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Abstract: A graded quiver with superpotential is a quiver whose arrows are assigned

degrees c ∈ {0, 1, · · · ,m}, for some integer m ≥ 0, with relations generated by a superpo-

tential of degree m− 1. Ordinary quivers (m = 1) often describe the open string sector of

D-brane systems; in particular, they capture the physics of D3-branes at local Calabi-Yau

(CY) 3-fold singularities in type IIB string theory, in the guise of 4d N = 1 supersymmetric

quiver gauge theories. It was pointed out recently that graded quivers with m = 2 and

m = 3 similarly describe systems of D-branes at CY 4-fold and 5-fold singularities, as 2d

N = (0, 2) and 0d N = 1 gauge theories, respectively. In this work, we further explore the

correspondence between m-graded quivers with superpotential, Q(m), and CY (m+2)-fold

singularities, Xm+2. For any m, the open string sector of the topological B-model on Xm+2

can be described in terms of a graded quiver. We illustrate this correspondence explicitly

with a few infinite families of toric singularities indexed by m ∈ N, for which we derive

“toric” graded quivers associated to the geometry, using several complementary perspec-

tives. Many interesting aspects of supersymmetric quiver gauge theories can be formally

extended to any m; for instance, for one family of singularities, dubbed C(Y 1,0(Pm)), that

generalizes the conifold singularity to m > 1, we point out the existence of a formal “duality

cascade” for the corresponding graded quivers.
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1 Introduction

The mathematical concept of a quiver — that is, a directed graph consisting of nodes and

arrows between nodes — has proven very fruitful in string theory and in supersymmetric

field theory, starting with the seminal work of Douglas and Moore [1]. Broadly speaking,

“ordinary” quivers are often used to describe the structure of half-BPS states in theo-

ries with 8 real supersymmetries. In particular, they can conveniently describe half-BPS

systems of D-branes in type II string theory; schematically, the quiver nodes represent

a set of mutually supersymmetric D-brane, and the arrows between nodes represent the

supersymmetry-protected open string modes.

A rich class of quivers arises from considering D3-branes probing Calabi-Yau (CY) 3-

fold singularities in type IIB [2–14]. More generally, we may consider Dp-branes transverse

to CY (m+2)-fold singularities, with p = 5− 2m. That is, we consider a IIB background:

R
6−2m ×Xm+2 , (1.1)
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with Xm+2 a local CYm+2 singularity, and with D(5 − 2m)-branes along the transverse

space, which sit at the singularity — from the point of view of Xm+2, those branes are

point-like probes. For m = 1, the low-energy theory on the four-dimensional D3-brane

worldvolume is described by a 4d N = 1 supersymmetric gauge theory. More generally,

if we consider m = 0, 1, 2, 3, we obtain gauge theories in dimension d = 6, 4, 2, 0 with the

following amounts of supersymmetry:

m 0 1 2 3

Xm+2 CY2 CY3 CY4 CY5

SUSY 6d N = (0, 1) 4d N = 1 2d N = (0, 2) 0d N = 1

(1.2)

The low-energy field theories have 23−m real supercharges.

1.1 Graded quiver gauge theories

While a set of N transverse D-branes at a smooth point of Xm+2 would give rise to a

U(N) gauge theory on its worldvolume, the D-branes at the singularity “fractionate” into

marginally-bound constituents, the so-called fractional branes. Each type of fractional

brane supports its own gauge group. For our purpose, a quiver gauge theory is a gauge

theory with a gauge group:

U(N1)×U(N2)× · · · × U(Nn) . (1.3)

We assign a gauge group U(Ni) to each node i of an abstract quiver; the (6 − 2m)-

dimensional gauge fields Aµ,i sit in vector multiplets Vi of the appropriate supersymmetry

algebra. Open strings stretched between fractional branes give rise to matter fields in

the quiver gauge theory, in adjoint or bifundamental representations of the unitary gauge

groups in (1.3). For m = 0, the matter fields sit in hypermultiplets of 6d N = (0, 1)

supersymmetry, and the corresponding quiver arrows are unoriented; in this case, X2 is an

ADE singularity, and the corresponding quivers are affine ADE quivers [1]. For m = 1, we

have a 3-fold X3 and matter fields are in chiral multiplets of 4d N = 1 supersymmetry,

corresponding to oriented arrows of an “ordinary” quiver. For m = 2 and m = 3, the

matter fields can sit in either chiral or fermi multiplets of 2d N = (0, 2) and 0d N = 1

supersymmetry, respectively. For m = 2, the chiral multiplets give rise to oriented arrows,

while the fermi multiplets give rise to unoriented arrows. For m = 3, both the chiral and

fermi multiplets correspond to oriented arrows.

The 2d and 0d gauge theories are conveniently described within the larger framework

of graded quivers (with superpotential). A graded quiver is a quiver together with a grading

of the arrows by a “quiver degree:”

c ∈ {0, 1, · · · ,m} . (1.4)

The grading simply keeps track of the different types of matter fields. We denote the

various arrows, or “fields,” by:

Φ
(c)
ij : i −→ j , c = 0, 1, · · · , nc − 1 , nc ≡

⌊
m+ 2

2

⌋
, (1.5)
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When m is even, the arrows of maximal degree, nc − 1 = m
2 , are unoriented. All other

arrows are oriented. For every arrow of the form (1.5), we posit a “conjugate” arrow of

degree m− c and opposite orientation, denoted by:

Φ
(m−c)
ji ≡ (Φ

(c)
ij ) . (1.6)

This is interpreted as the CPT conjugate fields in the supersymmetric gauge theory.

Importantly, the graded quivers can have a superpotential, which encodes interactions

amongst matter fields in the gauge theory. We will come back to that crucial point later on.

This perspective on supersymmetric quiver gauge theories was recently developed in [15].

Related works include [16–18].

Gauge theory quivers have been most studied in the case of Xm+2 a toric local CY

(see e.g. [2–8, 10–14, 19–25]). Various powerful tools become available in this case. We will

review them in section 1.3.

As far as the D-brane setup (1.1) goes, we are limited to m ≤ 3 by the critical dimen-

sion, d = 10, of type II string theory. From the perspective of graded quivers, however,

there is no reason to stop at m = 3. While there is no supersymmetric field theory inter-

pretation of general graded quivers,1 they still have a natural interpretation as describing

fractional branes at a CYm+2 singularity, as we now explain.

1.2 From B-branes on Xm+2 to graded quivers Q(m)

By themselves, graded quivers with m ≤ 3 do not encode the full low-energy quantum field

theory on the transverse D-branes. Instead, they encode some half-BPS “holomorphic”

information [26] which is protected by supersymmetry. In type IIB string theory, that

information is preserved by the topological B-twist.

Let us, then, focus on the B-model of the local Calabi-Yau Xm+2. Conveniently,

this maps the problem of analyzing D-branes at a CY singularity to a purely algebraic

problem, since the B-model is independent of the Kähler moduli of Xm+2. The D-branes

of the B-model, denoted by E , are called B-branes. They are described as objects in the

bounded derived category of coherent sheaves (the B-brane category, for short) of the

variety Xm+2 [27–30]:

E ∈ Db(Xm+2) . (1.7)

For most purposes here, we can think of E as a coherent sheaves with compact support. At

this level of description, there is no restriction on m: the B-model is well-defined on any

Calabi-Yau variety.

A point-like brane at a smooth point p ∈ Xm+2 is described by the skyscraper sheaf

Op. When we bring Op to the singularity, it is expected to fractionate into marginally

stable constituents:

Op
∼= E1 ⊕ · · · ⊕ En . (1.8)

1Formally, a graded quiver with m > 3 would correspond to a “field theory” in d = 6− 2m < 0, with nc

distinct types of matter fields, and with some “superpotential” interactions amongst them.
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The B-branes Ei are the fractional branes. They correspond to the nodes of a quiver. In

the main text, we will discuss their identification in a few explicit examples, in the case of

toric singularities that admit crepant resolutions.

The open strings between B-branes are described as morphism in the B-brane category.

Algebraically, they are the Ext groups elements:

φ
(d)
ij ∈ ExtdXm+2

(Ej , Ei) . (1.9)

We review some of the necessary algebraic geometry in appendix A. Here, we just note

that Ext groups are indexed by a degree:

d ∈ {0, 1, · · · ,m+ 2} . (1.10)

The degree corresponds to the BRST charge in the B-model. On a Calabi-Yau (m+2)-fold,

we have the isomorphism:

ExtdXm+2
(Ej , Ei) ∼= Extm+2−d

Xm+2
(Ei, Ej) , d = 0, · · · ,m+ 2 , (1.11)

known as Serre duality. The elements of Ext0 ∼= Hom are identified with “vector multiplets”

at the quiver nodes. By assumption, we must have:

Ext0Xm+2
(Ej , Ei) ∼= Extm+2

Xm+2
(Ei, Ej) ∼= Cδij (1.12)

for a consistent set of fractional branes. The other Extd group elements (1.9), with degree

d 6= 0,m+ 2, are identified with the “matter field” arrows in a graded quiver:

φ
(d)
ij ←→ Φ

(d−1)
ij . (1.13)

Note that the quiver and Ext degrees are related by c = d− 1.

In this way, in principle, one can associate a graded quiver Q(m) to any local CY

singularity, of any complex dimension:

Xm+2 ←→ Q(m) . (1.14)

The most non-trivial part of the correspondence is the identification of the “interactions”

in either description. On the graded quiver side, there exists a quiver “superpotential” of

degree m− 1. On the B-brane side, this corresponds to the A∞ algebra satisfied by open

string disk correlators.

Based on the known results for m = 0, 1 [31, 32], one would expect that there exists an

equivalence of derived categories between Db(Xm+2) and some suitable derived category

of representations of Q(m). This is indeed the case, as shown by Lam in [33].

In this paper, our goal is to flesh out the basic correspondence (1.14) explicitly, at a

“physical” level of rigor, in a few families of geometries {Xm+2}m∈N. Given a singular CY

variety Xm+2, the procedure to obtain a graded quiver with superpotential Q(m) from the

B-branes on Xm+2 is as follows:

(i) Find a consistent set of fractional branes, {Ei}. This gives the nodes of the quiver.
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(ii) Compute all the Ext groups (1.9) between fractional branes. Using the correspon-

dence (1.13), draw the quiver arrows, with their quiver degrees.2

(iii) Compute the quiver superpotential from the A∞ products between Ext group ele-

ments. (We will explain this last point in later sections.)

While the above procedure is very general and can be applied, in principle, to any singular

Calabi-Yau variety, explicit computations in the B-brane category tend to be technically

challenging. Moreover, the first step is problematic, since we do not have, in general, an

efficient method to find a “consistent set” of fractional brane in the B-brane category.

In fact, such sets are by no means uniquely determined by the variety Xm+2. Different

choices of fractional branes can lead to different quivers, which corresponds to “field theory

dualities” (in particular, “Seiberg dualities”) when m ≤ 3. In general, we expect that

any such distinct quivers for a given singularity are related by quiver mutations — see

appendix B for a review of graded quiver mutations [15].

1.3 Toric geometry to the rescue

Fortunately, when Xm+2 is a toric local Calabi-Yau, there exist alternative methods for

associating a quiver to the singularity. We now review them briefly and point the interested

reader to the references for detailed expositions. (For alternative approaches, see also

e.g. [34–36].)

A first approach, which is actually not restricted to toric geometries, consists of real-

izing Xm+2 as a partial resolution of another geometry for which the quiver theory is easy

to determine. A standard choice for such parent theory is an appropriate C
m+2/(ZN1 ×

· · ·×ZNm+1) orbifold. As we will elaborate in section 2.2, partial resolution translates into

higgsing of the quiver. Applications of this strategy to m = 1 andm = 2 can be found in [2–

4, 20]. While this method allows for a systematic derivation of the quiver theories for the

desired geometries, it does not fully exploit all the structure associated to toric geometries.

The connection between toric CYm+2’s and the corresponding quivers on D(5 − 2m)-

branes, for m = 0, 1, 2, 3, was significantly simplified with the introduction of a class of

brane configurations that are related to the original D-branes at singularities by T-duality

along m+1 directions. For m = 1, 2 and 3, these brane constructions are brane tilings [11,

13], brane brick models [21, 22, 37] and brane hyperbrick models [24], respectively.3 These

configurations consist of stacks of D(6−m)-branes suspended within the voids of an NS5-

brane that wraps a holomorphic hypersurface.4 This surface is m-complex dimensional and

is defined as the vanishing locus of the Newton polynomial associated to the toric diagram,

P (x1, · · · , xm+1) = 0 , (1.15)

with xi ∈ C
∗, i = 1, · · · ,m+1. Most of the non-trivial structure of these configurations lives

on an (m+ 1)-torus, defined by the coamoeba projection of the xi coordinates. For many

2We only draw half of the arrows, as in (1.5). The other half of the arrows is given implicitly by the

“conjugation” map (1.6).
3The corresponding constructions for m = 0 are the well-known elliptic models [38].
4For m = 3, the suspended branes are actually Euclidean D4-branes.
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purposes, it is often sufficient to consider the “skeletons” of these brane configurations. For

brane tilings, these are bipartite graphs on T
2; for brane brick models, they are tessellations

of T3; and so on. In all these cases, there is a simple dictionary relating the brane setups

to the corresponding quiver gauge theories.

These constructions can be formally extended to m > 3 [39].We collectively refer to

them as generalized dimers. Via graph dualization, they are in one-to-one correspondence

with periodic quivers on T
m+1 which, likewise, fully encode both the quivers and the

superpotentials of the “field theories.”

As we will explain in section 2.2, given one of these brane setups, finding the cor-

responding Xm+2 is reduced to a combinatorial problem, which is a huge simplification

with respect to alternative approaches. Conversely, there are various efficient procedures

for constructing generalized dimers — equivalently, quiver theories with superpotentials

— starting from the corresponding toric Xm+2. One way to do this is by using mirror

symmetry. This method was developed for m = 1 in [40] and for m = 2 in [37, 41], where

its extension to higher m was also outlined.

In this paper, we focus on toric varieties. For each infinite family of examples, we

present a convenient toric method to derive graded quivers with superpotential for Xm+2,

and discuss some of their interesting properties. We then proceed to check those results

with an explicit B-brane computation, following the three steps above. The B-model

computation provides a strong check of those recently devised toric methods.

This paper is organized as follows. In section 2, we review the relevant aspects of

graded quivers and of the B-brane category, and we spell out the relation between the

two approaches. In section 3, we illustrate our methods in the simplest example, that

of flat space C
m+2. In section 4, we consider an orbifold singularity, C

m+2/Zm+2. In

section 5, we consider a family of singularities, dubbed Y 1,0(Pm), which reduces to the

conifold singularity for m = 1. In section 6, we consider a third family of singularities,

dubbed F
(m)
0 , which reduces to an orbifold of the conifold for m = 1. Appendix A contains

a pedagogical summary of the algebraic geometry techniques that we will need for our

B-model computations. Appendix B reviews order m+ 1 mutations of m-graded quivers.

2 Graded quivers and B-branes

In this section, we first review the concept of a graded quiver with superpotential, as

developed in [15], building on mathematical ideas in [42–44]. We then discuss the relation

between so-called “toric” quivers and toric singularities (while referring to [39] for further

discussion).5 Finally, we discuss the derivation of the graded quiver from the B-model on

the CY singularity.

5Throughout the paper, we will use the term toric quiver as a synonym of what is usually referred to as

a toric phase. Toric phases are those that can be fully captured by periodic quivers on T
m+1.
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2.1 Graded quiver algebra

A graded quiver Q(m) = (Q0, Q1) consist of a set of nodes indexed by some integers i, and

of arrows Φ between nodes:

Q0 = {i} = {1, · · · , n} , Q1 = {Φ} . (2.1)

Each arrow is assigned a quiver degree:

c ∈ {0, · · · ,m} , (2.2)

for some integer m ∈ N. We denote an arrow from i to j, of degree c, by:

Φ
(c)
ij : i→ j . (2.3)

The product of arrows is given by concatenation:

ΦijΦjkΦkl · · · (2.4)

Here the arrow degrees are left implicit. A closed path is a product of arrows that comes

back to itself, in the obvious way. The degree of a path is the sum of the degrees of its

component arrows. We call the degree-zero arrows the “chiral fields,” since they correspond

to chiral multiplets in supersymmetric quiver gauge theories (when m ≤ 3). A path of chiral

fields has degree zero.

The path algebra is the algebra of paths generated by arrows, with the above product

and the obvious formal sum. The freely-generated path algebra is denoted by CQ. We will

soon introduce relations amongst paths.

CPT invariance. We restrict ourselves to a particular kind of graded quiver, such that

every arrow Φ of degree d has an “opposite” or “conjugate,” Φop ≡ Φ, of degree m− d and

opposite orientation, as anticipated in (1.6). We can then pair all the arrows according to:

(
Φ
(c)
ij , Φ

(m−c)
ji

)
, Φ

(m−c)
ji ≡ (Φ

(c)
ij ) . (2.5)

This is a choice of polarization of the path algebra. A very convenient choice of polarization,

which we use when drawing quivers explicitly, is to choose Φ(c) for the arrows of degrees

c = 0, · · · , nc − 1, with:

nc =

⌊
m+ 2

2

⌋
, (2.6)

and Φ
(m−c)

for their conjugate. In that case, one draws quivers with arrows of degrees 0

to nc− 1 only. The number (2.6) is the number of “arrow types” in the graded quiver, also

called the “arrow colors” [44].

We may call the arrows of degree c ∈ {0, · · · ,m} the “matter fields.” The requirement

that every arrow has a conjugate corresponds to CPT invariance in quiver gauge theories.6

6Conjugate arrows will always be implicit in the quiver diagrams that we will present. They are not

independent objects, but can be derived from the corresponding unconjugated ones.
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Note that, when m is even, the arrows of degree nc − 1 = m
2 are “self-conjugate,” and the

choice of polarization into arrows Φ and Φ, namely:

(
Φ
(m
2
)

ij , Φ
(m
2
)

ji

)
, (2.7)

is arbitrary. For m = 0 and m = 2, this corresponds to the fact that the 6d hypermultiplets

and the 2d fermi multiplets, respectively, are self-conjugate.

Gauge fields. Let us also introduce arrows from a node to itself:

ei : i→ i , ēi : i→ i , (2.8)

for each node, of degree −1 and m + 1, respectively.7 We may call ei and ei the “gauge

fields” — they are identified with vector multiplets in quiver gauge theories.

Superpotential relations. We introduce relations on the path algebra through a

“graded quiver superpotential:”

W = W (Φ) , deg(W ) = m− 1 . (2.9)

This imposes relations on the path algebra, of the form ∂ΦW = 0. The superpotential

is a linear function of closed paths of matter fields, of degree m − 1. It is clear from the

grading that, for any fixed m, there can only be a finite number of arrows of degree c > 0

in each closed path. On the other hand, the number of chiral multiplets Φ(0) is unbounded,

a priori. For instance, at low m we have:

m = 1 : W = W (Φ(0)) ,

m = 2 : W = Φ(1)J(Φ(0)) + Φ
(1)

E(Φ(0)) ,

m = 3 : W = Φ(1)Φ(1)H(Φ(0)) + Φ(2)F (Φ(0)) ,

(2.10)

schematically. The functions W (Φ(0)), J(Φ(0)), E(Φ(0)) and H(Φ(0)), F (Φ(0)) are holomor-

phic functions of the chiral fields. They correspond to the 4d N = 1, 2d N = (0, 2), and

0d N = 1 superpotentials, respectively. This obviously generalizes to any m:

W = Φ(c1) · · ·Φ(ck)Fc1,··· ,ck(Φ
(0)) , c1 + · · ·+ ck = m− 1 , (2.11)

schematically,8 though there is no supersymmetric field theory interpretation for m>3.

Kontsevitch bracket condition. There is an important condition we should impose

on W , which can be written as:

{W,W} = 0 , ⇔
∑

Φ

∂W

∂Φ

∂W

∂Φ
= 0 , (2.12)

7The arrow ei is denoted by li in [15], and its “opposite” ei is introduced here for future convenience.
8In general, we can have distinct paths of degree-zero chiral fields connecting each field of higher degree

in the closed loop.
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where the sum is over all the fields Φ, for a given polarization (2.5). Here, {f, g} denotes

the Kontsevitch bracket on the path algebra. It is defined as:

{f, g} =
∑

Φ

(
∂f

∂Φ

∂g

∂Φ
+ (−1)(|f |+1)|Φ|+(|g|+1)|Φ|+|Φ||Φ|+1 ∂f

∂Φ

∂g

∂Φ

)
. (2.13)

Let us note that the condition (2.12) holds for any choice of polarization. The Kontsevitch

bracket is a natural generalization of the Poisson bracket on a graded path algebra that

admits a polarization.

Differential and superpotential. Given the superpotential above, one can define a

differential, d, of degree −1, acting on paths. We have the Leibniz rule:

d(fg) = (df)g + (−1)|f ||g|fdg , (2.14)

with |f | denoting the degree of the path f . The differential is given explicitly on the quiver

fields by:

de = −e⊗ e ,

dΦ =
∂W

∂Φ
+ (−1)|Φ|Φ⊗ e− e⊗ Φ ,

dΦ =
∂W

∂Φ
+ (−1)|Φ|Φ⊗ e− e⊗ Φ ,

de =
∑

Φ

(−1)|Φ|
(
Φ⊗ Φ− Φ⊗ Φ

)
+ (−1)m+1e⊗ e− e⊗ e .

(2.15)

This is obviously of degree −1 since W has degree m−1 and |Φ| = m−|Φ|. One can check

that this is a differential:

d2 = 0 , (2.16)

provided that (2.12) is satisfied.

Representations of the quiver algebra and anomaly-free constraint. Given a

quiver algebra, we may want to study its representations. Recall that a quiver repre-

sentation consists of a vector space Vi
∼= C

Ni assigned to each node i, and of explicit

homomorphisms Φ
(0)
ij : Vi → Vj (that is, fixed Ni × Nj matrices such that all the quiver

relations are satisfied).

In physics, the positive integers Ni are the ranks of the unitary gauge group (1.3) in a

quiver gauge theory. The choice of homomorphism Φ(0) is a choice of “vacuum expectation

values (VEVs)” for the chiral multiplets. Not every choice of rank is physically acceptable.

There are certain constraints on the allowed choices of ranks, the generalized anomaly

cancellation conditions [15], which we will review in section 2.5 below.

It is always a good idea to distinguish between the algebra and its representations. In

this work, most of our discussion will be focused on the general “abstract” quiver, not on a

particular representation. In the B-model, a particular quiver representation corresponds

to a particular bound state of D-branes, and the anomaly cancellation condition is a tadpole

cancellation condition for the RR flux (at least in the physical setup with m ≤ 3).
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2.2 Toric graded quivers and toric singularities

A central theme of this paper is the connection between m-graded quivers and CYm+2

singularities. This connection goes in both directions and can be addressed from multiple

viewpoints.

The CYm+2 variety arises from the quiver as its classical moduli space. Generalizing the

m ≤ 3 cases, for which the quivers have a gauge theory interpretation, we define the classical

moduli space as the center of the Jacobian algebra with respect to fields of degree m− 1,

i.e. of next to maximal degree. The mathematical results in [45] imply that it is sufficient

to consider the algebra obtained by quotienting only by the corresponding relations:

∂W

∂Φ(m−1)
= 0 , ∀Φ(m−1) . (2.17)

Note that, in the special case m = 2, the field Φ(1) here denotes both Φ(1) and Φ
(1)

; they

are the fermi and anti-fermi multiplets, in the 2d N = (0, 2) gauge theory.

Since the superpotential has degree m−1, the terms which are relevant for the relations

in (2.17) are gauge invariants of the generic form Φ(m−1)P (Φ(0)), with P (Φ(0) a holomorphic

function of chiral fields. Borrowing the nomenclature used in the m = 2 and 3 cases, we

refer to these terms as J-terms.9 Therefore, the relations (2.17) consist entirely of chiral

fields. For m ≤ 3, chiral fields are the only superfields with scalar components, hence

their relevance for the moduli space. Focusing on the center of the algebra corresponds to

considering closed loops — in the gauge theory language, this is the restriction to gauge

invariant fields.

Toric CY singularities. In this paper, we focus on toric Calabi-Yau singularities, and

their toric partial resolutions. A toric CY singularity Xm+2 can be described in terms of its

toric diagram Γ, a convex polytope in Z
m+1. Let us denote the points of the toric diagram

by:

{v1 , · · · , vd} ∈ Γ ⊂ Z
m+1 . (2.18)

This includes internal points — points inside the polytope. Including all the internal points

allows us to discuss toric resolutions straightforwardly. Recall that, given the toric diagram,

the toric fan is the set of vectors wi = (vi, 1) ∈ Z
m+2. The Kähler quotient description of

the singularity (also known as GLSM [46]) is given by:

Xm+2
∼= C

d//U(1)d−m−2 , zi ∼ ei
∑

a αaQ
a
i zi , (Qa) = ker(w1, · · · , wd) , (2.19)

with (w1, · · · , wd) seen as (m + 2) × d matrix — here, (zi) ∈ C
d, i = 1, · · · , d, are the

“GLSM fields,” and a = 1, · · · , d−m− 2 runs over the “GLSM gauge group.”

9Strictly speaking, J-term usually refers to the holomorphic function P (Φ(0)). We will use the name for

the entire Φ(m−1)P (Φ(0)) term in the superpotential. Form = 1, this corresponds to standard superpotential

terms.
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Toric superpotential condition. To any given toric CYm+2 singularity, we can as-

sociate a graded quiver Q(m) that satisfies an additional toric condition, generalizing the

well-known m = 1 and m = 2 cases [8, 20]. More precisely, there always exists at least one

such “toric quiver,” and other quivers are expected to be related to it by mutations. The

toric condition is a condition on the superpotential: every field Φ(m−1) of degree m − 1

should appear in exactly two J-terms, with opposite signs. Namely,

W = Φ(m−1)P (Φ(0))− Φ(m−1)Q(Φ(0)) + . . . , (2.20)

where the dots indicate terms that do not contain Φ(m−1). In other words, the “vacuum

equations” (2.17) take a simple form (path1)=(path2). This form of the superpotential

underlies the relationship between these theories and toric geometries.

Concepts such as periodic quivers on T
m+1 (and their dual brane tilings, brane brick

models, and higher dimensional generalizations), perfect matchings, etc., can be generalized

to arbitrary m. These issues will be studied in detail in a forthcoming paper [39]. Here,

let us just quote one of the results, which we will exploit for computing moduli spaces.

Given a toric graded quiver Q(m) with superpotential W , we can define perfect match-

ings for arbitrary m, as follows. A perfect matching p is a collection of arrows in Q(m)

satisfying two conditions:

• p contains precisely one arrow from each term in W .

• For every arrow Φ(c) in Q(m), either Φ
(c) or its conjugate Φ

(m−c)
is in p.

This generalizes the definition of perfect matchings for brane tilings [11] and of brick

matchings for brane brick models [21].

We can regard perfect matchings as variables in terms of which the fields in the quiver

can be expressed. In particular, the map between perfect matching variables and chiral

fields is given by:

Φ
(0)
i =

∏

µ

p
Piµ
µ with Piµ =

{
1 if Φ

(0)
i ∈ pµ ,

0 if Φ
(0)
i /∈ pµ ,

(2.21)

where i runs over the chiral fields and µ runs over perfect matchings. The Piµ can be re-

garded as entries in the so-called P -matrix. This change of variables is extremely powerful,

since it trivializes the relations (2.17). There is then a one-to-one correspondence between

perfect matchings and “GLSM fields” in a (possibly redundant10) toric description (2.19)

of the CYm+2. Perfect matchings are therefore mapped to points in the toric diagram. The

Z
m+1 coordinates for each perfect matching are easily determined from the intersections

between the chiral fields it contains and the fundamental cycles of the (m + 1)-torus on

which the corresponding periodic quiver lives.

In this way, the determination of the moduli space is significantly simplified, reducing to

the combinatorial problem of determining perfect matchings. Moreover, efficient methods

for finding perfect matchings, analogous to the Kasteleyn matrices for brane tilings, exist

for all m [39].

10If the GLSM description is redundant, there are several perfect matchings for the same point in the

toric diagram.
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Partial resolution and higgsing. Partial resolution of a toric CYm+2 corresponds to

removal of points in the toric diagram, and can be used to connect different geometries.

At the level of the quiver theory, this process maps to “higgsing” by non-zero “VEVs” for

certain chiral fields, where we have extended the physical nomenclature used for low m in

the obvious way.

The map between chiral and GLSM fields, encoded by the P -matrix, provides a sys-

tematic procedure for identifying the chiral fields that acquire non-zero VEVs in order to

achieve a desired partial resolution. In general, given a partial resolution, the choice of

VEVs that realize it might not be unique. This procedure is a straightforward generaliza-

tion of the one for CY3 and CY4 cases. We refer the reader to [2–4, 20] and references

therein for in depth discussions of these cases. Later in the paper, we will investigate the

connection between infinite families of geometries and the associated quiver theories via

partial resolution.

2.3 B-branes, Ext groups and A∞ algebra

Let us now consider the B-model on a local CYm+2 singularity Xm+2. The B-branes are

objects in the derived category of coherent sheaves on Xm+2, as in (1.7). In all the examples

that we consider, there will exist a crepant resolution of the singularity:

π : X̃m+2 → Xm+2 , (2.22)

with X̃m+2 a smooth local Calabi-Yau. Then, all the B-branes of interest will be coherent

sheaves with compact support on complex submanifolds of X̃m+2. Intuitively, we simply

have D-branes wrapping all possible closed complex cycles.

Since the B-model is independent of Kähler deformations, the B-brane category on

X̃m+2 must be equivalent to the B-brane category on the singularity Xm+2, but the former

is generally much simpler to describe. In all our examples, the smooth resolution is the

total space of a vector bundle E:

X̃m+2
∼= Tot (E → Bm+2−r) , r = rank(E) , (2.23)

over Bm+2−r, a compact Kähler surface of complex dimension m + 2 − r; in the simplest

case, we have the canonical line bundle over Bm+1. Then, the B-branes on X̃m+2 can be

described more simply in terms of sheaves on Bm+2−r.

The “fractional branes,” denoted by:

{Ei}
n
i=1 , (2.24)

are distinguished B-branes which “generate” the derived category Db(X̃m+2), in some

physical sense.11 In the setup (2.23), a good set of fractional brane can be obtained from

11Here we are being voluntarily vague. A better definition of fractional branes can be given if we are

provided with a stability structure on Db(X̃m+2), which does depend on the Kähler moduli (in physics,

that is the central charge of the D-branes). The fractional branes are obtained by marginal decay of the

point-like brane Op at the singularity.
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any strongly exceptional collection of sheaves on Bm+2−r [16, 47–51]. The open string states

between two B-branes E and F are identified with the generators of the Ext groups [27–30]:

Extd
X̃m+2

(E ,F) , d = 0, · · · ,m+ 2 . (2.25)

The interactions amongst these open string modes are encoded in a A∞ algebra. Let us

define the graded vector space:

A ∼= ⊕i,j ⊕
m+2
d=0 Extd

X̃m+2
(Ej , Ei) , (2.26)

of all the Ext groups elements amongst the fractional branes. One can define the multi-

products mk on the Ext algebra A:

mk : A⊗k → A , (2.27)

of degree 2− k. They satisfy the A∞ relations [52]:

∑

p+q+r=k

(−1)r+pqmk+1−p(1
⊗r ⊗mp ⊗ 1⊗q) = 0 , ∀k > 0 , (2.28)

Note that, in particular, m1 is a differential — that is, (m1)
2 = 0, and m2 is an associative

product. The Ext algebra A is a minimal A∞ algebra, meaning that m1 = 0 identically.

There also exists a natural trace map:

γ : A→ C , (2.29)

of degree −m− 2. This is used, in particular, to map to top Ext elements of degree m+ 2

to elements of Ext0 ∼= Hom.

The multi-products mk on the Ext algebra can be computed in the following man-

ner [16, 53]. Given any A∞ algebra Ã, let us denote by H•(Ã) to be the cohomology of m1.

If Ã has no multiplications beyond m2, it turns out that one can define an A∞ structure

on H•(Ã) in such a way that there exists an A∞ map [53, 54]:

f : H•(Ã)→ Ã , (2.30)

with f1 equal to a particular representation H•(Ã) →֒ Ã, in which cohomology classes map

to (noncanonical) representatives in Ã, and such that m1 = 0 in the A∞ algebra on H•(Ã).

One can then use the consistency conditions satisfied by elements of an A∞ map to solve

algebraically for the higher products on H•(Ã).

In the B-brane description, the algebra Ã is the algebra of complexes of coherent

sheaves, with chain maps between complexes. In that construction, m1 is identified with

the BRST charge of the B-model. The “physical” open string states then live in the

cohomology H•(Ã), which gives us the derived category Db(X) — see [55] for a thorough

review. The minimal A∞ algebra:

A ≡ H•(Ã) (2.31)

is precisely the Ext algebra. In the examples discussed in this paper, each B-brane will

correspond to a single coherent sheaf, which can be represented in the derived category by
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a locally-free resolution. The Ext elements can then be represented by chain maps between

resolutions, modulo chain homotopies. The m2 products in A are given by chain map

composition. The higher products can be computed by the procedure that we just outlined.

In appendix A, we explain more thoroughly how to perform these computations ex-

plicitly.

2.4 From Ext groups to quiver fields

The relation between the quiver algebra and the Ext algebra was explained by Aspinwall

and Katz in [53], in the physical context of D3-branes at CY 3-folds (m = 1). The general

case is discussed by Lam [33], in a purely mathematical context.

Here, we follow the physical argument of [53]. In that language, the quiver fields Φ are

sources for the open string vertex operators in the B-model. Given the open string mode

φ ∈ A of degree |φ|, there is a one-form descendent φ(1) of degree |φ| − 1. Then, to every

φ ∈ A, one can associate a “spacetime field” Φ̃ of degree |Φ̃| = 1 − |φ|, which acts as a

source for φ in the B-model:

S → S +
∑

φ

Φ̃φ(1) . (2.32)

Due to our choice of notation for the graded quivers Q(m), following [15], we find it conve-

nient to define the “quiver field” Φ of degree |Φ| = −|Φ̃|, so that:

|Φ| = |φ| − 1 . (2.33)

The explains the relation between quiver fields and Ext elements given in (1.13) in the

introduction.12

Algebraically, the graded quiver algebra, V , and the Ext algebra, A, are related as

follows [53]. Let V denote the path algebra modulo the quiver relations, and let Ṽ denote

the same vector space but with the degrees c exchanged with −c. (That is, Φ ∈ V and

Φ̃ ∈ Ṽ . Let also Ṽ [1] denote the vector space Ṽ with all degrees decreased by one, and let s :

Ṽ → Ṽ [1] denote the corresponding map of degree −1. Then, A is simply the dual of Ṽ [1]:

A =
(
Ṽ [1]

)∗
. (2.34)

Then, it turns out that the A∞ relations (2.28) on A are equivalent to the existence of

the differential d, (2.15), on V [33, 53].

Mapping nodes and arrows. As anticipated in the introduction, we can assign a graded

quiver Q(m) to a CY singularity. More precisely, we work with a particular crepant res-

olution X̃m+2. We should also insist on the fact that the quiver is really associated to

a particular set of fractional branes. A different choice of fractional branes can lead to a

different quiver.

12As we just explained, a more natural definition of the quiver degree would be minus the degree that

we use in this paper. This is the conventions used, for instance, in [33]. (Also in [16].) In our present

conventions, the quiver degree is equal to minus the BRST degree of the B-model.
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Let us now spell out the B-brane-to-quiver correspondence. First of all, of course, the

quiver nodes are in one-to-one correspondence with the fractional branes:

node i ←→ Ei (2.35)

In the case of a singularity that admits a crepant resolution as in (2.23), the number of

fractional branes (and thus, the number of nodes in the quiver) is equal to χ(Bm+2−r), the

Euler character of the Kähler base Bm+2−r — physically, this is because we should have a

basis of wrapped branes that generates the full even-homology lattice.

Secondly, all the quiver arrows Φ of degree |Φ| = c correspond to Ext-group elements

x of degree |φ| = c+ 1:

φ
(d)
ij ∈ Extd

X̃m+2
(Ej , Ei) ←→ Φ

(c)
ij , with c = d− 1 ∈ {0, 1, · · · ,m} . (2.36)

Of course, Serre duality (1.11) corresponds to the pairing (2.5) of quiver arrows. Note

that we identify the arrow Φij with the Ext element φij .
13 The quiver algebra elements

of quiver degrees −1 and m + 1 correspond to e and e, respectively. The fact that each

element is a loop attached to a single node is a property that we assume of any “allowed

fractional branes,” namely:

Ext0(Ei, Ej) = Extm+2(Ej , Ei) = δijC . (2.37)

These groups are identified with the “vector multiplets” in supersymmetric quiver gauge

theories.

The quiver superpotential. The graded quiver superpotential takes the general form:

W =
∑

closed paths p

αpΦ
(c1)
i1i2

Φ
(c2)
i2i3
· · ·Φ

(c1)
isi1

, (2.38)

The sum is over all closed paths,

p = Φ
(c1)
i1i2

Φ
(c2)
i2i3
· · ·Φ

(cs)
isi1

with
s∑

l=1

cl = m− 1 , (2.39)

which consists of s concatenated arrows of any degrees cl ∈ {0, · · · ,m}, subject to the

above constraint — that is, here Φ denotes both the fields Φ and their “conjugates” Φ.14

The superpotential couplings are given by open string disk correlators:

αp =
〈
φ
(c1+1)
i1i2

φ
(c2+1)
i2i3

· · ·φ
(cs+1)
isi1

〉
. (2.40)

More explicitly, they are given in terms of the multi-products on A, according to:

αp = γ
(
m2

(
φ
(c1+1)
i1i2

, ms−1(φ
(c2+1)
i2i3

, · · · , φ
(cs+1)
isi1

)
))

. (2.41)

Note that αp has degree 0, by construction.

13Note that φ
(d)
ij correspond to a morphism from Ej to Ei. While the product of arrows is by concatenation,

the product of two Ext elements correspond to the composition of maps. In our conventions, we then have

the convenient relations:

ΦijΦjk ←→ m2(φij , φjk) ≡ φij ◦ φjk .

14Notice that while the sum in (2.38) is formally over all closed paths of degree m − 1, not all of them

are necessarily in the superpotential since the corresponding coefficients αp may vanish.
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2.5 Anomaly-free conditions on the quiver ranks

To conclude this section, let us state the anomaly-free condition, alluded to above, in full

generality [15]. Consider a graded quiver Q(m) (not necessarily toric), with an assignment

of ranks Ni ∈ N to the nodes i ∈ Q0. Let us denote by N (Φ
(c)
ij ) the number of arrows from

i to j of degree c. Then, the generalized anomaly-free conditions for m odd are:

∑

j

Nj

nc−1∑

c=0

(−1)c
(
N (Φ

(c)
ji )−N (Φ

(c)
ij )
)
= 0 , ∀i , if m ∈ 2Z+ 1 . (2.42)

Here, for each fixed i, the sum over j is over all nodes in the quiver (including i), and nc

was defined in (2.6). For m even, instead, we have the conditions:

∑

j

Nj

nc−1∑

c=0

(−1)c
(
N (Φ

(c)
ji ) +N (Φ

(c)
ij )
)
= 2Ni , ∀i , if m ∈ 2Z . (2.43)

For m = 0, 1, 2, 3, these conditions coincide with the cancellation of non-abelian anomalies

for the corresponding d = 6, 4, 2, 0 gauge theories with gauge group
∏

iU(Ni).

Using the correspondence between quiver arrows and Ext group generators, the

anomaly-free conditions have a simple expression in the B-brane language. Namely, for

a configuration of Ni fractional branes of each type Ei, we should impose [16]:

∑

j

Nj

m+2∑

d=0

(−1)ddimExtd
X̃m+2

(Ei, Ej) = 0 , ∀i . (2.44)

This is interpreted as a “generalized tadpole cancellation condition” for a given set of

fractional branes.

In the special case of toric quivers, we always have the “regular branes” with rank

assignment Ni = N , ∀i. In that case, a factor of N factorizes out of the anomaly-free

condition, and (2.44) becomes a statement about the set of fractional branes. All the

examples that we will consider below satisfy those conditions with Ni = N .

3 Flat space: the C
m+2 graded quiver

The simplest local Calabi-Yau (m + 2)-fold is flat space, Cm+2. Its toric diagram is the

minimal simplex in Z
m+1, namely:

v0 = (0, . . . , 0) ,

v1 = (1, 0, 0, . . . , 0) , v2 = (0, 1, 0, . . . , 0) , . . . , vm+1 = (0, 0, . . . , 0, 1) .
(3.1)

The toric diagrams for m ≤ 3 are shown in figure 1. As a warm up exercise, we consider

the graded quiver associated to C
m+2. We first derive it using the algebraic dimensional

reduction procedure introduced in [15]. We then verify this result by a direct B-brane

computation.
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C
2/Z2 C

3/Z3 C
4/Z4

Figure 1. Toric diagrams for Cm+2 with m = 0, 1, 2.

3.1 Algebraic dimensional reduction

Let us quickly review algebraic dimension reduction. This corresponds to replacing the

underlying CY singularity Xm+2 by a product space of the form:

Xm+2 → Xm+3 = Xm+2 × C . (3.2)

The effect on the corresponding graded quiver,

Q(m) → Q(m+1) , (3.3)

is a generalization of the T
2 dimensional reduction of supersymmetric gauge theories. The

quiver diagram transforms as follows:

m m+ 1

nodei → nodei + adjoint chiral Ψ
(0)
ii

Φ
(c)
ij → Ψ

(c)
ij + Ψ̃

(c+1)
ij

(3.4)

where 0 ≤ c ≤
⌊
m
2

⌋
. This table also applies when i = j, namely when the theory we start

with contains adjoint fields. It is interesting to consider more carefully what (3.4) implies

for the undirected fields of degree m
2 that can be present in theories with even m:

even m m+ 1

Φ
(m
2
)

ij → Ψ
(m
2
)

ij + Ψ̃
(m
2
+1)

ij = Ψ
(m
2
)

ij + Ψ̃
(m
2
)

ji

(3.5)

Thus, for each conjugate pair of arrows of degree m
2 in Q(m), we get two pairs of arrows of

degree m
2 in Q(m+1). (For instance, for m = 0, one 6d hypermultiplet gives rise to one 4d

hypermultiplet, which is equivalent to two chiral multiplet arrows of opposite orientations.)

Let W(m) denote the original superpotential of Q(m), and let W(m+1) be the one for

the dimensionally reduced quiver Q(m+1). There are two types of contributions to Wm+1:

1) Dimensional reduction of terms in Wm. Schematically, for any term in Wm we

have a series of terms in Wm+1 of the form:

m m+ 1

Φ
(c1)
i1i2

Φ
(c2)
i2i3

. . .Φ
(ck)
iki1

→
Ψ̃

(c1+1)
i1i2

Ψ
(c2)
i2i3

. . .Ψ
(ck)
iki1

+ Ψ
(c1)
i1i2

Ψ̃
(c2+1)
i2i3

. . .Ψ
(ck)
iki1

+ . . . + Ψ
(c1)
i1i2

Ψ
(c2)
i2i3

. . . Ψ̃
(ck+1)
iki1

.

(3.6)
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2

m = 0.

3

m = 1.

4

3

m = 2.

5

10

m = 3.

6

15

10

m = 4.

7

21

35

m = 5.

8

28

56

35

m = 6.

9

36

84

126

m = 7.

10

45

120

210

126

m = 8.

11

55

165

330

462

m = 9.

Figure 2. Quivers for C
m+2. The quivers for m = 0, 1, 2, 3 correspond to maximally supersym-

metric Yang-Mills theory in d = 6, 4, 2, 0. The multiplicities of fields, i.e. the dimensions of the

representations for the SU(m + 2) global symmetry, are indicated on the arrows. For m even,

the multiplicity of the outmost (unoriented) line is half the dimension of the corresponding rep-

resentation. Black, red, green, blue and purple arrows represent fields of degree 0, 1, 2, 3 and 4,

respectively.

2) New terms involving adjoints. In addition, Wm+1 contains a new class of terms.

For every arrow Φ
(c)
ij in the original quiver, we introduce the following pair of super-

potential terms in the dimensionally reduced one:

Ψ
(0)
ii Ψ

(c)
ij Ψ̃

(m−c−1)
ji − Ψ̃

(m−c−1)
ji Ψ

(c)
ij Ψ

(0)
jj . (3.7)

These rules fully determine the “dimensionally reduced” quiver with superpotential,

Q(m+1).

3.2 The graded quivers

Using dimensional reduction, we can construct the field content and superpotential for

C
m+2 starting from C

2, which has a single node with a single unoriented arrow from the

node to itself and no superpotential.
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Quiver. For every m, the quiver is given as follows:

• It consists of a single node.

• In addition, there are adjoint fields Φ(c,c+1) of degree 0 ≤ c ≤
⌊
m
2

⌋
. Here we have

introduced a superindex notation in which Φ(c;k) indicates an arrow with degree c

and transforming in the k index totally antisymmetric representation of the global

SU(m+ 2) symmetry. This notation might seem excessive for these simple theories,

but it will turn useful for some of the computations and more general geometries to be

discussed later. Each field Φ(c,c+1) thus transforms in the antisymmetric (c+1)-index

representation of SU(m+ 2).

• For even m, the multiplicity of the unoriented degree-m2 fields is half the dimension

of the corresponding representation. We can regard the full representation as built

out of both Φ(m
2
) and Φ̄(m

2
), which have the same degree.

Figure 2 shows these quivers up to m = 9.

Superpotential. Following dimensional reduction, all W terms are cubic. The superpo-

tential terms are given by cubic terms of degree m−1 combined into SU(m+2) invariants.

In order to write the superpotential for general m, we introduce a convention in which the

products of fields include the contraction SU(m+ 2) indices and are explicitly given by

(A
(c1,k1)
1 · · ·A(cn,kn)

n )αk+1···αm+2 ≡
1∏
i ki!

ǫα1···αm+2A
(c1,k1)
1;α1···αk1

· · ·A
(cn,kn)
n;αk−kn+1···αk

, (3.8)

where k =
∑

i ki is the total number of SU(m + 2) indices before contractions. Any such

term with
∑

ki = m + 2 is manifestly SU(m + 2) invariant. The superpotential can then

be compactly written as

W =
∑

i+j+k=m+2

Φ(j−1;j)Φ(k−1;k)Φ̄(m+1−j−k;m+2−j−k) . (3.9)

Since we sum over terms such that i + j + k = m + 2, the degrees of the fields in the

superpotential terms are given by partitions (including 0) of (m− 1) into three integers.

3.3 B-model computation

We can also understand the C
m+2 quiver in terms of B-branes, as in [16]. There is a single

“fractional brane” in flat space, the skyscraper sheaf over a point p, Op. Without loss of

generality, we take p to be the origin of Cm+2. The Koszul resolution at point p is:

0 ✲ Ωm+2 f✲ Ωm+1 f✲ · · ·
f✲ Ω0 r✲ Op

✲ 0 , (3.10)

where Ω is the cotangent bundle of flat space, and r is the restriction map at the origin.

Lastly, f : Ωk → Ωk−1 is the vector field:

f =
∑

µ

zµ
∂

∂zµ
, (3.11)

acting by interior derivative, with zµ the holomorphic coordinates of flat space.
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3.3.1 Quiver fields

The quiver fields can be computed as the chain maps between two copies of this resolution.

The generators φµ of the Ext1(Op,Op) group, corresponding to chirals, are elements of

Č0(Hom1(Op,Op)). There are m+ 2 of them, transforming in the fundamental represen-

tation of SU(m+ 2). φµ is explicitly given by the chain map

Ωm+2 ✲ Ωm+1 ✲ · · · ✲ Ω1 ✲ Ω0

Ωm+2 ✲ Ωm+1

∂
∂zµ ❄

✲ Ωm

∂
∂zµ ❄

✲ · · · ✲ Ω0

∂
∂zµ ❄

The vector field ∂
∂zµ

again acts by interior derivative.

The generator of the other Ext groups are given by the antisymmetric composition of

these basic elements. There are
(
m+2
k

)
generators of Extk(Op,Op), given explicitly by:

φµ1···µk =
1

k!
φµ1 ◦ φµ2 ◦ · · · ◦ φµk . (3.12)

If we allow 0 ≤ k ≤ m+ 2, this contains both the generators φ and their Serre dual φ. To

mimic the notation that is natural for the more complicated example of later sections, we

will write φµ1···µk for k ≤ m+2
2 and φ̄µ1···µk for k ≥ m+2

2 , including the arbitrary choice of

some pairing: (
φ
µ1,··· ,µm+2

2 , φ
µ1,··· ,µm+2

2

)
, (3.13)

when m is even. In that case, the number of arrows φ(m+2
2

) is half the dimensions of the
m+2
2 -index representation, since the full representation is spanned by these arrows and their

Serre dual arrows. The Serre dual of φµ1···µk is the generator φ̄µk+1···µm+2 , which satisfies:

φµ1···µk ◦ φ̄µk+1···µm+2 = φ̄µ1···µm+2 . (3.14)

3.3.2 Superpotential

The superpotential can be computed straightforwardly. Since we defined higher Ext gen-

erators as compositions of Ext1 generators, composing them gives:

m2(φ
µ1···µj , φµj+1···µk) = φµ1···µk ,

m2(φ
µ1···µj , φ̄µj+1···µk) = φ̄µ1···µk ,

m2(φ̄
µ1···µj , φ̄µj+1···µk) = φ̄µ1···µk .

The definition (3.12) is valid both for the Čech cohomology classes as well as for their

explicit representatives, therefore all f2 are trivially zero. Hence all higher products vanish.

Thus, all the superpotential terms present are the cubic terms we postulated before.

We can compute the coefficients straightforwardly using (3.14). They are

γ(m2(m2(φ
µ1···µj , φµj+1···µk), φ̄µk+1···µm+2)) = ǫµ1···µm+2 ,

in agreement with (3.9).
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C
2/Z2 C

3/Z3 C
4/Z4

Figure 3. Toric diagrams for Cm+2/Zm+2 with m = 0, 1, 2.

4 The C
m+2/Zm+2 orbifolds

As a first family of non-trivial CY singularities, let us consider the orbifolds C
m+2/Zm+2,

with the cyclic group acting on flat space as:

zi ∼ e
2πi
m+2 zi , i = 1, · · · ,m+ 2 , (zi) ∈ C

m+2 . (4.1)

This singularity can be resolved to a local Pm+1. We thus have:

Xm+2
∼= C

m+2/Zm+2 , X̃m+2
∼= Tot

(
O(−m− 2)→ P

m+1
)
. (4.2)

Let us first derive the quiver by toric methods. We will then discuss B-branes on the

resolution X̃m+2.

4.1 The toric geometries

The (m + 1)-dimensional toric diagrams for these geometries contain the following m + 3

points:

v0 = (0, . . . , 0) ,

v1 = (1, 0, 0, . . . , 0) ,

v2 = (0, 1, 0, . . . , 0) ,
...

vm+1 = (0, 0, . . . , 0, 1) ,

vm+2 = (−1,−1, . . . ,−1) . (4.3)

The toric diagrams for the first few values of m are shown in figure 3.

4.2 The graded quivers

The quivers and superpotentials can be determined by standard orbifolding [1] of the Cm+2

quivers discussed above.

Quiver. Figure 4 shows these quivers up to m = 9.15 For each type of field, we have

indicated the corresponding SU(m + 2) representation. For even m, the multiplicities of

degree m
2 fields are actually half the dimension of these representations. In summary:

15The first members of this family have already appeared in the literature. The m = 0 and 1 cases are

well known. For early references on m = 2, 3, 4, see [15, 19, 20, 24].
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• The quiver contains m+ 2 nodes, that we will indexed by i = 0, · · · ,m+ 1.

• The quiver consists of bifundamental fields Φ
(c,c+1)
i,i+c+1 of degree 0 ≤ c ≤

⌊
m
2

⌋
, where we

have used the superindex notation introduced for C
m+2. The bifundamental indices

are correlated with the degree. As in the unorbifolded case, Φ
(c)
i,i+c+1 transforms in

the antisymmetric (c+ 1)-index representation of SU(m+ 2).

• For even m, now the multiplicity of the unoriented degree m
2 fields is only equal to

the full dimension of the corresponding representation.

Superpotential. Using the convention for contracting SU(m + 2) indices introduced

in (3.8), the superpotential is given by

W =
∑

i+j+k<m+2

Φ
(j−1;j)
i,i+j Φ

(k−1;k)
i+j,i+j+kΦ̄

(m+1−j−k;m+2−j−k)
i+j+k,i . (4.4)

Below, we will perform various non-trivial checks of the proposed quiver theories.

Similar tests will be presented for all the infinite families of theories considered in this

paper. We will then independently derive these quiver theories using the B-model.

4.2.1 Generalized anomaly cancellation

Let us verify that the quivers introduced above satisfy the generalized anomaly cancellation

condition discussed in section 2.5. Let us assume that the ranks of all nodes are equal to

N . Then, for a C
m+2/Zm+2 orbifold, the contribution to the anomaly at any node due to

the arrows in the quiver is equal to:

aarrows = N

m∑

c=0

(−1)c

(
m+ 2

c+ 1

)
= N(1 + (−1)m) , (4.5)

which is precisely the condition for cancellation of anomalies. It is straightforward to show

that the only solution to the anomaly cancellation conditions corresponds to equal ranks, as

we have assumed. The theories considered in coming sections will exhibit a richer behavior

in that respect.

4.2.2 Kontsevich bracket

Let us now compute the Kontsevich bracket {W,W} for the superpotential in (4.4) and

check that it vanishes. To do so, we need to take into account the rule for cyclic permu-

tations of arrows. Consider a cycle A
(c;k)
i,j B

(d;l)
j,i , where A

(c;k)
i,j and B

(d;l)
j,i are monomials of

arrows. Note that the difference between the number of SU(m+ 2) indices and the degree

of a monomial is equal to the number of arrows in it. The commutation relation is:

A(c;k)B(d;l) = (−1)cd+klB(d;l)A(c;k) . (4.6)

The superpotential has degree m−1 and m+2 indices, so any term in it can be written as

A
(m−1−c;m+1−c)
i,j Φ

(c;c+1)
j,i , with A

(m−1−c;m+1−c)
i,j a quadratic monomial and Φ

(c;c+1)
j,i an arrow.

We then have:

A
(m−1−c;m+1−c)
i,j Φ

(c;c+1)
j,i = (−1)m+1−cΦ

(c;c+1)
j,i A

(m−1−c;m+1−c)
i,j . (4.7)

– 22 –



J
H
E
P
0
3
(
2
0
1
9
)
0
5
3

01 2

m = 0.

0

12

3

3

3

m = 1.

0

12

3

4

6

4

4

6

4

m = 2.

0

1

23

4

5

10

10

5

510

10

5

105

m = 3.

0

1

23

4

5

6

15

20

15

6

615

20

15

6

15

20

6

15

6

m = 4.

0

1

2

34

5

6

7

21
35

35

21

7

7

21

35

35

21

721

35

35

7

21

35

7

21

7

m = 5.

0

1

2

34

5

6

7

8

56

70

56

8

8

5670

56

8

56

70

56

8

56

70

8

56

8

8

28

28

28

28

28

28

28

28

m = 6.

0

1

2

3

45

6

7

8

126

126

126

126

126
126

126

126

126
84

84

84

84

84

84
84

84

84
36

36

36

36

36

36

3636

36
9

9

9

9

9

9

9

9

9

m = 7.

0

1

2

3

45

6

7

8

9

10

10

10

10

10

10

10

10

10

10

45

45

45

45
45

45

45

45

45
45

120

120

120

120

120

120

120

120

120

120

210
210

210

210

210

210
210

210

210

210

252

252

252

252

252

m = 8.

0

1

2

3

4

56

7

8

9

10

11

11

11

11

11

11

11

11

11

11
11

55

55

55

55

55

55

55

55

55
55

55

165

165

165
165

165

165

165

165
165

165

165

330

330
330

330

330

330

330
330

330

330

330

462462

462

462

462

462462
462

462

462

462

m = 9.

Figure 4. Quivers for the C
m+2/Zm+2 orbifolds. Black, red, green, blue and purple correspond

to degree 0, 1, 2, 3 and 4, respectively.
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The derivatives we need for the Kontsevich bracket are

∂W

∂Φ
(j−1;j)
i,i+j

=
∑

k<i

(−1)j+kΦ̄
(m+1−j−k;m+2−j−k)
i+j,i−k Φ

(k−1;k)
i−k,i

+
∑

k<m+2−i−j

(−1)j+mΦ
(k−1;k)
i+j,i+j+kΦ̄

(m+1−j−k;m+2−j−k)
i+j+k,i (4.8)

and
∂W

∂Φ̄
(m+1−j;m+2−j)
i+j,i

=
∑

k<j

Φ
(j−1;j)
i,i+k Φ

(k−1;k)
i+k,i+j . (4.9)

Using these results, we compute:

{W,W} = 2
∑

i,j|j>1;i+j<m+2

∂W

∂Φ̄
(m+1−j;m+2−j)
i+j,i

∂W

∂Φ
(j−1;j)
i,i+j

. (4.10)

To simplify the resulting expression we use that fact that all terms in {W,W} have degree

m − 2 and m + 2 global symmetry indices. For a monomial B
(m−2−c;m+1−c)
i,j Φ

(c;c+1)
j,i in

{W,W} we then have:

B
(m−2−c;m+1−c)
i,j Φ

(c;c+1)
j,i = (−1)m+1Φ

(c;c+1)
j,i B

(m−2−c;m+1−c)
i,j . (4.11)

Using this rule, it is straightforward to verify that {W,W} = 0.

4.3 Moduli space

We can verify that the moduli space of the quiver indeed corresponds to C
m+2/Zm+2, using

perfect matchings. Below we present the main results, namely the field content of the

perfect matchings and how they are mapped to points in the toric diagram. Such detailed

information not only confirms that the moduli space corresponds to the desired geometry,

but can also be used, for example, to identify the graded quiver counterpart of partial

resolutions. We will study examples of partial resolutions in section 5.4 and section 6.5.

Let us consider how perfect matchings give rise to the toric diagram in (4.3). It is

convenient to divide the perfect matchings according to how they transform under the

global SU(m + 2) symmetry. We consider this approach, which is primarily based on the

global symmetry, to be illuminating. It is of course also straightforward to determine the

perfect matchings by direct application of their definition and to find their positions in

the toric diagram from the intersections between their chiral fields and the boundaries of

a unit cell in the corresponding periodic quiver.

Internal point. The internal point of the toric diagram, v0 = (0, . . . , 0), is the only

one that is invariant under SU(m + 2). This implies that all perfect matchings that are

invariant under SU(m+ 2) correspond to this point. We label these perfect matchings by

si, i = 1, . . . ,m+ 2. They are given by:

Perfect matching Chirals Additional fields

s0 Φ̄
(0;1)
m+1,0 Φ̄

(m+1−k+j;m+2−k+j)
k,j (k > j)

si (1 ≤ i ≤ m+ 1) Φ
(0;1)
i−1,i Φ

(k−j−1;k−j)
j,k (j < i and j < k)

Φ̄
(m+1−k+j;m+2−k+j)
k,j (k > j ≥ i)

(4.12)

– 24 –



J
H
E
P
0
3
(
2
0
1
9
)
0
5
3

We have indicated the chiral field content separately, since it is what matters for the

moduli space. From the expression of the superpotential (4.4), s0 is evidently a perfect

matching. All the si can be determined by the following simple rule. Given an unbarred

field Φ
(k−j−1;k−j)
j,k , it is in the perfect matching iff j < i; otherwise, its conjugate is in the

perfect matching. It is straightforward to verify that this results in a collection of fields

which covers each term in the superpotential exactly once.

Corners. The SU(m+2) symmetry permutes the corners vµ, µ = 1, . . . ,m+2, of the toric

diagram. Thus, the perfect matching associated to any corner breaks the SU(m+2) down

to SU(m+ 1)×U(1). In order to find the perfect matching corresponding to a corner it is

sufficient to consider how a given representation of SU(m+2) decomposes under SU(m+1).

Since this breaking corresponds to picking a particular SU(m + 2) fundamental index µ,

this behavior is very simple: Φ
(k−1;k)
i,i+k decomposes into two representation, Φ

(k−1;k;µ)
i,i+k and

Φ(k−1;k;✁µ), of SU(m+1). They are in the (k−1)− and k-index antisymmetric representations

of SU(m+ 1), respectively. Explicitly:

(Φ
(k−1;k;µ)
i,i+k )ν1···νk−1

= (Φ
(c;k)
i,i+k)µν1···νk−1

(Φ
(k−1;k;✁µ)
i,i+k )ν1···νk = (Φ

(c;k)
i+k,k)ν1···νk νj 6= µ

(4.13)

Similarly, Φ̄
(m+1−k;m+2−k)
i+k,i decomposes into two representations and, in keeping with

our convention of making all quantum numbers explicit, the conjugate of Φ
(k−1;k;µ)
i,i+k is

Φ̄(m+1−k;m+2−k;✁µ). Under this breaking, the terms in the superpotential decompose as

Φ
(j−1;j;µ)
i,i+j Φ

(k−1;k;✁µ)
i+j,i+j+kΦ̄

(m+1−j−k;m+2−j−k;✁µ)
i+j+k,i

Φ
(j−1;j)
i,i+j Φ

(k−1;k)
i+j,i+j+kΦ̄

(m+1−j−k;m+2−j−k)
i+j+k,i → +Φ

(j−1;j;✁µ)
i,i+j Φ

(k−1;k;µ)
i+j,i+j+kΦ̄

(m+1−j−k;m+2−j−k;✁µ)
i+j+k,i

+Φ
(j−1;j;✁µ)
i,i+j Φ

(k−1;k;✁µ)
i+j,i+j+kΦ̄

(m+1−j−k;m+2−j−k;µ)
i+j+k,i

(4.14)

Hence we see that, for every µ, we get a perfect matching pµ containing the following fields:

Perfect matching Chirals Additional fields

pµ Φ
(0;1;µ)
i,i+1 Φ

(k−1;k;µ)
i,i+k

Φ̄
(0;1;µ)
m+1,0 Φ̄

(m+1−k;m+2−k;µ)
i+k,i

(4.15)

In summary, the perfect matchings give rise to the toric diagrams in (4.3), confirming

that the moduli spaces of these quiver theories are indeed the desired C
m+2/Zm+2 orbifolds.

4.4 B-model computation

Let us now consider the B-model on the C
m+2/Zm+2 orbifold. This orbifold admits a

crepant resolution as the total space of the canonical line bundle over P
n:

X̃m+2 = Tot(O(−m− 2)→ P
m+1) . (4.16)
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The following set of sheaves form a strongly exceptional collection on P
m+1:

{
Ωm+1(m+ 1)[m+ 1] , Ωm(m)[m] , · · · , Ω(1)[1] , O

}
. (4.17)

Denoting by i the embedding i : Pm+1 → X̃m+2, the m+ 2 fractional branes on (4.16) can

be written as:16 {
Ej ≡ i∗Ω

j(j)[j]
∣∣ 0 ≤ j ≤ m+ 1

}
. (4.18)

With these B-branes at hand, we are ready to determine the quiver. The map between Ext

groups and quiver fields was discussed in section 2.4. The Ext group elements correspond

to the chain maps between the Koszul resolutions of a pair of these sheaves. A sheaf of the

form i∗F , with F a sheaf on P
m+1, has a Koszul resolution:

0 ✲ F(n+ 1)
vµe

m+2
µ ✲ F ✲ i∗F ✲ 0 , (4.19)

where vµ is the O(−m − 2) fiber coordinate in the chart Uµ. We refer to appendix A for

an explanation of our notations, and for additional background material that will be used

extensively below.

4.4.1 Quiver fields

The simplest arrows are the generators of Ext1(Ei+1, Ei). There generators, denoted by

φµ
i,i+1, are elements of Č0(Hom1(Ei+1, Ei)) and are explicitly given by the maps:

Ωi+1(n+ i+ 2) ✲ Ωi+1(i+ 1)

Ωi(n+ 1 + i)

ϕµ

❄
✲ Ωi(i)

−ϕµ

❄

Here, ϕµ are the global sections of Ω∗(−1), which are computed in appendix A — see

equation (A.31). Thus, we reproduce the chiral fields (of vanishing quiver degree) of the

quiver:

φµ
i,i+1 ∈ Ext1(Ei+1, Ei) ←→ Φ

(0;1)
i,i+1 , (4.20)

in the fundamental of SU(m+ 2).

The generators of Extk(Ei+k, Ei) take a similar form, using the global sections given

in (A.32). The generators lie in the Čech cohomology Č0(Homk(Ei+k, Ei)) and can be

defined to be the antisymmetric composition of k generators of Ext1(Ei+1, Ei):

φµ1µ2···µk

i,i+k =
1

k!
φ
[µ1

i,i+1 ◦ φ
µ2
i+1,i+2 ◦ · · · ◦ φ

µk]
i+k−1,i+k ←→ Φ

(k−1;k)
i,i+k . (4.21)

As expected, these arrows transform in the k-index antisymmetric representation of SU(m+

2). The B-model computation thus reproduces exactly the arrows of the C
m+2/Zm+2 toric

quiver presented in section 4.2.

16To correctly compute the morphisms below, it is important to take into account the derived-category

shifts [j] in the definitions of the fractional branes on Xm+2. Recall that the complex E•[j] denotes the

complex E• shifted to the left by j units.
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We now compute the Serre duals of these arrows, which correspond to the conjugate

fields in the quiver. These computations are useful for determining the superpotential,

since some of the terms might involve conjugate fields. In the present case, the Serre duals

can also be computed easily starting from the generators of Ext1(E0, Em+1). They are

φ̄µ
m+1,0 ∈ Čm+1(Hom−m(E0, Em+1)) and given by the maps:

O(m+ 2) ✲ O

Ωm+1(2m+ 3) ✲ Ωm+1(m+ 1)

ϕ̄µ

❄

where the sections ϕ̄µ are given in (A.36). The Serre duals of the other arrows (4.21) can

be found by composition of these maps with φµ
i,i+1. Explicitly, they are given by:

φ̄
µ1···µm+2−k

i+k,i =
(m+ 1− i− k)!

(m+ 2− k)!i!
φ
[µ1···µm+1−i−k

i+k,m+1 ◦ φ̄
µm+2−i−k

m+1,0 ◦ φ
µm+3−i−k···µm+2−k]
0,i . (4.22)

4.4.2 Superpotential

Since we have defined higher Ext groups by composition of maps used to define Ext1

groups, the product m2 (itself given by composition) can be determined straightforwardly.

We find:

m2(φ
µ1···µj

i,i+j , φ
µk+1···µk+l

k,k+l ) = δi+j,kφ
µ1···µk+l

i,k+l . (4.23)

Note that this relation holds not only between cohomology classes, but also between the

explicit representatives we have defined. Hence,

f2(φ
µ1···µj

i,i+j , φ
µk+1···µk+l

k,k+l ) = 0 . (4.24)

Similarly, using our definition of Serre duals, we can compute that

m2(φ̄
µ1···µm+2−j

i+j,i , φ
µm+1−j ···µm+2+l−j

k,k+l ) = δi,kφ̄
µ1···µm+2−l−j

i+j,i+l

m2(φ
µ1···µj

i,i+j , φ̄
µj+1···µm+2+j−l

k+l,k ) = δi+j,k+lφ
µ1···µn+1+k−i

i,k (4.25)

These are the only non-zero m2 products. In addition, all the f2’s vanish, which means

that there are no higher products. The last piece of information we need, in order to write

down the superpotential, is the canonical pairing γ. Taking into account the SU(m + 2)

global symmetry, it is given by

γ(m2(φ
µ1···µk

i,i+k , φ̄
µk+1···µm+2

i+k,i )) = ǫµ1···µm+2 . (4.26)

Combining all this, the general prescription (2.38)–(2.41) gives the quiver superpotential:

W =
∑

i+j+k<m+2

ǫµ1···µm+2

j!k!(m+ 2− j − k)!
Φ
µ1···µj

i+j+k,i+kΦ
µj+1···µj+k

i+k,i Φ̄
µj+k+1···µm+2

i,i+j+k , (4.27)

which is in perfect agreement with (4.4).
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5 The Y 1,0(Pm) family

Our second family of singularities is a particular generalization of the conifold singularity

X3 = C0. As we will see, the corresponding graded quivers share some rather interesting

properties with the celebrated Klebanov-Witten quiver that describes D3-branes at C0 [56].

5.1 The toric geometries

There exist very interesting infinite families of CYm+2 singularities given by the real cone

over certain (2m + 3)-real dimensional Sasaki-Einstein manifolds, with explicitly known

metrics, known as Y p,q, with the integers p > 0, 0 ≤ q < p and p, q mutually prime [57]:

Xm+2 = C
(
Y p,q(Bm)

)
. (5.1)

The compact manifold Y p,q can be understood as a certain lens space bundle over a Kähler

manifoldBm of complex dimensionm. Importantly, C(Y p,q(Bm)) is toric if Bm is a compact

toric variety.

Here, we will focus on the simplest such example, (p, q) = (1, 0) and Bm = P
m, namely:

Xm+2 = C
(
Y 1,0(Pm)

)
. (5.2)

The toric diagram of this singularity is given by:

v0 = (0, . . . , 0) ,

v1 = (1, 0, 0, . . . , 0) ,

v2 = (0, 1, 0, . . . , 0) ,
...

vm+1 = (0, 0, . . . , 0, 1) ,

vm+2 = (1, 1, · · · , 1, 1) . (5.3)

These geometries possess an SU(m + 1) isometry, which acts on the toric diagram by

permuting the points v1, . . . , vm+1. We then have an SU(m + 1) global symmetry in the

corresponding graded quivers.

Note that the points v0, . . . , vm+1 in (5.3) give rise to the toric diagram for C
m+2,

which is then augmented by a single additional point vm+2. It is hence possible to connect

the quivers in this family to the “flat-space” quivers for C
m+2. In section 5.4 below, we

will study this connection in detail.

The singularity (5.2) has a single Kähler parameter, corresponding to a small resolution

by a P
m:

X̃m+2
∼= Tot

(
O(−m)⊕O(−1) −→ P

m
)
. (5.4)

We will use this resolution (5.4) to study B-branes in section 5.6.

5.2 The graded quivers

Unlike Cm+2 and the Cm+2/Zm+2 orbifolds discussed in section 3 and section 4, determining

the Y 1,0(Pm) quivers requires a more sophisticated approach than dimensional reduction

and orbifolding. Instead, it is possible to derive these quivers combining a generalization of
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C
(

Y 1,0(P1)
)

= C0 C
(

Y 1,0(P2)
)

H4

3d printing partial 

resolution 

Figure 5. Generation of the toric diagram for C(Y 1,0(P2)). Starting from the conifold, two points

of the toric diagram are lifted by 3d printing. Finally, another point is removed by partial resolution.

3d printing [25] to CYm+2’s with arbitrary m [58], followed by partial resolution — that is,

higgsing in the quiver. Our focus is on the quiver theories in this family and their physics.

See [25] for a detailed presentation of 3d printing.

First of all, from the normalized volume of the toric diagram, we know that the

Y 1,0(Pm) quiver has m + 1 nodes.17 In addition, the quivers have an SU(m + 1) global

symmetry.

The entire family admits an interesting recursive construction. C(Y 1,0(Pm+1)) can be

obtained by starting from C(Y 1,0(Pm)) and performing 3d printing to produce images of

two of the points in the toric diagram, as follows:

(0, . . . , 0) → (0, . . . , 0, 0) + (0, . . . , 0, 1)

(1, . . . , 1) → (1, . . . , 1, 0) + (1, . . . , 1, 1)
(5.5)

where the vectors in the first column are (m+1)-dimensional, while the ones in the second

column are (m+ 2)-dimensional. Next, removing the point (1, . . . , 1, 0) via partial resolu-

tion, produces the toric diagram for C(Y 1,0(Pm+1)). The field theory counterparts of these

operations generates the Y 1,0(Pm+1) quivers starting from Y 1,0(Pm). The initial step is

Y 1,0(Pm), which has m+ 1 nodes. The 3d printing lift of two points in the toric diagram

generates a quiver with 2m+2 nodes. The final partial resolution corresponds to a higgsing

with non-zero VEVs for m bifundamental chiral fields, which reduces the number of quiver

nodes to m+2 and produces the Y 1,0(Pm+1) quiver. Figure 5 illustrates this process at the

level of the geometry for the Y 1,0(P1)→ Y 1,0(P2) transition. In this case, the intermediate

step corresponds to the so-called H4 theory, which was studied in [25, 59].

We can use the previous method to generate the first members of this family, up to

m = 4. This information, combined with the SU(m+ 1) global symmetry and a few other

consistency conditions (that we discuss below) is sufficient to identify the Y 1,0(Pm) quivers

for arbitrary m. In the following, we first present the result of the procedure we just

outlined, and we then explicitly verify that these quiver theories have the correct geometry

as their moduli space.

17It is also easily understood from the B-model on (5.4), since χ(Pm) = m+ 1.
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Quiver. Let us label the m+1 nodes with an index i = 0, . . . ,m. The quiver contains the

following arrows, which transform in representations of the global SU(m+ 1) symmetry:

Xm,0 : m
1

−−−−−−−−−−→
(0)

0 ,

Xi+1,i : i+ 1
1

−−−−−−−−−−→
(0)

i , 0 ≤ i ≤ m− 1 ,

Λ
(k−1;k)
i,i+k : i

(m+1
k )

−−−−−−−−−−→
(k−1)

i+ k , 0 ≤ i ≤ m− 1; 1 ≤ k ≤ m− i ,

Γ
(k+1;k+1)
i,i+k : i

(m+1
k+1)

−−−−−−−−−−→
(k+1)

i+ k , 1 ≤ i ≤ m− 1; 0 ≤ k ≤ m− i , (5.6)

The subscripts, which should be taken mod(m + 1), indicate the nodes connected by the

arrows, which are bifundamental or adjoint depending on whether the two indices are

different or the same. Xm,0 and Xi+1,i are chirals (i.e., of quiver degree 0). They are

also singlets under the SU(m + 1) global symmetry. For the rest of the arrows, we use

a notation with two superindices similar to the one of section 3.2 and section 4.2. The

first integer is the degree of the field. All of these arrows transform in the j-index totally

antisymmetric representation of SU(m+1). The second integer in the superscript is this j.

In (5.6), the numbers over the arrows indicate the dimension of the corresponding SU(m+1)

representations, and the numbers below are the degrees. Finally, in (5.6) we have allowed

degrees to go over nc − 1 =
⌊
m
2

⌋
, since this permits a more compact presentation of the

field content. It is straightforward to restrict to fields with degree c ≤ nc−1 by conjugating

arrows whenever necessary.

We introduce the following notation for conjugate fields, which makes all their quantum

numbers explicit:

(Xm,0) = X0,m ,
(
Λ
(k−1;k)
i,i+k

)
= Λ

(m+1−k;m+1−k)
i+k,i ,

(Xi+1,i) = Xi,i+1 ,
(
Γ
(k+1;k+1)
i,i+k

)
= Γ

(m−1−k;m−k)
i+k,i .

(5.7)

The bifundamental indices are simply flipped. The degree c transforms as c → m −

c. Finally the number j of SU(m + 1) fundamental indices in the totally antisymmetric

representation goes to m+1− j. Note that the representations with j and m+1− j have

the same dimension and are conjugate to each other, as expected.

Figure 6 shows the quivers for 1 ≤ m ≤ 6. In this figure we adopted the convention

in which the degrees of the fields, c, are restricted to the range c ≤
⌊
m
2

⌋
, as explained in

section 2. For those fields in (5.6) with c >
⌊
m
2

⌋
, we consider their conjugates. Nodes 0

and m are identical, up to conjugation of all the fields in the quiver. The rest of the nodes,

1 to m− 1, are all equivalent.

Let us consider the behavior of these quivers under mutations, which are reviewed in

appendix B. Interestingly, node 0 is the only toric node of the quiver for m > 1. By this,

we mean that it is the only node with two incoming chiral arrows, which results in a toric

phase when mutated. Similarly, node 1 is an inverse toric node, i.e. we obtain a toric
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Figure 6. Quivers for Y 1,0(Pm) with 1 ≤ m ≤ 6. Black, red, green and blue arrows represent

fields of degree 0, 1, 2 and 3, respectively.

phase when acting on it with the inverse mutation. We plan to carry out a more detailed

investigation of the mutations of these quivers in future work.

For m = 1 we have the conifold quiver. In this case, the naive SU(2) global symmetry

is enhanced to SU(2) × SU(2), with the two chiral fields that go from node 1 to node 0

combining to form a doublet of the new SU(2). The m = 2 quiver (with its superpotential)

first appeared in the mathematical literature in [33]; see also [18].

Superpotential. Let us now consider the superpotential of this family of graded quivers.

To determine it, we will again be guided by the global SU(m+ 1) symmetry. As in (3.8),

we define a product of arrows in which the SU(m+ 1) indices are contracted:

(A
(c1;k1)
1 · · ·A(cn;kn)

n )αk+1···αm+1 ≡
1∏
i ki!

ǫα1···αm+1A
(c1;k1)
1;α1···αk1

· · ·A
(cn;kn)
n;αk−kn+1···αk

, (5.8)
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where k =
∑

i ki and the αµ’s are fundamental SU(m + 1) indices. With this convention,

any such term with a total of m+1 indices is an SU(m+1) invariant. All the superpotential

terms we will write have this property.

The superpotential consists of cubic terms W3 and quartic terms W4. The cubic terms

are:

W3 =
m∑

i=2

i−1∑

k=0

s1(i, k)Xi,i−1Γ̄
(m−k−1;m−k)
i−1,i−1−k Λ

(k;k+1)
i−1−k,i

+

m∑

i=2

m−i∑

k=1

s2(i, k)Xi,i−1Λ
(k−1;k)
i−1,i−1+kΓ̄

(m−k;m+1−k)
i−1+k,i

+
m−1∑

i=1

i−1∑

k=1

m−1−i∑

j=k

s3(i, j, k)Λ
(k−1;k)
i−k,i Γ̄

(m−j−1;m−j)
i,i−j Γ

(j−k+1,j−k+1)
i−j,i−k

+
m−1∑

i=1

i−1∑

k=1

m−i−1∑

j=0

s4(i, j, k)Λ
(k−1;k)
i−k,i Γ

(j+1;j+1)
i,i+j Γ̄

(m−j−k−1;m−j−k)
i+j,i−k

+
m∑

i=1

i−1∑

k=1

m−i∑

j=1

s5(i, j, k)Λ
(k−1;k)
i−k,i Λ

(j−1;j)
i,i+j Λ̄

(m+1−j−k;m+1−j−k)
i+j,i−k , (5.9)

while the quartic terms are:

W4 =

m∑

k=1

s6(k)Xk,k−1Λ
(m−k,m−k+1)
k−1,m Xm,0Λ

(k−1;k)
0,k

+
m−1∑

k=1

m−1−k∑

j=0

s7(j, k)Γ
(j+1;j+1)
k,k+j Λ

(m−k−j−1;m−k−j)
k+j,m Xm,0Λ

(k−1;k)
0,k , (5.10)

where s7, · · · , s7 are signs, which we will fix momentarily by requiring that the Kontsevich

bracket {W,W} vanishes. Note that, for m = 1, the only non-trivial term in W is the first

line of W4, giving us W = X10Λ
(0;1)
01 X10Λ

(0;1)
01 , which reproduces the well-known quadratic

superpotential of the conifold quiver.

5.2.1 Generalized anomaly cancellation

Let us start by assuming that the ranks of all the nodes are equal to N and check that,

in this case, the quivers we propose satisfy the generalized anomaly-free conditions. We

normalize all the anomalies by N . For node 0 the contribution of the arrows to the anomaly

is given by:

a0,arrows = (−1)m2 +
m∑

k=1

(−1)m−k

(
m+ 1

k

)

= (−1)m2 + [1 + (−1)m+1]

= 1 + (−1)m (5.11)
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Due to the aforementioned symmetry between nodes 0 and 1, the anomaly for node 1

follows a very similar computation. For nodes 2 to m the contributions to the anomaly of

fields of different degrees are as follows:

Xi+1,i, X̄i−1,i : 1 + (−1)m

Λ
(k−1;k)
i−k,i :

∑i
k=1(−1)

m+1−k
(
m+1
k

)
= (−1)m + (−1)m−i

(
m
i

)

Λ̄
(m+1−k;m+1−k)
i+k,i :

∑m−i
k=1 (−1)

k+1
(
m+1
k

)
= 1− (−1)m−i

(
m

m−i

)

Γ̄
(m−k−1;m−k)
i+k,i :

∑m−i−1
k=0 (−1)k+1

(
m+1
k+1

)
= −1 + (−1)m−i

(
m

m−i

)

Γ
(k+1;k+1)
i−k,i :

∑i−1
k=0(−1)

m+1−k
(
m+1
k+1

)
= −(−1)m − (−1)m−i

(
m
i

)

(5.12)

Summing these contributions, at node i we have

ai,arrows = 1 + (−1)m . (5.13)

We conclude that the anomaly cancellation condition is satisfied for all nodes in the quiver.

Anomaly-free fractional branes. Interestingly, there are more general solutions to the

rank assignments that satisfy the anomaly cancellation conditions. A thorough study of

this issue is beyond the scope of this paper, and it will be investigated elsewhere. Here,

we just quote the result and consider some of its implications. The space of anomaly-free

rank assignments for Y 1,0(Pm) is 2-dimensional and can be parametrized as follows:

(N0, . . . , Nm) = N(1, . . . , 1) +M(0, 1, 2, . . . ,m) , (5.14)

with N and M integers. Borrowing the nomenclature from m ≤ 3, we will say that the

(1, . . . , 1) vector corresponds to regular branes, while more general ranks correspond to the

inclusion of (anomaly-free) fractional branes.18 Interestingly, all members of the Y 1,0(Pm)

admit a single type of anomaly-free fractional brane. This behavior generalizes the well-

known example of Y 1,0(P1), i.e. the conifold. It is also reminiscent of what happens for the

infinite family of Y p,q theories in 4d [10], all of which have a single type of anomaly-free

fractional brane.

5.2.2 Kontsevich bracket

With the convention introduced in the previous section, we can write any SU(m+1) invari-

ant term in the superpotential as A
(m−1−c;m+1−k)
i,j Ψ

(c;k)
j,i , with A

(m−1−c;m+1−k)
i,j a monomial

and Ψ
(c;k)
j,i an individual SU(m+ 1) multiplet of arrows. We then have

∂

∂Ψ
(c;k)
j,i

(A
(m−1−c;m+1−k)
i,j Ψ

(c;k)
j,i ) = A

(m−1−c;m+1−k)
i,j . (5.15)

18This is a standard nomenclature. While it is closely related to our other use of the term fractional

brane, which is a bound state of wrapped branes associated to a single node in the quiver, we are confident

that the distinction between the two meanings will be clear from the context.
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As in (4.6), for a cycle A
(c;k)
i,j B

(d;l)
j,i , with

(c;k)
i,j and B

(d;l)
j,i monomial of arrows, the commuta-

tion relation is

A
(c;k)
i,j B

(d;l)
j,i = (−1)cd+klB

(d;l)
j,i A

(c;d)
i,j . (5.16)

Since every term in the superpotential has degree m−1 and a total of m+1 SU(m+1)

indices, for the superpotential term we wrote above this commutation relation simplifies to

Ai,jΨ
(c;k)
j,i = (−1)m(c+k)Ψ

(c;k)
j,i Ai,j . (5.17)

The various derivatives we need are given by

∂W

∂Λ
(k−1;k)
i,i+k

= δ0,is6(k)Xk,k−1Λ
m−k,m−k+1
k−1,m Xm,0 + δi+k,ms6(i+ 1)Xm,0Λ

(i;i)
0,i+1Xi+1,k

+ δ0,i

m−1−k∑

j=0

s7(j, k)Γ
(j+1;j+1)
k,k+j Λm−k−j−1;m−k−j

k+j,m Xm,0

+ δi+k,m

i∑

j=1

s7(i− j, j)Xm,0Λ
(j−1;j)
0,j Γ

(i−j;i−j)
j,i

+ s1(i+ k, i− 1)Xi+k,i+k−1Γ̄
(m−k;m+1−k)
i+k−1,i

+ (−1)ms2(i− 1, k)Γ̄
(m−k;m+1−k)
i+k,i−1 Xi−1,i

+ (−1)m
i+k−1∑

j=k

s3(i+ k, j, k)Γ̄
(m−j−1;m−j)
i+k,i+k−j Γ

(j−k+1,j−k+1)
i+k−j,i

+ (−1)m
m−i−1∑

j=k

s4(i+ j, j − k, k)Γ
(j−k+1;j−k+1)
i+k,i+j Γ̄

(m−j−1;m−j)
i+j,i

+ (−1)m
m−i∑

j=k+1

s5(i+ k, j − k, k)Λ
(j−k−1;j−k)
i+k,i+j Λ̄

(m+1−j;m+1−j)
i+j,i

+

m−i−k∑

j=k+1

s5(i, k, j − k)Λ̄
(m+1−j;m+1−j)
i+k;i+k−j Λ

(j−k−1;j−k)
i+k−j;i ,

∂W

∂Λ̄
(m+1−k;m+1−k)
i+k,i

=
k−1∑

j=1

s5(i+ j, k − j, j)Λ
(j−1;j−1)
i,i+j Λ

(k−j−1;k−j−1)
i+j,i+k ,

∂W

∂Γ̄
(m−k−1;m−k)
i+k,i

= (−1)ms1(i+ k + 1, k)Λ
(k;k+1)
i,i+k+1Xi+k+1,i+k + s2(i, k − 1)Xi,i−1Λ

(k;k+1)
i−1,i+k

+
k−1∑

j=0

s3(i+ k, k, k − j)Γ
(j+1,j+1)
i,i+j Λ

(k−j−1;k−j)
i+j,i+k

+
k∑

j=1

s4(i+ j, j − k, j)Λ
(j−1;j)
i,i+j Γ

(k−j+1;k−j+1)
i+j,i+k ,
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∂W

∂Γ
(k+1;k+1)
i,i+k

=

m−1−i∑

j=1

s3(i+ j, j, j − k)Λ
(j−k−1;j−k)
i+k,i+j Γ̄

(m−j−1;m−j)
i+j,i

+ (−1)m
m−1−i∑

j=0

s4(i, k, j − k)Γ̄
(m−j−1;m−j)
i+k,i+k−j Λ

(j−k−1;j−k)
i+k−j,i

+ (−1)ms7(k, i)Λ
(m−i−k−1;n−i−k)
i+k,m Xm,0Λ

(i−1;i)
0,i . (5.18)

Since every term in the expansion of {W,W} has degree (m−2), the commutation rule for

terms in this expansion is

Ãi,jΨ
(c;k)
j,i = (−1)m(k+c)+cΨ

(c;k)
j,i Ãi,j . (5.19)

To determine s1, · · · , s7 we first note that many of them can be made trivial by field

redefinitions. We can fix s6(k) = 1 by redefining Xk,k−1 → ±Xk,k−1 and fix s7(j, k) =

1 by redefining Γi,i+k → ±Γi,i+k. Lastly s1(i, k) can be chosen to be 1 by redefining

Λi,i+k → ±Λi,i+k. After eliminating these we find that Kontsevich bracket is satisfied for

the following choice of signs:

s2(i, k) = (−1)k+1 ,

s3(i, j, k) = (−1)j+1 ,

s4(i, j, k) = (−1)m ,

s5(i, j, k) = (−1)j+m .

(5.20)

5.3 Moduli space

Now, we verify that the proposed graded quivers give rise to the desired moduli spaces

using perfect matchings. We will leave a detailed exposition to [39] and just present the

main results here. First we consider the two points which are invariant under the SU(m+1)

global symmetry. The field content of the corresponding perfect matchings must involve

complete representations of SU(m+ 1). They are given by:

Point Chirals Additional fields

v0 Xm,0 Λ̄
(m+1−k;m+1−k)
i+k,i

Γ̄
(m−k−1;m−k)
i+k,i

vm+2 Xi+1,i Λ̄
(m+1−k;m+1−k)
i+k,i

Γ
(k+1;k+1)
i,i+k

(5.21)

Next, let us consider the perfect matchings for vµ, µ = 1, . . . ,m + 1. As explained

in section 5.1, these points are permuted by the SU(m + 1) symmetry. Picking one of

them breaks SU(m + 1) → SU(m) × U(1). Under this breaking, a k-index antisymmetric

representation Ψ(c;k) of SU(m + 1) decomposes into two representations of SU(m), which

we will denote Ψ(c;k;µ) and Ψ(c;k;✁µ). Both of them are also antisymmetric and carry k − 1
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Figure 7. C(Y 1,0(Pm))→ C
m+2 partial resolution for m = 1, 2.

and k SU(m) indices, respectively. Explicitly:

Ψ
(c;k;µ)
ν1···νk−1

= Ψ
(c;k)
µν1···νk−1

Ψ
(c;k;✁µ)ν1···νk = Ψ

(c;k)
ν1···νk νj 6= µ (5.22)

Note that the conjugate of Ψ(c;k,µ) is Ψ̄(m−c;m+1−k,✁µ) and vice versa. The perfect matchings

for vµ, µ = 1 . . .m+ 1, are given by:

Point Chirals Additional fields

vµ, µ = 1 . . .m+ 1 Λ
(0;1;µ)
i,i+1 Λ

(k−1;k;µ)
i,i+k , Λ̄

(m+1−k;m+1−k;µ)
i+k,i

Γ̄
(m−k−1;m−k;µ)
i+k,i , Γ

(k+1;k+1;µ)
i,i+k

(5.23)

5.4 Partial resolution C(Y 1,0(Pm)) → C
m+2

Let us now consider yet another check of the proposed quiver theories. Removing the point

vm+2 in the toric diagram corresponds to the partial resolution:

C(Y 1,0(Pm))→ C
m+2 . (5.24)

Figure 7 illustrates this resolution for m = 1, 2. This implies that the graded quivers

associated to these geometries should be connected by higgsing, as we now explain.

Let us determine that chiral fields that acquire a non-zero VEV in the corresponding

higgsing. Denoting Pm+2 the chiral field content of the perfect matching associated to the
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removed point vm+2, from (5.21) we have:

Pm+2 = {Xi+1,i, 1 ≤ i ≤ m} . (5.25)

From (5.21) and (5.23), we see that these chiral fields only appear in this perfect matching.

This implies that given VEVs to all the chiral fields in (5.25) produces the desired partial

resolution.

We now consider how this higgsing gives rise to the quivers for C
m+2, which were

introduced in section 3.2. First, the VEVs for the m bifundamental chiral fields in (5.25)

higgs the m+ 1 nodes in the quiver for C(Y 1,0(Pm)) down to a single node, as expected.

Since the isometries of C(Y 1,0(Pm)) and C
m+2 are SU(m + 1) and SU(m + 2), re-

spectively, the global symmetry of the quiver theory must be enhanced from SU(m + 1)

to SU(m + 2) by the higgsing. We note that all the chiral fields in (5.25) are singlets

of SU(m + 1), which implies that the global symmetry would, at the very least, remain

unbroken.

It is instructive to consider how the remaining fields form SU(m+ 2) representations.

It is straightforward, albeit tedious, to verify that the massless matter fields that survive

the higgsing are all the arrows that were initially charged under node 0, except for X0,m.

They are

Xm,0 : 1
1

−−−−−−−−−→
(0)

0

Λ̄
(k;k)
m+1−k,0 : k

(m+1
k )

−−−−−−−−−→
(k)

0 1 ≤ k ≤ m (5.26)

We thus have a multiplet of degree k in the k-index totally antisymmetric representation

of SU(m + 1) for every k = 0, . . . ,m. The multiplet of degree k and the conjugate of the

multiplet of degree m − k combine to form a degree k field in the (k + 1)-index totally

antisymmetric representation of SU(m + 2) for k = 0, . . . m2 .
19 This is precisely the field

content for Cm+2, as discussed in section 3.2.

5.5 A simple duality cascade

A beautiful property of the Y 1,0(Pm) theories is that they have a single toric phase and

that they enjoy a remarkably simple duality cascade, generalizing the well-known cascade

for the conifold [60]. There is a single toric node, i.e. a node with two incoming chiral

fields, which is node 0. Similarly, node m is a toric node under inverse duality. A duality

on node 0 results in the same theory, up to a cyclic permutation of the node labels. We

will now explain how this comes about.

Let us first consider the “flavors”, namely the arrows charged under node 0. Upon

mutating node 0, they transform as follows

Xm,0 −−−→ X̃0,m

X1,0 −−−→ X̃0,1

Λ̄
(k;k)
m+1−k,0 −−−→ Λ̃

(k−1;k)
m+1−k,0

(5.27)

19When m is even, the field of degree k = m
2

coincides with the one of degree m − k. We thus obtain

only half a multiplet for k = m
2
, or the full multiplet by combining it with its conjugate.
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We will use a tilde to indicate the arrows of the mutated quiver. The fields on the right

hand side of the last two rows reproduce the fields charged under node m of the original

theory if we relabel nodes as i→ i− 1 mod (m+1). This is the first indication that effect

of the mutation is a cyclic permutation of nodes.

Next, let us consider the mesons generated by the mutation. There are two sets of

them, coming from compositions with either Xm,0 or X1,0. They are given by

X1,0 Λ
(k−1;k)
0,k −−−→ Ψ̃

(k−1;k)
1,k

Xm,0 Λ
(k;k+1)
0,k+1 −−−→ ˜̄Γ

(k;k+1)
m,k+1

(5.28)

All the arrows in the first set becomes massive while ˜̄Γ
(0;1)
m,1 also gets a mass. The relevant

mass terms in the mutated superpotential and the terms in the original superpotential that

give rise to them are:

Term in the original superpotential Mass Term

X1,0Λ
(m−1;m)
0,m Xm,0Λ

(0;1)
0,1 Ψ̃

(m−1;m)
1,m

˜̄Γ
(0;1)
m,1

X1,0Λ
(k−1;k)
0,k Γ̄

(k−1;k)
k,1 Ψ̃

(m−k;m+1−k)
1,k

˜̄Γ
(k−1;k)
k,1

(5.29)

After integrating out the massive fields, the ones that remain and are charged under node

1 are X̃0,1, X̃2,1 and Λ̃
(k−1;k)
1,k . They correspond exactly to the set of arrows at toric node

0 in the original theory. The mesons ˜̄Γ
(k−1;k)
m,k+1 for k 6= m− 1 remain massless and are what

is required to turn node m of the mutated quiver into node m− 1 of the original one.

Both the degree and representation under SU(m + 1) global symmetry of the arrows

not charged under nodes 0, 1 or m depend uniformly on the distance between the two

nodes the arrow connects. None of these arrows are affected by mutation and relabeling

i→ i− 1 preserves distances.

In summary, dualizing node 0, we obtain the original quiver, up to an i → i − 1

cyclic relabeling of the nodes. When the nodes are cyclically ordered as in the examples

in figure 6, the net effect of the mutation is a clockwise rotation of the quiver. While we

have focused on the quiver, it is straightforward to verify that we also obtain the original

superpotential.

After performing m + 1 consecutive dualizations on the toric node at each step, we

return to the initial quiver. This sequence of mutations therefore generalizes the notion of

duality cascade to m-graded quivers.

Figure 8 shows the transformation of the quiver for m = 4. The intermediate step

includes the massive fields, which are represented by dashed arrows. Figure 9 shows a

period in the cascade for m = 4. We have included the ranks of the gauge groups associated

to the nodes, in the presence of fractional branes, to follow their evolution. Interestingly,

as it occurs in the well-known conifold cascade, the number of regular branes increases by

1 with every dualization while the number of fractional branes remains fixed. A full period

hence returns to the original quiver with the regular branes increased by (m + 1)M . For

m = 1, duality cascades admit a renormalization group interpretation. In that context,

our choice of dualities corresponds to flowing towards the UV. The flow towards the IR,
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Figure 8. a) Quiver diagram for Y 1,0(P4). b) Result of the mutation on node 0. Massive fields

are represented by dashed arrows. c) After integrating out massive fields, we obtain the original

quiver, up to an i → i − 1 cyclic relabeling of the nodes. This translates into a clockwise rotation

of the quiver.

and the consequent decrease in the number of regular branes, is instead obtained by acting

with inverse duality on the node that is toric under it.

5.6 B-model computation

The B-model calculation of the graded quivers with superpotentials for the Y 1,0(Pm) family

is similar to the one in section 4.4, with the notation of appendix A. The resolved local

Calabi-Yau for this family is:

X̃m+2 = Tot(O(−m)⊕O(−1)→ P
m) . (5.30)

Fractional branes are constructed from the exceptional collection on P
m, given by (4.17)

(with m+ 1 replaced by m), by using the embedding i : Pm → X̃m+2. They are:

{
Ej ≡ i∗Ω

j(j)[j]
∣∣ 0 ≤ j ≤ m

}
. (5.31)

To compute the generators of the Ext groups, we need the Koszul resolution for the frac-

tional branes. It is given by:

0 ✲ F(m+ 1)



−uµeµ

vµe
m
µ




✲ F(m)⊕F(1)

(
vµe

m
µ uµeµ

)

✲ F ✲ i∗F .

Here, vµ is the coordinate of O(−m) fiber and uµ is the coordinate of O(−1) fiber.

5.6.1 Quiver

The Ext group generators for these fractional branes naturally split into three groups and

an additional generator, in obvious correspondence with the field content independently

derived in (5.6).
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Figure 9. A period in the duality cascade for Y 1,0(P4), starting with N regular and M fractional

branes. After each dualization, M remains fixed and N → N +M .

First group. The first group has a description very similar to the generators in the case

of Cm+2/Zm+2. They can be written as the antisymmetric composition of certain basic

Ext1 generators. These are

λµ1µ2···µk

i,i+k ∈ Č0(Homk(Ei+k, Ei)) ,

λµ1µ2···µk

i,i+k =
1

k!
λ
[µ1

i,i+1 ◦ λ
µ2
i+1,i+2 ◦ · · · ◦ λ

µk]
i+k−1,i+k . (5.32)

λµ1µ2···µk

i,i+k transform in the k-index antisymmetric representation of SU(m+ 1). The basic

generators λµ
i,i+1, which transform in the fundamental representation of the global SU(m+
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1) symmetry, are given by the chain map

Ωi+1(m+ i+ 2) ✲ Ωi+1(m+ i+ 1)⊕ Ωi+1(i+ 2) ✲ Ωi+1(i+ 1)

Ωi(m+ i+ 1)

ϕµ

❄
✲ Ωi(m+ i)⊕ Ωi(i+ 1)

(
−ϕµ 0

0 −ϕµ

)

❄
✲ Ωi(i)

ϕµ

❄

Again, ϕµ are the global sections of Ω∗(−1) from (A.31). The Serre duals of these generators

are determined along the familiar lines. They are

λ̄
µ1,µ2,··· ,µm+1−k

i+k,i ∈ Čm(Hom2−k(Ei+k, Ei)) ,

λ̄
µ1,µ2,··· ,µm+1−k

i+k,i =
(m− i− k)!i!

(m+ 1− k)!
λ
[µ1µ2···µm−i−k

i+k,m ◦ λ̄
µm+1−i−k

m,0 ◦ λ
µm+2−i−k···µm+1−k]
0,i . (5.33)

With λ̄
µm+1−i−k

m,0 given by the chain map

O(m+ 1) ✲ O(m)⊕O(1) ✲ O

Ωm(2m+ 1) ✲ Ωm(2m)⊕ Ωm(m+ 1) ✲ Ωm(m)

ϕ̄µ

❄

Second group. The second group corresponds to the generators of Č1(Hom0(Ei, Ei+1)).

There is a set of generators xi+1,i. They are singlets under SU(m+1) defined by the chain

maps

Ωi(m+ i+ 1) ✲ Ωi(m+ i)⊕ Ωi(i+ 1) ✲ Ωi(i)

Ωi+1(m+ i+ 2) ✲ Ωi+1(m+ i+ 1)⊕ Ωi+1(i+ 2)

(
x′

0

)

❄
✲ Ωi+1(i+ 1)

(
0

−x′

)

❄

where x ∈ Č1(Ω). This means that locally for each Uµ ∩Uν there is one form xµν and this

collection satisfies that for any µ, ν and ρ

x′µν + x′νρ + x′ρµ = 0 . (5.34)

Using (A.28), it can be verified that an explicit representative of this cohomology class is

x′0,i = w−1
0,i dw0,i ,

x′i,j = w−1
i,i dwi,i − w−1

j,j dwj,j . (5.35)

Third group. With this in hand, the third set of Ext generators is

γ
µ1µ2···µk+1

i,i+k ∈ Č1(Homk+1(Ei+k, Ei)) ,

γ
µ1µ2···µk+1

i,i+k = xi,i−1 ◦ λ
µ1µ2···µk+1

i−1,i+k . (5.36)
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Motivated by the computation of λ̄ presented above, in order to calculate the Serre duals

of these arrows we start with the generators of Ext2(E1, Em−1). These generators are

γ̄µνm−1,1 ∈ Čm−1(Hom3−m(E1, Em−1)) and are described by the chain map

Ω(m+ 2) ✲ Ω(m+ 1)⊕ Ω(2) ✲ Ω(1)

Ωm−1(2m) ✲ Ωm−1(2m− 1)⊕ Ωm−1(m)

(
0

r̄µν

)

❄
✲ Ωm−1(m− 1)

(
r̄µν

0

)

❄

where r̄µν is an element of Čm−1(Ωm−2 ⊗ O(−2)). Let us consider that r̄ is given by the

ansatz

r̄µν =
1

2
(φµ ◦ κ ◦ φν − φν ◦ κ ◦ φµ) . (5.37)

We observe that r̄µν ∈ Čm−1(Ωm−2 ⊗O(−2)) iff κ ∈ Čm−1(Ωm). Such a κ corresponds to

a local section of Ωm for every collection of m patches satisfying that for ∩µUµ
∑

µ

(−1)µκµ̂ = 0 , (5.38)

where κµ̂ corresponds to collection with every patch except Uµ. An explicit representative

is

κî = w0,i ∧j w
−1
0,jdw0,j ,

κ0̂ =
∑

i

(−1)iw−1
i,i ∧j w

−1
j,j dwj,j . (5.39)

γ̄µνm−1,1 allows us to determine the duals for all γ
µ1µ2···µk+1

i,i+k . These are

γ̄
µ1,µ2,··· ,µm−k

i+k,i ∈ Čm−1(Hom1−k(Ei+k, Ei)) ,

γ̄
µ1,µ2,··· ,µm−k

i+k,i = c(i, k)λ
[µ1µ2···µm−i−k−1

i+k,m−1 ◦ γ̄
µm−i−kµm+1−i−k

m−1,1 ◦ λ
µm+2−i−k···µm−k]
1,i . (5.40)

Where:

c(i, k) =
2(m− i− k − 1)!(i− 1)!

(m− k)!
. (5.41)

is just a conventional combinatorial factor.

A lone generator. In addition to these three groups, there is another generator xm,0.

It consists of the following map in Čm(Hom1−m(Em, E0)):

O(m+ 1) ✲ O(m)⊕O(1) ✲ O(1)

Ωm(2m+ 1) ✲ Ωm(2m)⊕ Ωm(m+ 1)

(
0

x̃

)

❄
✲ Ωm(m)

(
−x̃

0

)

❄

Proceeding along lines similar to the ones that result in (A.36), we see that an explicit

representative for x̃ is:

x̃ = ∧iw
−1
0,i dw0,i . (5.42)

In summary, the x, λ and γ generators correspond precisely to the X, Λ and Γ fields

in (5.6). We have thus recovered the quivers for the entire Y 1,0(Pm) from the B-model.
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5.6.2 Superpotential

Cubic terms. Since we have defined Ext generators as composition of simpler ones, it is

straightforward to determine most of the m2 products. For these pairs of generators, the

f2 vanish. We will mention a few of them here:

m2(λ
µ1µ2···µk

i,i+k , λ
µk+1µ2···µk+l

j,j+l ) = δi+k,jλ
µ1···µk+l

i,i+k+l ,

m2(xni,i−1, λ
µ1···µk

j,j+k ) = δi−1,jγ
µ1···µk

i,i+k−1 ,

m2(γ
µ1···µk+1

i,i+k , λ
µk+2···µk+l+1

j,j+l ) = δi+k,jγ
µ1···µk+l+1

i,i+k+l . (5.43)

Evaluation of m2(λ
µ1···µk

i,i+k , xj,j−1) is slightly more involved. We begin by pointing out a

commutation relation:

ϕµ ◦ x′ + x′ ◦ ϕµ = δπ̃µ , (5.44)

where the sheaf πµ is defined to be the element of Č0(O(−1)) such that:

(π̃µ)ν = δµν eν . (5.45)

At the level of Ext generators, this commutation relation gives rise to the relation:

λµ
i,i+1 ◦ xi+1,i = δπµ

i,i +Xi,i−1 ◦ λ
µ
i−1,i, , (5.46)

where πµ is defined by the chain map:

Ωi(m+ i+ 1) ✲ Ωi(m+ i)⊕ Ωi(i+ 1) ✲ Ωi(i)

Ωi(m+ i+ 1) ✲ Ωi(m+ i)⊕ Ωi(i+ 1)

(
π̃µ

0

)

❄
✲ Ωi(i)

(
0

−π̃µ

)

❄

The first term in (5.46) is exact in Čech cohomology and contributes to f2 while the second

term is another generator and hence corresponds to m2.

Composing the above relation with more λ’s give us:

λµ1···µk

i,i+k ◦ xi,i+k−1 = xi,i−1 ◦ λ
µ1···µk

i−1,i+k−1 +
1

(k − 1)!
δ(π

[µ1

i,i ◦ λ
µ2···µk]
i,i+k−1) . (5.47)

The right hand side is again in a form that allows us to read off m2 and f2. We obtain:

m2(λ
µ1···µk

i,i+k , xi+k,i+k−1) = γµ1···µk

i,i+k−1 ,

f2(λ
µ1···µk

i,i+k , xi+k,i+k−1) = −
1

(k − 1)!
π
[µ1

i,i ◦ λ
µ2···µk]
i,i+k−1 . (5.48)

Using γ’s definition composition in (5.36) and composing (5.47) with λµ’s on the right

results in:

m2(λ
µ1···µk

i,i+k , γ
µk+1···µk+j+1

i+k,i+k+j ) = γ
µ1···µk+j+1

i,i+k+j ,

f2(λ
µ1···µk

i,i+k , γ
µk+1···µk+j+1

i+k,i+k+j ) = −
1

(k + j)!
π
[µ1

i,i ◦ λ
µ2···µk+j+1]
i,i+k+j . (5.49)

This completes the reproduction of the cubic terms for this family, which were previously

given in (5.9).
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Quartic terms. To compute the quartic terms we need another set of non-vanishing f2.

These result from the composition of xm,0 with λ0,k. We start with:

xm,0 ◦ λ
µ
0,1 = δσµ

m,0 , (5.50)

where σµ is defined by the chain map:

Ω(m+ 2) ✲ Ω(m+ 1)⊕ Ω(2) ✲ Ω(1)

Ωm(2m+ 1) ✲ Ωm(2m)⊕ Ωm(m+ 1)

(
σ̃µ

0

)

❄
✲ Ωm(m)

(
0

−σ̃µ

)

❄

σ̃ is an element of Čm−1(Ωm−1) given by:

(σ0)0̂ = 0 ,

(σ0)ĵ = ∧i 6=jw
−1
0i dw0i ⊗ e0 ,

(σi)0̂ = w−1
0i ∧j 6=i w

−1
0j dw0j ⊗ e0 ,

(σi)ĵ = 0 . (5.51)

Composing λµ2···µk

1,k with (5.50) and doing a bit of algebra gives:

m2(xm,0, λ0,k) = 0 ,

f2(xm,0, λ0,k) = −
1

k!
γ
[µ1

m,1 ◦ λ
µ2···µk]
1,k . (5.52)

Combining this with the earlier results for f2 in (5.48) we can compute that:

xm,0 ◦ f2(λ
µ1···µk

0,k , xk,k−1)− f2(Xm,0, λ
µ1···µk

0,k ) ◦ xk,k−1

= λ̄µ1···µk

m,k−1 +
k − 1

k!
δ(γ

[µ1

m,1 ◦ π
µ2
1,1 ◦ λ

µ3···µk]
1,k−1 ) . (5.53)

Using this, we conclude that:

m3(xm,0, λ
µ1···µk

0,k , xk,k−1) = λ̄µ1···µk

m,k−1 . (5.54)

Similarly combining (5.50) and (5.49) results in:

m3(Xm,0, λ
µ1···µk

0,k , γ
µk+1···µk+j+1

k,k+j ) = λ̄
µ1···µk+j+1

m,k+j . (5.55)

This gives us all the quartic terms in the superpotential. At this point we note that

although f3 is nontrivial, using consideration of global symmetry and the degree constraint

mentioned earlier it can be shown that it cannot result in any additional terms in the

superpotential. Hence the quartic terms agree with the ones we wrote for graded quiver.
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Absence of higher order terms. In principle, we should continue the computations

to determine whether the superpotential contains higher order terms. These terms would

correspond to gauge invariants of order m− 1. It is a relatively straightforward exercise to

verify that the SU(m + 1) × U(1)m+1 global symmetry, whose existence follows from the

underlying CY geometry and which is already fixed by the previously computed cubic and

quartic terms in the superpotential, rules out any higher order term.

Summarizing the results in this section, we have recovered the superpotential for the

entire Y 1,0(Pm) family, which was given in (5.9) and (5.10).

6 The F
(m)
0 family

Our last class of examples is a family of geometries that we denote F
(m)
0 , which correspond

to the affine cones over the (P1)m+1, a direct product of m+ 1 P
1’s.

6.1 The toric geometries

The toric diagram for F
(m)
0 is the (m+1)-dimensional polytope consisting of the following

points.

(0, . . . , 0)

(±1, 0, . . . , 0)
...

(0, . . . , 0,±1)

(6.1)

These geometries have an SU(2)m+1 isometry, which translates into a global symmetry

of the corresponding quiver theories. The Newton polynomials contain 2m + 3 terms, of

which m + 2 can be scaled to 1. The remaining m + 1 coefficients encode the sizes of the

P
1’s. The behavior of the mirror geometry as a function of these coefficients was studied

in detail for m = 1, 2 in [37].

This family contains and naturally generalizes some interesting geometries. In partic-

ular, its first members are:

F
(0)
0 = C

2/Z2 ,

F
(1)
0 = F0 ,

F
(2)
0 = C(Q1,1,1/Z2) ,

(6.2)

whose toric diagrams are shown in figure 10.

This is an extremely interesting family of geometries because, contrary to the previous

classes of theories, for m > 0 they give rise to multiple toric phases related by the corre-

sponding order m+1 dualities. The m = 1 [8] and 2 [22, 25, 37] cases have been extensively

studied in the literature. In particular, F
(1)
0 has 2 toric phases and F

(2)
0 has 14 toric phases.

6.2 The graded quivers

A simple way of constructing a toric phase for each of these geometries is by iterative

orbifold reduction [23]. The quiver for F
(m)
0 has 2m+1 nodes. This is also clear from the
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F
(0)
0 = C

2/Z2 F
(1)
0 = F0 F

(2)
0 = Q1,1,1/Z2

Figure 10. Toric diagrams for F
(m)
0 with m = 0, 1, 2.

toric diagram, which doubles its normalized volume every time m is increased by 1, as well

as from the fact that χ((P1)m+1) = 2m+1. For later use, it is convenient to label the nodes

using (m+ 1)-dimensional vectors with 0 or 1 entries, i.e. in binary.

Quiver. The quiver is constructed as follows. Consider two nodes α and β labeled by

vectors ~α and ~β. Let us define

dαβ =

m+1∑

i=1

(βi − αi) . (6.3)

Then:

• There is an arrow from α to β iff dαβ > 0, i.e. iff βi ≥ αi for all 1 ≤ i ≤ m+ 1.

• The degree of the arrow is

c = dαβ − 1 . (6.4)

• The multiplicity of the arrow is 2c+1. More specifically, the arrow represents 2c+1

fields that transform in the

2β1−α1
1 × 2β2−α2

2 × . . .× 2
βm+1−αm+1

m+1 (6.5)

representation of the SU(2)m+1 global symmetry, where the subindices run over the

different SU(2) factors.

As usual, we can restrict to fields with c ≤ m
2 by conjugating the arrows with c > m

2 .

Superpotential. As for the Cm+2/Zm+2 family, it is possible to show the construction of

these models via iterative orbifold reduction implies that all the terms in the superpotential

are cubic. The superpotential terms are given by cubic terms of degree m − 1 combined

into SU(2)m+1 invariants. Once again, it is possible to show that terms for all possible

integer partitions of m− 1 into three integers are present. In fact we can regard the purely

cubic superpotential as the characteristic property of the specific toric phases of F
(m)
0 that

we construct.

Let us be more explicit about the superpotential for the F
(m)
0 family. From our previous

discussion of the field content, there is an arrow connecting nodes i and j whenever dij 6= 0.
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We will consider the arrow Xij which has dij > 0 as the field while we will write Xji for

its conjugate.20 It is also useful to define a partial ordering relation ≻ between two nodes

by j ≻ i iff dij > 0.

The superpotential can then be written as

W =
∑

i

∑

j≻i

∑

k≻j

s(i, j, k)XijXjkX̄ki , (6.6)

where we omit SU(2)m+1 indices and their contractions, and the s(i, j, k) are signs that are

necessary for the vanishing of {W,W}. According to (6.4), Xij has degree dij − 1, Xjk has

degree djk−1 and X̄ki has degree m+1−dik. Gauge invariance implies that dik = dij+djk,

which in turn implies that the degree of any such term is equal to m − 1 and it is hence

present in the superpotential.

Periodic quivers

Arguably the simplest representation of theories in the F
(m)
0 family is in terms of periodic

quivers on T
m+1. We can imagine the unit cell has length 2 in every direction and the

vector labels we just discussed give the positions of the nodes. Pairs of chiral fields aligned

with the ith direction are the SU(2)i doublets connecting these nodes. These hypercubic

structure is completed with additional arrows that form degree m−1 triangles representing

the cubic terms in the superpotential.

6.2.1 Generalized anomaly cancellation

Let us restrict to the case in which all gauge groups have rank N . Let i be a node having

k entries which are zero, in the binary notation. Then, normalizing by N , the contribution

of the arrows to the anomaly at node i is:

aarrows =
k∑

l=1

(
k

l

)
(−1)l−12l +

m+1−k∑

l=1

(
m+ 1− k

l

)
(−1)m+1−l2l

= −
k∑

l=1

(
k

l

)
(−2)l + (−1)m+1

m+1−k∑

l=1

(−2)l

= −[(−1)l − 1] + (−1)m+1[(−1)m+1−l − 1]

= 1 + (−1)m .

(6.7)

Thus, the anomaly-free condition is satisfied.

6.2.2 Kontsevich bracket

Now we will show that {W,W} = 0 when the coefficients in the superpotential are chosen

to be s(i, j, k) = (−1)d(i,j)+md(i,k). First we make a preliminary comment about the way

20Note the convention we use for this argument is not the usual one in which we restrict to degrees c ≤ m
2
.

For example the arrow directed from (1, 1, · · · , 1) to (0, 0, · · · , 0) is a chiral but in this notation it will be

written as the conjugate of X(0,0,··· ,0),(1,1,··· ,1).
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indices are contracted in the superpotential using the SU(2) invariant tensor ǫµν . Note

that for any term in the superpotential one of these indices will always be contracted with

a barred field and the other one with an unbarred field. Even though we do not show these

indices in the interest of a clean notation, we will stick to a convention in which the first

index contracts with the unbarred field and the second one with barred field. Tiptoeing

this convention, in the expressions below the first index of the implicit ǫµν is free for the

derivatives with respect to unbarred fields, while the second index is free for the derivatives

with respect to barred fields.

With this in mind, the derivatives we need are

∂W

∂X̄ki

=
∑

j|k≻j≻i

(−1)d(i,j)+md(i,k)XijXjk ,

∂W

∂Xik
=

∑

l|k≻i≻l

(−1)d(l,i)+md(l,k)(−1)(m−clk)(cli+cik)X̄klXli

+
∑

l|l≻k≻i

(−1)d(i,k)+md(i,l)(−1)cik(ckl+m−cil)XklX̄li . (6.8)

Here cij is the degree of Xi,j i.e cij = d(i, j)− 1. Working mod 2 for any k ≻ j ≻ i we have

d(i, j) + d(j, k) + d(i, k) = 0 ⇒ cij + cjk + cik = 1 . (6.9)

Using the fact that cij(cij + 1) = 0 mod 2 for any i, j we get

(−1)clk(cli+cik) = (−1)cik(ckl+cil) = 1 . (6.10)

With these relations {W,W} becomes

∑

i

∑

k≻i

∂W

∂X̄ki

∂W

∂Xik
=

∑

i,j,k,l|l≻k≻j≻i

XijXjkXklX̄li

[
(−1)mcik(−1)d(i,k)+d(i,j)+md(i,k)+md(i,l)

+(−1)(m+1)cil+cij(cjk+ckl+m−cli)(−1)d(j,k)+d(i,j)+md(i,l)+md(j,l)
]
.

(6.11)

Simplifying this expression using the mod 2 relations above, we conclude that {W,W} = 0.

6.3 Moduli space

Now we explain how the perfect matchings indeed give rise to F
(m)
0 as the moduli space.

First we turn to the central point of the toric diagram (6.1). Since the origin is invariant

under the global SU(2)m+1 symmetry, the perfect matchings associated to this point contain

full representations of it. There is one such perfect matching which is immediately evident

from the way we have written the superpotential. It consists of all arrows

{X̄i,j |i ≻ j} . (6.12)

Writing it in terms of barred fields, makes it manifest that this is a perfect matching due

to the form of the superpotential (6.6). The chiral fields in this perfect matching are in

X̄(1,··· ,1),(0,··· ,0) which has dimension 2m+1 and transforms as 21 × · · · × 2m+1.
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The central point contains additional perfect matchings. Indeed we know that for

F
(1)
0 there are 5 perfect matchings corresponding to the central point [8] while F

(2)
0 has

19 [25]. It is straightforward to determine these extra perfect matchings and they will be

presented in a forthcoming work [39]. Their explicit field content is rather involved and

not illuminating for our current discussion.

Next let us consider the corners of the toric diagram, for which xµ = ±1 and all the

other coordinates are zero. SU(2)µ transforms these two points into one another so picking

one of them breaks SU(2)µ → U(1)×U(1). We need to consider how a representation Xi,j

of SU(2)m+1 splits under this reduced symmetry. There are two cases:

• iµ = jµ. In this case the original multiplet transforms trivially under SU(2)µ and

remains intact. Its conjugate also remains intact.

• jµ − iµ = 1. In this case Xi,j splits into two multiplets: X+
i,j and X−

i,j both of which

transform as

2j1−i1
1 × · · · × 2

jµ−1−iµ−1

µ−1 × 2
jµ+1−iµ+1

µ+1 × · · · × 2
jm+1−im+1

m+1 (6.13)

under the remaining SU(2)m.

We will again choose to make all the quantum numbers explicit so that the conjugate

of X+
i,j is X̄−

j,i.

The superpotential also splits into two parts

W = W0 +W+− . (6.14)

W0 consists of terms which contain no fields charged under SU(2)µ. W+− consists of terms

with two arrows charged under SU(2)µ; one unbarred and one barred. Under the reduced

symmetry, such a term splits as

Xi,jXj,kX̄k,i → X+
i,jXj,kX̄

−
k,i −X−

i,jXj,kX̄
+
k,i jµ − iµ = 1 ,

Xi,jXj,kX̄k,i → Xi,jX
+
j,kX̄

−
k,i −Xi,jX

−
j,kX̄

+
k,i kµ − jµ = 1 . (6.15)

With this, it is straightforward to verify that the following collection P+
µ of fields is a

perfect matching

• If jµ− iµ = 1, then P+
µ contains X+

i,j and the conjugate of X−
i,j i.e X̄

+
j,i. These arrows

cover each term in W+− exactly once and do not cover any term in W0.

• If jµ − iµ = 0, then p−µ contains X̄j,i. These arrows cover each term of W0 exactly

once and do not cover any term in W+−.

Above we have assumed j ≻ i, which is the condition for the existence of an arrow between

i and j.

The perfect matching P+
µ corresponds to xµ = 1. Its chiral field content, which we will

denote by p+µ is

p+µ =
{
X+

(a1,··· ,aµ−10,aµ+1,···am+1),(a1,··· ,aµ−1,1,aµ+1,···am+1)

}
∪
{
X̄+

(1,··· ,1),(0,··· ,0)

}
. (6.16)
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0

[0, 0]

2
[1, 0]

1
[0, 1]

3

[1, 1]

2a

(0)
21 × 22

(0)

Figure 11. Quiver diagram for F
(1)
0 .

Regarding the fields on the right brackets, note that since X−
(0,··· ,0),(1,··· ,1) have degree m,

their conjugates X̄+
(1,··· ,1),(0,··· ,0) are indeed chiral fields, i.e. they have degree 0. We can

rewrite (6.16) as

p+µ =
{
X+

(a1,··· ,aµ−10,aµ+1,···am+1),(a1,··· ,aµ−1,1,aµ+1,···am+1)

}
∪
{
X−

(0,··· ,0),(1,··· ,1)

}
. (6.17)

Similarly the perfect matching corresponding to xµ = −1 is the collection P−
µ of the

following arrows:

• If jµ − iµ = 1, then P−
µ contains X−

i,j and the conjugate of X+
i,j i.e X̄−

j,i.

• If jµ − iµ = 0, then P−
µ contains X̄j,i.

The chiral field content p−µ of this perfect matching is

p−µ =
{
X−

(a1,··· ,aµ−10,aµ+1,···am+1),(a1,··· ,aµ−1,1,aµ+1,···am+1)

}
∪
{
X̄−

(1,··· ,1),(0,··· ,0)

}
, (6.18)

which can be rewritten as

p−µ =
{
X−

(a1,··· ,aµ−10,aµ+1,···am+1),(a1,··· ,aµ−1,1,aµ+1,···am+1)

}
∪
{
X+

(0,··· ,0),(1,··· ,1)

}
. (6.19)

6.4 Examples

The periodic quivers for these theories are rather simple, but they become hard to visualize

beyond m = 2 due to their high dimensionality. The exponential growth of the number of

gauge groups makes their ordinary quivers look rather complicated. However, we consider

it is instructive to explicitly present the quivers for m = 1, 2, 3. F
(0)
0 is C

2/Z2, and its

quiver was given in figure 4.

Figure 11 shows the quiver diagram for F
(1)
0 . This is the well-known phase 2 of F0 (see

e.g. [8]).

The quiver for F
(2)
0 is presented in figure 12. This is phase L of Q1,1,1/Z2 in the

classification of [25]. The periodic quiver for this phase, which explicitly shows plaquettes

for all the superpotential terms, can be found in the appendix of [25].

Finally, figure 13 shows the quiver for F
(3)
0 .
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0

[0, 0, 0]

4

[1, 0, 0]

2
[0, 1, 0]

6
[1, 1, 0]

1
[0, 0, 1]

5
[1, 0, 1]

3

[0, 1, 1]

7

[1, 1, 1]

2a

(0)
21 × 22 × 23

(0)

2a × 2b

(0)

Figure 12. Quiver diagram for F
(2)
0 .

0

[0, 0, 0, 0]

8

[1, 0, 0, 0]

4 [0, 1, 0, 0]

12
[1, 1, 0, 0]

2

[0, 0, 1, 0]

10

[1, 0, 1, 0]

6

[0, 1, 1, 0]

14

[1, 1, 1, 0]

1

[0, 0, 0, 1]

9

[1, 0, 0, 1]

5

[0, 1, 0, 1]

13

[1, 1, 0, 1]

3
[0, 0, 1, 1]

11[1, 0, 1, 1]

7

[0, 1, 1, 1]

15

[1, 1, 1, 1]

2a

(0)
21 × 22 × 23 × 24

(0)

2a × 2b

(1)
2a × 2b × 2c

(1)

Figure 13. Quiver diagram for F
(3)
0 .
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The field content for this theory can be summarized in the following table:

Field SU(2)4 representation

X(0,a,b,c),(1,a,b,c) 21

X(a,0,b,c),(a,1,b,c) 22

X(a,b,0,c),(a,b,1,c) 23

X(a,b,c,0),(a,b,c,1) 24

Λ(1,1,a,b),(0,0,a,b) 21 × 22

Λ(1,a,1,b),(0,a,0,b) 21 × 23

Λ(1,a,b,1),(0,a,b,0) 21 × 24

Λ(a,1,1,b),(a,0,0,b) 22 × 23

Λ(a,1,1,b),(a,0,0,b) 22 × 22

Λ(a,b,1,1),(a,b,0,0) 23 × 24

Λ(0,0,0,a),(1,1,1,a) 21 × 22 × 23

Λ(0,0,a,0),(1,1,a,1) 21 × 22 × 24

Λ(0,a,0,a),(1,a,1,1) 21 × 23 × 24

Λ(a,0,0,0),(a,1,1,1) 22 × 23 × 24

X(1,1,1,1),(0,0,0,0) 21 × 22 × 23 × 24

(6.20)

Its superpotential contains the following terms:

WJ =
∑

a,b

Λ(1,1,a,b),(0,0,a,b)X(0,0,a,b),(1,0,a,b)X(1,0,a,b),(1,1,a,b)

+ Λ(0,0,0,0),(1,1,1,0)X(1,1,1,0),(1,1,1,1)X(1,1,1,1),(0,0,0,0)

+ Λ(0,0,0,1),(1,1,1,1)X(1,1,1,1),(0,0,0,0)X(0,0,0,0)(0,0,0,1) ,

WH =
∑

a

Λ̄(1,1,1,a)(0,0,0,a)Λ̄(0,0,0,a),(0,1,1,a)X(0,1,1,a),(1,1,1,a)

+ Λ̄(0,0,0,0),(1,1,0,0)Λ̄(1,1,0,0),(1,1,1,1)X(1,1,1,1),(0,0,0,0) .

(6.21)

where the global SU(2)4 indices and their contractions have been suppressed. The rest of

terms can be obtained from these by permuting the entries in the vector labels of nodes.

Here we have used the J- and H-term notation for superpotential terms in the case of

m = 3 [15, 24].

6.5 F
(m)
0 → F

(m−1)
0 × C partial resolution

The underlying geometry implies that there exists an interesting connection between con-

secutive members of this family of quiver theories. Removing any corner of the toric

diagram for F
(m)
0 results in the toric diagram for F

(m−1)
0 × C, namely the toric diagram
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F
(1)
0 = F0 F

(2)
0 = Q1,1,1/Z2

SU(2)1 

SU(2)2 

SU(2)3 

SU(2)1 

SU(2)2 

x1 

x2 x3 

x2 

x1 

SU(2)1 

SU(2)2 SU(2)1 

x1 

x2 x3 

x2 

x1 

F
(0)
0 × C = C

2/Z2 × C F
(1)
0 × C = F0 × C

Figure 14. F
(m)
0 → F

(m−1)
0 × C partial resolution for m = 1, 2.

for F
(m−1)
0 plus an additional point. This operation corresponds to the following partial

resolution

F
(m)
0 → F

(m−1)
0 × C . (6.22)

Figure 14 illustrates this process in the cases of F
(1)
0 and F

(2)
0 as starting points. As we

now explain, at the level of the quiver such a partial resolution translates into a higgsing

from F
(m)
0 to the dimensional reduction of the F

(m−1)
0 theory.

It is convenient to recall the geometric origin of the SU(2)m+1 global symmetry. The

toric diagram for F
(m)
0 , which is given by (6.1), is (m+ 1)-dimensional and contains 2m+1

corners. There is a pair of opposite corners for each direction xµ, µ = 1, . . . ,m+ 1, which

in turn corresponds to the SU(2)µ factor of the global symmetry. In figure 14, we have

indicated the correspondence between pairs of corners and global symmetry factors.

Without loss of generality, let us consider removing p−m+1 (removing any of the other

corners is equivalent by symmetry). Partial resolution maps to a higgsing of the quiver

theory. Based on general considerations, it is natural to expect that deleting this corner

corresponds to giving non-zero VEVs to the 2m chiral fields X−
(a1,...,am,0)(a1,...,am,1). Below

we discuss how this expectation turns out to be correct.

Global symmetry. Since we give VEVs to fields that transform exclusively in the 2m+1

representation, we have the following pattern of global symmetry breaking

SU(2)1 × . . .× SU(2)m × SU(2)m+1 → SU(2)1 × . . .× SU(2)m , (6.23)
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namely the SU(2)m+2 factor disappears. This is in precise agreement with the geometric

expectation.

Quiver. The 2m VEVs for bifundamental chirals reduce the number of gauge groups to a

half as follows. The VEV for X−
(a1,...,am,0)(a1,...,am,1) higgses the gauge symmetry associated

to nodes (a1, . . . , am, 0) and (a1, . . . , am, 1) to the diagonal subgroup. The corresponding

recombined nodes can be naturally identified by the remaining labels, i.e. by the vectors

(a1, . . . , am). We thus have

(a1, . . . , am, 0)× (a1, . . . , am, 1)→ (a1, . . . , am) . (6.24)

The change in the number of gauge groups is in agreement with the fact that the volume

of the toric diagram is halved by this particular partial resolution.

Let us now study the matter content of the resulting quiver. All fields which are singlets

of SU(2)m+1 survive in the final theory. These fields, now connecting the recombined nodes,

give exactly the matter content of F
(m−1)
0 .

Next, let us consider the fields that transform as doublets of SU(2)m+1 (and maybe

doublets of additional SU(2)µ factors). First, the chiral fields X+
(a1,...,am,0)(a1,...,am,1), which

form SU(2)m+1 doublets with the chiral fields acquiring VEVs, survive in the final theory.

Originally transforming in bifundamental representations, they turn into adjoints of the

corresponding recombined nodes (a1, . . . , am). We can interpret such adjoint chiral fields

as the ones arising from the dimensional reduction of vector multiplets.

Finally, combining the cubic superpotential (6.6) with the VEVs for the fields

X+
(a1,...,am,0)(a1,...,am,1) gives rise to masses for all other X− fields, where the superindex

refers to just the SU(2)m+1 quantum number, so they can be integrated out. The associ-

ated X+ fields remain massless and give rise to a copy of the matter content for F
(m−1)
0 ,

but with the degrees of fields increased by 1.

Summarizing the previous discussion, the final quiver corresponds to the dimensional

reduction of F
(m−1)
0 , as expected from the geometry. It is also straightforward to verify

that this process generates the desired superpotential.

Perfect matchings. From section 6.3, we see that the only corner perfect matching that

contains chiral fields acquiring a VEV is p−m+1. This implies that the proposed set of VEVs

precisely remove the corner associated to p−m+1, while all the others remain. It is also

possible to verify that some of the perfect matchings at the origin of the toric diagram are

removed, while others survive. In summary, the proposed higgsing exactly produces the

desired partial resolution.

6.6 B-model computation

The computations for this family follow the same pattern as in previous examples. We start

with the resolution of these singularities as the total space of the canonical line bundle over

(P1)m+1. It is given by:

X̃m+2 = Tot(O(−2,−2, · · · ,−2)→ P
1
1 × P

1
2 × · · · × P

1
m+1) . (6.25)
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For m = 0, this coincides with the resolution O(−2) → P
1 of C2/Z2, which we discussed

in section 4.4. Since for P1, O(−2) ∼= Ω, the exceptional collection on P
1 reads:

{E1 ≡ O(−1)[1] , E0 ≡ O} . (6.26)

An exceptional collection on (P1)m+1 has 2m+1 elements, which are the line bundles:

{
Ei ≡ Ei1 ⊗ Ei2 ⊗ · · · ⊗ Eim+1

∣∣ iµ ∈ {0, 1}
}
. (6.27)

Here, the index i is a binary vector of length m+1. The sheaves in the exceptional collection

on X̃m+2 are then of the form:

Fi ≡ i∗Ei , (6.28)

with the embedding i : (P1)m+1 → X̃m+2.

The next step is to find the Koszul resolution of these sheaves. The Koszul resolution

for m = 0 is the same as Koszul resolution for m = 0 in (4.19). For general m, the Koszul

resolution is given by:21

0 ✲ E(2, 2, · · · , 2)
ω ✲ E ✲ i∗E ✲ 0 , (6.29)

where the map ω is an m+ 1 fold product of the map vµe
2
µ we found earlier for C2/Z2 —

see appendix A.

6.6.1 Quiver fields

Basic case: m = 0. To compute the generator of Ext groups, it is useful to start from

m = 0. We call ys0,1, with s = ±, the generators of Č0(Hom1(F1,F0)). They are defined by:

O(1) ✲ O(−1)

O(2)

zs

❄
✲ O

−zs

❄

Here, zs correspond to the global sections of O(1) and, as explained earlier, the global sec-

tions of O(p) are determined by homogeneous polynomials of degree p in the homogeneous

coordinate. Labeling the homogeneous coordinates of P1 by z±, we see that each of them

gives rise to a generator y±0,1, which together transform in the fundamental representation

of the SU(2) global symmetry.

The Serre duals ȳs1,0 are in Č1(Hom0(F1,F0)). They correspond to the chain maps:

O(2) ✲ O

O(1) ✲ O(−1)

z̄s

❄

21The notation E(p1, · · · , pk) denotes the sheaf E tensored with O(p1, · · · , pk).
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Here the z̄s are generators of Č1(O(−3)). Locally, in the patch where z+ 6= 0, they are:

z̄+ = w−2
+ e3+ , (6.30)

z̄− = −w−1
+ e3+ . (6.31)

w+ is the local coordinate of this patch and, as before, e+ is the basis of O(−1) in this

patch. Composing yt0,1 and ȳs1,0 results in:

ȳs1,0 ◦ y
t
0,1 = ǫsty1,1 ,

ys0,1 ◦ ȳ
t
1,0 = −ǫ

sty0,0 , (6.32)

with yi,i being the generators of Ext2(Fi,Fi). They are defined by the chain map:

O(−i+ 2) ✲ O(−i)

O(−i+ 2) ✲ O(−i)

z̄0

❄

where z̄0 is the sole generator of Č1(O(−2)), given locally by:

z̄0 = w−1
+ e2+ . (6.33)

General m. It is straightforward to determine the quiver for general m, using the in-

formation we gained for the m = 0 case. Given a pair of fractional branes Fi and Fj , we

consider the following chain maps xsi,j

O(−j1 + 2, · · · ,−jm+1 + 2) ✲ O(−j1, · · · ,−jm+1)

O(−i1 + 2, · · · ,−im+1 + 2)

∏m+1
µ=1 ξ

sµ
µ

❄
✲ O(−i1, · · · ,−im+1)

∏m
µ=1(−1)

jµ−iµξ
sµ
µ

❄

where ξ
sµ
µ is a global section of O(jµ − iµ). Hence, we can divide the (Fi,Fj) pairs into

two cases:

1. There exists a µ such that jµ = 0 and iµ = 1. In this case, ξ
sµ
µ must be a global

section of O(−1) over the µth
P
1. Since O(−1) has no global sections, Extc(Fj ,Fi)

is empty for all c.

2. jµ ≥ iµ for all µ. In this case, the ξ
sµ
µ fall into two classes:

(2.a) If jµ = iµ, then ξ
sµ
µ is a local section of O, so there is only one possibility for it

i.e. 1.

(2.b) If jµ = 1 and iµ = 0, then ξ
sµ
µ is a global section of O(1). In this case, there are

two possibilities for it: z±µ , i.e. the two homogeneous coordinates of P1
µ. This

also means that xsi,j transforms in the fundamental representation of the SU(2)µ
factor of the global symmetry.
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Combining (2.a) and (2.b), we conclude that xs ∈ Č0(Homk(Fi,Fj)) with k =∑
µ(jµ − iµ). There are 2k+1 of these generators.

This completes our derivation of the quiver, which is in perfect agreement with the

one found in section 6.2 using generalized orbifold reduction.

Finally, let us compute the Serre duals x̄tj,i of these arrows. They are given by the

chain maps:

O(−i1 + 2, · · · ,−im+1 + 2) ✲ O(−i1, · · · ,−im+1)

O(−j1 + 2, · · · ,−jm+1 + 2) ✲ O(−j1, · · · ,−jm+1)

∏m+1
µ=1 ξ̄

tµ
µ

❄

As is occurs for ξ
sµ
µ , ξ̄

tµ
µ only exist for jµ ≥ iµ and we will need to deal with the corre-

sponding two cases separately:

(a) If jµ = iµ then ξ̄
tµ
µ ∈ Č1(O(−2)), so the only possibility is z̄0µ. The z̄

0 is given in (6.33)

and the subscript indicates that the base is P1
µ.

(b) If jµ = 1 and iµ = 0, then ξ̄
tµ
µ ∈ Č1(O(−3)) and there are two possibilities, namely

ξ̄±µ = z̄±µ . Again the subscript indicates that the base is P1
µ with z̄± defined in (6.32).

Hence x̄tj,i ∈ Čm+1(Hom1−k(Fi,Fj)) and they are indeed the Serre duals of x̄si,j .

6.6.2 Superpotential

The cubic superpotential terms follow straightforwardly from the composition. Following

our definition of xsi,j and xtj,k and composing them results in:

m2(x
s
i,j , x

t
j,k) = xs ti,k . (6.34)

Here the s t in the superscript means that the fundamental SU(2) indices of xi,j and xj,k
are concatenated. Since the f2’s are all trivially zero, there are no higher products. We

then reproduce the superpotential (6.6).

7 Conclusions

It was recently shown that m-graded quivers with superpotentials provide a mathematical

framework that elegantly unifies the description of minimally SUSY gauge theories in even

dimension [15]. The cases of m = 0, 1, 2, 3 correspond to 6d N = (0, 1), 4d N = 1, 2d N =

(0, 2) and 0d N = 1 field theories, respectively. A rich class of such theories can be engi-

neered in terms of Type IIB D(5−2m)-branes probing CY (m+2)-folds. One of the primary

motivations for this paper was to establish the physical significance of m-graded quivers

for m > 3. Naively, it may seem that it is physically impossible to go beyond m = 3, since

it would require the gauge theory to live below 0d and the CYm+2 to go beyond the critical
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dimension of Type IIB string theory. In this work we have shown that m-graded quivers

describe the open string sector of the topological B-model on CY (m+2)-folds, for any m.

To illustrate this correspondence, we constructed toric quivers associated to three in-

finite families of toric singularities indexed by m.22 We first derived these families using

a variety of powerful tools that are available in the toric case, which include: algebraic

dimensional reduction (sometimes combined with orbifolding), orbifold reduction, 3d print-

ing and partial resolution. We independently derived all these quiver theories via B-model

computations.

Our results provide the first explicit examples of m-graded quivers with superpotentials

for CY (m + 2)-folds with m > 4. Previously, only a few orbifold examples had been

presented for m = 4 [15] and m = 3 [16, 24, 61, 62]. Quivers for more general geometries

were studied only up to m = 2, both in physics and mathematics.

In this work, we considerably expanded the exploration of quiver theories associated

to CY (m + 2)-folds. Until now, quiver gauge theories were typically studied at fixed m.

For each m (and only for m ≤ 2, so far), one could then consider various infinite families of

geometries and construct their dual quiver gauge theories. In the toric case, this approach

was significantly accelerated by the study of brane tilings (m = 1) and brane brick models

(m = 2). In this work, we have included a new “theory space” direction to the problem,

considering all possible CY dimensions at once. New tools for studying toric quivers, for

any m, will be discussed in [39].

Various interesting aspects of SUSY gauge theories extend to the more general context

ofm-graded quivers. For instance, we have shown that some of these theories admit periodic

duality cascades. Generalizing the well-known behavior of the conifold, we presented ex-

plicit examples based on the C(Y 1,0(Pm)) family, in which the number of fractional branes

remains constant while the number of regular branes depends linearly on the step of the

cascade. It would be interesting to investigate the significance of such formal cascades for

arbitrary m. Interestingly, gravity duals with a running number of regular branes exist for

systems of branes at CY 4-folds, namely for m = 2 [63]. It would be interesting to elucidate

whether those solutions have a field theoretic interpretation in terms of cascades of trialities.

It is natural to expect that order m+1 dualities correspond to mutations of exceptional

collections of B-branes. This expectation is supported by the known m = 1 [48, 49, 64]

and m = 2 [16] cases, mirror symmetry [24, 37] and the general discussion in [15]. We plan

to elaborate on this correspondence in the near future.
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A B-model computation of quivers and superpotentials

In this appendix, we provide a brief review of the sheaf computation of quivers and super-

potentials in the B-model. In the main body of the paper, we use the methods outlined

here to derive the quivers and superpotentials for several infinite families of theories. For

more details, the interested reader can consult [29, 53]. For detailed reviews of B-branes,

we refer to [55, 65].

The D-branes compatible with the B-twist of Type II string theory are called B-branes.

Mathematically, these branes, denoted by E , are objects of the derived category Db(Xm+2)

of the (m + 2)-complex-dimensional target space Xm+2. The B-model open string states

with boundary conditions on the two objects E and F are counted by the Ext groups:

m+2⊕

d=1

ExtdXm+2
(E ,F) . (A.1)

Each element of the group (A.1) is interpreted as an open string state “stretched from the

brane E to the brane F .” The OPE relations between open string vertex operators are

encoded in the A∞ structure of the derived category. Thus, the A∞ structure controls the

terms appearing in the “spacetime” superpotential; see [52, 66] and references therein.

A.1 Ext groups

The B-branes we consider are complex submanifolds of some local Calabi-Yau X̃m+2, a

smooth resolution of the CY singularity Xm+2. Assume S is a complex submanifold of

X̃m+2, and E1 and E2 are holomorphic vector bundles over S. If we denote the embedding

of S in X̃m+2 by i, then the objects in Db(X̃m+2) corresponding to E1 and E2 are i∗E1 and

i∗E2, respectively. The B-model spectrum of open strings between two D-branes on S, with

gauge bundles E1 and E2, is given by:

m+2⊕

d=0

Extd
X̃m+2

(i∗E1, i∗E2) . (A.2)

The Ext groups above are determined by the following spectral sequence [29]:

Ep,q
2 : Hp(S, E∨1 ⊗ E2 ⊗ ∧

qNS) ⇒ Extp+q

X̃m+2
(i∗E1, i∗E2) , (A.3)

where NS is the normal bundle of S in X̃m+2. In many cases, the spectral sequence (A.3)

trivializes — that is:

Extd
X̃m+2

(i∗E1, i∗E2) ∼=
⊕

p+q=d

Hp(S, E∨1 ⊗ E2 ⊗ ∧
qNS) . (A.4)
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In such cases, we can determine the Ext groups by computing cohomology groups. If S

is a direct product of projective spaces, the cohomology groups can be calculated by the

Borel-Weil-Bott theorem [67, 68], which expresses the Ext groups as representations of the

global symmetry.

A.2 A∞ structure

The derived category Db(X̃m+2) is an A∞-category. By definition, an A∞-category C con-

sists of a collection of objects, Obj(C), a Z-graded vector space of morphisms HomC(E,F )

for any E,F ∈ Obj(C) and, for every k ≥ 1, k-linear maps:

mk : HomC(Ek−1, Ek)⊗ · · · ⊗ HomC(E0, E1)→ HomC(E0, Ek) , (A.5)

of degree 2− k, satisfying the A∞ relations:
∑

p,q

(−1)k−p−q+pqmk−p+1(ak, · · · , ap+q+1,mp(ap+q, · · · , aq+1), aq, · · · , a1) = 0 , (A.6)

for every k > 0. We will follow the method proposed in [53] to compute the composition

maps mk of Db(X̃m+2).

Any object in Db(X̃m+2) can be represented by a cochain complex E• of locally-free

sheaves over X̃m+2. For any pair of complexes, the Ext groups Extd
X̃m+2

(E•,F•) can

be viewed as the cohomology of the single complex associated with the double complex

(K•,•, d, δ) with:

Kp,q(E•,F•) = Čp(U ,Homq(E•,F•)) , (A.7)

where Čp(U , ·) denotes the C̆ech cochains of degree p associated with some acyclic covering

U , and Homq denotes the maps of degree q between complexes, i.e.:

Homq(E•,F•) =
⊕

i

Hom(E i,F i+q) . (A.8)

In the double complex (K•,•, d, δ), d is the differential of C̆ech cochains and δ is defined

as follows. Let ∂j and ∂′
k be differentials of Ej and Fk respectively, then for any

∑
i φq,i ∈

Homq(E•,F•) with φq,i ∈ Hom(E i,F i+q), we have:

δqφq,i = ∂′
q+i ◦ φq,i − (−1)qφi+1,q ◦ ∂i . (A.9)

For any E• and F•, we associate to every a ∈ Extd
X̃m+2

(E•,F•) an element ι(a) ∈

⊕p+q=dK
p,q(E•,F•), such that the cohomology class of ι(a) is a. Then, there exist maps:

fk : Ext•
X̃m+2

(E•k−1, E
•
k )⊗ · · · ⊗ Ext•

X̃m+2
(E•0 , E

•
1 )→ ⊕p,qK

p,q(E•0 , E
•
k ) , (A.10)

of degree 1− k for any k ≥ 1, such that:

f1 = ι , (A.11)

and
∑

r+s+t=k

(−1)r+stfn+1−s(id
⊗r⊗ms⊗ id⊗t) =

∑

2≤r≤n
i1+···+ir=k

(−1)wfi1 ◦fi2 ◦ · · ·◦fir +dfk , (A.12)
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where w = (r− 1)(i1− 1)+ (r− 2)(i2− 1)+ · · ·+(ir−1− 1) and ◦ denotes the composition

of maps in ⊕p,qK
p,q(•, •). For example, we have:

ιm2 = ι ◦ ι+ df2 , (A.13)

and

ιm3 = f2(id⊗m2)− f2(m2 ⊗ id) + (ι ◦ f2)− (f2 ◦ ι) + df3 . (A.14)

To compute the A∞ structure, the first step is to find representatives for a basis of the Ext

groups, which in turn defines ι. Then, we can employ (A.12) to compute the composition

maps mk. Specifically, we can use (A.13) to determine m2 and f2, then use (A.14) to

determine m3 and f3 and so forth.

In the theories we consider, the B-branes of interest are of the form:

i∗E , (A.15)

with i the embedding of a complex submanifold S in X̃m+2, and E a holomorphic vector

bundle over S. Suppose that E•l is the Koszul resolution of i∗El:

· · · → E−i
l → E

−i+1
l → · · · → E0l → i∗El → 0 . (A.16)

Then, Extd
X̃m+2

(i∗E1, i∗E2) is the same as Extd
X̃m+2

(E•1 , E
•
2 ), so that we can use the method

discussed above to compute the composition maps mk.

A.3 Superpotential

Given a graded quiver with nodes corresponding to coherent sheaves i∗Ej , j = 1, · · · , n,

where n is the number of nodes, we can read off the superpotential from the composition

maps mk. To that end, we fix a basis φ
(d)µ
j2,j1

for each Extd
X̃m+2

(i∗Ej1 , i∗Ej2). Following

the convention described in the main text, we will label the corresponding quiver field by

(Φ
(k−1)
j1,j2

)µ. Note that the Ext generator and the field have conjugate indices and differ in

degree by 1. The label µ runs over the generators. For the examples we are considering, it

coincides with the flavor symmetry index. For each j, Extm+2

X̃m+2
(i∗Ej , i∗Ej) is 1-dimensional.

If φ
(n−k)µ̄
j1,j2

is the generator corresponding to the Serre dual of φ
(k)µ
j2,j1

, then:

m2(φ
(n−m)µ̄
j1,j2

, φ
(m)µ
j2,j1

) = φ
(n)
j1,j1

, (A.17)

for any j1 and µ. By choosing a basis, we fix the normalization of the trace map γj :

Extm+2

X̃m+2
(i∗Ej , i∗Ej)→ C defined by:

γj(φ
n
j,j) = 1 . (A.18)

For any generator φ
(l)
j,i ∈ Extl

X̃m+2
(i∗Ei, i∗Ej), we consider all the paths connecting nodes i

and j in the quiver. If there exist fields Φ
(n1)
s1,i

,Φ
(n2)
s2,s1 , · · · ,Φ

(nk)
j,sk−1

along some path with k

arrows such that:

γi(m2(φ
(n−l)
i,j ,mk(φ

(nk)
j,sk−1

, · · · , φ
(n1)
s1,i

))) (A.19)
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is nonzero, then there is a term proportional to:

Φ
(n1−1)
i,s1

· · ·Φ
(nk−1)
sk−1,j

Φ
(n−m−1)
j,i , (A.20)

with the coefficient equal to (A.19) in the superpotential. Similarly, if there exist fields

Φ
(n1)
s1,j

,Φ
(n2)
s2,s1 , · · · ,Φ

(nk)
i,sk−1

along some path in the opposite direction such that:

γj(m2(φ
(l)
j,i ,mk(φ

(nk)
i,sk−1

, · · · , φ
(n1)
s1,j

))) (A.21)

is nonzero, then there is a term proportional to

Φ
(n1−1)
j,s1,

· · ·Φ
(nk−1)
sk−1,i

Φ
(l−1)
i,j , (A.22)

with the coefficient equal to (A.21) in the superpotential. Every term in the superpotential

can be computed this way, thus the A∞ structure of the derived category completely

determines the superpotential.

Note that, since γ is only non-zero on Extm+2 generators, and since mk has degree

2− k, the “superpotential coupling” (A.21) is non-zero only if:

l +

k∑

j=1

nj = m+ k . (A.23)

This is simply the ghost-number selection rule for disk correlators in the B-model. It

directly follows that the only terms that can appear in the superpotential have quiver

degree:

deg
(
Φ
(n1−1)
j,s1,

· · ·Φ
(nk−1)
sk−1,i

Φ
(l−1)
i,j

)
= l − 1 +

k∑

j=1

(nj − 1) = m− 1 . (A.24)

Hence, the degree constraint for the superpotential of an m-graded quiver is automatically

satisfied.

A.4 Sheaves on P
n: a primer

In order to derive the quivers and superpotentials for the geometries considered in this

paper using the technology we have just discussed, it is useful to review some notions

about sheaves on P
n. In the rest of this section, we present several elementary results

about Čech cohomology with sections taking values in such sheaves.

Let us start with the presentation of P
n in the homogeneous coordinates. Starting

from C
n+1, we obtain P

n by identifying:

(z0, · · · , zn) ∼ λ(z0, · · · , zn) . (A.25)

From this presentation, we can pass on to standard charts on P
n. There are n+1 of these

charts, denoted by Uµ. Uµ covers the complex lines for which zµ 6= 0. We will denote the

ith local coordinate on Uµ by wµ,i, with 1 ≤ i ≤ n. The explicit map between the two

presentations is:

wµ,i =





z0
zµ

i = µ ,

zi
zµ

i 6= µ .
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A.4.1 Sheaves O(p)

The tautological line bundle, denoted by O(−1), is the sheaf on P
n which assigns to each

point in it the line it represents in C
n+1. We denote the basis of this sheaf on the chart

Uµ by eµ. The transition functions between different charts are then represented by the

equation:

ei = w−1
0,i e0 . (A.26)

The sheaf O(−p), for p > 0, is the sheaf which locally has as its basis the pth tensor

power epµ of eµ. The sheaf O(p), for p > 0, is defined to be the dual sheaf of O(−p). In

particular let e∗µ be the basis of O(1) in the chart µ then the transition functions for it are

determined by:

e∗i = w0,ie
∗
0 . (A.27)

(e∗µ)
p form a basis of O(p) in Uµ. Finally, O(0), which is often denoted as O, is the trivial

sheaf.

A.4.2 Tangent and cotangent bundles

One-forms dw0,i form a basis of the cotangent bundle in the µth chart. The transition

matrix can be found using (A.4). We will not reproduce all of them here, but will mention

an identity that will be useful for our calculations, namely:

w−i
0,idw0,i = −w

−1
i,i dwi,i . (A.28)

Ωp is the pth antisymmetric tensor power of Ω. The transition functions again follow

straightforwardly, albeit tediously, from (A.4). The situation is simplest for the highest

non-trivial power, i.e. Ωn, also called the determinant bundle. Its basis is ∧idwµ,i and the

transition function is the determinant of the transition matrix for Ω:

∧j dw0,j = w−n−1
i,i ∧j dwi,j . (A.29)

The tangent bundle Ω∗ is the dual of the cotangent bundle. In the local coordinates of the

chart Uµ, its basis is given by the vector fields ∂
∂wµ,i

. Locally, the action of vector fields on

the differential form is given by contraction or interior derivation.

A.4.3 Čech cohomology

Next, we turn to the computation of some sheaf-valued Čech cohomology groups on P
n.

We will also organize them into representations of SU(n+1), with its action on P
n induced

from C
n+1. The most basic of these are Č0, which correspond to the global section of the

said sheaves.

O(−p) has no global sections for p > 0. The same is true for Ωp. However their dual

bundles do have global sections. For O(p) with p ≥ 0, a local section is determined by a

homogeneous polynomial of degree p in the homogeneous coordinates zµ. These obviously

transform in the symmetric (p, 0)-index tensor representation of SU(n + 1), which has

dimension
(
n+1+p

p

)
.
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The tangent bundle Ω∗ has (n+1)2−1 global sections. In the homogeneous coordinates,

these are given by:

zµ
∂

∂zν
, (A.30)

with the linear relation
∑

µ zµ
∂

∂zµ
= 0. They transform in the adjoint representation of

SU(n+ 1).

More relevant for us will be the sheaf Ω∗(−1).23 It has (n + 1) of global sections

transforming in the (0, 1)-index representation of SU(n + 1). Locally in U0, they can be

written as:

ϕ0 = −
∑

i

w0,i
∂

∂w0,i
⊗ e0 ,

ϕi =
∂

∂w0,i
⊗ e0 . (A.31)

The maps between two sheaves E and F form a sheaf denoted by Hom(E,F ). The sec-

tions (A.31) can also be regarded as the global sections of Hom(Ω,O(−1)). More generally,

they can be regarded as global sections of Hom(Ωi+1(j + 1),Ωi(j)).

We can also easily compute the global sections of Hom(Ωi+k(j + k),Ωi(j)). These

are given by antisymmetric compositions of λi defined above and they transform in the

antisymmetric k-index24 representation of SU(n+1). Concretely, a basis of them is given by:

ϕµ1···µk =
1

k!
ϕ[µ1 ◦ ϕµ2 ◦ · · · ◦ ϕµk] . (A.32)

The square brackets represent the antisymmetrization of the indices they enclose.

A.4.4 Serre duality

Serre duality is one of the most important properties of these sheaf-valued cohomology

groups. In the present case, it is the statement that there is an isomorphism between

Či(E) and Čn−i(E∗(−n− 1))∗.

Let us see how this plays out in the case of Hom(Ωn(n+ j),O(j)), which we computed

in the last section. Its dual sheaf is Hom(O(j),Ωn(n + j)) ∼= Ω(n). So, to exhibit Serre

duality we need to find Čn(Ωn(−1)).

An element of Ωn(−1) is a top form with coefficients in O(−1). It being in the nth

Čech cohomology means that it is holomorphic in ∩µUµ, i.e. intersection of all n+1 charts,

but not holomorphic in any intersection of n charts. Let us consider the ansatz that a

member ϕ̄ of this cohomology group is given in the coordinates of U0 by:

ϕ̄ = ∧iw
pi
0,idw0,i ⊗ e0 . (A.33)

Using (A.4) and (A.29), we see that, in the local coordinates of patch Ui, we can write ϕ̄

as:

ϕ̄ = (−1)iw
−n−2−

∑
j pj

i,i dwi,i ∧
m
j 6=i w

pj
i,jdwi,j ⊗ ei . (A.34)

23For any sheaf F we define F (p) to be F tensored with O(p).
24More formally (0, k), but throughout the paper all the representations we mention are of this form and

we will just write k to simplify the notation.
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0 m 
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(m-2) 

(m-3) 

(m) (m-1) 
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(2) (m-4) 

1 

2 

3 

m-1 

m-2 

m-3 

0 m 

(1) 

(m-1) 

(m-2) 

(0) (m) 

(2) 

(3) (m-3) 

1 

2 

3 

m-1 

m-2 

m-3 

★ ★ 

Figure 15. The transformation of flavors upon a mutation on node ⋆ can be implemented as a

rotation of the degrees of the arrows.

The holomorphy constraint described above means that:

pi < 0 and −
∑

i

pi < n+ 2 . (A.35)

Hence, there are n+ 1 choices of ϕ̄:

ϕ̄0 = ∧jw
−1
0,jdw0,j ⊗ e0 ,

ϕ̄i = w−1
0,i ∧j w

−1
0,jdw0,j ⊗ e0 . (A.36)

The dimension n + 1 is indeed the one we would have expected from Serre duality. Note

that ϕ̄ transforms in the 1-index representation of SU(n + 1) which is conjugate to the

representation in which elements of Hom(Ωn(n+ j),O(j)), i.e. ϕi1···in , transform.

B Graded quiver mutations

Graded quivers with superpotentials enjoy order m + 1 mutations, which reproduce the

dualities of the corresponding gauge theories for m ≤ 3 and generalize them for m > 3. In

this appendix, we summarize the effect of a mutation on a node, which we denote by ⋆ [15].

1. Flavors. As it is standard, we refer to the arrows connected to the mutated node

as flavors. It is possible to take all flavors as incoming into the mutated note, simply by

trading any arrow that is oriented outward for its conjugate. Once this is done, there is a

natural cyclic order for flavors around the node, in which the degree of incoming arrows

increases clockwise, as shown on the left of figure 15. There can be multiple or no arrows

of a given degree.

Under the mutation, the flavors transform as follows:

2. Rotation of the degrees. Replace every incoming arrow i
(c)

// ⋆ with the arrow

i
(c−1)

// ⋆ . In terms of the cyclic ordering of flavors previously introduced, this transfor-

mation is elegantly implemented as a clockwise rotation of the degrees of the flavors while

keeping the spectator nodes fixed, as shown in figure 15.
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(0) (c) 
i j i j 

(c) 

(0) (m-c) 
i j 

(m-c) 

i j 

★ ★ 

★ ★ 

(a) 

(b) 

Figure 16. a) Composition of arrows into a meson. b) The same process interpreted as anticom-

position.

(0) (c) 
i j 

(c) 

i j 
(m) (c+1) 

(c) 

i j 
(0) (m-c-1) 

=
 

★ 

★ 

★ 

Figure 17. New cubic terms coupling mesons to dual flavors.

2. Mesons. The second step in the transformation of the quiver involves the addition

of composite arrows, to which we refer as mesons. For every 2-path i
(0)

// ⋆
(c)

// j in Q,

where c 6= m, add a new arrow i

(c)
**⋆ j . In other words, we generate all possible

mesons involving incoming chiral fields. Sometimes, we might chose to represent the field to

be composed with a chiral field as an arrow that goes into the mutated node. The orienta-

tion of both arrows, both incoming, naively seems incompatible for composition. The gen-

eral rule above is equivalent to saying that, in such cases, we use the conjugate of the incom-

ing chiral field for the composition. This phenomenon, dubbed anticomposition, was first

discussed in the physics literature in the context of quadrality of 0d N = 1 theories [24].

3. Superpotential. Under mutation, the superpotential transforms according to the

following rules:

3.a) Cubic dual flavors-meson couplings. For every 2-path, i
(0)

// ⋆
(c)

// j in

Q, with c 6= m, add the new arrow i
(c)

// j in Q and the new cubic term

Φ
(c)
ij Φ

(c+1)
⋆j Φ

(m)
i⋆ = Φ

(c)
ij Φ

(m−c−1)
j⋆ Φ

(0)
⋆i to W . Figure 17 shows the general form of these

terms, which are in one-to-one correspondence with the mesons.

The remaining rules concern pre-existing terms in the superpotential. First of all,

terms that do not go through the mutated noted are not modified. The transformation

of terms that contain the mutated node depends on the degrees of the arrows that are

connected to it in the corresponding cycle.
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i1 

(c) 

ik ik-1 

(ck-1) 

(c1) 

(ck-2) 

(0) 

i1 

ik ik-1 

(ck-1) 

(c1) 

(ck-2) 

(c) 

★ ★ 

Figure 18. Mutation of a superpotential term with a 2-path giving rise to a meson.

i1 

(d) 

ik ik-1 

(ck-1) 

(c1) 

(ck-2) 

(c) 

(c1) 

(ck-2) 

i1 

(d+1) 

ik ik-1 

(ck-1) 

(c-1) 

★ ★ 

Figure 19. Mutation of a superpotential term with a 2-path that goes through the mutated node

but does not generate a meson.

i1 

(d) 

ik ik-1 

(ck-1) 

(c1) 

(ck-2) 

(c) 

i0 

(0) 

i1 

(d) 

ik ik-1 

(ck-1) 

(c1) 

(ck-2) 

(c) 

i0 ★ ★ 

Figure 20. Mutation of a superpotential term in the presence of an additional chiral field going

intothe mutated node.

3.b) Replace instances of Φ
(0)
i⋆ Φ

(c)
⋆j in W with the meson Φ

(c)
ij that results from composing

the two arrows.

3.c) Replace instances of Φ
(c)
i⋆ Φ

(d)
⋆j in W , where c 6= 0 and d is arbitrary with the product

Φ
(c−1)
i⋆ Φ

(d+1)
⋆j — that is, we write each closed path in W in terms of the new arrows.

3.d) Additionally, if there is an incoming chiral arrow Φ
(0)
i0⋆

at the mutated node, an addi-

tional term in W is generated by duplicating this cycle, replacing instances of Φ
(c)
i⋆ Φ

(d)
⋆j

with the product of mesons Φ
(c)
ii0
Φ
(d)
i0j

, which follow from (anti)composing Φ
(c)
i⋆ and Φ

(d)
⋆j

with Φ
(0)
i0⋆

.
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3.e) Finally, we can “integrate out” massive arrows, which corresponds to removing all the

2-cycles that appear in the superpotential while imposing the “equations of motion”

for the corresponding arrows [15].

Note that rules 3.c) and 3.d) become relevant for m ≥ 2.

4. Ranks. Finally, one can study how quiver representations transform under mutations.

Let us assign the ranks Ni to the quiver nodes. Then, the rank N⋆ of the mutated node

transforms as:

N ′
⋆ = N0 −N⋆ , (B.1)

where N0 indicates the total number of incoming chiral fields. Periodicity of the rank after

(m+ 1) consecutive mutations on the same node requires that, for every node:

if m ∈ 2Z+ 1 : 0 = Nm −Nm−1 + . . .−N1 +N0 ,

if m ∈ 2Z : 2N⋆ = Nm −Nm−1 + . . .−N1 +N0 .
(B.2)

This coincides with the generalized anomaly cancellation conditions discussed in section 2.5.
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