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ABSTRACT: A graded quiver with superpotential is a quiver whose arrows are assigned
degrees ¢ € {0,1,--- ,m}, for some integer m > 0, with relations generated by a superpo-
tential of degree m — 1. Ordinary quivers (m = 1) often describe the open string sector of
D-brane systems; in particular, they capture the physics of D3-branes at local Calabi-Yau
(CY) 3-fold singularities in type IIB string theory, in the guise of 4d A/ = 1 supersymmetric
quiver gauge theories. It was pointed out recently that graded quivers with m = 2 and
m = 3 similarly describe systems of D-branes at CY 4-fold and 5-fold singularities, as 2d
N =(0,2) and 0d N = 1 gauge theories, respectively. In this work, we further explore the
correspondence between m-graded quivers with superpotential, Q,,), and CY (m + 2)-fold
singularities, X,,+2. For any m, the open string sector of the topological B-model on X, 12
can be described in terms of a graded quiver. We illustrate this correspondence explicitly
with a few infinite families of toric singularities indexed by m € N, for which we derive
“toric” graded quivers associated to the geometry, using several complementary perspec-
tives. Many interesting aspects of supersymmetric quiver gauge theories can be formally
extended to any m; for instance, for one family of singularities, dubbed C(Y19(P™)), that
generalizes the conifold singularity to m > 1, we point out the existence of a formal “duality
cascade” for the corresponding graded quivers.
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1 Introduction

The mathematical concept of a quiver — that is, a directed graph consisting of nodes and
arrows between nodes — has proven very fruitful in string theory and in supersymmetric
field theory, starting with the seminal work of Douglas and Moore [1]. Broadly speaking,
“ordinary” quivers are often used to describe the structure of half-BPS states in theo-
ries with 8 real supersymmetries. In particular, they can conveniently describe half-BPS
systems of D-branes in type II string theory; schematically, the quiver nodes represent
a set of mutually supersymmetric D-brane, and the arrows between nodes represent the
supersymmetry-protected open string modes.

A rich class of quivers arises from considering D3-branes probing Calabi-Yau (CY) 3-
fold singularities in type IIB [2-14]. More generally, we may consider Dp-branes transverse
to CY (m + 2)-fold singularities, with p = 5 — 2m. That is, we consider a IIB background:

RO™2" % X, 19, (1.1)



with X,,42 a local CY,,42 singularity, and with D(5 — 2m)-branes along the transverse
space, which sit at the singularity — from the point of view of X,,42, those branes are
point-like probes. For m = 1, the low-energy theory on the four-dimensional D3-brane
worldvolume is described by a 4d N' = 1 supersymmetric gauge theory. More generally,
if we consider m = 0,1, 2, 3, we obtain gauge theories in dimension d = 6,4,2,0 with the
following amounts of supersymmetry:

m 0 1 2 3
Xing2 CY» CY3 CYy CYs (1.2)
SUSY | 6N = (0,1) 4dN =1 2dN =(0,2) 0dN =1

The low-energy field theories have 23~ real supercharges.

1.1 Graded quiver gauge theories

While a set of N transverse D-branes at a smooth point of X,,+2 would give rise to a
U(N) gauge theory on its worldvolume, the D-branes at the singularity “fractionate” into
marginally-bound constituents, the so-called fractional branes. Each type of fractional
brane supports its own gauge group. For our purpose, a quiver gauge theory is a gauge
theory with a gauge group:

U(N7) x U(Ng) X -+- x U(Ny,) . (1.3)

We assign a gauge group U(N;) to each node i of an abstract quiver; the (6 — 2m)-
dimensional gauge fields A, ; sit in vector multiplets V; of the appropriate supersymmetry
algebra. Open strings stretched between fractional branes give rise to matter fields in
the quiver gauge theory, in adjoint or bifundamental representations of the unitary gauge
groups in (1.3). For m = 0, the matter fields sit in hypermultiplets of 6d N' = (0,1)
supersymmetry, and the corresponding quiver arrows are unoriented; in this case, Xs is an
ADE singularity, and the corresponding quivers are affine ADE quivers [1]. For m =1, we
have a 3-fold X3 and matter fields are in chiral multiplets of 4d A/ = 1 supersymmetry,
corresponding to oriented arrows of an “ordinary” quiver. For m = 2 and m = 3, the
matter fields can sit in either chiral or fermi multiplets of 2d ' = (0,2) and 0d N =1
supersymmetry, respectively. For m = 2, the chiral multiplets give rise to oriented arrows,
while the fermi multiplets give rise to unoriented arrows. For m = 3, both the chiral and
fermi multiplets correspond to oriented arrows.

The 2d and 0d gauge theories are conveniently described within the larger framework
of graded quivers (with superpotential). A graded quiver is a quiver together with a grading
of the arrows by a “quiver degree:”

ce{0,1,--- ,;m} . (1.4)
The grading simply keeps track of the different types of matter fields. We denote the
various arrows, or “fields,” by:

2
QE;:) :Z.—>j7 C:0,1’~--’7’Lc_17 ncz\‘nl;_Jj (15)



m
2
arrows are oriented. For every arrow of the form (1.5), we posit a “conjugate” arrow of

When m is even, the arrows of maximal degree, n. — 1 = are unoriented. All other

degree m — ¢ and opposite orientation, denoted by:

3 = (@19 (1.6)
This is interpreted as the CPT conjugate fields in the supersymmetric gauge theory.

Importantly, the graded quivers can have a superpotential, which encodes interactions
amongst matter fields in the gauge theory. We will come back to that crucial point later on.
This perspective on supersymmetric quiver gauge theories was recently developed in [15].
Related works include [16-18].

Gauge theory quivers have been most studied in the case of X,,4+2 a toric local CY
(see e.g. [2-8, 10-14, 19-25]). Various powerful tools become available in this case. We will
review them in section 1.3.

As far as the D-brane setup (1.1) goes, we are limited to m < 3 by the critical dimen-
sion, d = 10, of type II string theory. From the perspective of graded quivers, however,
there is no reason to stop at m = 3. While there is no supersymmetric field theory inter-
pretation of general graded quivers,' they still have a natural interpretation as describing
fractional branes at a CY,42 singularity, as we now explain.

1.2 From B-branes on X,, 2 to graded quivers Q)

By themselves, graded quivers with m < 3 do not encode the full low-energy quantum field
theory on the transverse D-branes. Instead, they encode some half-BPS “holomorphic”
information [26] which is protected by supersymmetry. In type IIB string theory, that
information is preserved by the topological B-twist.

Let us, then, focus on the B-model of the local Calabi-Yau X,,+2. Conveniently,
this maps the problem of analyzing D-branes at a CY singularity to a purely algebraic
problem, since the B-model is independent of the K&hler moduli of X,, 2. The D-branes
of the B-model, denoted by &, are called B-branes. They are described as objects in the
bounded derived category of coherent sheaves (the B-brane category, for short) of the
variety X,+2 [27-30]:

EeD'Xpnio) . (1.7)

For most purposes here, we can think of £ as a coherent sheaves with compact support. At
this level of description, there is no restriction on m: the B-model is well-defined on any
Calabi-Yau variety.

A point-like brane at a smooth point p € X,,12 is described by the skyscraper sheaf
Op. When we bring O, to the singularity, it is expected to fractionate into marginally
stable constituents:

O, =D&, . (1.8)

!Formally, a graded quiver with m > 3 would correspond to a “field theory” in d = 6 — 2m < 0, with n.
distinct types of matter fields, and with some “superpotential” interactions amongst them.



The B-branes &; are the fractional branes. They correspond to the nodes of a quiver. In
the main text, we will discuss their identification in a few explicit examples, in the case of
toric singularities that admit crepant resolutions.

The open strings between B-branes are described as morphism in the B-brane category.
Algebraically, they are the Ext groups elements:

d)gi) € Eth(m+2 (83,51) . (1.9)

We review some of the necessary algebraic geometry in appendix A. Here, we just note
that Ext groups are indexed by a degree:

de {01, ,m+2}. (1.10)

The degree corresponds to the BRST charge in the B-model. On a Calabi-Yau (m+2)-fold,
we have the isomorphism:

Extk ,(€,&) 2 Exty 2 4(&,8),  d=0,--- ,m+2, (1.11)

Xm+2

known as Serre duality. The elements of Ext? 22 Hom are identified with “vector multiplets”
at the quiver nodes. By assumption, we must have:

Exty ,(&,&) = Extgiz (&:,&;) = C6;5 (1.12)
for a consistent set of fractional branes. The other Ext? group elements (1.9), with degree
d # 0,m + 2, are identified with the “matter field” arrows in a graded quiver:

o e el (1.13)

Note that the quiver and Ext degrees are related by ¢ =d — 1.
In this way, in principle, one can associate a graded quiver Q) to any local CY
singularity, of any complex dimension:

Xm+2 A d Q(m) . (1.14)

The most non-trivial part of the correspondence is the identification of the “interactions”
in either description. On the graded quiver side, there exists a quiver “superpotential” of
degree m — 1. On the B-brane side, this corresponds to the A, algebra satisfied by open
string disk correlators.

Based on the known results for m = 0,1 [31, 32], one would expect that there exists an
equivalence of derived categories between D?(X,,;2) and some suitable derived category
of representations of Q)(,,,). This is indeed the case, as shown by Lam in [33].

In this paper, our goal is to flesh out the basic correspondence (1.14) explicitly, at a
“physical” level of rigor, in a few families of geometries {X;,12}men. Given a singular CY
variety X, 12, the procedure to obtain a graded quiver with superpotential Q,,) from the
B-branes on X, 2 is as follows:

(i) Find a consistent set of fractional branes, {&;}. This gives the nodes of the quiver.



(ii) Compute all the Ext groups (1.9) between fractional branes. Using the correspon-

dence (1.13), draw the quiver arrows, with their quiver degrees.?

(iii) Compute the quiver superpotential from the A, products between Ext group ele-
ments. (We will explain this last point in later sections.)

While the above procedure is very general and can be applied, in principle, to any singular
Calabi-Yau variety, explicit computations in the B-brane category tend to be technically
challenging. Moreover, the first step is problematic, since we do not have, in general, an
efficient method to find a “consistent set” of fractional brane in the B-brane category.
In fact, such sets are by no means uniquely determined by the variety X,, 2. Different
choices of fractional branes can lead to different quivers, which corresponds to “field theory
dualities” (in particular, “Seiberg dualities”) when m < 3. In general, we expect that
any such distinct quivers for a given singularity are related by quiver mutations — see
appendix B for a review of graded quiver mutations [15].

1.3 Toric geometry to the rescue

Fortunately, when X,, 12 is a toric local Calabi-Yau, there exist alternative methods for
associating a quiver to the singularity. We now review them briefly and point the interested
reader to the references for detailed expositions. (For alternative approaches, see also
e.g. [34-36].)

A first approach, which is actually not restricted to toric geometries, consists of real-
izing X492 as a partial resolution of another geometry for which the quiver theory is easy
to determine. A standard choice for such parent theory is an appropriate C™*2/(Zy, x
-++ X ZnN,,,,) orbifold. As we will elaborate in section 2.2, partial resolution translates into
higgsing of the quiver. Applications of this strategy to m = 1 and m = 2 can be found in [2—-
4, 20]. While this method allows for a systematic derivation of the quiver theories for the
desired geometries, it does not fully exploit all the structure associated to toric geometries.

The connection between toric CY,,12’s and the corresponding quivers on D(5 — 2m)-
branes, for m = 0,1,2,3, was significantly simplified with the introduction of a class of
brane configurations that are related to the original D-branes at singularities by T-duality
along m+ 1 directions. For m = 1, 2 and 3, these brane constructions are brane tilings [11,
13], brane brick models [21, 22, 37] and brane hyperbrick models [24], respectively.® These
configurations consist of stacks of D(6 — m)-branes suspended within the voids of an NS5-
brane that wraps a holomorphic hypersurface.* This surface is m-complex dimensional and
is defined as the vanishing locus of the Newton polynomial associated to the toric diagram,

P($1,-" ,."L‘m+1) :0, (1.15)

withz; € C*,7=1,--- ,m—+1. Most of the non-trivial structure of these configurations lives
on an (m + 1)-torus, defined by the coamoeba projection of the x; coordinates. For many

*We only draw half of the arrows, as in (1.5). The other half of the arrows is given implicitly by the
“conjugation” map (1.6).

3The corresponding constructions for m = 0 are the well-known elliptic models [38].

4For m = 3, the suspended branes are actually Euclidean D4-branes.



purposes, it is often sufficient to consider the “skeletons” of these brane configurations. For
brane tilings, these are bipartite graphs on T?; for brane brick models, they are tessellations
of T3; and so on. In all these cases, there is a simple dictionary relating the brane setups
to the corresponding quiver gauge theories.

These constructions can be formally extended to m > 3 [39].We collectively refer to
them as generalized dimers. Via graph dualization, they are in one-to-one correspondence
with periodic quivers on T™*! which, likewise, fully encode both the quivers and the
superpotentials of the “field theories.”

As we will explain in section 2.2, given one of these brane setups, finding the cor-
responding X,,42 is reduced to a combinatorial problem, which is a huge simplification
with respect to alternative approaches. Conversely, there are various efficient procedures
for constructing generalized dimers — equivalently, quiver theories with superpotentials
— starting from the corresponding toric X,,4+2. One way to do this is by using mirror
symmetry. This method was developed for m = 1 in [40] and for m = 2 in [37, 41], where
its extension to higher m was also outlined.

In this paper, we focus on toric varieties. For each infinite family of examples, we
present a convenient toric method to derive graded quivers with superpotential for X, 2,
and discuss some of their interesting properties. We then proceed to check those results
with an explicit B-brane computation, following the three steps above. The B-model
computation provides a strong check of those recently devised toric methods.

This paper is organized as follows. In section 2, we review the relevant aspects of
graded quivers and of the B-brane category, and we spell out the relation between the
two approaches. In section 3, we illustrate our methods in the simplest example, that
of flat space C™*2. In section 4, we consider an orbifold singularity, C"*2/Z,, 2. In
section 5, we consider a family of singularities, dubbed Y19(P™), which reduces to the
conifold singularity for m = 1. In section 6, we consider a third family of singularities,
dubbed F (()m), which reduces to an orbifold of the conifold for m = 1. Appendix A contains
a pedagogical summary of the algebraic geometry techniques that we will need for our
B-model computations. Appendix B reviews order m + 1 mutations of m-graded quivers.

2 Graded quivers and B-branes

In this section, we first review the concept of a graded quiver with superpotential, as
developed in [15], building on mathematical ideas in [42—-44]. We then discuss the relation
between so-called “toric” quivers and toric singularities (while referring to [39] for further
discussion).® Finally, we discuss the derivation of the graded quiver from the B-model on
the CY singularity.

5Throughout the paper, we will use the term toric quiver as a synonym of what is usually referred to as
a toric phase. Toric phases are those that can be fully captured by periodic quivers on T™*!.



2.1 Graded quiver algebra

A graded quiver Q) = (Qo, Q1) consist of a set of nodes indexed by some integers 4, and
of arrows ® between nodes:

Qo ={i} ={1,---,n}, Q1 ={2}. (2.1)
Each arrow is assigned a quiver degree:
ce{0,---,m}, (2.2)
for some integer m € N. We denote an arrow from ¢ to j, of degree ¢, by:

© .. .
;7 i =g (2.3)

The product of arrows is given by concatenation:
q)ijq)jkq)kl s (24)

Here the arrow degrees are left implicit. A closed path is a product of arrows that comes
back to itself, in the obvious way. The degree of a path is the sum of the degrees of its
component arrows. We call the degree-zero arrows the “chiral fields,” since they correspond
to chiral multiplets in supersymmetric quiver gauge theories (when m < 3). A path of chiral
fields has degree zero.

The path algebra is the algebra of paths generated by arrows, with the above product
and the obvious formal sum. The freely-generated path algebra is denoted by CQ. We will
soon introduce relations amongst paths.

CPT invariance. We restrict ourselves to a particular kind of graded quiver, such that

every arrow ® of degree d has an “opposite” or “conjugate,” ®,, = ®, of degree m — d and

opposite orientation, as anticipated in (1.6). We can then pair all the arrows according to:
ij 0 g Ji ij

(cp(C) 6(’-”’0)), 3 = () . (2.5)

This is a choice of polarization of the path algebra. A very convenient choice of polarization,
which we use when drawing quivers explicitly, is to choose ®(©) for the arrows of degrees

ne = V”QHJ , (2.6)

and 6(7“_6) for their conjugate. In that case, one draws quivers with arrows of degrees 0

c=0,---,n.— 1, with:

to n. — 1 only. The number (2.6) is the number of “arrow types” in the graded quiver, also
called the “arrow colors” [44].
We may call the arrows of degree ¢ € {0,--- ,m} the “matter fields.” The requirement

that every arrow has a conjugate corresponds to CPT invariance in quiver gauge theories.”

SConjugate arrows will always be implicit in the quiver diagrams that we will present. They are not
independent objects, but can be derived from the corresponding unconjugated ones.



Note that, when m is even, the arrows of degree n. — 1 = 7 are “self-conjugate,” and the

choice of polarization into arrows ® and ®, namely:

(cp(%) e ) , (2.7)

¥ 7t

is arbitrary. For m = 0 and m = 2, this corresponds to the fact that the 6d hypermultiplets
and the 2d fermi multiplets, respectively, are self-conjugate.

Gauge fields. Let us also introduce arrows from a node to itself:
e 1—1, €11, (28)

for each node, of degree —1 and m + 1, respectively.” We may call e; and €; the “gauge
fields” — they are identified with vector multiplets in quiver gauge theories.

Superpotential relations. We introduce relations on the path algebra through a
“graded quiver superpotential:”

W =Ww(®), deg(W)=m—1. (2.9)

This imposes relations on the path algebra, of the form dgW = 0. The superpotential
is a linear function of closed paths of matter fields, of degree m — 1. It is clear from the
grading that, for any fixed m, there can only be a finite number of arrows of degree ¢ > 0
in each closed path. On the other hand, the number of chiral multiplets () is unbounded,

a priori. For instance, at low m we have:

m=1: W=w(@),
m=2: W=2oWsa) +3VE@0) (2.10)
m=3: W =oWeWH @) + @ F (&)

schematically. The functions W (@), J(®©), E(®©) and H(®©), F(®(©) are holomor-
phic functions of the chiral fields. They correspond to the 4d A" =1, 2d N = (0, 2), and
0d N = 1 superpotentials, respectively. This obviously generalizes to any m:

w=ao)...owr, (@), e+t =m-1, (2.11)

schematically,® though there is no supersymmetric field theory interpretation for m>3.

Kontsevitch bracket condition. There is an important condition we should impose
on W, which can be written as:

(W,w}=0, < =0, (2.12)

"The arrow e; is denoted by I; in [15], and its “opposite” ; is introduced here for future convenience.
8In general, we can have distinct paths of degree-zero chiral fields connecting each field of higher degree
in the closed loop.



where the sum is over all the fields @, for a given polarization (2.5). Here, {f, g} denotes
the Kontsevitch bracket on the path algebra. It is defined as:

_ Of 09 \Uf+D@l+(gl+ )0+ F1+1 OF O

Let us note that the condition (2.12) holds for any choice of polarization. The Kontsevitch
bracket is a natural generalization of the Poisson bracket on a graded path algebra that
admits a polarization.

Differential and superpotential. Given the superpotential above, one can define a
differential, d, of degree —1, acting on paths. We have the Leibniz rule:

d(fg) = (df)g+ (-1 rdg, (2.14)

with |f| denoting the degree of the path f. The differential is given explicitly on the quiver
fields by:

de=-ce®e,

oW
d@:£+(—1)‘¢'¢®6—6®@7 2.15)
 ow o B 2.15
dd=—— 4+ (-1)*’Pge—cx®

8<I>+(7) Qe—ex P,
de=) (-)*(@22e-28®) +(-1)"ewe—cre.

(]

This is obviously of degree —1 since W has degree m — 1 and |®| = m — |®|. One can check
that this is a differential:
d?> =0, (2.16)

provided that (2.12) is satisfied.

Representations of the quiver algebra and anomaly-free constraint. Given a
quiver algebra, we may want to study its representations. Recall that a quiver repre-
sentation consists of a vector space V; =2 CVi assigned to each node i, and of explicit
homomorphisms <I>Z(.?) : Vi = V; (that is, fixed N; x IN; matrices such that all the quiver
relations are satisfied).

In physics, the positive integers N; are the ranks of the unitary gauge group (1.3) in a
quiver gauge theory. The choice of homomorphism ®(© is a choice of “vacuum expectation
values (VEVs)” for the chiral multiplets. Not every choice of rank is physically acceptable.
There are certain constraints on the allowed choices of ranks, the generalized anomaly
cancellation conditions [15], which we will review in section 2.5 below.

It is always a good idea to distinguish between the algebra and its representations. In
this work, most of our discussion will be focused on the general “abstract” quiver, not on a
particular representation. In the B-model, a particular quiver representation corresponds
to a particular bound state of D-branes, and the anomaly cancellation condition is a tadpole
cancellation condition for the RR flux (at least in the physical setup with m < 3).



2.2 Toric graded quivers and toric singularities

A central theme of this paper is the connection between m-graded quivers and CY 42
singularities. This connection goes in both directions and can be addressed from multiple
viewpoints.

The CY 42 variety arises from the quiver as its classical moduli space. Generalizing the
m < 3 cases, for which the quivers have a gauge theory interpretation, we define the classical
moduli space as the center of the Jacobian algebra with respect to fields of degree m — 1,
i.e. of next to maximal degree. The mathematical results in [45] imply that it is sufficient
to consider the algebra obtained by quotienting only by the corresponding relations:

oW .

Note that, in the special case m = 2, the field ) here denotes both ®1) and 5(1); they
are the fermi and anti-fermi multiplets, in the 2d N = (0,2) gauge theory.

Since the superpotential has degree m—1, the terms which are relevant for the relations
in (2.17) are gauge invariants of the generic form ®(™~1 P(¢(0), with P(®(® a holomorphic
function of chiral fields. Borrowing the nomenclature used in the m = 2 and 3 cases, we
refer to these terms as J-terms.” Therefore, the relations (2.17) consist entirely of chiral
fields. For m < 3, chiral fields are the only superfields with scalar components, hence
their relevance for the moduli space. Focusing on the center of the algebra corresponds to
considering closed loops — in the gauge theory language, this is the restriction to gauge
invariant fields.

Toric CY singularities. In this paper, we focus on toric Calabi-Yau singularities, and
their toric partial resolutions. A toric CY singularity X,,,+2 can be described in terms of its
toric diagram T', a convex polytope in Z™*!. Let us denote the points of the toric diagram
by:

{v1,---,vg} €T CczZ™ . (2.18)
This includes internal points — points inside the polytope. Including all the internal points
allows us to discuss toric resolutions straightforwardly. Recall that, given the toric diagram,

the toric fan is the set of vectors w; = (v;,1) € Z™*2. The Kihler quotient description of
the singularity (also known as GLSM [46]) is given by:

Xinto = (Cd//U(l)d*m*2 , 2 ~ ¢i2a Qi 5. , (QY) = ker(wy, -+ ,wq), (2.19)

with (w1, -+ ,wq) seen as (m + 2) x d matrix — here, () € C% i = 1,--- ,d, are the
“GLSM fields,” and a =1, -+ ,d — m — 2 runs over the “GLSM gauge group.”

9Strictly speaking, J-term usually refers to the holomorphic function P(®(®). We will use the name for
the entire '@(m*l)P(QJ(O)) term in the superpotential. For m = 1, this corresponds to standard superpotential
terms.
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Toric superpotential condition. To any given toric CY,,+2 singularity, we can as-
sociate a graded quiver ((,,) that satisfies an additional toric condition, generalizing the
well-known m = 1 and m = 2 cases [8, 20]. More precisely, there always exists at least one
such “toric quiver,” and other quivers are expected to be related to it by mutations. The
toric condition is a condition on the superpotential: every field ®(™~1 of degree m — 1
should appear in exactly two J-terms, with opposite signs. Namely,

W =&V p@®) - D@ 4+ ..., (2.20)

(m=1) " Tn other words, the “vacuum

where the dots indicate terms that do not contain &
equations” (2.17) take a simple form (path;)=(pathg). This form of the superpotential
underlies the relationship between these theories and toric geometries.

Concepts such as periodic quivers on T™*! (and their dual brane tilings, brane brick
models, and higher dimensional generalizations), perfect matchings, etc., can be generalized
to arbitrary m. These issues will be studied in detail in a forthcoming paper [39]. Here,
let us just quote one of the results, which we will exploit for computing moduli spaces.

Given a toric graded quiver ()(,,) with superpotential W, we can define perfect match-
ings for arbitrary m, as follows. A perfect matching p is a collection of arrows in Q)

satisfying two conditions:

e p contains precisely one arrow from each term in W.

)

e For every arrow ®(© in Q(m), either ®(©) or its conjugate $(m_c is in p.
This generalizes the definition of perfect matchings for brane tilings [11] and of brick
matchings for brane brick models [21].

We can regard perfect matchings as variables in terms of which the fields in the quiver
can be expressed. In particular, the map between perfect matching variables and chiral

fields is given by:
1it ol e p,,

2.21
0if &\ ¢ p,, (221)

<I>Z(-0) = pri“ with P, = {
o

where 7 runs over the chiral fields and p runs over perfect matchings. The F;, can be re-
garded as entries in the so-called P-matrix. This change of variables is extremely powerful,
since it trivializes the relations (2.17). There is then a one-to-one correspondence between
perfect matchings and “GLSM fields” in a (possibly redundant!®) toric description (2.19)
of the CY,,12. Perfect matchings are therefore mapped to points in the toric diagram. The
Z™+1 coordinates for each perfect matching are easily determined from the intersections
between the chiral fields it contains and the fundamental cycles of the (m + 1)-torus on
which the corresponding periodic quiver lives.

In this way, the determination of the moduli space is significantly simplified, reducing to
the combinatorial problem of determining perfect matchings. Moreover, efficient methods
for finding perfect matchings, analogous to the Kasteleyn matrices for brane tilings, exist
for all m [39].

107f the GLSM description is redundant, there are several perfect matchings for the same point in the
toric diagram.
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Partial resolution and higgsing. Partial resolution of a toric CY,,+2 corresponds to
removal of points in the toric diagram, and can be used to connect different geometries.
At the level of the quiver theory, this process maps to “higgsing” by non-zero “VEVs” for
certain chiral fields, where we have extended the physical nomenclature used for low m in
the obvious way.

The map between chiral and GLSM fields, encoded by the P-matrix, provides a sys-
tematic procedure for identifying the chiral fields that acquire non-zero VEVs in order to
achieve a desired partial resolution. In general, given a partial resolution, the choice of
VEVs that realize it might not be unique. This procedure is a straightforward generaliza-
tion of the one for CYs and CYy4 cases. We refer the reader to [2-4, 20] and references
therein for in depth discussions of these cases. Later in the paper, we will investigate the
connection between infinite families of geometries and the associated quiver theories via
partial resolution.

2.3 B-branes, Ext groups and A, algebra

Let us now consider the B-model on a local CY ,19 singularity X,,12. The B-branes are
objects in the derived category of coherent sheaves on X,, 2, asin (1.7). In all the examples
that we consider, there will exist a crepant resolution of the singularity:

T Xm+2 — Xm+2, (222)

with f(erg a smooth local Calabi-Yau. Then, all the B-branes of interest will be coherent
sheaves with compact support on complex submanifolds of )~(m+2. Intuitively, we simply
have D-branes wrapping all possible closed complex cycles.

Since the B-model is independent of Kéahler deformations, the B-brane category on
)~(m+2 must be equivalent to the B-brane category on the singularity X,,12, but the former
is generally much simpler to describe. In all our examples, the smooth resolution is the
total space of a vector bundle E:

X2 = Tot (F — Bmta—r) , r =rank(E), (2.23)

over Bp,1o_,, a compact Kéahler surface of complex dimension m + 2 — r; in the simplest
case, we have the canonical line bundle over B,,+1. Then, the B-branes on )~(m+2 can be
described more simply in terms of sheaves on By, 1o .

The “fractional branes,” denoted by:

{&ikitt s (2.24)

are distinguished B-branes which “generate” the derived category Db(f(mw), in some
physical sense.!! In the setup (2.23), a good set of fractional brane can be obtained from

"Here we are being voluntarily vague. A better definition of fractional branes can be given if we are
provided with a stability structure on D?(X,,2), which does depend on the Kihler moduli (in physics,
that is the central charge of the D-branes). The fractional branes are obtained by marginal decay of the
point-like brane O, at the singularity.
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any strongly exceptional collection of sheaves on By, 12—, [16, 47-51]. The open string states
between two B-branes £ and F are identified with the generators of the Ext groups [27-30]:

Extg LEF), d=0 mt2. (2.25)

The interactions amongst these open string modes are encoded in a A, algebra. Let us
define the graded vector space:

A= e @ P Exty  (£,&), (2.26)

m—+2

of all the Ext groups elements amongst the fractional branes. One can define the multi-
products my on the Ext algebra A:

my @ A% 5 A, (2.27)
of degree 2 — k. They satisfy the A relations [52]:

> (=) (1% @m, ©1%9) =0, Yk >0, (2.28)
ptqt+r=k

Note that, in particular, m; is a differential — that is, (m1)? = 0, and ms is an associative
product. The Ext algebra A is a minimal A algebra, meaning that m; = 0 identically.
There also exists a natural trace map:

v:A—C, (2.29)

of degree —m — 2. This is used, in particular, to map to top Ext elements of degree m + 2
to elements of Ext® = Hom.

The multi-products my on the Ext algebra can be computed in the following man-
ner [16, 53]. Given any A, algebra A, let us denote by H® (g) to be the cohomology of m.
If A has no multiplications beyond mso, it turns out that one can define an A, structure

on H*(A) in such a way that there exists an A, map [53, 54]:
f:H*(A) — A, (2.30)

with f; equal to a particular representation H '(,Z[) — ZL in which cohomology classes map
to (noncanonical) representatives in A, and such that m; = 0 in the Ao algebra on H*® (ﬁ)
One can then use the consistency conditions satisfied by elements of an A, map to solve
algebraically for the higher products on H*® (Z)

In the B-brane description, the algebra A is the algebra of complexes of coherent
sheaves, with chain maps between complexes. In that construction, m; is identified with
the BRST charge of the B-model. The “physical” open string states then live in the
cohomology H*(A), which gives us the derived category D?(X) — see [55] for a thorough

review. The minimal A, algebra:

A= H*(A) (2.31)

is precisely the Ext algebra. In the examples discussed in this paper, each B-brane will
correspond to a single coherent sheaf, which can be represented in the derived category by
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a locally-free resolution. The Ext elements can then be represented by chain maps between
resolutions, modulo chain homotopies. The mo products in A are given by chain map
composition. The higher products can be computed by the procedure that we just outlined.

In appendix A, we explain more thoroughly how to perform these computations ex-
plicitly.

2.4 From Ext groups to quiver fields

The relation between the quiver algebra and the Ext algebra was explained by Aspinwall
and Katz in [53], in the physical context of D3-branes at CY 3-folds (m = 1). The general
case is discussed by Lam [33], in a purely mathematical context.

Here, we follow the physical argument of [53]. In that language, the quiver fields ® are
sources for the open string vertex operators in the B-model. Given the open string mode
¢ € A of degree |¢|, there is a one-form descendent ¢() of degree || — 1. Then, to every

¢ € A, one can associate a “spacetime field” ® of degree |®| = 1 — |¢|, which acts as a
source for ¢ in the B-model:
S S+ @el). (2.32)
¢
Due to our choice of notation for the graded quivers @ ,), following [15], we find it conve-
nient to define the “quiver field” ® of degree |®| = —|®|, so that:
B = o] — 1. (2.33)

The explains the relation between quiver fields and Ext elements given in (1.13) in the
introduction.!?

Algebraically, the graded quiver algebra, V, and the Ext algebra, A, are related as
follows [53]. Let V denote the path algebra modulo the quiver relations, and let V denote
the same vector space but with the degrees ¢ exchanged with —c. (That is, ® € V and
® € V. Let also 17[1] denote the vector space V with all degrees decreased by one, and let s :

V= 17[1] denote the corresponding map of degree —1. Then, A is simply the dual of 17[1]:
A= (V[1)". (2.34)

Then, it turns out that the A, relations (2.28) on A are equivalent to the existence of
the differential d, (2.15), on V' [33, 53].

Mapping nodes and arrows. As anticipated in the introduction, we can assign a graded
quiver Q,Sm) to a CY singularity. More precisely, we work with a particular crepant res-
olution X,,,4+2. We should also insist on the fact that the quiver is really associated to
a particular set of fractional branes. A different choice of fractional branes can lead to a
different quiver.

12 As we just explained, a more natural definition of the quiver degree would be minus the degree that
we use in this paper. This is the conventions used, for instance, in [33]. (Also in [16].) In our present
conventions, the quiver degree is equal to minus the BRST degree of the B-model.
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Let us now spell out the B-brane-to-quiver correspondence. First of all, of course, the
quiver nodes are in one-to-one correspondence with the fractional branes:

node ¢ —> & (2.35)

In the case of a singularity that admits a crepant resolution as in (2.23), the number of
fractional branes (and thus, the number of nodes in the quiver) is equal to x(B,+2-r), the
Euler character of the Kahler base B,, 12—, — physically, this is because we should have a
basis of wrapped branes that generates the full even-homology lattice.

Secondly, all the quiver arrows ® of degree |®| = ¢ correspond to Ext-group elements
x of degree |¢| = c+ 1:

gb()EEtd LEE) 29 with c=d-1€{0,1,---,m}. (2.36)

1)
Of course, Serre duality (1.11) corresponds to the pairing (2.5) of quiver arrows. Note
that we identify the arrow ®;; with the Ext element d)ij.l‘g The quiver algebra elements
of quiver degrees —1 and m + 1 correspond to e and €, respectively. The fact that each
element is a loop attached to a single node is a property that we assume of any “allowed
fractional branes,” namely:

Ext?(&;, &) = Ext™ (&, &) = 6;;C . (2.37)
These groups are identified with the “vector multiplets” in supersymmetric quiver gauge

theories.

The quiver superpotential. The graded quiver superpotential takes the general form:

w= 3 ool . gl (2.38)

1172 © 1213 1511 )
closed paths p

The sum is over all closed paths,

S
p=a)el . o) with Y e=m-1, (2.39)
which consists of s concatenated arrows of any degrees ¢; € {0,---,m}, subject to the

above constraint — that is, here ® denotes both the fields ® and their “conjugates” ®.!4
The superpotential couplings are given by open string disk correlators:

+1 +1) s+1)
O[p = <¢lfig )gblgfg QSE:“ > (240)
More explicitly, they are given in terms of the multi-products on A, according to:
+1 +1 (cs+1)
ap - 'Y(mQ (¢£32 ) bl mS—l((z)Eg??) ) ) ° ) ¢Zjll ))) (241)

Note that oy, has degree 0, by construction.

3Note that ¢Z(-;-i) correspond to a morphism from &; to £. While the product of arrows is by concatenation,
the product of two Ext elements correspond to the composition of maps. In our conventions, we then have
the convenient relations:

BB, — ma(Pij, Gik) = bij 0 bk -

MNotice that while the sum in (2.38) is formally over all closed paths of degree m — 1, not all of them
are necessarily in the superpotential since the corresponding coefficients a,, may vanish.
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2.5 Anomaly-free conditions on the quiver ranks

To conclude this section, let us state the anomaly-free condition, alluded to above, in full
generality [15]. Consider a graded quiver Q(m) (not necessarily toric), with an assignment
of ranks NN; € N to the nodes i € Q. Let us denote by N (P ( ) the number of arrows from
i to j of degree c. Then, the generalized anomaly-free condltlons for m odd are:

ne—1
ZN (- (N((P(C)) /\/(cbgf’))):o, Vi, it me22Z+1.  (242)

c=0

Here, for each fixed 4, the sum over j is over all nodes in the quiver (including 7), and n.
was defined in (2.6). For m even, instead, we have the conditions:

ne—1

ZNZ D (V@) +N@)) =28y, Vi, if me2z. (2.43)

For m = 0,1, 2, 3, these conditions coincide with the cancellation of non-abelian anomalies
for the corresponding d = 6,4, 2,0 gauge theories with gauge group [[; U(INV;).

Using the correspondence between quiver arrows and Ext group generators, the
anomaly-free conditions have a simple expression in the B-brane language. Namely, for
a configuration of N; fractional branes of each type &;, we should impose [16]:

m+2

ZN Z 1)%dim Ext§ LEE) =0, Vi (2.44)

This is interpreted as a “generalized tadpole cancellation condition” for a given set of
fractional branes.

In the special case of toric quivers, we always have the “regular branes” with rank
assignment N; = N, Vi. In that case, a factor of N factorizes out of the anomaly-free
condition, and (2.44) becomes a statement about the set of fractional branes. All the
examples that we will consider below satisfy those conditions with N; = N.

3 Flat space: the C™*2 graded quiver

The simplest local Calabi-Yau (m + 2)-fold is flat space, C"™*2. Its toric diagram is the
minimal simplex in Z™*!, namely:

00:(07"'70)7

3.1
v1 = (1,0,0,...,0), vy =1(0,1,0,...,0), ..., vms1=(0,0,...,0,1). (31)

The toric diagrams for m < 3 are shown in figure 1. As a warm up exercise, we consider
the graded quiver associated to C™*2. We first derive it using the algebraic dimensional
reduction procedure introduced in [15]. We then verify this result by a direct B-brane
computation.
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(CQ (C3 (C4

Figure 1. Toric diagrams for C™*2? with m = 0,1, 2.

3.1 Algebraic dimensional reduction

Let us quickly review algebraic dimension reduction. This corresponds to replacing the
underlying CY singularity X,,+2 by a product space of the form:

Xm+2 — Xm+3 = Xm+2 x C . (32)
The effect on the corresponding graded quiver,
Q) — Qumy1)s (3-3)

is a generalization of the T? dimensional reduction of supersymmetric gauge theories. The
quiver diagram transforms as follows:

m m+1
node; —  node; + adjoint chiral \Ilg]) (3.4)
o v 4 gty

where 0 < ¢ < L%J This table also applies when ¢ = j, namely when the theory we start
with contains adjoint fields. It is interesting to consider more carefully what (3.4) implies
for the undirected fields of degree % that can be present in theories with even m:

even m m+1

m m ~(mq m ~
I TR 7 A T A (S A

e (3.5)
7t

Thus, for each conjugate pair of arrows of degree 3 in (), we get two pairs of arrows of
degree 3 in Q(p41)- (For instance, for m = 0, one 6d hypermultiplet gives rise to one 4d
hypermultiplet, which is equivalent to two chiral multiplet arrows of opposite orientations.)

Let W,,) denote the original superpotential of Q(,,), and let W, 1) be the one for
the dimensionally reduced quiver Q(,,1). There are two types of contributions to Wy, 1:

1) Dimensional reduction of terms in W,,. Schematically, for any term in W, we
have a series of terms in Wy, of the form:

m m+1

( glathglea) gle) | gle)glet) —gle) | (3.6)

c1) g (c2) (cxk) i1z 1213 g1 i1ig  iois i1

Q;ip Pigis - Pisy () (e) (el
+ + U Pk

1192 ~ 9213 T T ikl
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126

210

m = 8.

Figure 2. Quivers for C™*2. The quivers for m = 0,1,2,3 correspond to maximally supersym-
metric Yang-Mills theory in d = 6,4,2,0. The multiplicities of fields, i.e. the dimensions of the
representations for the SU(m + 2) global symmetry, are indicated on the arrows. For m even,
the multiplicity of the outmost (unoriented) line is half the dimension of the corresponding rep-
resentation. Black, red, green, blue and purple arrows represent fields of degree 0, 1, 2, 3 and 4,
respectively.

2) New terms involving adjoints. In addition, W, contains a new class of terms.
(c)
]
potential terms in the dimensionally reduced one:

For every arrow ®;.” in the original quiver, we introduce the following pair of super-

0) g (e) g(m—c=1) _ g (m—c=1)(c) 3, (0)
(2 S % -v \2ra Srae (3.7)

These rules fully determine the “dimensionally reduced” quiver with superpotential,
Qm+1)-
3.2 The graded quivers

Using dimensional reduction, we can construct the field content and superpotential for
C™*+? starting from C?, which has a single node with a single unoriented arrow from the
node to itself and no superpotential.
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Quiver. For every m, the quiver is given as follows:

e It consists of a single node.

e In addition, there are adjoint fields ®(¢t1) of degree 0 < ¢ < L%J Here we have
introduced a superindex notation in which ®(*) indicates an arrow with degree ¢
and transforming in the k£ index totally antisymmetric representation of the global
SU(m + 2) symmetry. This notation might seem excessive for these simple theories,
but it will turn useful for some of the computations and more general geometries to be
discussed later. Each field ®(©¢*1) thus transforms in the antisymmetric (c¢+ 1)-index
representation of SU(m + 2).

e For even m, the multiplicity of the unoriented degree- fields is half the dimension
of the corresponding representation. We can regard the full representation as built

out of both ®(2) and ®(2), which have the same degree.
Figure 2 shows these quivers up to m = 9.

Superpotential. Following dimensional reduction, all W terms are cubic. The superpo-
tential terms are given by cubic terms of degree m — 1 combined into SU(m + 2) invariants.
In order to write the superpotential for general m, we introduce a convention in which the
products of fields include the contraction SU(m + 2) indices and are explicitly given by

(AR glenbn)yonir-ames = 1 anami glenk) L glonka) (3.8)

- H k‘-'e 1;011“'0%1 Nk —kp+1""Ck
g Ve

where k = ), k; is the total number of SU(m + 2) indices before contractions. Any such
term with ) k; = m + 2 is manifestly SU(m + 2) invariant. The superpotential can then
be compactly written as

W = Z HU—17) g (k—Lik) §(m+1—j—km+2—j—k) (3.9)
itj+k=m+2

Since we sum over terms such that ¢ + 7 + &k = m + 2, the degrees of the fields in the
superpotential terms are given by partitions (including 0) of (m — 1) into three integers.

3.3 B-model computation

We can also understand the C™*2 quiver in terms of B-branes, as in [16]. There is a single
“fractional brane” in flat space, the skyscraper sheaf over a point p, O,. Without loss of
generality, we take p to be the origin of C"*2. The Koszul resolution at point p is:

0 Qm+2 4f> Qﬂ’L+1 L . 4f> QO 474» Op —_ O, (310)

where € is the cotangent bundle of flat space, and r is the restriction map at the origin.
Lastly, f: QF — QF1 is the vector field:

f= Zz“ai’ (3.11)
0 iz

acting by interior derivative, with z, the holomorphic coordinates of flat space.
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3.3.1 Quiver fields

The quiver fields can be computed as the chain maps between two copies of this resolution.
The generators ¢ of the Extl(Op, O,) group, corresponding to chirals, are elements of
CO(Hom'(0,,0,)). There are m + 2 of them, transforming in the fundamental represen-
tation of SU(m + 2). ¢* is explicitly given by the chain map

Qm+2—>Qm+1—>--~4>Ql4>QO

0 0 0
Oz, Oz, Oz

Qm+2 ., Qm+1 Qm . _ QO

The vector field % again acts by interior derivative.
The generator of the other Ext groups are given by the antisymmetric composition of
these basic elements. There are (m+2) generators of Extk(Op, Op), given explicitly by:

(b,ul“'/% _ %Qﬁ‘ul o ¢/J,2 0---0 qb:U«k . (312)

If we allow 0 < k < m + 2, this contains both the generators ¢ and their Serre dual ¢. To
mimic the notation that is natural for the more complicated example of later sections, we
will write ¢t #k for k < mT*Q and @M1 Mk for k > mT”, including the arbitrary choice of

some pairing:
M1, 54 m+2

(o7 g (3.13)
(ma2

when m is even. In that case, the number of arrows ¢ (*37) is half the dimensions of the

m+2 -index representation, since the full representation is spanned by these arrows and their

Serre dual arrows. The Serre dual of ¢p*1## is the generator ¢Hk+1"#m+2 which satisfies:
gbm"'/ﬁk ° (Z_)Mk+1--~um+2 _ (Z_)u1-~um+2 . (3.14)

3.3.2 Superpotential
The superpotential can be computed straightforwardly. Since we defined higher Ext gen-
erators as compositions of Ext! generators, composing them gives:

Mg (QHHa | gHa+1 k) = gh1HE

m2(¢ﬂl“‘ﬂj’$ﬂj+l"‘ﬂk) = Mk

m2((5#1"'.“j’qgl‘j+1”'ﬂk) — a).“l’”.“k )
The definition (3.12) is valid both for the Cech cohomology classes as well as for their
explicit representatives, therefore all fs are trivially zero. Hence all higher products vanish.

Thus, all the superpotential terms present are the cubic terms we postulated before.
We can compute the coefficients straightforwardly using (3.14). They are

V(g (ma (¢, QIR GUERITHI)) = € s

in agreement with (3.9).
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C2/Z, C3/2Zy CY/Z4

Figure 3. Toric diagrams for C™*2/Z,, ., with m =0, 1, 2.

4 The C™*2 /7,2 orbifolds

As a first family of non-trivial CY singularities, let us consider the orbifolds C"™*2/Z,, 1,
with the cyclic group acting on flat space as:

271

2~ emilz; i=1,---,m+2, (z;) e C™H2 (4.1)

This singularity can be resolved to a local P™*!. We thus have:

Xpnio = C™2 /i, Xtz = Tot(O(—m — 2) — P ) (4.2)
Let us first derive the quiver by toric methods. We will then discuss B-branes on the
resolution X, 42.

4.1 The toric geometries
The (m + 1)-dimensional toric diagrams for these geometries contain the following m + 3
points:
v = (1,0,0,...,0),
V2 = (071303'-'70)7
vo = (0,...,0), _ Umao = (—1,—1,...,—1) . (4.3)
Um+1 = (0,0,...,0,1),

The toric diagrams for the first few values of m are shown in figure 3.

4.2 The graded quivers

The quivers and superpotentials can be determined by standard orbifolding [1] of the C+2
quivers discussed above.

Quiver. Figure 4 shows these quivers up to m = 9.1 For each type of field, we have
indicated the corresponding SU(m + 2) representation. For even m, the multiplicitie