the first.

The first construction proceeds as follows.
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Proposition 4.1. Let Aq = Aq(x = (X1, . . . , Xr), B, L,G) be a graded quantum cluster
algebra. Let σ : Aq → Aq be an algebra automorphism such that for each 1 � i � r, there exists
ci ∈ Z such that σ(Xi) = qciXi; that is, σ acts by multiplication by powers of q on the elements
of the initial cluster. Then the skew-Laurent extension Aq[y±1;σ] is a graded quantum cluster
algebra, with initial data (x′, B′, L′, G′) where

(1) x′ = (X1, . . . , Xr, y, y−1), with y and y−1 additional coefficients;
(2) Q(B′) is equal to Q(B) 	 y 	 y−1 ;
(3) L′ is determined by the quasi-commutation data in L and the automorphism σ; and
(4) (G′)i = Gi for 1 � i � r, G′

r+1 = 1 and G′
r+2 = −1.

Proof. The matrices B′ and L′ are compatible, as B′ has only zero entries in the rows
corresponding to y and y−1. The matrices B′ and G′ satisfy the grading condition for the same
reason. Furthermore, it is clear that the set of cluster variables for Aq[y±1;σ] is equal to the
disjoint union of the set of cluster variables for Aq and {y, y−1}, and so these generate all of
Aq[y±1;σ] which is therefore a graded quantum cluster algebra.

We note that we have chosen to put y in degree 1 (and its inverse in degree −1), to accord
with the natural Z-grading on this skew-Laurent extension. However, neither the element y
nor its inverse interacts with the quantum cluster structure coming from Aq so this choice was
essentially arbitrary.

Here we did not alter the original quantum cluster variables but in our second construction,
we re-scale these by powers of an extending variable z. In its most general form, this re-
scaling will involve two integer column vectors as (families of) parameters, t = (t1, . . . , tr)

T

and u = (u1, . . . , ur)
T . Given two such vectors, we will denote by t ∧ u the skew-symmetric

matrix tT u − uT t, that is, the (i, j)-entry of t ∧ u is tiuj − tjui.

Proposition 4.2. Let Aq = Aq(x = (X1, . . . , Xr), B, L,G) be a graded quantum cluster
algebra such that L is d-compatible with B with d > 0, that is, we have (BT L)ij = dδij for
all mutable indices i and any index j. (Such an integer d certainly exists by the definition of
compatibility between B and L; we are simply naming it explicitly.)

Now let τ : Aq → Aq be an algebra automorphism such that for each 1 � i � r, there exists
ti ∈ Z such that τ(Xi) = qtiXi; that is, τ acts by multiplication by powers of q on the elements
of the initial cluster. We set t = (t1, . . . , tr)

T
. Also, let u = (u1, . . . , ur)

T ∈ Zr be such that
t ∧ u is f -compatible with B for some 0 � f < d.

Then the following is a valid set of initial data for a graded quantum cluster algebra Ãt,u
q =

Aq(x̃, B̃, L̃, G̃) where

(1) Ãt,u
q is a subalgebra of the skew-field of fractions of the skew-Laurent extension Aq[z±1; τ ]

of Aq;
(2) x̃ = (X1z

u1 , . . . , Xrz
ur );

(3) B̃ = B;
(4) L̃ is determined by the quasi-commutation data in L and the vectors t and u; and
(5) G̃ = G.

We prove this validity via two lemmas, where we first establish more explicitly the matrix
L̃ and then prove that it is compatible with B̃ = B.

Lemma 4.3. We have L̃ = L − t ∧ u.
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Proof. Since τ(Xi) = qtiXi, we have that zXi = τ(Xi)z = qtiXiz for all i, by the definition
of a skew-Laurent extension. For all 1 � i, j � r, we have XiXj = qlij XjXi and hence

X̃iX̃j = (Xiz
ui)(Xjz

uj )
= Xi((qtj )uiXjz

ui)zuj

= qtjui(qlij XjXi)zui+uj

= qlij+tjuiXj(Xiz
uj )zui

= qlij+tjuiXj((q−ti)uj zuj Xi)zui

= qlij+tjui−tiuj (Xjz
uj )(Xiz

ui)

= qlij+tjui−tiuj X̃jX̃i.

Therefore, l̃ij = lij + tjui − tiuj = lij − (t ∧ u)ij . Note that we need q not a root of unity at
this point.

Lemma 4.4. The matrices B̃ and L̃ are compatible.

Proof. Let i be a mutable index and j be any index. Then

((B̃mut)
T
L̃)ij = ((Bmut)

T (L − (t ∧ u)))ij

= ((Bmut)
T
L)ij − ((Bmut)

T (t ∧ u))ij

= dδij − fδij

= (d − f)δij ,

since L is d-compatible with B and, by assumption, t ∧ u is f -compatible with B. Furthermore,
0 � f < d so we see that L̃ is (d − f)-compatible with B, with d − f a positive integer as
required.

We note that the effect of this construction is to leave the initial exchange relations unchanged
but to alter the quasi-commutation relations. That is, this construction can be thought of as
a form of twisting of a quantum cluster algebra.

If t ∧ u is 0-compatible with B, then the precise value of d is irrelevant and we always obtain
compatibility. We note some special cases.

Corollary 4.5. Let Aq, t and u be as above. Then

(a) if t = 0, then we have L̃ = L, f = 0 and hence A0,u
q

∼= Aq;
(b) if u = 0, then we have x̃ = x and L̃ = L and hence At,0

q = Aq; and

(c) if t and u are (Z-)linearly dependent, then we have L̃ = L, f = 0 and hence At,u
q

∼= Aq.

Proof. (a) If t = 0, then t ∧ u = 0, so that t ∧ u is 0-compatible with B. Then the remaining
claims follow. Note that in this case the skew-Laurent extension induced by τ is a central
(Laurent) extension.

(b) If u = 0, then again t ∧ u is 0-compatible with B and we see immediately that x̃ = x,
L̃ = L and hence At,0

q = Aq. That is, when u = 0 the skew-Laurent extension has no interaction
with the subalgebra Aq (therefore the choice of t is irrelevant).

(c) If u = λt for some λ ∈ Z, then as above, t ∧ u = 0.
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We observe that if t and u are gradings for B, so that Bit = Biu = 0 for all mutable indices
i, then

Bi(t ∧ u) = (Bmut)
T
i (t uT − u tT ) = 0,

so that t ∧ u is 0-compatible with B.
Under certain conditions, the above re-scaling in fact produces a quantum cluster algebra

that is a subalgebra of the skew-Laurent extension itself, and not just of the skew-field of
fractions of this. The next result gives just such a set of conditions. However, in it we will need
to introduce additional powers of q to our re-scaling. The previous lemmas, as stated, still hold
in this slightly more general setting: the proof of Lemma 4.3 requires a minor adjustment and
Lemma 4.4 then goes through verbatim.

Theorem 4.6. Let Aq = Aq(x = (X1, . . . , Xr), B, L,G) be a graded quantum cluster

algebra. Also let t = (t1, . . . , tr)
T ∈ Zr and u = (u1, . . . , ur)

T ∈ Zr be such that t and u are
gradings for B, that is, Bit = Biu = 0 for every mutable index i.

Then the following initial data determine a graded quantum cluster algebra Ãt,u
q =

Aq(x̃, B̃, L̃, G̃) where

(1) x̃ = (qt1u1/2X1z
u1 , . . . , qtrur/2Xrz

ur );
(2) B̃ = B;
(3) L̃ = L − t ∧ u; and
(4) G̃ = G + u;

with Ãt,u
q a subalgebra of the skew-Laurent extension Aq[z±1; τ ] of Aq whose automorphism τ

is induced by t, that is, τ : Aq → Aq is the algebra automorphism such that for each 1 � i � r,
τ(Xi) = qtiXi.

Proof. Our strategy for this proof will be to consider seeds augmented by the extra data
assumed in the theorem and to show that these extended seeds behave appropriately under
mutation. More precisely, consider as initial data the tuple

(x̃ = (X̃1, . . . , X̃r), B̃, L̃, G̃, t, u),

where each component is as defined in, and satisfies the conditions of, the statement of the
theorem and in particular

X̃i = qtiui/2Xiz
ui .

We will call such a tuple a re-scaled seed and we first establish that these data are valid for
defining a graded quantum cluster algebra.

We observed above that t and u being gradings implies that t ∧ u is 0-compatible and so we
apply the lemmas to see that B̃ and L̃ are compatible. Since B̃ = B and G̃ = G + u with both
G and u being gradings for B, the grading condition follows. That is, the first four components
of the re-scaled initial seed are indeed valid data for the construction of a graded quantum
cluster algebra. We note that the choice of G̃ = G + u is natural, setting the degree of the
re-scaled variable qtiui/2Xiz

ui to be the sum of the degree of Xi (as described by G) and the
power of z, namely ui.

Mutation of re-scaled seeds is defined in the obvious way: the cluster x̃ is mutated via the
exchange relations determined by B̃ and L̃ as usual, B̃ and L̃ are mutated in the same way as for
ungraded quantum cluster algebras via the corresponding matrix E and the three gradings G̃, t
and u are mutated as described in Section 3, namely by multiplication by ET . Then Lemma 3.3
assures us that the mutations of t and u are gradings for the corresponding mutation of B̃, so
we see that the mutation of a re-scaled seed again satisfies the compatibilities and assumptions
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of the theorem, except that we need to see that the form of the mutated cluster variables is
the same as that described above. That is, we wish to show that X̃ ′

i = qt′iu
′
i/2(X ′

i)z
u′

i .
In order to verify this, we argue similarly to the proof of Proposition 3.7 and first consider

the exchange monomials arising from a re-scaled seed, that is,

M̃(a1, . . . , ar)
def= q(1/2)

∑
i<j aiaj l̃jiX̃a1

1 · · · X̃ar
r .

We have X̃i = qtiui/2Xiz
ui and it is straightforward to verify from the quasi-commutation

relations between z and the Xi and the equation L̃ = L − t ∧ u that we have

M̃(a1, . . . , ar) = q(1/2)
∑r

i=1
∑r

j=1 aiajtiuj M(a1, . . . , ar)z
∑r

i=1 uiai .

Details may be found in the Appendix. Writing a = (a1, . . . , ar), we may reformulate this as

M̃(a) = q(a·t)(a·u)/2M(a)za·u.

Then for k a mutable index, recalling that B̃ = B we see that mutation in the direction k
from the re-scaled seed yields

X̃ ′
k = M̃(b+

k ) + M̃(b−k )

= q(b+k ·t)(b+k ·u)/2M(b+
k )zb+k ·u + q(b−k ·t)(b−k ·u)/2M(b−k )zb−k ·u

= qt′ku′
k/2M(b+

k )zu′
k + qt′ku′

k/2M(b−k )zu′
k

= qt′ku′
k/2(M(b+

k ) + M(b−k ))zu′
k

= qt′ku′
k/2(X ′

k)zu′
k ,

as desired. Here we have again used the fact that b+
k · v = b−k · v for any grading v for B and the

equality of both of these with the kth entry of the mutation of v (as noted after Lemma 3.2),
as well as the fact that the corresponding exchange relation in the original quantum cluster
algebra Aq is X ′

k = M(b+
k ) + M(b−k ). Note that the power of z occurring is exactly the degree

of X̃ ′
k (or equivalently of X ′

k) for the grading induced by u.
That is, mutation of a re-scaled seed produces another re-scaled seed. Therefore, iterated

mutation from the re-scaled seed of the statement produces a graded quantum cluster algebra
all of whose quantum cluster variables are contained in the skew-Laurent extension Aq[z±1; τ ],
that is, no localization of the latter is required.

From the proof of this theorem, we see the following.

Corollary 4.7. With notation as in the preceding theorem, there is a bijection ϕ
between the sets of quantum cluster variables for the quantum cluster algebras Aq and Ãt,u

q .

Furthermore, under this bijection, every quantum cluster variable X̃ of the quantum cluster
algebra Ãt,u

q is of the form qaXzb with a, b ∈ Z and X = ϕ−1(X̃) the corresponding quantum
cluster variable in Aq.

Remark 4.8. The quantum cluster algebra structure Ãt,u
q from this theorem is a quantum

cluster algebra structure on a proper subalgebra of the skew-Laurent extension Aq[z±1; τ ]; in
general, this subalgebra is not Aq. However, we could easily extend this to a quantum cluster
algebra structure on the whole skew-Laurent extension by adding z and z−1 as coefficients in
the same manner as in Proposition 4.1, as the only issue here is the absence of the generators
z and z−1.

We note that if A is a K-algebra and τ an automorphism of A, then there is an algebra
isomorphism of ((A[z±1

1 ; τ ])[z±1
2 ; τ ])/(z1 − z2) with A[z±1

1 ; τ ]. That is, if we make a twofold
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skew-Laurent extension of A using first the automorphism τ and then using τ extended to
A[z±1

1 ; τ ] as the identity on z±1
1 , then taking the quotient that identifies the two variables

yields an algebra isomorphic to a single extension using τ .
The next lemma observes that one may reverse the above scaling procedure.

Lemma 4.9. Let Aq = Aq(x,B,L,G) be a graded quantum cluster algebra and let Ãt,u
q ⊆

Aq[z±1; τ ] be the quantum cluster algebra structure obtained from Aq by the construction of
the preceding theorem. Then (Ãt,u

q )t,−u = Aq, where the former is viewed as a subalgebra of
Aq[z±1; τ ] under the isomorphism described above.

Proof. The quantum cluster algebra (Ãt,u
q )t,−u is obtained from Ãt,u

q by the construction
of the theorem. Using the isomorphism of the quotient of the twofold extension with the single
extension described above we may abuse notation and write z for both extending variables.
We then see that (Ãt,u

q )t,−u has initial data

(1) ˜̃x = (q−t1u1/2(qt1u1/2X1z
u1)z−u1 , . . . , q−trur/2(qtrur/2Xrz

ur )z−ur ) = (X1, . . . , Xr) = x;
(2) ˜̃B = B;
(3) ˜̃L = (L − t ∧ u) − t ∧ (−u) = L; and
(4) ˜̃G = (G + u) + (−u) = G.

That is, (Ãt,u
q )t,−u has the same initial data as Aq so yields the same quantum cluster

algebra.

This completes our general theory of graded quantum cluster algebras. Now we turn
to our application, the existence of a quantum cluster algebra structure on the quantum
Grassmannians.

5. The quantum cluster algebra structure on quantum matrices

As noted above, the work of Geiß, Leclerc and Schröer [13, Corollary 12.10] has given a quantum
cluster algebra structure on quantum matrices Kq[M(k, j)]. We use j rather than n here as this
is the notation of [13] and also we will want to consider Kq[Gr(k, n)] and its relationship with
Kq[M(k, n − k)] subsequently; it will simplify the presentation in this section to use j rather
than n − k.

Our aim is to lift this to a quantum cluster algebra structure on the corresponding quantum
Grassmannian Kq[Gr(k, k + j)], in a similar fashion to [11, § 10], so we record here the initial
data provided by the construction in [13]. (This section is an expansion of [13, Example 12.11],
which describes the case k = j = 3.)

Let m = k + j − 1; for comparison with [13, § 12.4], our parameter m is their n. The
construction of the quantum cluster algebra structure on Kq[M(k, j)] is via the module
category of the preprojective algebra Λ = Λ(Am) associated to the Dynkin diagram Am. For a
description of the algebra Λ and its representation theory, including Auslander–Reiten quivers
for 2 � m � 4, we refer the reader to [10]. In what follows, we will state well-known properties
of this algebra and its module category without proof.

We first need to construct the projective modules for Λ. A basis for the ith projective module
Pi is given by the set of paths leaving the vertex i (modulo the preprojective relation). The rth
Loewy layer of Pi consists of the simple modules corresponding to the vertices at the ends of
paths of length r − 1 and so we see that Pi has simple socle i and simple top m − i + 1. Here
we use the common notation of having the vertex labels denote the simple modules for path



712 JAN E. GRABOWSKI AND STÉPHANE LAUNOIS

algebras and quotients of these (see, for example, [1]); we will also use Si for this when this is
clearer.

In general, Pi has the form of an i by m − i + 1 rectangle:

Note that if k = j, then m = 2k − 1 is odd and Pk is self-dual, so that the rectangular shape
depicted above is then a square.

Example. For k = j = 3 (so that m = k + j − 1 = 5), the projective modules are

Now it is well known that Kq[M(k, j)] is isomorphic to the algebra Uq(n(w)) (also commonly
denoted by U+

q [w]) associated to g = slm+1, where w is the Weyl group word with reduced
decomposition

w = (sjsj−1 · · · s1)(sj+1sj · · · s2) · · · (smsm−1 · · · sk).

This may be found in [25], for example. Let

i = (k, k + 1, . . . ,m, k − 1, k, . . . ,m − 1, . . . , 1, 2, . . . , j)

be the sequence of indices for the above reduced decomposition for w; note that we have chosen
the reverse order to that in [13, § 12.4]. It is convenient to render this as a k × j matrix (i(α,β))
with i(α,β) = k − α + β, for 1 � α � k, 1 � β � j, that is,

i =

⎛⎜⎜⎜⎜⎜⎝
k k + 1 · · · m − 1 m

k − 1 k · · · m − 2 m − 1
...

...
. . .

...
...

2 3 · · · j j + 1
1 2 · · · j − 1 j

⎞⎟⎟⎟⎟⎟⎠ .

There is a natural total order on the set of indices of the matrix i, given by (α, β) < (α′, β′)
if and only if α < α′ or (α = α′ and β < β′); that is, the ordering is lexicographical in each
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coordinate, taking the first coordinate first. We extend this to a total order on the set {(α, β) |
1 � α � k, 1 � β � j} ∪ {0, kj + 1} by 0 < (α, β) < kj + 1 for all pairs (α, β). For an index
(α, β), we define

(α, β)− = max({0} ∪ {(γ, δ) < (α, β) | i(γ,δ) = i(α,β)})

=

{
0 if α = 1 or β = 1,

(α − 1, β − 1) otherwise,

(α, β)+ = min({kj + 1} ∪ {(γ, δ) > (α, β) | i(γ,δ) = i(α,β)})

=

{
kj + 1 if α = k or β = j,

(α + 1, β + 1) otherwise.

The frozen indices (that is, those indices that correspond to coefficients in the quantum cluster
algebra structure) are exactly the (α, β) with (α, β)+ = kj + 1, that is, when α = k or β = j.

The initial seed is constructed from the module category as follows. The subcategory of
mod(Λ) corresponding to the word w above, which we denote by Cw, is the subcategory
generated by the projective module Pk. Certain quotients of Pk give the modules corresponding
to the standard generators Xab of Kq[M(k, j)] and an iterated socle construction is used to
produce modules in this subcategory that correspond to elements of the initial seed. More
precisely, for each pair (a, b) with 1 � a � k and 1 � b � j, the module Pk has a unique quotient
M(a,b) whose dimension vector is ea + ea+1 + · · · + em−b+1 and this quotient corresponds to
Xab. From the above description of Pk, we see that these modules correspond to segments
of the top edges of the rectangle describing Pk that include the top (which is isomorphic to
Sm−k+1 = Sj).

Example (continued). For k = j = 3 (m = 5), we have

To construct the modules corresponding to the initial seed, we need the following
construction. Given a module W , we define

(1) soc(l)(W ) def=
∑

U�W
U∼=Sl

U and

(2) soc(l1,l2,...,ls)(W ) def= Ws where the chain of submodules 0 ⊆ W1 ⊆ W2 ⊆ · · · ⊆ Ws ⊆ W
is such that Wp/Wp−1

∼= soc(lp)(W/Wp−1).

Then for 1 � s � l(w) = kj, we define Vs
def= soc(is,is−1,...,i1)(Pis

).

Example (continued). Thus, for k = j = 3 and our choice of reduced expression i above,
V1 = soc(3)(P3) = soc(P3) = S3.

Similarly, V2 = soc(4,3)(P4) is defined by the chain 0 ⊆ W1 ⊆ W2 = V2 ⊆ P4 with W1 =
soc(4)(P4) = S4 and W2/W1 = soc(3)(P4/W1) = S3; that is, V2 has two layers, a simple top
and a simple socle isomorphic to S3 and S4, respectively. Arranging the modules Vs in the
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same way as we did for the indices is, it is natural to re-number these as V(α,β) for 1 � α � 3,
1 � β � 3, and we see that the modules corresponding to the initial seed for this case are as
follows:

We will use this indexing in general, giving us modules V(α,β) for 1 � α � k, 1 � β � j.
To obtain the element of Kq[M(k, j)] corresponding to the modules V(α,β), we note that the
construction of the V(α,β) is such that V(α,β)/V(α,β)− = V(α,β)/V(α−1,β−1)

∼= M(k−α+1,n−β+1)

(the natural indexings of the V(α,β) and the M(a,b) are opposed to each other, unfortunately).

Example (continued). For k = j = 3, we have V(1,1)/0 = M(3,3) so V(1,1) corresponds to
X33. A module V(α,β) need not correspond to a generator: V(2,2) is an extension of M(3,3) by
M(2,2) and corresponds to the quantum minor

[
23
23

]
. Similarly, V(3,3) = P3 is an extension of

V(2,2) by M(1,1) and corresponds to the quantum minor
[
123
123

]
.

We may describe the initial cluster coming from this construction, which we will call M(k, j),
explicitly as follows.

Definition 5.1. For 1 � r � k and 1 � s � j, define the sets

R(r, s) = {k − r + 1, k − r + 2, . . . , k − r + s} ∩ {1, . . . , k},
C(r, s) = {j − s + 1, j − s + 2, . . . , j − s + r} ∩ {1, . . . , j}.

Then we define M(k, j) = {[C(r,s)
R(r,s)

] | 1 � r � k, 1 � s � j}. It is natural to give M(k, j) as a
k × j array (as we have for i), where its (r, s)-entry, which we denote Mkj(r, s), is the quantum
minor with row set R(r, s) and column set C(r, s). Should we need to consider M(k, j) as a
sequence, its ((r − 1)j + s)-entry is

[
C(r,s)
R(r,s)

]
.

Remark 5.2. The above association of modules to minors follows from well-known
isomorphisms, such as the isomorphism of Kq[M(k, j)] with Uq(n(w)) for the above w as in [25],
and those in the paper [13]. We note that for Kq[SLm+1], the generalized quantum minors of
[3] are the usual quantum minors (analogous to the fact that the generalized minors of Fomin
and Zelevinsky [8] coincide with the usual ones for SLm+1). Then the unipotent quantum
minors in the paper of Geiß, Leclerc and Schröer [13, § 5] are generalized quantum minors
divided by certain principal quantum minors. Following through the correspondence of these
with dual PBW basis elements (in Uq(n(w))) and thence through the isomorphism of Mériaux
and Cauchon [25], we do indeed obtain the (usual) quantum minors in Kq[M(k, j)].
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Figure 1. Initial cluster for a quantum cluster algebra structure on Kq[M(k, j)].

The arrows in the exchange quiver for the initial seed are given by the combinatorial data
associated to the reduced expression i. Following through the definitions in [13, § 9.4] in this
case yields the following description of these:

(1) (α, β) → (α, β + 1);
(2) (α, β) → (α + 1, β) and
(3) (α, β) → (α − 1, β − 1);

where an arrow is defined only if both its start and end points are (thus there is no arrow
(1, 1) → (0, 0), for example) and any arrows between indices for coefficients are suppressed. We
note that these are exactly opposed to the natural inclusion and projection homomorphisms
on the corresponding modules.

The quasi-commutation data are also encoded categorically: indexing by pairs as above, the
matrix L has entries

l(α,β),(γ,δ) = dim HomΛ(V(α,β), V(γ,δ)) − dim HomΛ(V(α,β), V(γ,δ)).

Alternatively, these data can be obtained combinatorially [13, Proposition 10.3]. The
compatibility of the matrix corresponding to the arrows in the exchange quiver and the
quasi-commutation matrix is shown in [13, Proposition 10.1].

Putting this all together, the initial cluster variables and their exchange quiver in Kq[M(k, j)]
are as illustrated in Figure 1. In Figure 2, we show this for our running example with k = j = 3.
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Figure 2. Initial cluster for a quantum cluster algebra structure on Kq[M(3, 3)].

As is usual, vertices of the quiver that are frozen, that is, corresponding to elements that
are coefficients and so not mutated, are boxed (a so-called ice quiver). We do not record here
explicitly the quasi-commutation matrix. We denote this initial data for the quantum cluster
algebra structure on Kq[M(k, j)] as (M(k, j), B(k, j), L(k, j)), where M(k, j) is the initial
cluster as above and B and L are the exchange and quasi-commutation matrices.

Then the main result of [13], their Theorem 12.3, tells us that in this case, with the above
initial data, Kq[M(k, j)] is a quantum cluster algebra. We note particularly [13, Corollary 12.4]
which says that every relevant unipotent quantum minor occurs as a quantum cluster variable
in this quantum cluster algebra structure. That is, in our particular case, every quantum minor
in Kq[M(k, j)] does indeed occur as a quantum cluster variable. Of course, outside the finite-
type cases, we must have quantum cluster variables that are not quantum minors; we will say
a little more about these below.

We observe that this quantum cluster algebra structure can be considered as a graded
quantum cluster algebra structure, with respect to the natural choice of grading. We have
that Kq[M(k, j)] is an N-graded algebra when we put all the matrix generators Xij in degree
1. Indeed, our choice of initial seed consists of homogeneous elements for this grading, as follows.

Lemma 5.3. We have |R(r, s)| = |C(r, s)| = min(r, s), and so deg(Mkj(r, s)) = min(r, s).

So we set G(k, j) to be the vector whose (r, s)-entry is equal to min(r, s). Furthermore, we
see in the next lemma that the exchange quiver satisfies the required homogeneity property
with respect to this grading.

Lemma 5.4. At any mutable vertex (α, β),∑
(γ,δ)→(α,β)

deg(Mkj(γ, δ)) =
∑

(α,β)→(γ,δ)

deg(Mkj(γ, δ)).

Proof. For α = β = 1, we see that the two sums are equal to 2.
Next assume that α = 1 and β > 1. Then the vertices with arrows incoming to (1, β) are

(1, β − 1) and (2, β + 1), and the vertices with arrows outgoing from (1, β) are (1, β + 1) and
(2, β). Since deg(Mkj(r, s)) = min(r, s), we see that the two sums are both equal to 1 + 2 = 3,
as β > 1. Similarly, the sums are equal (and equal to 3) if α > 1 and β = 1.
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If α, β > 1, then (α, β) has six neighbours: (α, β − 1), (α − 1, β) and (α + 1, β + 1) with
incoming arrows, and (α − 1, β − 1), (α, β + 1) and (α + 1, β) outgoing. Then if α = β, then
the two sums are easily seen to be equal to 3α − 1, or if α < β, then the sums are equal to 3α,
or if β < α, then they are equal to 3β.

Then by our earlier discussion, the quantum cluster algebra associated to the initial quantum
seed (M(k, j), B(k, j), L(k, j), G(k, j)) is Z-graded and in particular every quantum cluster
variable is homogeneous with respect to this grading. Note that a priori we only deduce a
Z-grading.

This grading also has a categorical interpretation. As described in [13, § 9.6], drawing on
[12, § 10], every module X in Cw has a filtration

0 = X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xr = X,

such that each subquotient Xi/Xi−1 is isomorphic to Mmi
i where Mi is the module

M(k−α+1,j−β+1) corresponding to Vi = V(α,β) (where Vk was our original numbering for
these modules, coming from i) . Hence, each module in Cw has an M -dimension vector,
m(X) = (m1, . . . ,mr) ∈ Nr.

The general theory tells us that the modules V(α,β) can be considered as being built up
by repeated extensions of the modules M(a,b) (corresponding to the algebraic identification
of V(α,β) being a minor and thus a product of the matrix generators, to which the M(a,b)

correspond). In the case at hand, we see that the minor corresponding to V(α,β) is an l × l minor
exactly when V(α,β) has

∑r
i=1 m(V(α,β))i = l, that is, when V(α,β) has l non-zero subquotients

of the form described in the previous paragraph. We call this sum of the entries of the M -
dimension vector the M -dimension of the module.

We see that the initial exchange matrix (or quiver) has the necessary property to imply
that this gives a grading by looking at the explicit description of the arrows. For example, the
arrow (α, β) → (α − 1, β − 1) exactly corresponds to the inclusion of V(α−1,β−1) in V(α,β) for
which M(k−α+1,j−β+1) is the cokernel, thus V(α,β) has M -dimension one greater than that of
V(α−1,β−1). One sees that in the grid arrangement, M -dimension is constant along rows and
increases by one on going down a row. Away from the boundary, every mutable vertex has
the same number of arrows coming in from a given row as going out to it (either zero or one
of each, in fact) and so the two sums of M -dimensions over arrows entering or leaving the
vertex are equal. It is straightforward to check that the boundary cases also have the required
property.

Indeed the fact that every module in Cw has a filtration with subquotients the modules
M(a,b) makes it clear that this grading is the usual N-grading on Kq[M(k, j)], for we have these
modules M(a,b) in degree 1 as for the matrix generators. Thus, we can view the above statement
as saying that the quantum cluster algebra structure is compatible with the natural graded
algebra structure of Kq[M(k, j)]. This will be important for us later. Again, we see that this is a
property of the category that does not rely on being in the quantum case: this grading is present
whether one considers Cw to be categorifying the commutative or the quantum coordinate ring.

Finally, we note one more grading-like datum associated to the category Cw. Namely,
following [11, § 10], to each module M in Cw we may associate the natural number given
by θ(M) = dim HomΛ(M,Sj), where j = m − k + 1. Then θ(M) is the multiplicity of Sj in
the top of the module M and we see from the above that θ(V(α,β)) = θ(M(α,β)) = 1 for all
1 � α � k, 1 � β � j. However, θ is not always equal to 1: in the example of Kq[M(3, 3)],
mutating V(2,2) yields a module W with θ(W ) = 2.

This datum has the property that it is compatible with mutation, in the following sense: if
M ′ is the module obtained by mutating M , so that there exist two exact sequences

0 −→ M −→ U −→ M ′ −→ 0 and 0 −→ M ′ −→ W −→ M −→ 0,
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where U and W correspond to the exchange monomials, then

dim HomΛ(M ′, Sj) = max{dim HomΛ(U, Sj),dim HomΛ(W,Sj)} − dim HomΛ(M,Sj).

Remark 5.5. An analogue of this formula is stated as [11, Proposition 10.1], for socles
as opposed to tops. The paper [11], in which the classical version of the topic of this paper
is considered, works with a category of submodules whereas the quantum version in [13] uses
a category of factor modules. Consequently, to fit with [13] we need to look at tops here as
opposed to socles.

More compactly, in the above notation, θ(M ′) = max{θ(U), θ(W )} − θ(M). That is, given
the values of θ on a collection of modules associated to an initial cluster, one may calculate
the values on all modules associated to cluster variables. Note that because θ is a dimension, it
necessarily takes natural number values; that the formula θ(M ′) = max{θ(U), θ(W )} − θ(M)
produces this is not a priori clear.

Note also that this datum is not a grading for the (quantum) cluster algebra structure above.
Indeed, at the vertex indexed by (1, 1) we have two outgoing arrows to modules each of which
has a one-dimensional top but only one incoming arrow, from a module that also has a one-
dimensional top. That is, θ(U) �= θ(W ) in this case, although the formula does tell us that the
mutated module also has a one-dimensional top. At all other mutable vertices for the cluster
M(k, j), we do have homogeneity with respect to this function θ, however.

6. The dehomogenization isomorphism and the image of the cluster structure under this

In work of Kelly, Lenagan and Rigal [18], a non-commutative dehomogenization of an N-graded
algebra is defined and their Corollary 4.1 describes an isomorphism of the localization of the
quantum Grassmannian at the minor [(n − k + 1) · · ·n] with a skew-Laurent extension of a
quantum matrix algebra. In [23], a dehomogenization isomorphism ρ involving Kq[Gr(k, n)]
localized at the consecutive minor [ã(ã + 1) · · · ( ˜a + k − 1)] is constructed, where ‘˜’ indicates
that values are taken modulo n and from the set {1, . . . , n}. In order to match conventions
already fixed, we will need the map corresponding to the special case of the map ρ of [23] for
the value a = 1, the original work of [18] being the case a = n − k + 1.

This map is key to the lifting procedure to obtain the quantum cluster algebra structure on
the quantum Grassmannian, and we recall its definition. (Here, â denotes an omitted index.)

Proposition 6.1 [23]. Let σ be the automorphism of Kq[M(k, n − k)] defined by σ(Xij) =
qXij . The map

α : Kq[M(k, n − k)][Y ±1;σ] −→ Kq[Gr(k, n)][[12 · · · k]−1],

defined by

α(Xij) = [1 · · · ̂k − i + 1 · · · k (j + k)][1 · · · k]−1, α(Y ) = [12 · · · k]

is an algebra isomorphism.

This map allows us to transport the quantum cluster algebra structure on quantum matrices,
as described in the previous section, to the above localization of the quantum Grassmannian.
Set Loc(Kq[Gr(k, n)]) = Kq[Gr(k, n)][[12 · · · k]−1].
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From generalities on non-commutative dehomogenizations (see [18, § 3]), the N-grading on
Kq[Gr(k, n)] that has all the generating Plücker coordinates [I] in degree 1 gives rise to a Z-
grading on the localization. Let Kq[Gr(k, n)]i denote the degree i homogeneous component of
Kq[Gr(k, n)] for the aforementioned grading. Then

Loc(Kq[Gr(k, n)]) =
⊕
l∈Z

Loc(Kq[Gr(k, n)])l,

with

Loc(Kq[Gr(k, n)])l =
∑
j�0

Kq[Gr(k, n)]l+j [1 · · · k]−j .

The non-commutative dehomogenization of Kq[Gr(k, n)] is defined to be the degree 0 part
of Loc(Kq[Gr(k, n)]) with respect to this Z-grading and the results of [18, 23] show that
this degree 0 part is isomorphic to the quantum matrices Kq[M(k, n − k)], via the map α of
Proposition 6.1. In particular, the map α sends an element of the quantum matrices to a K-
linear combination of elements of the form m[1 · · · k]−j where m is a homogeneous polynomial
of degree j in Kq[Gr(k, n)].

We note that Kq[Gr(k, n)] is a subalgebra of Loc(Kq[Gr(k, n)]) but that Kq[Gr(k, n)] has non-
trivial intersection with every homogeneous component of Loc(Kq[Gr(k, n)]). More precisely,
Kq[Gr(k, n)]l ⊆ Loc(Kq[Gr(k, n)])l for every l; less formally, Kq[Gr(k, n)] is ‘spread out’ across
all the components of Loc(Kq[Gr(k, n)]) and this is at the root of the technical difficulties that
must be overcome in order to deduce our main result.

Now Proposition 6.1 describes the algebra Loc(Kq[Gr(k, n)]) in terms of a skew-Laurent
extension of the quantum matrices and so we can use Proposition 4.1 to deduce the following.

Proposition 6.2. The localization Loc(Kq[Gr(k, n)]) is a graded quantum cluster algebra.

Proof. We have seen in Section 5 that Kq[M(k, n − k)] is a graded quantum cluster algebra
with the initial data provided by the theorem of Geiß, Leclerc and Schröer and the grading
being the standard grading on Kq[M(k, n − k)]. In particular, the initial cluster consists of
homogeneous elements and the automorphism σ in Proposition 6.1 therefore acts on the initial
cluster variable Mk(n−k)(r, s) =

[
C(r,s)
R(r,s)

]
by multiplication by qdeg(Mk(n−k)(r,s)) = qmin(r,s).

Thus, the required conditions for applying Proposition 4.1 hold and the skew-Laurent extension
Kq[M(k, n − k)][Y ±1;σ] induced by σ is a graded quantum cluster algebra. Note that we have
as additional coefficients Y and Y −1.

Since the map α in Proposition 6.1 is an algebra isomorphism, this structure is transported
to Loc(Kq[Gr(k, n)]). The extra coefficients Y and Y −1 are mapped under α to [1 · · · k] and
[1 · · · k]−1, respectively. We choose to place the coefficient [1 · · · k] at position (1, k + 1) and
[1 · · · k]−1 at (2, k + 1); these choices are arbitrary.

We will denote by L(k, n) the union of the image of M(k, n − k) under α with the set
{[1 · · · k], [1 · · · k]−1}. The corresponding exchange matrix will be denoted by BLoc(k, n); this
matrix is obtained from the exchange matrix B(k, n − k) by adding rows and columns indexed
as (1, k + 1) and (2, k + 1) consisting of zeroes, corresponding to the two extra coefficients. The
quasi-commutation matrix will be denoted by LLoc(k, n) and, as described in Proposition 4.1,
this is determined by L(k, n − k) and the automorphism σ.

For our grading, described by GLoc(k, n) ∈ Zk(n−k)+2, we take the corresponding entry
from G(k, n − k) for elements of the image of M(k, n − k) under α and take GLoc

(1,k+1) = 1
and GLoc

(2,k+1) = −1, in accordance with the natural choice. We note that this is not the
natural grading on Loc(Kq[Gr(k, n)]) described above: that would of course have the image
of M(k, n − k) in degree 0, though it would agree with GLoc

(1,k+1) = 1 and GLoc
(2,k+1) = −1. In
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making the choice of GLoc(k, n) described here, we are explicitly choosing to retain the grading
associated to the pre-image under α, in Kq[M(k, n − k)].

Thus, Loc(Kq[Gr(k, n)]) has a quantum cluster algebra structure with initial data

(L(k, n), BLoc(k, n), LLoc(k, n), GLoc(k, n)).

However, this does not show that Kq[Gr(k, n)] is a quantum cluster algebra. We see from
Proposition 6.1 that α maps each matrix generator Xij to the product of a quantum Plücker
coordinate and the element [1 · · · k]−1, and these are not elements of Kq[Gr(k, n)], viewed as a
subalgebra of the localization in the obvious way. So although Kq[Gr(k, n)] is a subalgebra of
a quantum cluster algebra, it is not a cluster subalgebra: the cluster variables are not elements
of the subalgebra.

For later use, we record a special case of a companion result of Lenagan and Russell [23,
Proposition 3.3] that describes the image of a quantum minor in Kq[M(k, n − k)] under the
map α.

First, for indexing sets I = {i1, . . . , it} and J = {j1, . . . , jt}, define

Q1(I, J) = {j̃1 + k, j̃2 + k, . . . , j̃t + k} 	 ({1, . . . , k} \ {k − i1 + 1, k − i2 + 1, . . . k − it + 1}).
It is straightforward to verify that this is a subset of {1, . . . , n} of cardinality k.

Lemma 6.3 [23]. Let
[
J
I

]
denote the quantum minor in Kq[M(k, n − k)] with row and

column indexing sets I and J . Then

α

([
J
I

])
= [Q1(I, J)][1 · · · k]−1.

Note that the sets Q1(I, J) describe column sets of maximal minors, whose row set is
necessarily {1, . . . , k}.

This lemma has the following two consequences for the quantum cluster algebra structure on
Loc(Kq[Gr(k, n)]). First, we see that we can rephrase the lemma in terms of the components
of the non-commutative dehomogenization as described above. Recall that α restricts to an
isomorphism of Kq[M(k, n − k)] with the degree 0 part of Loc(Kq[Gr(k, n)]); the lemma tells
us more.

Corollary 6.4. The image of M(k, n − k) under α in Loc(Kq[Gr(k, n)]) is contained in
the subspace Kq[Gr(k, n)]1[1 · · · k]−1 of Loc(Kq[Gr(k, n)])0 =

∑
j�0 Kq[Gr(k, n)]j [1 · · · k]−j .

From Definition 5.1, we may compute the image of M(k, n − k) under α explicitly.

Lemma 6.5. Let
[
C(r,s)
R(r,s)

] ∈ M(k, n − k). Then

α

([
C(r, s)
R(r, s)

])
= [{1̃ − s, 2̃ − s, . . . , r̃ − s} 	 ({1, . . . , k} \ {r, . . . , r + s})][1 · · · k]−1.

We illustrate this for our running example in Figure 3.
These results tell us about our initial cluster variables but in order to complete the lifting

of the whole quantum cluster algebra structure to the quantum Grassmannian, we need a
stronger statement on the images of all quantum cluster variables. This is achieved by the
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Figure 3. Initial cluster for a quantum cluster algebra structure on Loc(Kq[Gr(3, 6)]).

following theorem, which uses a cluster algebra argument, as opposed to direct calculation of
the sort that gives the above results. It also emphasizes the relevance of the categorification.

Theorem 6.6. Let v be a quantum cluster variable for the quantum cluster algebra
structure on Kq[M(k, n − k)] constructed from the initial data M(k, n − k). Let M(v) be
the module in Cw corresponding to v. Then α(v) ∈ Kq[Gr(k, n)]θ(M(v))[1 · · · k]−θ(M(v)), where
θ(M(v)) is equal to the dimension of the top of the module M(v).

Proof. We argue by induction on the length of mutation sequences. First, we see that the
claim holds for elements of the initial cluster M(k, n − k) by the observation that θ(V(α,β)) = 1
for all α and β and by Corollary 6.4.

Note that the localization at hand, Loc(Kq[Gr(k, n)]), is constructed from Kq[Gr(k, n)] by
localization at an Ore set that consists of (positive integer) powers of a single element, [1 · · · k].
Since in any localization a finite set of elements has a common denominator, for any finite set
of elements A1, . . . , Ar of Loc(Kq[Gr(k, n)]) there exists a positive integer m such that there
exist B1, . . . , Br ∈ Kq[Gr(k, n)] with Ai = Bi[1 · · · k]−m. Furthermore, we can choose m to be
the (unique) least such positive integer, so that we may speak of lowest common denominators
in this localization.

In particular, this holds for r = 1, so that every element A of Loc(Kq[Gr(k, n)]) has a unique
expression as B[1 · · · k]−d(A) with B ∈ Kq[Gr(k, n)] and d(A) minimal. Equivalently, there exists
a unique smallest d(A) such that A is an element of the subspace Kq[Gr(k, n)]d(A)[1 · · · k]−d(A)

of Loc(Kq[Gr(k, n)]).
Since [1 · · · k] ∈ Kq[Gr(k, n)], we see that this implies that A ∈ Kq[Gr(k, n)]j [1 · · · k]−j for all

j � d(A) since

A = B[1 · · · k]−d(A) = (B[1 · · · k]j−d(A))[1 · · · k]−j .

This is why the decomposition Loc(Kq[Gr(k, n)]) =
∑

j�0 Kq[Gr(k, n)]j [1 · · · k]−j is not a direct
sum decomposition.

Now, assume that the claim holds for some cluster N mutation-equivalent to M(k, n − k).
Let X1, . . . , Xr be the quantum cluster variables appearing in N . Then the mutation of Xi,
say, is computed by taking the sum of the two relevant exchange monomials. More precisely,
recall that the exchange relations take the form

X ′
i = M(b+

i ) + M(b−i ),
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with

M(a1, . . . , ar)
def= q(1/2)

∑
u<v auavlvuXa1

1 · · ·Xar
r ,

and the integers ai are all non-negative except for ak = −1. It is convenient to observe, however,
that since Xi quasi-commutes with every other element of the cluster, so does its inverse and
we can re-write the exchange relation in the form

X ′
iXi = N+ + N−,

by quasi-commuting X−1
i to the right-hand side of each monomial M(b+

i ) and M(b−i ) and
multiplying through. Of course, this changes the powers of q appearing in front of the
monomials but for the present argument this does not matter. Now we see that we may
use the inductive hypothesis and the existence of lowest common denominators to first
write N± = S±[1 · · · k]−d(N±) with S± ∈ Kq[Gr(k, n)] and d(N±) positive integers and then
to write N+ + N− as a product of an element of Kq[Gr(k, n)] with some power m of
[1 · · · k]−1. Furthermore, it is clear that the minimal such m is equal to the maximum of
the powers d(N+) and d(N−). Hence, the exchange relation tells us that when we write
Xi = Ti[1 · · · k]−d(Xi) and X ′

i = T ′
i [1 · · · k]−d(X′

i) with Ti, T
′
i ∈ Kq[Gr(k, n)], d(X ′

i) is equal to
max{d(N+), d(N−)} − d(Xi).

However, we have seen this formula previously: it is precisely the formula determining the
values of θ by repeated mutation. Since the integers given by θ (the dimension of the top† of
the corresponding module) and d (the minimal positive integer described above) take the same
initial values, this being the base case for our induction, and since they mutate by identical
formulae, we see that they agree on all quantum cluster variables. This proves the theorem.

A more direct argument can be made for the quantum cluster variables for Kq[M(k, n − k)]
whose image under α is a quantum Plücker coordinate multiplied by some power of [1 · · · k]−1.
For we may observe that as we range over all possible indexing sets I and J of quantum minors
in Kq[M(k, n − k)], the collection of sets Q1(I, J) ranges over all k-subsets of {1, . . . , n} except
{1, . . . , k}. Then since [13, Corollary 12.4] tells us that every quantum minor does occur as a
quantum cluster variable in the quantum cluster algebra structure for Kq[M(k, n − k)], we see
the following.

Corollary 6.7. For each k-subset I of {1, . . . , n}, we have that [I][1 · · · k]−1 is a quantum
cluster variable in the above quantum cluster algebra structure on Loc(Kq[Gr(k, n)]).

Here, [I] is the quantum Plücker coordinate corresponding to I. Note that this is consistent
with the above general theorem, since the corresponding modules have simple tops; the latter
follows from the fact that this is true for the modules V(α,β), this itself being a feature of being
in type A.

7. A quantum cluster algebra structure on the quantum Grassmannian

The final step is to use Theorem 4.6 to re-scale the quantum cluster variables appearing in the
above quantum cluster algebra structure on Loc(Kq[Gr(k, n)]) to eliminate the inverse of the
minor [1 · · · k] that appears. By doing so, we will see that all the re-scaled quantum cluster

†We note that in the specific case at hand, the category Cw categorifying quantum matrices Kq [M(k, j)] has
the property that each indecomposable module has top isomorphic to a direct sum of copies of Sj . So we may
simply say ‘top’ here, as opposed to ‘Sj-component of the top’ as in the general case described in Section 5.



GRADED QUANTUM CLUSTER ALGEBRAS 723

variables in fact lie in Kq[Gr(k, n)], which together with Corollary 6.7 will imply that we have
a (graded) quantum cluster algebra structure on Kq[Gr(k, n)], since the Plücker coordinates
generate Kq[Gr(k, n)].

From the previous section, notably Theorem 6.6, we know that the power of [1 · · · k] appearing
in any quantum cluster variable is exactly given by θ, the dimension of the top of the
corresponding module in the categorification. We would like to apply our re-scaling theorem,
Theorem 4.6, but we cannot do so directly because as we noted before θ is not a grading.
Therefore, our first task is to fix this.

More concretely, we will alter slightly the initial data in order to correct the inhomogeneity
at the position (1, 1). For we observe that at every mutable index (α, β) except the top-left,
that is, except at (1, 1), the exchange quiver has the same number of incoming and outgoing
arrows. In other words, the exchange matrix B = BLoc(k, n) admits a grading by the vector
a = (1, . . . , 1,−1, 1) ∈ Zk(n−k)+2 except for at the index (1, 1). We would like to use this grading
a as one of our input data to Theorem 4.6 but we need to homogenize B at (1, 1) in order to
do so. We note that a ends with the values −1 and 1 in order to reflect the natural grading
on Loc(Kq[Gr(k, n)]) in terms of the power of [1 · · · k]−1 occurring in our expressions for the
quantum cluster variables.

We observe that the grading a does correspond to θ, at least away from the coefficients
[1 · · · k]±1. This is as expected, for this categorical data θ is exactly what is used in [11, § 10] to
make the lifting work classically. The classical version uses quotients rather than localizations,
as we must, but we can see that reinterpreting [11, § 10] in terms of localizations gives rise to
the analogue of what we do here.

The underlying reason for the choice we will make below, and its classical analogue in [11,
§ 10], is geometric. This is explained in the discussion after [14, Theorem 4.14]. That theorem
describes the passage from the corresponding classical (commutative) cluster algebra structure
on K[Mat(k, n − k)] to one on K[Gr(k, n)] in more concrete terms than those used in [11, § 10],
where the general result was the focus. (We note that we do not directly rely on the classical
result but do indirectly, in that results we use from [13] rely on the existence of the classical
cluster algebra structure on K[Mat(k, n − k)].)

Hence, we define a new initial datum as follows. Let

(L = L(k, n), B = BLoc(k, n), L = LLoc(k, n), G = GLoc(k, n))

denote the initial data for the quantum cluster algebra structure on Loc(Kq[Gr(k, n)]) described
in the previous section. Here L = {L(r,s) | 1 � r � k, 1 � s � n − k} ∪ {L(1,k+1),L(2,k+1)}. We
add an additional coefficient (that is, a non-mutable variable) L(0,0) to the initial cluster L,
namely L(0,0) = [1 · · · k][1 · · · k]−1. Let us denote by L̂ the set L ∪ {L(0,0)}. Of course, this addi-
tional element is simply the identity for the algebra Loc(Kq[Gr(k, n)]) and as such it certainly
quasi-commutes with every element of L, giving that the corresponding quasi-commutation
matrix L̂ is constructed from L by setting L̂(0,0),(0,0) = 0, L̂(0,0),(r,s) = L̂(r,s),(0,0) = 0 for all
(r, s) ∈ {1 � r � k, 1 � s � n − k} ∪ {(1, k + 1), (2, k + 1)} and L̂(r1,s1),(r2,s2) = L(r1,s1),(r2,s2)

whenever (r1, s1), (r2, s2) �= (0, 0).
Next we add an extra arrow to the exchange quiver, from (0, 0) to (1, 1), or equivalently

define

B̂(r1,s1),(r2,s2)
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if (r1, s1) = (0, 0) and (r2, s2) = (0, 0),
or (r1, s1) = (0, 0) and (r2, s2) �= (1, 1),
or (r1, s1) �= (1, 1) and (r2, s2) = (0, 0),

1 if (r1, s1) = (0, 0) and (r2, s2) = (1, 1),
−1 if (r1, s1) = (1, 1) and (r2, s2) = (0, 0),
B(r1,s1),(r2,s2) otherwise.
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Figure 4. Homogenized initial cluster for a quantum cluster algebra structure on
Loc(Kq[Gr(3, 6)]).

For a grading Ĝ, we take Ĝ = (−1, . . . ,−1, 1,−1) ∈ Zk(n−k)+3. Our reason for doing so is
that Ĝ records the power of [1 · · · k] occurring in the initial cluster variables as shown in the
previous section, namely −1 except for the coefficient [1 · · · k]. This is indeed still a grading,
as is easily checked. We will not forget the data in the original grading G: it will also be used
when we apply Theorem 4.6, which takes two gradings among its inputs.

Now it is straightforward to check that (L̂, B̂, L̂, Ĝ) is valid initial data for a graded quantum
cluster algebra structure on Loc(Kq[Gr(k, n)]). Indeed, compatibility of B̂ with L̂ is immediate,
since L̂ contains only zeroes in the row and column indexed by (0, 0). The grading condition
holds by construction.

Furthermore, the quantum cluster variables obtained by iterated mutation from the initial
seed (L̂, B̂, L̂, Ĝ) are equal to those obtained from (L, B, L,G), since the new variable is
simply the identity in Loc(Kq[Gr(k, n)]) and as such has no effect whatsoever on any exchange
monomials it appears in. It is to this altered graded quantum cluster algebra structure on
Loc(Kq[Gr(k, n)]), with initial seed (L̂, B̂, L̂, Ĝ) that we will apply Theorem 4.6.

In Figure 4, we give this homogenized initial cluster for our running example with k = 3 and
n = 6.

Lemma 7.1. As in Proposition 6.1, let σ be the automorphism of Kq[M(k, n − k)] defined
by σ(Xij) = qXij . Then there is an automorphism σ̂ of Kq[M(k, n − k)][Y ±1;σ] defined by
σ̂|Kq [M(k,n−k)] = σ and σ̂(Y ) = Y .

Proof. One easily sees that σ̂ respects the relations Y Xij = σ(Xij)Y in the skew-Laurent
extension.

Corollary 7.2. There is an automorphism of Loc(Kq[Gr(k, n − k)]) defined as the
composition τ = α ◦ σ̂ ◦ α−1, where α is the dehomogenization isomorphism.

Denote by t̂ the vector with t̂(0,0) = 0 and t̂(r,s) = G(r,s). Then the vector t̂ described a
grading for B̂ above, since G was a grading for B. The choice of t̂(0,0) = 0 is the unique one
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such that t̂ is indeed an extension of the grading G to a grading for B̂ but is also consistent
with the natural degree of L̂(0,0) = [1 · · · k][1 · · · k]−1 = 1 being zero.

Recall that the grading G describes precisely the degree of the initial quantum cluster
variables for the quantum cluster algebra structure on Kq[M(k, n − k)], where ‘degree’ means
as a homogeneous polynomial in the matrix generators. Indeed we saw that the quantum
cluster algebra structure on Kq[M(k, n − k)] is precisely graded by this natural grading. Then
it is clear from its definition that σ acts by multiplication by q to this degree, as we noted
previously. Passing this through the isomorphism α, we see that τ is exactly the automorphism
induced by t̂, or equivalently that t̂ may be recovered from τ .

Now we apply Theorem 4.6.

Proposition 7.3. Let Loc(Kq[Gr(k, n)]) have the graded quantum cluster algebra
structure induced by the initial seed (L̂, B̂, L̂, Ĝ). Then there exists a graded quantum

cluster algebra structure on a subalgebra L̃oc(Kq[Gr(k, n)]) of the skew-Laurent extension
Loc(Kq[Gr(k, n)])[Z±1; τ ] with initial data

(1) L̃ = {[1 · · · k][1 · · · k]−1Z} ∪ {L̃(r,s) = qt̂(r,s)/2L̂(r,s)Z | 1 � r � k, 1 � s � n − k}
∪ {q1/2[1 · · · k]Z−1, q−1/2[1 · · · k]−1Z};

(2) B̃ = B̂;
(3) L̃ satisfies L̃(r1,s1),(rs,s2) = L̂(r1,s1),(r2,s2) + t̂(r2,s2) − t̂(r1,s1); and

(4) G̃ = 0.

Here the automorphism τ is as described in the previous lemma, inducing the grading t̂.

Proof. We apply Theorem 4.6 with t = t̂ and u = −Ĝ. As noted above, both are gradings
for B̂. Then one easily checks that (t ∧ u)ij = tj − ti, giving the form of L̃ as stated, and we
have G̃ = Ĝ + (−Ĝ) = 0.

Indeed, applying Corollary 4.7 to this setting, we have that the quantum cluster variables
for this quantum cluster algebra structure on L̃oc(Kq[Gr(k, n)]) are in bijection with those of
Loc(Kq[Gr(k, n)]) and furthermore the former have the form of a product of a power of q, a
quantum cluster variable for Loc(Kq[Gr(k, n)]) and a power of Z.

Thus, for our running example k = 3 and n = 6 we have as initial cluster for the quantum
cluster algebra L̃oc(Kq[Gr(3, 6)]) that shown in Figure 5. The values of t̂ giving the powers
of q appearing are derived by reading off from Figure 2 the degrees of the corresponding
variables as homogeneous polynomials in the matrix generators. So, for example, t̂(2,2) = 2
since [356][123]−1 = α(

[
23
23

]
) and the latter has degree 2.

Lemma 7.4. The element q−1/2[1 · · · k]−1Z is central in Loc(Kq[Gr(k, n)])[Z±1; τ ] and

hence is a central coefficient in the quantum cluster algebra L̃oc(Kq[Gr(k, n)]).

Proof. We chose τ so that

τ([1 · · · k]) = α(σ(α−1([1 · · · k]))) = α(σ(Y )) = α(Y ) = [1 · · · k],

and hence Z commutes with [1 · · · k], and so that α(Y ) = [1 · · · k] and Z satisfy the same
quasi-commutation relations with α(Kq[M(k, n − k)]). It follows that the stated element
is central.
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Figure 5. Initial cluster for a quantum cluster algebra structure on L̃oc(Kq[Gr(3, 6)]).

Proposition 7.5. The quotient algebra L̃oc(Kq[Gr(k, n)])/(q−1/2[1 · · · k]−1Z − 1) inherits
a graded quantum cluster algebra structure.

Proof. The previous lemma tells us that the element we wish to set to 1 in the quotient is a
central coefficient in the quantum cluster algebra structure on L̃oc(Kq[Gr(k, n)]). Furthermore,
examining the exchange matrix given by from Proposition 7.3, we see that this element and
its inverse appear in the corresponding exchange quiver in components disconnected from the
main part of the quiver containing the mutable vertices. As such, these elements can play no
role whatsoever in mutations. Then it is easy to see that the quotient that sets these elements
to 1 is again a quantum cluster algebra, with the natural quotient data.

(Algebraically, we have that the algebra L̃oc(Kq[Gr(k, n)]) decomposes as a quantum cluster
algebra as a tensor product A ⊗ K[(q−1/2[1 · · · k]−1Z)±1]; the quotient we take factors out this
subalgebra of Laurent polynomials in the element q−1/2[1 · · · k]−1Z.)

Since the element q−1/2[1 · · · k]−1Z has degree 0 (as G̃ = 0), this quantum cluster algebra is
again graded by the grading −Ĝ, suitably restricted; indeed we see that this grading is equal
to 1 = (1, . . . , 1) ∈ Zk(n−k)+1.

In particular, in this quotient the two coefficients q1/2[1 · · · k]Z−1 and q−1/2[1 · · · k]−1Z are
both identified with the identity and as such may be deleted from the quantum cluster algebra
data with no effect, which we do.

We remark that it is possible to show by a slightly more involved argument that the quotient
of a quantum cluster algebra by a central coefficient is again a quantum cluster algebra, without
the stronger hypothesis of the corresponding frozen vertices being disconnected from all mutable
ones in the exchange quiver. However, to prove this here would take us some distance from our
goal, so we omit this on this occasion.

We are now ready to prove our main theorem.

Theorem 7.6. The quotient algebra L̃oc(Kq[Gr(k, n)])/(q−1/2[1 · · · k]−1Z − 1) is isomor-
phic to Kq[Gr(k, n)]. Hence, the quantum Grassmannian Kq[Gr(k, n)] admits a graded quantum
algebra structure.

Proof. We proceed in two steps. First, we show the existence of a surjective homomorphism
from Kq[Gr(k, n)] to the quotient L̃oc(Kq[Gr(k, n)])/(q−1/2[1 · · · k]−1Z − 1). Then we show that
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the latter has the same Gel’fand–Kirillov dimension as Kq[Gr(k, n)], from which it follows that
the two algebras are isomorphic.

Let us denote by z the (central) element q−1/2[1 · · · k]−1Z ∈ Loc(Kq[Gr(k, n)])[Z±1; τ ]. Then
let f : Kq[Gr(k, n)] → Loc(Kq[Gr(k, n)])[Z±1; τ ] be the linear map defined on the generating
quantum Plücker coordinates [I] of Kq[Gr(k, n)] by f([I]) = [I]z, extended first to monomials
multiplicatively and then extended linearly. Note that f is a map whose codomain is the whole
skew-Laurent extension defined in Proposition 7.3. Since Kq[Gr(k, n)] is spanned as a vector
space by monomials in the quantum Plücker coordinates and since the defining (generalized)
quantum Plücker relations in Kq[Gr(k, n)] are homogeneous [19, Remark 3.3], the centrality
of z implies that this yields a well-defined algebra homomorphism.

Next we establish that the image of f lies in L̃oc(Kq[Gr(k, n)]). This follows from
Theorem 6.6: we defined the elements L(r,s) to be the images under the dehomogenization
isomorphism α of the initial cluster variables for the quantum cluster algebra structure on
Kq[M(k, n − k)]. In particular, as noted after Theorem 6.6, every quantum cluster variable of
L̃oc(Kq[Gr(k, n)]) is equal to an element of Kq[Gr(k, n)] multiplied by some power of z. For this
is exactly why the choices in Proposition 7.3 were made: Theorem 6.6 gives that every quantum
cluster variable v in Loc(Kq[Gr(k, n)]) has a unique expression as an element of Kq[Gr(k, n)]
multiplied by ([1 . . . k]−1)θ(α−1(v)) and we applied the re-scaling construction of Theorem 4.6
using the data from θ (now ‘fixed’ to be a genuine grading), re-scaling every quantum cluster
variable precisely by the power of Z needed to ensure that we obtain as quantum cluster
variables elements of Kq[Gr(k, n)] multiplied by powers of z.

Furthermore, since the quantum cluster variables by definition generate L̃oc(Kq[Gr(k, n)]), f

is a surjective homomorphism onto L̃oc(Kq[Gr(k, n)]). Composing f with the natural projection
of L̃oc(Kq[Gr(k, n)]) onto the quotient by the ideal generated by z − 1, we have a surjective
homomorphism g : Kq[Gr(k, n)] → L̃oc(Kq[Gr(k, n)])/(z − 1), as we wanted.

Next, we show the equality of the Gel’fand–Kirillov dimensions of the domain and codomain
of g. The GK-dimension of Kq[Gr(k, n)] is well known to be k(n − k) + 1 so we compute
the GK-dimension of the quotient that is the codomain. By construction, L̃oc(Kq[Gr(k, n)])
contains the quantum affine space Aq whose generators are precisely the elements in the initial
seed L̃ of Proposition 7.3 except z−1; this is because L̃ is a quantum cluster, so in particular
a quasi-commuting set.

Now Aq has k(n − k) + 2 generators, so

k(n − k) + 2 = GKdim Aq � GKdimL̃oc(Kq[Gr(k, n)]).

On the other hand, by the quantum Laurent phenomenon [3, Corollary 5.2], L̃oc(Kq[Gr(k, n)])
is contained in the quantum torus Tq associated to Aq. So GKdim L̃oc(Kq[Gr(k, n)]) �
GKdim Tq = k(n − k) + 2.

Hence, GKdim L̃oc(Kq[Gr(k, n)]) = k(n − k) + 2 and so it follows from [20, Proposi-
tion 3.15] that GKdim L̃oc(Kq[Gr(k, n)])/(z − 1) � (k(n − k) + 2) − 1 = k(n − k) + 1 since
z − 1 is certainly regular.

On the other hand, L̃oc(Kq[Gr(k, n)])/(z − 1) contains (a copy of) the quantum affine space
generated by the images of the indeterminates in the initial seed L̃ of L̃oc(Kq[Gr(k, n)]) except
z and z−1. So GKdim L̃oc(Kq[Gr(k, n)])/(z − 1) � k(n − k) + 1 and hence we in fact have
equality.

Now since Kq[Gr(k, n)] and L̃oc(Kq[Gr(k, n)])/(z − 1) are domains, it follows that these are
isomorphic, as every epimorphism of domains of the same Gel’fand–Kirillov dimension is an
isomorphism ([20, Proposition 3.15], as previously).

In Figure 6, we show the initial data for the quantum cluster algebra structure thus
obtained on Kq[Gr(3, 6)]. We note that due to the powers of q that are present, this is
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Figure 6. Initial cluster for a quantum cluster algebra structure on Kq[Gr(3, 6)], prior to a final
re-scaling.

Figure 7. Initial cluster for a quantum cluster algebra structure on Kq[Gr(3, 6)], following a
final re-scaling.

not identical to the quantum cluster algebra structure obtained in the authors’ earlier work
[16]. However, to conclude, we may apply Proposition 3.7, for we see that the power of q

appearing in the expression for the (r, s) variable is exactly qt̂(r,s)+1/2. The corresponding
vector (̂t(0,0) + 1, . . . , t̂(k,n−k) + 1)

T
is a grading for the relevant exchange matrix, since both

t̂ and (1, . . . , 1) are. Then we may apply Proposition 3.7 with the negative of this grading,
to obtain an isomorphic quantum cluster algebra without these powers of q. In this way, we
recover exactly the quantum cluster algebra structure obtained in [16]. Figure 7 shows this
final re-scaled quantum cluster algebra structure on Kq[Gr(3, 6)].
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Remark 7.7. The preceding theorem establishes that Kq[Gr(k, n)] is a graded quantum
cluster algebra and we have seen that this grading is the standard grading on Kq[Gr(k, n)], with
the quantum Plücker coordinates in degree 1. Then in particular it follows from the general
theory of graded quantum cluster algebras that every quantum cluster variable is homogeneous
with respect to this grading, a phenomenon well-known classically and observed in the quantum
setting in the authors’ earlier work [16] (and only experimentally for Kq[Gr(3, n)], n = 6, 7, 8).
(A priori, an inhomogeneous quantum cluster variable could specialize to a homogeneous
classical cluster variable, for example, by the presence of a term with coefficient q − 1.)

Remark 7.8. We note that we have worked throughout over the field Q(q), that is, with
q transcendental over Q. This assumption is necessary because this is the context in which the
main theorem of Geiß–Leclerc–Schröer is proved [13, Theorem 12.3], for a number of technical
reasons. Since that theorem provides the starting point for our lifting, namely the quantum
cluster algebra structure on quantum matrices, we must make this assumption too. However,
our methods here only use that q is not a root of unity, so that if the aforementioned result is
extended, our conclusion will also follow immediately without need for modification.

So, in line with [13, Conjecture 12.7], we conjecture that the above quantum cluster algebra
structure on the quantum Grassmannian can be realized on an integral form, that is, over
Q[q, q−1]. Indeed the explicit descriptions of the quantum cluster variables in the authors’
earlier work suggest that this structure may even be defined over Z[q, q−1]. However, many of
the constructions we have applied, notably Theorem 4.6, involve powers of q1/2 and it appears
to be a delicate matter to see that q1/2 does not enter into the final quantum cluster algebra
structure.

Remark 7.9. As noted in § 1, we expect that the methods presented here, or generalizations
of them, can be used to establish the existence of (graded) quantum cluster algebra structures
on the quantized coordinate rings of arbitrary partial flag varieties. The relationships between
the latter and their localizations that give the quantized coordinate rings of the big cells of
the corresponding partial flag variety are well-understood and dehomogenization isomorphisms
such as that used here are known. Modifications of the constructions here may be necessary,
however. For example, multi-gradings may be needed where the coordinate rings of the big
cells involve localization at several elements.

Appendix

Here we gather the aforementioned details of the calculations used in the proof of Theorem 4.6.
Notation is as in that proof.

Lemma A.1. X̃ai
i = q(1/2)a2

i tiuiXai
i zaiui .

Proof. If ai � 0, then

X̃ai
i = (qtiui/2Xiz

ui)ai

= qaitiui/2(Xiz
ui)ai

= qaitiui/2q(
∑ai−1

j=1 j)tiuiXai
i zaiui

= qaitiui/2q(ai(ai−1)/2)tiuiXai
i zaiui

= q(1/2)a2
i tiuiXai

i zaiui ,
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since zuiXi = qtiuiXiz
ui . The sum (

∑ai−1
j=1 j)tiui arises from moving terms of the form zui to

the right the required number of times to rearrange the product as shown. It is straightforward
to check that the claim is also correct for ai � 0 by similar means.

Set βi = q(1/2)a2
i tiui .

Lemma A.2. zaiui(
∏r

j=i+1 X
aj

j zajuj ) = (
∏r

j=i+1 qaiajtjui)(
∏r

j=i+1 X
aj

j zajuj )zaiui .

Proof. This follows from the defining quasi-commutation relation zXj = qtj Xjz and noting
that z commutes with itself.

Set αi =
∏r

j=i+1 qaiajtjui =
∏

i<j qaiajtjui so that

zuiai

∏
i<j

X
aj

j zajuj = αi

⎛⎝∏
i<j

X
aj

j zajuj

⎞⎠ zuiai ,

by the preceding lemma.

Lemma A.3.

∏r
i=1 X̃ai

i = (
∏r−1

i=1 αi)(
∏r

i=1 βi)Xa1
1 · · ·Xar

r z(
∑r

i=1 aiui).

Proof.

r∏
i=1

X̃ai
i =

r∏
i=1

βiX
ai
i zaiui

=

(
r∏

i=1

βi

)
r∏

i=1

Xai
i zaiui

=

(
r−1∏
i=1

αi

)(
r∏

i=1

βi

)
Xa1

1 · · ·Xar
r z(

∑r
i=1 aiui),

by using the above lemmas repeatedly.

Lemma A.4. (a)
∏r−1

i=1 αi = q
∑

i<j aiajtjui .

(b)
∏r

i=1 βi = q(1/2)
∑r

i=1 a2
i tiui .

Proof. These equalities are immediate from the definitions of αi and βi, respectively.

Proposition A.5. M̃(a1, . . . , ar) = q(1/2)
∑r

i=1
∑r

j=1 aiajtiuj M(a1, . . . , ar)z(
∑r

i=1 aiui).
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Proof.

M̃(a1, . . . , ar) = q(1/2)
∑

i<j aiaj l̃ji

(
r∏

i=1

X̃ai
i

)

= q(1/2)
∑

i<j aiaj(lji+tiuj−tjui)

(
r∏

i=1

X̃ai
i

)

= q(1/2)
∑

i<j aiaj(lji+tiuj−tjui)

(
r−1∏
i=1

αi

)(
r∏

i=1

βi

)
Xa1

1 · · ·Xar
r z(

∑r
i=1 aiui)

= q(1/2)
∑

i<j aiaj(lji+tiuj−tjui)q
∑

i<j aiajtjuiq(1/2)
∑r

i=1 a2
i tiuiXa1

1 · · ·Xar
r

· z(
∑r

i=1 aiui)

= q(1/2)
∑

i<j aiaj(lji+tiuj−tjui)q
∑

i<j aiajtjuiq(1/2)
∑r

i=1 a2
i tiui

· q−(1/2)
∑

i<j aiaj ljiM(a1, . . . , ar)z(
∑r

i=1 aiui)

= q(1/2)((∑i<j aiaj(tiuj+tjui))+(∑r
i=1 a2

i tiui))M(a1, . . . , ar)z(
∑r

i=1 aiui)

= q(1/2)
∑r

i=1
∑r

j=1 aiajtiuj M(a1, . . . , ar)z(
∑r

i=1 aiui).

This is the equality as claimed in the proof of Theorem 4.6.
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