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Abstract

Gradient-based meta-learning methods leverage

gradient descent to learn the commonalities

among various tasks. While previous such meth-

ods have been successful in meta-learning tasks,

they resort to simple gradient descent during meta-

testing. Our primary contribution is the MT-net,

which enables the meta-learner to learn on each

layer’s activation space a subspace that the task-

specific learner performs gradient descent on. Ad-

ditionally, a task-specific learner of an MT-net

performs gradient descent with respect to a meta-

learned distance metric, which warps the acti-

vation space to be more sensitive to task iden-

tity. We demonstrate that the dimension of this

learned subspace reflects the complexity of the

task-specific learner’s adaptation task, and also

that our model is less sensitive to the choice of ini-

tial learning rates than previous gradient-based

meta-learning methods. Our method achieves

state-of-the-art or comparable performance on

few-shot classification and regression tasks.

1. Introduction

While recent deep learning methods achieve superhuman

performance on various tasks including image classification

(Krizhevsky et al., 2012) or playing games (Mnih et al.,

2015), they can only do so using copious amounts of data

and computational resources. In many problems of inter-

est, learners may not have such luxuries. Meta-learning

(Schmidhuber, 1987; Schmidhuber et al., 1997; Thrun &

Pratt, 1998) methods are a potential solution to this prob-

lem; these methods leverage information gathered from

prior learning experience to learn more effectively in novel

tasks. This line of research typically casts learning as a two-

level process, each with a different scope. The meta-learner

1Department of Computer Science and Engineering, Pohang
University of Science and Technology, Korea. Correspondence
to: Yoonho Lee <einet89@postech.ac.kr>, Seungjin Choi <se-
ungjin@postech.ac.kr>.

Proceedings of the 35
th International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

operates on the level of tasks, gathering information from

several instances of task-specific learners. A task-specific

learner, on the other hand, operates on the level of data-

points, and incorporates the meta-learner’s knowledge in its

learning process.

Model-agnostic meta-learning (MAML) (Finn et al., 2017)

is a meta-learning method that directly optimizes the gra-

dient descent procedure of task-specific learners. All task-

specific learners of MAML share initial parameters, and a

meta-learner optimizes these initial parameters such that gra-

dient descent starting from such initial parameters quickly

yields good performance. An implicit assumption in having

the meta-learner operate in the same space as task-specific

learners is that the two different scopes of learning require

equal degrees of freedom.

Our primary contribution is the MT-net (Figure 1), a neu-

ral network architecture and task-specific learning proce-

dure. An MT-net differs from previous gradient-based meta-

learning methods in that the meta-learner determines a sub-

space and a corresponding metric that task-specific learners

can learn in, thus setting the degrees of freedom of task-

specific learners to an appropriate amount. Note that the ac-

tivation space of the cell shown in Fig.1(b) is 3-dimensional.

Because the task-specific learners can only change weights

that affect two of the three intermediate activations, task-

specific learning only happens on a subspace with 2 degrees

of freedom. Additionally, meta-learned parameters T al-

ter the geometry of the activation space (Fig.1(c)) of task-

specific parameters so that task-specific learners are more

sensitive to change in task.

2. Background

2.1. Problem Setup

We briefly explain the meta-learning problem setup which

we apply to few-shot tasks.

The problems of k-shot regression and classification

are as follows. In the training phase for a meta-

learner, we are given a (possibly infinite) set of tasks

{T1, T2, T3, . . .}. Each task provides a training set and a

test set {DTi,train,DTi,test}. We assume here that the train-

ing set DTi,train has k examples per class, hence the name

k-shot learning. A particular task T ∈ {T1, T2, T3, . . .}
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(a) (b) (c)

Figure 1. Task-specific learning in an MT-net. (a) A cell (rounded rectangle) consists of two layers. In addition to initial weights (black),

the meta-learner specifies weights to be changed (dotted lines) by task-specific learners (colored). (b) Activation of this cell has 3

dimensions, but activation of task-specific learners only change within a subspace (white plane). (c) The value of T affects task-specific

learning so that gradients of W are sensitive to task identity. Best seen in color.

is assumed to be drawn from the distribution of tasks

p(T ). Given a task T ∼ p(T ), the task-specific model

fθT (our work considers a feedforward neural network) is

trained using the dataset DT ,train and its corresponding

loss LT (θT ,DT ,train). Denote by θ̃T parameters obtained

by optimizing LT (θT ,DT ,train). Then, the meta-learner

fθ is updated using the feedback from the collection of

losses
{
LT (θ̃T ,DT ,test)

}
T ∼p(T )

, where the loss of each

task is evaluated using the test data DT ,test. Given a new

task Tnew (not considered during meta-training), the meta-

learner helps the model fθTnew
to quickly adapt to the new

task Tnew, by warm-starting the gradient updates.

2.2. Model-Agnostic Meta-Learning

We briefly review model-agnostic meta-learning (MAML)

(Finn et al., 2017), emphasizing commonalities and dif-

ferences between MAML and our method. MAML is a

meta-learning method that can be used on any model that

learns using gradient descent. This method is loosely in-

spired by fine-tuning, and it learns initial parameters of a

network such that the network’s loss after a few (usually

1 ∼ 5) gradient steps is minimized.

Consider a model with parameters θ. MAML alternates

between the two updates (1) and (2) to determine initial

parameters θ for task-specific learners to warm-start the gra-

dient descent updates, such that new tasks can be solved

using a small number of examples. Each task-specific

learner updates its parameters by gradient descent (1) us-

ing the loss evaluated with the training data {DT ,train}.
The meta-optimization across tasks (2) is performed such

that the parameters θ are updated using the loss evaluated

with {DT ,test}. Note that during meta-optimization (2), the

gradient is computed with respect to initial parameters θ

but the test loss is computed with respect to task-specific

parameters θ̃T .

θ̃T ← θ − α∇θLT (θ,DT ,train) (1)

θ ← θ − β∇θ


 ∑

T ∼p(T )

LT

(
θ̃T ,DT ,test

)

 , (2)

where α > 0 and β > 0 are learning rates and the summa-

tion in (2) is computed using minibatches of tasks sampled

from p(T ).

Intuitively, a well-learned initial parameter θ is close to some

local optimum for every task T ∼ p(T ). Furthermore, the

update (1) is sensitive to task identity in the sense that θ̃T1

and θ̃T2
have different behaviors for different tasks T1, T2 ∼

p(T ).

Recent work has shown that gradient-based optimization

is a universal learning algorithm (Finn & Levine, 2017),

meaning that any learning algorithm can be approximated

up to arbitrary accuracy using some parameterized model

and gradient descent. Thus, no expressiveness is lost by

only considering gradient-based learners as in (1). Note that

since MAML operates using a single fixed model, one may

have to go through trial and error to find such a good model.

Our method is similar to MAML in that our method also dif-

ferentiates through gradient update steps to optimize perfor-

mance after fine-tuning. However, while MAML assumes

a fixed model, our method actually chooses a subset of its

weights to fine-tune. In other words, it (meta-)learns which

model is most suitable for the task at hand. Furthermore,

whereas MAML learns with standard gradient descent, a

subset of our method’s parameters effectively ’warp’ the

parameter space of the parameters to be learned during meta-

testing to enable faster learning.
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Figure 2. A diagram of the adaptation process of a Transformation

Network (T-net). Blue values are meta-learned and shared across

all tasks. Orange values are different for each task.

3. Meta-Learning Models

We present our two models in this section: Transformation

Networks (T-net) and Mask Transformation Networks (MT-

net), both of which are trained with gradient-based meta-

learning. A T-net learns a metric in its activation space; this

metric informs each task-specific learner’s update direction

and step size. An MT-net additionally learns which subset

of its weights to update for task-specific learning. Therefore,

an MT-net learns to automatically assign one of two roles

(task-specific or task-mutual) to each of its weights.

3.1. T-net

We consider a model fθ(·) with paramaters θ. This model

consists of L cells, where each cell is parameterized∗ as

TW:

fθ(x)

= TLWL
(
σ
(
TL−1WL−1

(
. . . σ

(
T1W1x

))))
, (3)

where x ∈ R
D is an input, and σ(·) is a nonlinear activation

function. T-nets get their name from transformation matrices

(T) because the linear transformation defined by a T plays

a crucial role in meta-learning. Note that a cell has the same

expressive power as a linear layer. Model parameters θ are

therefore a collection of W’s and T’s, i.e.,

θ =




W1, . . . ,WL

︸ ︷︷ ︸
θW

,T1, . . . ,TL

︸ ︷︷ ︸
θT





.

Transformation parameters θT, which are shared across task-

specific models, are determined by the meta-learner. All

task-specific learners share the same initial θW but update to

∗For convolutional cells, W is a convolutional layer with some
size and stride and and T is a 1×1 convolution that doesn’t change
the number of channels

Algorithm 1 Transformation Networks (T-net)

Require: p(T )
Require: α, β

1: randomly initialize θ

2: while not done do

3: Sample batch of tasks Ti ∼ p(T )
4: for all Tj do

5: for i = 1, · · · , L do

6: Compute W̃T according to (4)

7: end for

8: θ̃W,Tj
= {W̃1

Tj
, · · ·W̃L

Tj
}

9: end for

10: θ ← θ − β∇θ

∑
j LT (θ̃W,Tj

, θT,DTj ,test)
11: end while

different values since each uses their corresponding train set

DT ,train. Thus we denote such (adjusted) parameters for

task T as θ̃W,T . Though they may look similar, T denotes

a task while T denotes a transformation matrix.

Given a task T , each W is adjusted with the gradient update

W̃T ←W − α∇WLT (θW, θT,DT ,train) . (4)

Again, θ̃W,T is defined as {W̃1
T
, . . . ,W̃L

T
}. Using the

task-specific learner θ̃W,T , the meta-learner improves itself

with the gradient update

θ ← θ − β∇θ


 ∑

T ∼p(T )

LT

(
θ̃W,T , θT,DT ,test

)

 . (5)

α > 0 and β > 0 are learning rate hyperparameters. We

show our full algorithm in Algorithm 1.

To evaluate on a new task T∗, we do the following. We

compute task-specific parameters θ̃W,T∗
using (4), starting

from the meta-learned initial value θW. We report the loss

of task-specific parameters θ̃W,T∗
on the test set DT∗,test.

We now briefly examine a single cell:

y = TWx,

where x is the input to the cell and y its output. The squared

length of a change in output ∆y = y∗ − y0 is calculated as

‖∆y‖2 = ((∆W)x)
⊤
(
T⊤T

)
((∆W)x) , (6)

where ∆W is similarly defined as W∗ −W0. We see here

that the magnitude of ∆y is determined by the interaction

between (∆W)x and T⊤T. Since a task-specific learner

performs gradient descent only on W and not T, the change

in y resulting from (4) is guided by the meta-learned value

T⊤T. We provide a more precise analysis of this behavior

in Section 4.
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Figure 3. A diagram of the adaptation process of a Mask Trans-

formation Network (MT-net). Blue values are meta-learned and

shared across all tasks. Orange values are different for each task.

3.2. MT-net

The MT-net is built on the same feedforward model (3) as

the T-net:

fθ(x)

= TLWL
(
σ
(
TL−1WL−1

(
. . . σ

(
T1W1x

))))
. (7)

The MT-net differs from the T-net in the binary mask applied

to the gradient update to determine which parameters are

to be updated. The update rule for task-specific parameters

W̃T is given by

W̃T ←W − αM⊙∇WL(θW, θT,DT ,train), (8)

where ⊙ is the Hadamard (elementwise) product between

matrices of the same dimension. M is a binary gradient

mask which is sampled each time the task-specific learner

encounters a new task. Each row of M is either an all-

ones vector 1 or an all-zeros vector 0. We parameterize the

probability of row j in M being 1 with a scalar variable ζj :

M = [m1, . . . ,mn]
⊤,

m⊤
j ∼ Bern

(
exp (ζj)

exp (ζj) + 1

)
1⊤, (9)

where Bern(·) denotes the Bernoulli distribution. Each logit

ζ acts on a row of a weight matrix W, so weights that

contribute to the same immediate activation are updated or

not updated together.

We approximately differentiate through the Bernoulli sam-

pling of masks using the Gumbel-Softmax estimator (Jang

et al., 2017; Maddison et al., 2017):

g1, g2 ∼ Gumbel(0, 1), (10)

m⊤
j ←

exp
(

ζj+g1
c

)

exp
(

ζj+g1
c

)
+ exp

(
g2
c

)1⊤, (11)

Algorithm 2 Mask Transformation Networks (MT-net)

Require: p(T )
Require: α, β

1: randomly initialize θ

2: while not done do

3: Sample batch of tasks Ti ∼ p(T )
4: for all Tj do

5: for i = 1, · · · , L do

6: Sample binary mask Mi according to (11)

7: Compute W̃i
Tj

according to (8)

8: end for

9: θ̃W,Tj
= {W̃1

Tj
, · · ·W̃L

Tj
}

10: end for

11: θ ← θ − β∇θ

∑
j LT

(
θ̃W,T , θT, θζ ,DT ,test

)

12: end while

where c is a temperature hyperparameter. This reparame-

terization allows us to directly backpropagate through the

mask. At the limit of c → 0, (11) follows the behavior of

(9).

As in T-nets, we denote the collection of altered weights

as θ̃W,T = {W̃1
T
, . . . ,W̃L

T
}. The meta-learner learns all

parameters θ:

θ =




W1, . . . ,WL

︸ ︷︷ ︸
θW

,T1, . . . ,TL

︸ ︷︷ ︸
θT

, ζ1, . . . , ζL

︸ ︷︷ ︸
θ
ζ

,





. (12)

As in a T-net, the meta-learner performs stochastic gradient

descent on LT

(
θ̃W,T , θT, θζ ,DT ,test

)
:

θ ← θ − β∇θ


 ∑

T ∼p(T )

LT

(
θ̃W,T , θT, θζ ,DT ,test

)

 . (13)

The full algorithm is shown in Algorithm 2.

We emphasize that the binary mask used for task-specific

learning (M) depends on meta-learned parameter weights

(ζ). Since the meta-learner optimizes the loss in a task

after a gradient step (8), the matrix M gets assigned a high

probability of having value 1 for weights that are meant to

encode task-specific information. Furthermore, since we

update M along with model parameters W and T, the meta-

learner is incentivized to learn configurations of W and T

in which there exists a clear divide between task-specific

and task-mutual neurons.

4. Analysis

In this section, we provide further analysis of the update

schemes of T-nets and MT-nets.
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We analyse how the activation space of a single cell of a T-

net or MT-net behaves during task-specific learning. More

specifically, we make precise how W encodes a learned

curvature matrix. By using such an analysis to reason about

a whole network consisting of several cells, we are impliticly

approximating the full curvature matrix of the network by

a block-diagonal curvature matrix. In this approximation,

second-order interactions only occur among weights in the

same layer (or cell). Previous works (Heskes, 2000; Martens

& Grosse, 2015; Desjardins et al., 2015) have used such an

approximation of the curvature of a neural network.

4.1. T-nets Learn a Metric in Activation Space

We consider a cell in a T-net where the pre-activation value

y is given by

y = TWx = Ax, (14)

where A = TW and x is the input to the cell. We omit

superscripts throughout this section.

A standard feedforward network resorts to the gradient of

a loss function LT (which involves a particular task T ∼
p(T )) with respect to the parameter matrix A, to update

model parameters. In such a case, a single gradient step

yields

ynew = (A− α∇ALT )x

= y − α∇ALT x. (15)

The update of a T-net (4) results in the following new value

of y:

ynew = T
(
T−1A− α∇T−1ALT

)
x

= y − α
(
TT⊤

)
∇ALT x, (16)

where T is determined by the meta-learner. Thus, in a T-net,

the incremental change of y is proportional to the negative

of the gradient
(
TT⊤

)
∇ALT , while the standard feedfor-

ward net resorts to a step proportional to the negative of

∇ALT . Task-specific learning in the T-net is guided by

a full rank metric in each cell’s activation space, which is

determined by each cell’s transformation matrix T. This

metric (TT⊤)−1 warps (scaling, rotation, etc.) the activa-

tion space of the model so that in this warped space, a single

gradient step with respect to the loss of a new task yields

parameters that are well suited for that task.

4.2. MT-nets Learn a Subspace with a Metric

We now consider MT-nets and analyze what their update (8)

means from the viewpoint of y = TWx = Ax.

MT-nets can restrict its task-specific learner to any subspace

of its gradient space:

Proposition 1. Fix x and A. Let y = TWx be a cell in

an MT-net and let ζ be its corresponding mask parameters.

Let U be a d-dimensional subspace of Rn (d ≤ n). There

exist configurations of T,W, and ζ such that the span of

ynew − y is U while satisfying A = TW.

Proof. See Appendix B.

This proposition states that W,T, and ζ have sufficient ex-

pressive power to restrict updates of y to any subspace. Note

that this construction is only possible because of the trans-

formation T; if we only had binary masks M, we would

only be able to restrict gradients to axis-aligned subspaces.

In addition to learning a subspace that we project gradients

onto (U), we are also learning a metric in this subspace. We

first provide an intuitive exposition of this idea.

We unroll the update of an MT-net as we did with T-nets in

(16):

ynew =T((T−1A− αM⊙∇T−1ALT )x)

=y − αT(M⊙ (T⊤∇ALT ))x

=y − αT(MT ⊙T⊤)∇ALT x

=y − α(T⊙M⊤
T)(MT ⊙T⊤)∇ALT x. (17)

Where MT is an m×m matrix which has the same columns

as M. Let’s denote TM = MT ⊙T⊤. We see that the up-

date of a task-specific learner in an MT-net performs the up-

date T⊤
MTM∇ALT . Note that T⊤

MTM is an n× n matrix

that only has nonzero elements in rows and columns where

m is 1. By setting appropriate ζ, we can view T⊤
MTM as a

full-rank d× d metric tensor.

This observation can be formally stated as:

Proposition 2. Fix x, A, and a loss function LT . Let

y = TWx be a cell in an MT-net and let ζ be its cor-

responding mask parameters. Let U be a d-dimensional

subspace of Rn, and g(·, ·) a metric tensor on U. There

exist configurations of T,W, and ζ such that the vector

ynew − y is in the steepest direction of descent on LT with

respect to the metric g(·, ·).

Proof. See Appendix B.

Therefore, not only can MT-nets project gradients of task-

specific learners onto a subspace of the pre-activation (y)

space, they can also learn a metric in that subspace and

thereby learning a low-dimensional linear embedding of the

activation space. The MT-net update (8) is gradient descent

in this low-dimensional embedding, so the meta-objective

shown in (13) is minimized when gradient descent in this

embedding requires few steps to converge and is sensitive

to task identity.
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5. Related Work

A successful line of research in few-shot learning uses feed-

forward neural networks as learners. These approaches learn

update rules (Ravi & Larochelle, 2017; Li & Malik, 2016;

Andrychowicz et al., 2016) or directly generate weights (Ha

et al., 2016). A related research direction is to learn initial

parameters (Finn et al., 2017) while fixing the learning rule

to gradient descent, or additionally learning learning rates

for each weight (Li et al., 2017). (Grant et al., 2018) in-

terprets such gradient-based meta-learning as hierarchical

bayesian inference, and (Finn & Levine, 2017) states that

such methods are expressive enough to approximate any

learning algorithm.

Our work is closely related to this line of research. Unlike

previous work, MT-nets learn how many degrees of free-

dom the task-specific learner should have at meta-test time.

Additionally, while MT-nets learn update rules, these update

rules are directly embedded in the network itself instead of

being stored in a separate model.

Distance metric learning (Xing et al., 2003; Weinberger

et al., 2006) methods learn a distance function between

datapoints. Similarly, MT-nets learn a full metric matrix.

Whereas those methods required constrained optimization

techniques to enforce that the learned matrix represents a

metric, our parameterization allows us to directly learn such

a metric using gradient descent. Recently, neural networks

have been used to learn a metric between images(Koch

et al., 2015; Vinyals et al., 2016; Snell et al., 2017), achiev-

ing state-of-the-art performance on few-shot classification

benchmarks. Unlike these methods, we learn a metric in fea-

ture space instead of input space. Our method applies to a

larger class of problems including regression and reinforce-

ment learning, since all MT-nets require is a differentiable

loss function.

Another line of research in few-shot learning is to use a

recurrent neural network (RNN) as a learner (Santoro et al.,

2016; Munkhdalai & Yu, 2017). Here, the meta-learning

algorithm is gradient descent on an RNN, and the learning

algorithm is the update of hidden cells. The (meta-learned)

weights of the RNN specify a learning strategy, which pro-

cesses training data and uses the resulting hidden state vec-

tor to make decisions about test data. A recent work that

uses temporal convolutions for meta-learning(Mishra et al.,

2018) is also closely related to this line of research.

6. Experiments

We performed experiments to answer:

• Do our novel components (TW,M etc) improve meta-

learning performance? (6.1)

• Is applying a mask M row-wise actually better than

Models 5-shot 10-shot 20-shot

MAML1 1.07 ± 0.11 0.71 ± 0.07 0.50 ± 0.05

Meta-SGD1 0.88 ± 0.14 0.53 ± 0.09 0.35 ± 0.06

M-net-full 0.91 ± 0.09 0.63 ± 0.07 0.38 ± 0.04

M-net 0.88 ± 0.09 0.60 ± 0.06 0.41 ± 0.04

T-net 0.83 ± 0.08 0.56 ± 0.06 0.38 ± 0.04

MT-net-full 0.81 ± 0.08 0.51 ± 0.05 0.35 ± 0.04

MT-net 0.76 ± 0.09 0.49 ± 0.05 0.33 ± 0.04

Table 1. Loss on sine wave regression. Networks were meta-

trained using 10-shot regression tasks. Reported losses were calcu-

lated after adaptation using various numbers of examples.

1 Reported by (Li et al., 2017).

applying one parameter-wise? (6.1)

• To what degree does T alleviate the need for careful

tuning of step size α? (6.2)

• In MT-nets, does learned subspace dimension reflect

the difficulty of tasks? (6.3)

• Can T-nets and MT-nets scale to large-scale meta-

learning problems? (6.4)

Most of our experiments were performed by modifying the

code accompanying (Finn et al., 2017), and we follow their

experimental protocol and hyperparameters unless specified

otherwise.

6.1. Toy Regression Problem

We start with a K-shot regression problem and compare

results to previous meta-learning methods (Finn et al., 2017;

Li et al., 2017). The details of our regression task are the

same as (Li et al., 2017). Each individual task is to regress

from the input x to the output y of a sine function

y(x) = A sin(wx+ b) (18)

For each task, A,w, b are sampled uniformly from

[0.1, 5.0], [0.8, 1.2], and [0, π], respectively. Each task con-

sists of K ∈ {5, 10, 20} training examples and 10 testing

examples. We sample x uniformly from [−5.0, 5.0] for both

train and test sets. Our regressor architecture has two hidden

cells each with activation size 40. After every T is a ReLU

nonlinearity. The loss function is the mean squared error

(MSE) between the regressor’s prediction f(x) and the true

value y(x). We used Adam (Kingma & Ba, 2015) as our

meta-optimizer with a learning rate of β = 10−3. Task-

specifc learners used step size α = 10−2. We initialize all

ζ to 0, all T as identity matrices, and all W as truncated

normal matrices with standard deviation 10−2. While we

trained our meta-learner with K = 10 examples, we tested

using various numbers of examples (K ∈ {5, 10, 20}).
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Figure 4. 10-shot regression tasks to sets of polynomials of various degrees. MT-nets choose to update a larger fraction of weights as the

set of tasks gets more complex.

α MAML T-net MT-net

10 171.92 ± 25.04 4.08 ± 0.30 4.18 ± 0.30

1 5.81 ± 0.49 4.15 ± 0.30 0.61 ± 0.07

0.1 1.05 ± 0.11 0.68 ± 0.06 0.54 ± 0.05

0.01 0.71 ± 0.07 0.56 ± 0.06 0.49 ± 0.05

0.001 0.82 ± 0.08 0.59 ± 0.06 0.59 ± 0.06

0.0001 2.54 ± 0.19 0.62 ± 0.06 0.72 ± 0.07

Table 2. Loss on 10-shot sine wave regression. T-nets and MT-nets

are bost robust to change in step size α. This is due to the meta-

learned matrix T inside each cell, which alters the effective step

size.

We show results in Table 1. To see if each of our novel

components increased meta-learning performance, we also

performed the same experiments with variations of MT-nets.

An M-net uses a mask M like an MT-net, but each cell

consists of a single matrix W instead of TW. A model

with ”-full” at the end of its name learns a separate mask

parameter for each weight of W instead of sharing a mask

among weights that contribute to the same activation. For

example, if W has size 5× 10, the corresponding ζ in an

MT-net would be of dimension 5, but in MT-net-full, the

dimension of ζ would be 50. MT-nets outperform MAML,

meta-SGD, and all variations of MT-nets.

6.2. Robustness to learning rate change

The transformation T of our method can change the effec-

tive step size α. We performed experiments to see how

robust our method is to variations in α. We perform the

same sinusoid experiment as in section 6.1, but with various

step sizes (α ∈ {10−4, 10−3, 10−2, 10−1, 1, 10}). We eval-

uate on K = 10 training examples, and all other settings

are identical to the experiments in section 6.1.

We show losses after adaptation of both MAML and MT-

nets in Table 2. We can see that MT-nets are more robust to

change in step size. This indicates that as shown in section

4.2, the matrix T is capable of warping the parameter space

to recover from suboptimal step size α.

6.3. Task Complexity and Subspace Dimension

We performed this experiment to see whether the dimension

of the learned subspace of MT-nets reflect the underlying

complexity of its given set of tasks.

We consider 10-shot regression tasks in which the target

function is a polynomial. A polynomial regression meta-task

consists of polynomials of the same order with various coef-

ficients. To generate a polynomial of order n (
∑n

i=0 cix
i),

we uniformly sampled c0, . . . , cn from [−1, 1]. We used the

same network architecture and hyperparameters as in Sec-

tion 6.1 and performed 10-shot regression for polynomial

orders n ∈ {0, 1, 2}. Since the number of free parameters

is proportional to the order of the polynomial, we expect

higher-order polynomials to require more parameters to

adapt to. The fraction of parameters that task-specific learn-

ers change is calculated as the expected value of e−ζ

e−ζ+1
over

all logits ζ.

We show results in Figure 4, and additional results in Ap-

pendix C. The number of weights that the meta-learner of

an MT-net sets to be altered increases as the task gets more

complex. We interpret this as the meta-learner of MT-nets

having an effect akin to Occam’s razor: it selects a task-

specific model of just enough complexity to learn in a set of

tasks. This behavior emerges even though we do not intro-

duce any additional loss terms to encourage such behavior.

We think this is caused by the noise inherent in stochastic

gradient descent. Since the meta-learner of an MT-net can

choose whether or not to perform gradient descent in a par-

ticular direction, it is incentivized not to do so in directions

that are not model-specific, because doing so would intro-

duce more noise into the network parameters and thus (in

expectation) suffer more loss.

6.4. Classification

To compare the performance of MT-nets to prior work in

meta-learning, we evaluate our method on few-shot classifi-

cation on the Omniglot (Lake et al., 2015) and MiniImagenet

(Ravi & Larochelle, 2017) datasets. We used the miniIma-
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Models 5-way 1-shot acc. (%) 20-way 1-shot acc. (%)

Matching Networks(Vinyals et al., 2016) 98.1 93.8

Prototypical Networks(Snell et al., 2017) 97.4 92.0

mAP-SSVM(Triantafillou et al., 2017) 98.6 95.4

MAML(Finn et al., 2017) 98.7 ± 0.4 95.8 ± 0.3

Meta-SGD(Li et al., 2017) 99.53 ± 0.26 95.93 ± 0.38

T-net (ours) 99.4 ± 0.3 96.1 ± 0.3

MT-net (ours) 99.5 ± 0.3 96.2 ± 0.4

Models 5-way 1-shot acc. (%)

Matching Networks(Vinyals et al., 2016)1 43.56 ± 0.84

Prototypical Networks(Snell et al., 2017)2 46.61 ± 0.78

mAP-SSVM(Triantafillou et al., 2017) 50.32 ± 0.80

Fine-tune baseline1 28.86 ± 0.54

Nearest Neighbor baseline1 41.08 ± 0.70

meta-learner LSTM(Ravi & Larochelle, 2017) 43.44 ± 0.77

MAML(Finn et al., 2017) 48.70 ± 1.84

L-MAML(Grant et al., 2018) 49.40 ± 1.83

Meta-SGD(Li et al., 2017) 50.47 ± 1.87

T-net (ours) 50.86 ± 1.82

MT-net (ours) 51.70 ± 1.84

Table 3. Few-shot classification accuracy on (top) held-out Omniglot characters and (bottom) test split of MiniImagenet. ± represents

95% confidence intervals.

1 Reported by (Ravi & Larochelle, 2017).
2 Reported results for 5-way 1-shot.

genet splits proposed by (Ravi & Larochelle, 2017) in our

experiments.

Our CNN model uses the same architecture as (Finn et al.,

2017). The model has 4 modules: each has 3× 3 convolu-

tions and 64 filters, followed by batch normalization (Ioffe

& Szegedy, 2015). As in (Finn et al., 2017), we used 32

filters per layer in miniImagenet. Convolutions have stride

2 × 2 on Omniglot, and 2 × 2 max-pooling is used after

batch normalization instead of strided convolutions on Mini-

Imagenet. We evaluate with 3, 5, and 10 gradient steps

for Omniglot 5-way, Omniglot 20-way, and miniImagenet

5-way, respectively.

Results are shown in Table 3. MT-nets achieve state-of-the-

art or comparable performance on both problems. Several

works (Mishra et al., 2018; Munkhdalai & Yu, 2017; Sung

et al., 2017) have reported improved performance on Mini-

Imagenet using a significantly more expressive architecture.

We only report methods that have equal or comparable ex-

pressiveness to the model first described in (Vinyals et al.,

2016). Not controlling for network expressivity, the high-

est reported accuracy so far on 5-way 1-shot miniImagenet

classification is 57.02 (Sung et al., 2017).

7. Conclusion

We introduced T-nets and MT-nets. One can transform any

feedforward neural network into an MT-net, so any future

architectural advances can take advantage of our method.

Experiments showed that our method alleviates the need

for careful tuning of the learning rate in few-shot learning

problems and that the mask M reflects the complexity of

the set of tasks it is learning to adapt in. MT-nets also

showed state-of-the-art performance in a challenging few-

shot classification benchmark (MiniImagenet).

While we think MT-nets are a gradient-based meta-learning

method, our analysis has shown that it has some interest-

ing commonalities with optimizer learning methods such

as (Ravi & Larochelle, 2017). We will investigate this con-

nection between two seemingly disparate approaches to

meta-learning in future work.

One of the biggest weaknesses of deep networks is that they

are very data intensive. By learning what to learn when a

new task is encountered, we can train networks with high

capacity using a small amount of data. We believe that

designing effective gradient-based meta-learners will be

beneficial not just for the few-shot learning setting, but also

machine learning problems in general.
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