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Abstract

The problem of princip~l component analysis of a symmetric matrix (finding a
p-dimensional eigenspace associated with the largest p eigenvalues) can be viewed as

a smooth optimization problem on a homogeneous space. A solution in terms of the lim-
iting value of a continuous-time dynamical system is presented, A discretization of the

dynamical system is proposed that exploits the geometry of the homogeneous space. The
relationship between the proposed algorithm and classical methods are investigated.

1. Introduction

The problem of principal component analysis of a symmetric matrix N = NT is that

of finding an eigenspace of specified dimension p Z- 1 which corresponds to the

maximal p eigenvalues of N. There are a number of classical algorithms available

for computing dominant eigenspaces (principal components) of a symmetric matrix.

A good reference for standard numerical methods is Golub and Van Loan [10].
There has been considerable interest in the last decade in using dynamical systems

to solve linear algebra problems (see the review [5] and the recent monograph [11 ]). It
is desirable to consider the relationship between such methods and classical algebraic
methods. For example, Deift et al, [6] investigated a matrix differential equation
based on the Toda flow, the solution of which (evaluated at integer times) is exactly the

sequence of iterates generated by the standard Q R algorithm. In general, dynamical
system solutions of linear algebra problems do not interpolate classical methods

exactly. Discrete computational methods based on dynamical system solutions to

a given problem provide a way of comparing classical algorithms with dynamical

system methods. Recent work on developing numerical methods based on dynamical
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systems insight is contained Brockett [3] and Moore et al. [14].

Concentrating on the problem of principal component analysis, Ammar and Martin

[1] have studied the power method (for determining the dominant p-dimensional
eigenspace of a symmetric matrix) as a recursion on the Grassmannian manifold

GP(W), the set of all p-dimensional subspaces of R“. Using local coordinate charts
on Gp (Rn) Ammar and Martin [1] show that the power method is closely related

to the solution of a matrix Riccati differential equation. Unfortunately, the solution

to a matrix Riccati equation may diverge to infinity in finite time. Such solutions
correspond to solutions that do not remain in the original local coordinate chart. In

his review paper, Chu [5] derives the gradient flow of the Rayleigh quotient (for a

symmetric matrix) on the sphere. Chu’s result is a vector differential equation in l?”

whose limiting solution is the maximal eigenvector of the matrix considered, It turns

out that Chu’s result is a simple case of a matrix differential equation proposed by Oja

[15, 16] for the analysis of learning performance of single-layer neural networks with

n inputs and p neurons. The differential equation that Oja considers evolves on R“xr’
and corresponds to the ‘learning’ procedure of the neural network. The columns of the

limiting solution span the principal component of the covariance matrix N = E {.u~u~}

(where E{uiu~} is the expectation of u~u~) of the vector random process u~ = R“,
,4 =1,2,..., with which the network was ‘trained’. Recent work by Yan et al.

[18] has provided a rigorous analysis of the learning equation proposed by Oja. Not

surprisingly, it is seen that the solution to Oja’s learning equations is closely related

to the solution of a Riccati differential equation [11, page 27].

In this paper we follow Yan et al. [18] and study the properties of Oja’s learning

equation restricted to the Stiefel manifold (the set of all n x p real matrices with
orthonormal columns). However, we differ from earlier treatments by considering a
homogeneous geometric structure on the Stiefel manifold. Oja’s flow is derived as the

gradient flow of a generalised Rayleigh quotient and explicit proofs of convergence
for the flow are presented which extend the results of Yan et al. [18] and Helmke and

Moore [11, page 26] so that no genericity assumption is required on the eigenvalues
of N. The homogeneous nature of the Stiefel manifold is exploited to develop an

explicit numerical method (a discrete-time system evolving on the Stiefel manifold) for

principal component analysis. The method proposed is a gradient ascent algorithm

modified to evolve explicitly on St(P, n). A step-size must be selected for each
iteration and a suitable selection scheme is proposed. A proof of convergence for

the proposed algorithm is given as well as modifications and observations aimed at

reducing the computational cost of implementing the algorithm on a digital computer.

The discrete method proposed is similar to the classical power method and steepest

ascent methods for determining the dominant p-eigenspace of a matrix N. Indeed, in

the case where p = 1 (for a particular choice of time-step) the discretization is shown

to be the power method. When p > 1, however, there are subtle differences between
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the methods.

The paper is organised into five sections including the introduction. Section 2

reviews the derivation of the Oja flow and gives a general proof of convergence.
In Section 3 a discrete-time iteration based on the results in Section 2 is proposed,

along with a suitable choice of time-step. Section 4 considers two motlfications of
the scheme to reduce the computational cost of implementing the proposed numerical

algorithm. Finally Section 5 considers the relationship of the proposed algorithm to

classical methods.

2. Continuous-time gradient flow

In this section a dynamical systems solution to the problem of finding the principal

component of a matrix is developed, based on computing the gradient flow associated

with a generalised Rayleigh quotient function on the Stiefel manifold. The Stiefel

manifold is given the structure of a homogeneous space (rather than just an embedded

submanifold of N“xP). This approach differs from the approach previous authors have

taken in related work [15, 16, 11, 18], and we take the time to present the geometry

before the principal result of this section is presented. The reader is referred to Warner

[17] for general technical details on Lie-groups and homogeneous spaces.
Let N = NT be a real symmetric n x n matrix with eigenvalues Al > AZ >

. . . ~ & and an associated set of ofihonomal eigenvectors u,, . . . , VH.A rnaxirmd

p-dimensional eigenspace, or maximal p-eigenspace of N, is sp{vi, . . . , VP}the

subspace of N“ spanned by {VI, . . . , VP]. If AP > AP+1then the maximal p-eigenspace
of N is unique. If AP = AP+l = . . . = AP+,, for some r > 0, then any subspace

Sp{vl, . . . , VP–l,w}, where w e sp{vP, UP+i,. . . , vP+,}, is a maximal p-eigenspace
of N.

For p an integer with 1 ~ p < n, let

St(p, n) = IX ● IR”xpI XTX = l,], (1)

where 1P is the p x p identity matrix, denote the Stiefel manifold of real orthogonal

n x p matrices. For X c St(p, n), the columns of X are orthonormal basis vectors for

a p-dimensional subspace of R“. The Stiefel manifold St(p, n) is a smooth compact

np — ~p (p + I )-dimensional submanifold of R“‘P [11, page 25]. The proof given

in Helmke and Moore [11] exploits the fact that 1P is a regular point of the map

X i-+ XTX. One can also think of St(p, n) as a homogeneous space and it is this

property of St (p, n) that is exploited later to develop a numerical method.
Let G = O(n) x O(p) be the topological product of the set of n x n and p x p real

orthogonal matrices O(n) = {U G R“ I UTU = U UT = l.}. Then G is a compact
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Lie-group [11, page 348]. It is easily verified that y : G x St(p, n) + St(p, n) given

by

Y((u, v), x) := UXVT (2)

is a smooth, transitive, group action of G on St(p, n). Since G is compact it follows

that St(p, n) is a compact embedded submanifold of R“x” [11, page 352]. The tangent

space Tx St(p, n) of St(p, n) at a point X = St(p, n) is given by the image of the

linearization of yx : G + St(p, n),

yx(u) := Y(UI x),

at the identity element of G [9, page 75]. Recall that the tangent space of O(n) at the

identity is [11, page 349]

T,nO(n) = Sk(n) = {!2 ● l?’’’” I !QT= –S2] ,

and consequently that the tangent space at the identity of G is Tfln,,PJG = Sk(n) x

Sk(p). It follows that

Txst(p,lz)= {S2x– XII I ‘d GSk(n), l-l E Sk(p)). (3)

The natural Riemannian metric to use with the homogeneous structure of St(p, n)

is the normal metric derived from a right invariant metric on the Lie-group G [13, page
127]. To construct this metric consider the Euclidean inner product on ll?l”x”x RPXP

as

((Ql, ill), ($_lz,II,)) = tr(f2~f2,) + tr(~~ll,).

This induces a nondegenerate inner product on T([),,,P)G. Given X ~ St (p, n), then

the linearization T(,n,lP)yx of yx can be used to decompose the identity tangent space

into

T(l.,ID)G= ker TO,,,IPIYXx dom TU.,IP)YX,

where ker T(lfl,1.~yx is the kernel of T[ln,lP)yx and

is the domain of T([n,l,)yX (the subspace orthogonal to ker T(jn,lP)yx using the Euclidean

inner product provided on T(jn,l,)G). By construction, T(ln,lP)yx restricts to a vector

space lsomorphlsm T(~,,P)yx,

T(i,~,)Yx: dom TV.WYX + TX St(p, n),

%,/, ) ~x (x) := ~,n,,p)yx(x).
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The normal Riemannian metric (see Helmke and Moore [11, page 52]) on St(p, n) is

the nondegenerate bilinear map on each tangent space TX St(p, n)

((Q, X – Xl_I,, S22X – Xl_12))x = tr((f2~)T$2~) + tr((H~)TH~), (4)

where f2,X – XII, c TxSt(p, n) fori = 1,2 and

(Q,, l-I,) = (( ’d,)~, (n[)~) @ (f-p, n:)

is the decomposition of (!2,, H,) into components in ker Tu,,,/,,Iyx and dom Ttl,,,l,,)~x

respectively. It is easily verified that ((., .))x varies smoothly with X and defines a

Riemannian metric.
The manifold St(p, n) provides a smooth constraint set on which the problem of

principal component analysis may be considered. In the case p = 1 (where only a

single maximal eigenvector is desired) one may consider optimizing the cost index

r~ : R“ – {0] e R,
X7NX

r~(x) = ————
XTX ‘

known as the classical Rayleigh quotient. Of course when x ● St( 1, n) then r~ (.x) =

XTNX. The generalised Rayleigh quotient on St(p, n) is defined as

RN : St(p, n) ~ R, RN(X) = tr(XTNX). (5)

To confirm that optimizing RN on St(p, n) provides a solution to the problem of

principal component analysis, recall the Ky-Fan minimax principle [12, page 191],

which states

max RN(X) =Al +.. . +AP,
Xat[p,rz)

min RN(X) = A,, +I_,,+ . . . + A,,.
Xcst(p,)l)

Moreover, if X ● St(p, n), such that RN (X) = ~~=1 A,, then the columns of X will
generate a basis for a maximal p-dimensional eigenspace of N.

We proceed by computing the gradient associated with RN on St(p, n) and showing

that the limiting solution of the continuous-time gradient ascent differential equation

converges to a maximum of RN.

THEOREM 2.]. Let N = NT be a real symmetric n x n matrix and p an integer

with 1 < p < n. Denote the ei,genvalues of N by Al z . . . > k, with algebraic

multiplicities n,, . . . , n~ such that ~~=1 ni = n. For X ~ St(p, n), dejine the
generalised Rayleigh quotient RN : St(p, n) ~ R, RN(X) = tr(XTNX). Then we

have the fo[lowing.
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(i) The gradient of RN(X), on the Stiefel manfold St(p, n), with respect to the

normal Riemannian metric (4), is

grad R~(X) = (1,, – XXT)NX = [XXT, N]X (6)

(where the Lie bracket of two matrices A, B E K’‘n is

[A, B] := AB – BA).

(ii) The critical points of RN(X) on St(p, n) are characterised by

[xxT,N] = o

and correspond to points X e St (p, n), such that the columns of X span a

p-dimensional eigenspace of N.

(iii) For all initial conditions X{) e St(p, n), the solution X (t) c St(p, n) of

:X = grad R~(X)

= (1,, – XXT)NX, X(0) = X, (7)

exists for all t ~ R and converges to some matrix Xm ~ St(p, n) as t ~

W. For almost all initial conditions the solution X(t) of (7) converges

exponentially fast to a matrix whose columns form a basis for the maximal

p-eigenspace of N.

(iv) When p = 1 the exact solution to (7) is given by

x(t) = e’~xO/\le’~xOll,

wherex[) e S“-’ = St(l, n).

(8)

PROOF. The gradient of RN is computed using the identities [11, page 356]

i) DR~lX(~) = ((grad R~(X),,$))x, $ ~ TxSt(P, n)

ii) grad RN(X) c Tx St(p, n),

where D RN\x (<) is the Fr6chet derivative of RN(X) in direction $ c Tx St(p, n)

evaluated at the point X c St(p, n). Computing the Fr6chet derivative of RN in

direction ‘i2X – XII ~ 7’XSt(p, n) gives

DRNIX(QX – Xll) = 2tr(XTN(f2X – XlI))

= 2tr(XXTNS2) – 2tr(XTNXH).
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Observe that tr(XTNX I_l) = O since XTNX is symmetric and H is skew symmetric.

Similarly only the skew symmetric part of XXTN contributes to tr(XXTN S2). Thus,

DRNIX(QX – Xl_I) = tr([XXT, N]f2)

= (([N,XXT]X,QX- Xn)))x,
using the Riemannian metric (4). The second line follows since any component of

(N, XXT] that lies in ker 7’[l,l,lP)yxdoes not contribute to the value of tr([XXT, N]S2)

and of course [N, XXT] E Sk(n) which ensures [N, XXT]X E Tx St(p, n). This

proves part (i).

At critical points of RN the gradient grad RN(X) is zero, [N, XXT]X = O. It

follows that NX = X (XTNX) and thus the columns of X E St(p, n) span a p-
eigenspace of N. Moreover [N, XXT] = X( XTNX)XT – X( XTNX)XT = O, which
proves part (ii).

Infinite-time existence of solutions to (7) follows from the compact nature of

St(p, n). By applying La’Salle’s invariance principle, it is easily verified that X (t)
converges to a level set of RN for which grad RN(X) = O. These sets are termed
critical sets. To show convergence to a single point (rather than just to a critical set)

requires a little extra effort.

An important property of the critical sets of RN is that they are a disjoint union

of smooth closed manifolds. An explicit proof of this result is contained in [13]; it

also follows from the more general development given in [7]. Given X E St(p, n) a
critical point of RN let &x ~ St (p, n) denote the critical set containing X. Since J%x

is a submanifold of St(p, n) it has a well defined tangent space,

TX9X = {!2X – XII I Q e Sk(n), II ● Sk(p), and [N, [$2, XXT]] = O}, (9)

at the point X e St(p, n). To see this, observe that any curve Y(t), Y(0) = X, lying

in gx will satisfy [N, Y(t) Y(t)T] Y(t ) = O. Similarly it is easily verified that any

curve (passing through Y(0) = X) satisfying this equality must lie in ~x. Setting

Y(0) = s2X – XI_l c Tx St(p, n) and then evaluating

;[N,Y(t) Y(t)T]Y(r) =o

gives the above algebraic characterisation for TXJYX C Tx St(p, n ).

Now at a critical point X e RN, the Hessian &RN is a well-defined bilinear map
from Tx St(p, n) to the reals [11, page 344]. Let (f21X – Xl_Il) e Tx St(p, n) and

(%X – Xl_lJ = Tx St(p, n) be arbitrary; then

%RN(Q, X – XI_II, QX – Xll) = ~n,x-xn, (&,x-xn, RN(X))

= ~~,x-xn, tr([XXT, NIQ2)
= tr([[G!l, XXT], N]Q2).
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Observe that [Q, X XT] is skew symmetric since XXT is symmetric and !i21is skew

symmetric. Similarly, [[$21,XXT], N] is skew symmetric. Since fl, and $2z are

arbitrary then %RN is degenerate in exactly those tangent directions (f2X – X H) =

TX St(p, n) for which [[f2, XXT], N] = O. But this corresponds exactly to (9) and one

concludes that the Hessian &Y’RNdegenerates only on the tangent space of the critical

set ~x. The above argument shows that RN is a Morse-Bott function on St (p,n) [11,

page 361]. Applying Proposition C. 12.3 from Appendix C [11] completes the proof

of part (iii).
Part (iv) of the theorem is verified by explicitly evaluating the derivative of (8).

REMARK 2.2. In the case 1 < p < n no exact solution to (7) is known; however, for
X(t) a solution to (7) the solution for H(t) = X(t) X (t)T is known, since

M(t) = XXT + XXT

= NXXT + XXTN – 2XXTNXXT

= NH(t) + H(t)N – 2H(t)NH(t), (lo)

H(0) = XOX~ and this equation is a Riccati differential equation [18].

3. A gradient ascent algorithm

In this section a numerical algorithm for solving (7) is proposed. The algorithm

is based on a gradient ascent algorithm modified to ensure that each iteration lies in

St(p, n).

Let X. = St (p,n) and consider the recursive algorithm generated by

X~+l = e-~’[x+’lxk, (11)

for a sequence of positive real numbers a~, termed time-steps. The algorithm generated
by(11) is referred to as the Rayleigh gradient algorithm. The Lie-bracket [X~X:, N]

T‘] is orthogonal and X~+l = St(p, n).is skew symmetric and consequent y e–”~[x~‘L ,
Observe also that

d

Ze-T[x’x:’’v’xk = (1. – X~X~)NX~ = grad RN(X~),
rZ(I

T “X~ reprethe gradient of RN at X~. Thus, e-’[x’x~ ~ sents a curve in St(p, n), passing
through X~ at time r = O, and with first derivative equal to grad RN(X). The

linearization of X~+l(r) = e–z[x~x~,NIx~around ~ = () is

X~+l(~) = X~ + r grad R~(X~) + (higher order terms).
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The higher order terms modify the basic gradient ascent algorithm on R“‘]’ to ensure

that the interpolation occurs along curves in St (p, n ), For suitably small time-steps

Uk,it is clear that (11) will closely approximate the gradient ascent algorithm on R“xP.
To implement the Rayleigh gradient algorithm it is necessary to choose a time-step

ak, for each step of the recursion. A convenient criteria for determining suitable

time-steps is to maximise the change in potential

ARN(x~, q) = RN(x~+, ) – R~(x~). (12)

It is possible to use line-search techniques to determine the optimal time-step for each
iteration of the algorithm. Completing a line search at each step of the iteration,

however, is computationally expensive and often results in worse stability properties
for the overall algorithm. Instead, a simple deterministic
based on maximizing a lower bound .AR~ (XA, r) for (12)

LEMMA3.1. ForurIy XL c St(p, n) such that grad R,N(XL)

XL+, = ~-CdX~X~IVljyA,~,here

IIIXLX:, NI112
a’ = 2/7il[/v[xkx[,Npll

formulae for the time-step

is provided.

# 0, the recursive estimate

(13)

satisfies ARN(XL, ak) = RN(Xk+l) – RN(XL) > (),

PROOF.Denote XA+,(r) = e–Tl~ix~.I’v’I xk for an arbitrary time-step r. Direct Calcula-

tions show

jARN(Xk, r) = –2tr(XJ+1(T)N[XkXj, A’IXL+I(T)),

~ARN(X~, ~) = +4tr(X~+[(r)iV[ X~X~, N]*Xi+,(r)).

Taylor’s formula for ARN (Xi, r) gives

LRN(X~, r) = –2~ tr(X~N[XLX~, N]X~)

/

I
+ 4r2 tr(X~+l (T)N[XLXf,N]2XL+I(T))fl – s)a’s

()

? 2Tt/[xLx:, ~]/12

/

I

– 4T2 llX~+l(T)X;+l (T)llll NIXLX~, N]2\\(1 – S)dS

()

= 2Tl\[X&, N]112– ~Tzfi\lNIX~X;, N]2\\ =: ARj(Xk, T).

The quadratic nature of R~ (Xk, T) yields a unique maximum occurring at T = ak
given by (13). Observe that if grad RN(XJ # O, then ll[X~X~, N]/12 # O and thus

R~(Xi, T) >0. The result follows since QRN(XI,, T) ? ARL(XA, C) >0.
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THEOREM 3.2. Let N = NT be a real symmetric n x n matrix, and p an integer with

1 s p < n. Denote the eigenvalues of N by Al >... ? An. For a given estimate
XL e St(p, n), let a~ be given by (13), The Rayleigh gradient algorithm,

Xk+, = e –aklxdhxk,

has the following properties.

(i)
(ii)

(iii)

(iv)

(v)

The algorithm defines an iteration on St(p, n).

Fixed points of the algorithm are critical points of RN, X ● St (p, n) such

that [X XT, N] = O. The columns of a jixed point of (11) form a basis for a

p-dimensional eigenspace of N.

lfX~, fork =1,2, ,.., is a solution to the al~orithm, then the real sequence

RN(XJ is strictly monotonic increasing unless there is some k 6 N with X~

a jixed point of the algorithm.

Let X~, fork =1,2, ..., be a solution to the algorithm. Then XL converges

to a critical level set of RN on St(p, n).

All critical level sets of RM are unstable except the set for which the Rayleigh

quotient is maximised. The columns of an element of the maximal critical

level set form a basis for the maximal eigenspace of N.

PROOF. Part (i) folIows from the observation that e-”’(x”~ N] is ofihogona]. part (ii)

is a direct consequence of Lemma 3.1 (since A RN(X~, a~) = O if and only if XL is a

fixed point) and Theorem 2.1. Part (iii) also follows directly from Lemma 3.1.
To prove part (iv), observe that since St(p, n) is a compact set, RN (Xt) is a bounded

monotonically increasing sequence which must converge. As a consequence X~
converges to some level set of RN such that for any X in this set A RN (X, a(X)) = O.

Lemma 3.1 ensures that any X in this set is a fixed point of the recursion.
If X is a fixed point of the recursion whose columns do not span the maximal

p-dimensional subspace of N, then it is clear that there exists an orthogonal matrix
U c O(n), with IIU – 1. II arbitrarily small and such that RN (ZJX) > RN(X). As
a consequence, the initial condition XO = UX (IIXO – XII small) will give rise to a
sequence of matrices X~ that diverges from the level set containing X, Lemma 3.1.
This proves the first statement of (v), while the attractive nature of the remaining

fixed points follows from La’ Salle’s principle of invariance along with the Lyapunov

function V(X) = (~~=, A,) – RN(X).

REMARK3.3. It is difficult to characterise the exact basin of attraction for the set of

matrices whose columns span the maximal p-eigenspace of N. It is conjectured that

the attractive basin for this set is all of St(p, n) except for other critical points.
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REMARK3,4. For a fixed initial condition XOc St(p, n) let X~ be the solution to (11).
Define H~ = X~Xl and observe

H~+l = e ‘ff’IH*N]Hke~h[H’N1. (14)

Thus H~ can be written as a recursion on the set of symmetric rank p projection

matrices {H ● R“”” I H = HT, H’ = H, rank H = p}, The algorithm generated

in this manner is known as the double-bracket algorithm [14], a discretization of the

continuous-time double-bracket equation (10).

To illustrate the Rayleigh gradient algorithm a simulation has been included. A

positive definite symmetric matrix N was randomly generated,

(
13.3426 2.1180 –3.8054 –1.7068

N=
2.1180 7.0640 0.3498 3.4856

–3.8054 0.3498 5.1715

)

1.4446 ‘

– 1.7068 3.4856 1.4446 9.3422

and its maximal two-dimensional eigenspace (denoted D2(N)) was computed using

a standard eigenvalue decomposition algorithm. A matrix U2 c St(4, 2) was chosen

such that D2(N) = sp(U2) was the span of the columns of U2. The Rayleigh gradient

algorithm (11) was initialised with a randomly generated matrix XO ~ St(4, 2) and

run until the distance between the estimated and desired subspace was of order 10-4.
The distance between sp(XJ and the true maximal 2-dimensional eigenspace D2(N)

was computed by

the Frobenius norm of the projection of X~ onto the complement of the span of U2.

A plot of the distance versus iteration for this example is given by Figure 1. Plotting
the distance on a logarithmic scale displays the linear convergence behaviour of the

algorithm.

4. Computational considerations

In this section, two issues related to implementing (11) in a digital environment

are discussed. Results in both the following subsections are aimed at reducing the

computational cost associated with estimating the matrix exponential e–a~[XL’* ,TN] a

transcendental n x n matrix function. The result presented in Subsection 4.1 is also

important in Section 5.
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FIGURE1. Plot of dist (Dj(N), sp (XA)) versus the iteration k for XL a typical solution to ( 11).

4.1, An equivalent formulation To implement (11) on conventional computer ar-

chitecture, the main computational cost for each step of the algorithm lies in computing

the n x n matrix exponential e-”’(x’‘~~1. The following result provides an equivalent

formulation of the algorithm which involves the related p x p transcendental matrix

functions “COS”and “sine”. In many applications it is only required to compute the
eigenspace associated with a couple of dominant eigenvalues, p << n, and consider-
able computational advantage can be obtained by using the following formulation.

Define the matrix function sine : RPx/’ ~ RPXPby the convergent infinite sum

A2 A4 A6
sinc(A)=l,, –7+=– T +. . . .

. .

Observe that A sine(A) = sin(A) and thus, if A is invertible, sine(A) = A-l sin(A).

Define the matrix function COS(A) by an analogous power series expansion. The

matrix functions cos and sine are related by COS2(A) = 1. – A2 sinc2 (A),

LEMMA 4.1. Let N = NT be a real symmetric n x n matrix with eigenvalues L~ z
. . . >k., andak, fork= 1,2, ..., be a sequence of real positive numbers. If
XO G St (p, n) is an initial condition that is not a critical point of RN(X], then

( )=Xk COS(12kYk) – %x[Nxk sinc(~k y~) + %N Xh sinc(~~ Yk),

(15)

where the power expansions for cos(a~ yk) and sinc(a~ Y~) are determined by the

positive semi-dejinite matrix Y; c Rp’ p

Y: = X:N(/n – Xkxj)h’xk = x;N2xk – (xjN&)2. (16)
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REMARK 4.2. The matrix Y~need not be explicitly calculated as the power series

expansions of sine and cos depend only on Y:.

PROOF. The proof follows from a power series expansion of e-”~[~~X~NI Xk,

x~+,= ( )f’;(-ak[x{x;, w)’x,.

Simple algebraic manipulations lead to the relation

[xLx;.N]*XL = –x~YA~,

where Y: is defined by (16).

Using (18) it is possible to rewrite ( 17) as a power series in (– Y:)

(17)

(18)

(m (–U,)’”’
“+1‘x (Zm)!

(–(X,)2’”+’xk(–Y:)m+ ~2m + 1)! ( ))Xk(X;NXL) –NXk (–Y;)”’ ,
m 4 (19)

where the first and second terms in the summation follow from the odd and the even

powers of [X~X;, N]’ X~ respectively. On rewriting this as two separate power series
in (–Y;)

m (–a,)*”’ m (–a,p
XL+I = Xh ~ ~ , (–Y;)’”

~,=0 ( m), ( )
– a~ X~(X;NXL] – NX~ ~

~,=0(2m + 1)!
(-Y:)n’

( )= X~cos(cq YA.)– ~k X~(X~NX~) – NX~ sinc(a~l’k),

the result follows by rearranging terms.

4.2. Pade approximations of the exponential It is also of interest to consider ap-

proximate methods for calculating matrix exponentials. In particular, one is interested
in methods that will not violate the constraint X~+, ~ St (p, n). A standard approxim-
ation used for calculating the exponential function is a Pad6 approximation of order

(n, m) where n >0 and m >0 are integers [10, page 557]. For example, a ( 1,1) Pad6

approximation of the exponential is

A key observation is that when n = m and the exponent is skew-symmetric, the

resulting Pad6 approximate is orthogonal. Thus

(Xk+,= In + ;[XkX:, N] )-’ (In– ;[Xk X:, N]) Xk, (20)
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with initial condition XO e St(p, n), defines an iteration on St(p, n) which approx-

imates the Rayleigh gradient algorithm (11). Of course, in practice one would use

an algorithm such as Gaussian elimination [10, page 92] to solve the linear system

equations

(Zn + ;[xkx:, m) Xk+i= (1.– :[xkx~, iv])XL
for X~+l rather than computing the inverse explicitly.

The algorithm defined by (20) can also be rewritten in a similar form to that obtained

in Lemma 4.1. Consider the power series expansion

(1,,+ ;[X,X:, N])-’ = ~ (-;[X, X:, N])’ .
,=()

From here it is easily shown that

x,+, = -x, + (2X, -ci,(X, (X:NX,) - NX,)) (1,,+:y;)-’, (21)

where Yk?~ RI”)’ is given by (16).

5. Comparison with classical algorithms

in this section the relationship between the Rayleigh gradient algorithm (11) and

some classical algorithms for determining the maximal eigenspace of a symmetric

matrix are investigated. A good discussion of the power method and the steepest

ascent method for determining a single maximal eigenvalue of a symmetric matrix is
given by Faddeev and Faddeeva [8]. Practical issues arising in implementing these

algorithms along with direct generalizations to eigenspace methods are covered by
Golub and Van Loan [10].

5.1. The power method In this subsection, the algorithm (11) in the case where

p = 1 is considered. It is shown that for a certain choice of time-step ak, the
algorithm (11) is the classical power method.

Inthe case where p = 1 then St(l, n) = {Xe R“ I Ilxll = 1} = S“-l, the (n – I)-

dimensional sphere in R“, The usual representation of the tangent space of S“-l is
~, S“-l = {$ ● R“ I ,$T,y= ()) and the Riemannian metric induced from the standard

metric on R“ is (($, q)) = ~Tq, for;, q in T, S”-[ [1 1, page 25]. It is easily verified that
these constructions are equivalent to considering St( 1, n) as a homogeneous space.

THt3c)~~N!5.1. Let N = NT be a real symmetric n x n matrix with eigenvalues

Al >...> An. Forxk E S“-’ [etak be given by

(22)
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where yk e ~ is given by

For XO

(i)

(ii)

(iii)

(iv)

( )iyk = X:N2Xk – (x: Nxk)2 .

[15]

(23)

e St (1, n) = S*- i an arbitrary initial condition, the following hold.

The formula
T

xk+l = I?–aA[““’~‘N’xk

defines a recursive algorithm on S“-l.

Fixed points of the rank-1 Rayleigh gradient algorithm are the critical points

of rN on $“’1, and are exactly the eigenvectors of N.

Ifx~, fork = 1,2, . . . is a solution to the RayLeigh gradient algorithm, then

the real sequence r~ (xk) is strictly monotonic increasing, unless x~ is an

eigenvector of N.

For a given xk e S“- 1 which is not an eigenvector of N, then y~ # Oand

( sin(~~ ~k)

)

sin(~~ yk)
xk+, = cos(~kyk) – X[NXk xk + NXk. (24)

Yk Yk

(v)

(vi)

PROOF.

Yk = II grad ‘N (% ) II and .yk = o if and only if grad rN (Xk) = O and ~k is an eigenvector
of N. The recursive iteration (24) now follows directly from Lemma 4.1, with the

substitution sinc(~kyk) = sin(~~yk)/(~k yk). Parts (v) and (vi) again follow directly

from Theorem 3.2.

Let xk, for k = 1,2, . . . be a solution to the rank-1 Rayleigh gradient al-

gorithm. Then xk converges to an eigenvector of N.

All eigenvectors of N, considered as jixed points of (24), are unstable, ex-

cept the eigenvector corresponding to the maximal eigenvalue L,, which is

exponentially stable.

Parts (i)–(iii) follow directly from Theorem 3.2. To see part (iv) observe that

REMARK 5.2. Equation (24) involves only NXL, x~Nxk and (Nxk)T (Nxk) vector com-

putations. This structure is especially of interest when sparse or structured matrices

N are considered.

A geodesic (or great circle) on S“-l, passing through x at time t = O,can be written

y(t) = cos(t)x – sin(t)V, (25)

where V = j(0) is a unit vector orthogonal to x. Choosing v (xk) =

grad rN (xk)/ II grad rN(.~k)II,x = xk and evaluating y (t) at time t = ~k II grad r~ (x,) II
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gives (24). Thus, (24) is a geodesic interpolation of (8), the solution to the rank-1

Rayleigh gradient flow (7).

For a symmetric n x n matrix N = NT the classical power method is computed
using the recursive formulae [10, page 351 ]

Zk = Nxk x~+, = z~/\lz~l\. (26)

The renormalisation operation is necessary if the algorithm is to be numerically stable.

The following lemma shows that for N positive semi-definite and a particular choice

of ~k the rank-1 Rayleigh gradient algorithm (24) is exactly the power method (26).

LEMMA 5.3. Let N = NT be a positive semi-dejnite n x n matrix. For x~ c S“- 1(not

an ei,genvector of N) then IIgrad rN(xk) (1~ ([Nx (1.Let ak be given by

1 ._, (IIgradriv(~k) II
~k =

IIgrad‘N(&) II “n )II Nxk II ‘
(27)

where sin– 1
(“g’?~:~)”)

6 (O,m/2). Then

h’Xk ( sin (~~yk)

)

sin(a~ yJ— =
l[NXkll

cos(~kyk) – X;NXk xk + Nx~ ,
.yk Yk

where y~ is given by (23).

PROOF. Observe that IIgrad rN (Xk) 112 = y: = IINxk II2 – (x; NXZ)2 > 0 and thus

IIgrad rN(x~)II5 IINxk 1].Consider the 2-dimensional linear subspace sp{xk, Nxk} of
IR’. The new estimate x~+l generated using either (24) or (26) will lie in sp{x~, Nx~ }

(see Figure 2).

FIGURE2. Thegeometricrelationshipbetweenthepower-methoditerateandtheiterategeneratedby
(24).
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Set
NXL

(

sin(ry~)

)

sin(~y~)
= cos(~y~) – x:Nx~ x~ + NXk,

\{Nx, \\ Yk Yk

for r >0 and observe that x~ and NXLare linearly independent. Then

sin(ryk) sin(~yk) 1
COS(Tyk) – XjNXk = O and

yk = (lNXkll“yk —

Since N >0 is positive definite, a real solution to the first relation exists for which

ryk ~ (O,??/2). The time-step value is now obtained by computing the smallest

positive root of the second relation.

Choosing N >0 positive definite in Lemma 5.3 ensures that (24) and (26) converge
‘generically’ to the same eigenvector. Conversely, if N is symmetric with eigenvalues

A, >... > ~., O > l.,, and Ik. I > IA,1,then the power method will converge to the

eigenvector associated with J.nwhile (24) (equipped with time-step (22)) will converge

to the eigenvector associated with A,. Nevertheless, one may still choose ~k using

(27), with the inverse sine operation chosen to lie in the interval

(llgrad~~(x~)ll
sin–’

\lNx~ll )
e (7r/2, l-r),

such that (24) and (26) are equivalent. In this case the geodesics corresponding to

each iteration of (24) are describing great circles traveling almost from pole to pole

of the sphere.

5.2. The steepest ascent algorithm The gradient ascent algorithm for the
Rayleigh quotient r~ is the recursion [8, page 430]

Zk
z~ = xk + Skgrad r~ (xk)

“+1 = (Izkll
(28)

where sk > 0 is a real number termed the step-size, and grad rN (XL) is the Euclidean
gradient computed in R“. It is easily verified that the k + 1-th iterate of (28) will
also lie on the 2-dimensional linear subspace sp{xk, Nxk }of RH. Indeed, for XLnot an

eigenvector of N, (24) and (28) are equivalent when

1 ( 1
Sk=> )–1 .

Yk cos(~k YL )
(29)

The optimal step-size for the steepest ascent algorithm (that is, IN(xL+,(s~p’)) 2

rN(xk+l (Sk)) for any sk c R) is [8, page 433]

s~p’=2(r~(xk)-r~(grad r~(xk))+ {[r~(xk) -r~(gradr~(xk))]’ +41[r~(xk)ll ]*)-’.
(30)
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It follows directly that the optimal time-step selection for (24) is given by

1 (1+(:;%,)
~k = —Ccr–’

Yk

Substituting directly into (24) and analytically computing the composition of cos

and sin with Cos–l gives

1

[(
fi)<~k+(?’%)~.](,,)1‘~:pt,t;N~k 2+ (.S:p02y2‘k+l = ~+ ($~t)zyf

with s~p(given by (30). This recursion provides an optimal steepest ascent algorithm

with scaling factor ---!---1+(.!f~)~v;‘ which converges to one as ,r~converges to an eigenvector

of N.

5.3. The generalised power method In both the power method and the steepest
ascent algorithm the resealing operation preserves the computational stability of the

calculation, To generalise classical methods to the case where p > 1, (that is,

X~ e St (p, n )), one must decide on a procedure to renormalise new estimates to lie

on St (p, n). Thus a generalised power method may be written abstractly

Zk = NXk Xk+l = rescale(Z~), (32)

Since the span of the columns of X~ (denoted sp(xk )) is the quantity in which one is
interested, the resealing operation is usually computed by generating an orthonormal

basis for sp(Z~) (that is, using the Gram-Schmidt algorithm [10, page 218]). Thus
X~+i = zk G, and X~+lXL+, = 1P, where G c RP‘[’ contains the coefficients which

orthonorrnalise the columns of Z~. When .Zkis full rank then G is invertible and the
factorization Zk = XL+,G- 1can be computed as a Q R factorisation of Zk [10, page
211 ]. The matrix G depends on the particular algorithm employed in computing an
orthonorrnal basis for Z~.

When N >0 is positive definite, the power method will act to maximise the gen-
eralised Rayleigh quotient RN (5). Different choices of G in the resealing operation,

however, will affect the performance of the power method with respect to the relative

change in RN at each iteration. The optimal choice of G (for maximizing the increase

in Rayleigh quotient) for the k-th step of (32) is given by a solution of the optimization

problem

where Zk = N Xk, The cost criterion tr (GT Z~ N Z~G) = RzT~z, (G) is a Rayleigh

quotient while the constraint set is similar in structure to St(p ~n). Indeed, it appears
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that this optimization problem is qualitatively the same as explichly solving for the

principal components of N.

One may still hope to obtain a similar result to Lemma 5.3 relating the generalised
power method to the Rayleigh gradient algorithm (11). Unfortunately, this not the

case except in nongenetic cases.

LEMMA5.4. Let N = NT be a symmetric n x n matrix. For any X~ ● St(p, n) let

l’~be the unique symmetric, positive semi-dejinite square root of Y; = X~N2Xk –

(X~NX~)2. There exists a matrix G ● R’x’ and scalar u~ >0 such that

if and only if one can solve

sin2(ffLYL)X~NXk = cos(~k y~) sin(~~ Yi)yk (34)

for ~k.

PROOF. Assume that there exists a matrix G and

holds. Observe that rank (e-o’ Ix’x~Nlxk) = p and

G c lRpxJ’is non-singular.

a scalar ~L > 0 such that (33)

thus rank(NXk) = p. Similarly

Premultiplication (33) by GTX~N and use of the constraint relation GTX~Nz XkG

= 1Pgives

IP = GTX~Ne-aLrxAx~’NIXk.

Since one need only consider the case where G is invertible, it follows that

Lengthy matrix manipulations yield

X:[xkx;, N]2’Nxk = (–1)’y:x;N&, fOrf = O, 1, . . . .

and

X;[XkX;, N] z[+lNXk = (–1)’Y~+2 forl=O, l,....

On expanding e“’[x”~”1 as a power series in Y; and then grouping terms suitably (see
Subsection 4.1 ), one obtains

G-’ = CXXS(CYkyk)x~Nxk+ sin(~ky~)yk.

T ‘lXL then (33) becomesIf we use (15) for e-u~[x~xk~

NX~ = e–Mx~xT>N1XkG-’

( )(
= xkcos(~yk) ‘~k[xkx~, N] XkSinC(CEkyk)cOs(~kyk)X~NXk+sln(~kyk)yk .)
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Premultiplying this by X; yields

XTNXk = cos2(ak Yk)X~NX~ + Cos(ffkyk) sin(%yl)y~!k

and thus

sin2(~~YJX~N x; = cos(~l Yk) sin(~l y~)Y1.

This shows that (33) implies (34). If u~ solves (34) then defining G-] =
l@%[xkxTNl N xl ensures (33) also holds which completes the proof.

Write yk = ~~=1 ~iyl Y,T,where {y~, . . . , yP} is a set of orthononnal eigenvectors
for Yl, whose eigenvalues are denoted pi z Ofor i = 1, . . . , p. Then (34) becomes

Fixing i and premultiplying by y,?while also postmultiplying by y, gives the following

p equations for ~k:

1
either sin(cx~~,) = O or cot(~k/?, ) = —y,TX~NXhy, ,

P,

forr’ =1,..., p. It follows that either from the first relation ~1~, = Mn for some
integer m or from the second relation, that

foreachi= l,..., p. One can easily confirm from this that the p equations will
fail to have a consistent solution for arbitrary choices of xl and N. Thus, generically,

the Rayleigh gradient algorithm (11) does not correspond to the generalised power

method (32) for any choice of resealing operation or time-step selection.
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