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Abstract

This paper describes a method of optimally sizing digital cir-
cuits on a static-timing basis. All paths through the logic
are considered simultaneously and no input patterns need
be specified by the user. The method is unique in that it is
based on gradient-based, nonlinear optimization and can ac-
commodate transistor-level schematics without the need for
pre-characterization. It employs efficient time-domain simu-
lation and gradient computation for each channel-connected
component. A large-scale, general-purpose, nonlinear op-
timization package is used to solve the tuning problem. A
prototype tuner has been developed that accommodates com-
binational circuits consisting of parameterized library cells.
Numerical results are presented.

1 Introduction and previous work

Circuit optimization by transistor and wire sizing is an im-
portant part of designing custom high-performance digital
circuitry. There are two well-known methods of circuit op-
timization, dynamic tuning and static tuning. In the former
method [1, 2, 3], the user must specify input patterns for sim-
ulation and only those measurements that are actuated during
the simulation can be optimized. Hence there is a heavy bur-
den on the user to correctly pose the tuning problem. In static
tuning, the optimization is on a static-timing basis wherein all
paths through the digital logic are considered simultaneously.
The requirement of providing input patterns and the burden of
stating a meaningful optimization problem are removed from
the designer.

One of the best-known static tuners is TILOS [4], in which
transistors are modeled by RC equivalent circuits, and the
delay of a gate is represented by an Elmore [5] or Penfield-
Rubinstein [6] delay model. The resulting sizing problem is
shown to be posynomial in transistor and wire widths, and
is converted to a convex problem by a simple mapping of
variables. A heuristic method of solving this convex problem

is employed to obtain the entire delay-area tradeoff curve.
Subsequently, an exact solution to the convex problem was
proposed in [7]. These methods work quickly and can handle
large circuits. However, they suffer from the inaccuracy of
approximating a logic gate by an RC circuit and the concomi-
tantly crude delay model, making them unsuitable for custom,
high-performance design.

Simulation-based static timing analysis, wherein each sub-
circuit is analyzed by time-domain simulation, is an ideal
framework for path-independent optimization. In such a
framework, custom circuitry can be accommodated, and all
the benefits of static timing analysis are preserved. This paper
presents an optimization technique that
� formulates the static tuning problem in a unique manner,

� is based on nonlinear optimization,

� uses fast transient simulation to evaluate custom cir-
cuitry, and

� uses incremental time-domain gradient computation by
the adjoint method.

This paper focuses on circuits composed of parameterized
library cells. Both datapath and control circuits, whether syn-
thesized or custom-designed, can be optimized. Employing
simulation to evaluate circuitry allows extension to general
custom circuitry at the transistor-level. The simulation is
combined with efficient, incremental, time-domain sensitiv-
ity computation in order to provide gradients to the nonlinear
optimizer. It is well known that solving large, nonlinear opti-
mization problems is impossible without gradient information
or at least some method of approximating gradients.

Section 2 demonstrates the novel formulation by means
of a simple example. Details are provided in Section 3. A
prototype program called EinsTuner which tunes combina-
tional circuits consisting of parameterized library cells is de-
scribed in Section 4, and numerical results are discussed in
Section 5. Section 6 is devoted to special considerations for
custom transistor-level and sequential circuits. Finally, future
work and conclusions are presented.

2 Problem formulation by example

Consider the network of Figure 1, consisting of three simple
gates G1, G2 and G3. Let w be the n-vector of transistor
widths to be optimized. Wires are ignored here for simplicity.
Assume that we wish to minimize the worst arrival time at
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Figure 1: Simple example to illustrate the problem formula-
tion.

the primary outputs subject to an area constraint and simple
bounds. The problem can then be stated as follows.

minimize max(AT 7; AT8)
s:t: AT 7 = max[AT5 + d57(w); AT6 + d67(w)]
s:t: AT 8 = max[AT5 + d58(w); AT6 + d68(w)]
s:t: AT 5 = max[AT1 + d15(w); AT2 + d25(w)]
s:t: AT 6 = max[AT3 + d36(w); AT4 + d46(w)]
s:t:

P
i kiwi � A

s:t: Li � wi � Ui:
(1)

In problem (1), the AT variables are the worst-case arrival
times at each node of the circuit, the dij functions are the
delays along the signal paths from each input pin to the output
pin of each gate, A is an area target, and Li and Ui are the
lower and upper bounds on transistor widths (known as simple
bounds). Area is modeled by a weighted sum of tunable
transistor widths. Unfortunately, problem (1) is non-smooth
due to the use of the max function and cannot directly be fed
to any standard general nonlinear optimizer. Hence we remap
the problem as shown below.

minimize z
s:t: z � AT 7

s:t: z � AT 8

s:t: AT 7 � AT 5 + d57(w)
s:t: AT 7 � AT 6 + d67(w)
s:t: AT 8 � AT 5 + d58(w)
s:t: AT 8 � AT 6 + d68(w)
s:t: AT 5 � AT 1 + d15(w)
s:t: AT 5 � AT 2 + d25(w)
s:t: AT 6 � AT 3 + d36(w)
s:t: AT 6 � AT 4 + d46(w)
s:t:

P
i kiwi � A

s:t: Li � wi � Ui:

(2)

In reference to problem (2), the following points are to be
noted.
� z is an auxiliary variable introduced to solve the problem.

The arrival times at non-primary-inputs are variables of
the optimization problem, just like the transistor widths.
Input arrival times are provided in the form of timing
assertions. So the optimization is carried out in the space
w 2 <n; z 2 <; (ATi; i = 5; 6; 7; 8) 2 <4.

� The formulation in (2) expresses a standard smooth non-
linear optimization problem without discontinuities in
the first derivatives (provided the dij functions are con-
tinuously differentiable in w).

� At the solution, by definition z is at its minimum value,
while all the constraints are feasible, therefore indicating
that we have solved the intent of the original problem. A
gradient-based nonlinear optimizer will, of course, find a
local minimum. There is extensive literature beginning
with TILOS [4] that establishes the convexity of the static
tuning problem under simplified modeling assumptions.
On convex problems, converging to a local minimum
guarantees global optimality. To the extent our more
accurate transient-simulation-based modeling possibly
destroys convexity, we seek to improve the circuit from
its start point by moving it at least to a local minimum.
One may also apply downhill optimization starting from
the results of convex optimization using approximate
delay models.

� At the solution, the constraints along all critical paths will
be tight, and the arrival times along these paths will be
correct. A timing run may be performed after the tuning
to correctly determine the arrival times on non-critical
paths.

� The formulation of the timing constraints is very similar
to RITUAL [8], a wirelength minimization program.

� The problem can equally be formulated as a minimization
of area subject to a timing requirement, or the minimiza-
tion of a weighted sum of critical path delay (or negative
slack) and area.

� Not every delay function dij depends on every transistor
width, a fact that is exploited in the next section and is
significant for the optimizer.

3 Problem formulation in detail

While the previous section described the concept in relation to
a simplified situation, this section will lay out the full details
of the problem formulation, including the handling of slews,
slew dependencies, and separate rise and fall arrival times.

3.1 Variables

Each node of the circuit has four variables associated with
it. For node i, the four variables are the rising arrival time
AT r

i , the falling arrival time AT f
i , the rising slew Sr

i and
the falling slew Sf

i . Slew is considered to be a 0%-100%
measurement (100%-0% for falling signals) of an idealized
ramp waveform, but the definition can easily be changed to
suit other timing methodologies. Assume that we are dealing
with parameterized gates in which each channel-connected
component (CCC) (i.e., each set of FETs that source-drain
connected) has two design variables, wn and wp, denoting
the width of all the NFETs and all the PFETs in the CCC,
respectively. Again, the formulation can easily be generalized
to a full-custom situation. Finally, we have an auxiliary timing
variable z.
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Figure 2: Generic channel-connected component.

3.2 Timing constraints

Figure 2 shows a generic multi-input multi-output CCC. For
the propagate segment (i.e. , the signal arc in the CCC timing
graph) from pin i to pin j, the constraints are shown below,
assuming that the segment is an inverting segment. Depend-
ing on the type of gate, each propagate segment is classified
as either an inverting segment, a non-inverting segment or
both, and the constraints are listed appropriately. The entire
network is traversed and constraints such as the ones listed
below are gathered for every propagate segment.

AT r
j � AT f

i + drij(wn; wp; coutj ; S
f
i )

AT f
j � AT r

i + dfij(wn; wp; coutj ; S
r
i )

Sr
j � srij(wn; wp; coutj; S

f
i )

Sf
j � sfij(wn; wp; coutj; S

r
i ):

(3)

Note that a superscript of r implies a rising signal, delay or
slew, while a superscript of f refers to the corresponding
falling quantities. The nonlinear delay functions are denoted
by dij, and the sij terms represent the nonlinear slew func-
tions. The fanout capacitance at pin j is coutj , which is a
function of the sizes of the fanouts of pin j augmented by any
wire capacitances on that net. As in most static timers, fanout
capacitance is approximated by a lumped, linear capacitance
which is a function of the transistor and wire sizes of the im-
mediate fanouts. The gate itself is modeled at the transistor
level. The choice of the slew propagation inequalities in (3)
is compatible with the conservative nature of timing analysis.
Moreover, unlike other choices, it guarantees the continuity
of the optimization problem.

3.3 Additional constraints and the objective func-
tion

There are a number of additional constraints required for suc-
cessful optimization.
� If we are interested in minimizing critical delay, for each

primary output j, two additional constraints

z � AT f
j �RAT f

j

z � AT r
j �RAT r

j

(4)

are required, where RAT indicates the required arrival
time of rising and falling signals at the primary outputs.
Of course, if all the required arrival times are uniform,
then those terms can be dropped from the constraints in
equation (4) and z interpreted accordingly, without any
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Figure 3: Software architecture of EinsTuner.

change in the resulting solution. In addition, an objective
function

minimize z (5)
is included. If we are not interested in minimizing crit-
ical delay, but rather minimizing area subject to system
timing requirements, then for each primary output, two
additional constraints

AT f
j � RAT f

j

AT r
j � RAT r

j

(6)

are required, and the z variable is unnecessary.
� Area is typically expressed as the weighted sum of some

or all of the tunable transistor and wire sizes. Area can
either be constrained or minimized. Keeping the area
in check generally (but not always) keeps the power
consumption at reasonable levels.

� Arrival times and slews on primary inputs are set equal
to the assertions provided by the designer.

� Required slews are expressed as simple inequality con-
straints involving a single variable or simple bounds.

� Input loading constraints are expressed as some (usually
simple) function of the fanout widths of the primary input
being less than a required maximum loading.

� The objective function can consist of just area, or just
the quantity z or some weighted combination thereof.
The weighting can be varied and the problem re-run to
determine a tradeoff curve.

� Additional constraints for dynamic logic and sequential
circuits are discussed in Section 6.

4 Implementation details
4.1 Overview

The circuit optimization formulation of the previous sections
was implemented in a prototype tool called EinsTuner. The
software architecture of the program is shown in Figure 3.
The netlist is fed to the “outer layer” (lightly shaded box in
Figure 3) of the EinsTuner program which performs an initial



timing run. Then the tuning problem is expressed in the SIF
(Standard Input Format) nonlinear optimization language [9].
The resulting SIF file is decoded to produce several problem-
specific FORTRAN files. These files are compiled and the
resulting objects linked with the optimizer objects and the
“back-end” of EinsTuner to create a custom executable. The
back-end consists of routines to evaluate nonlinear functions
such as delays and slews and the gradients thereof and supply
them to the optimizer on demand. The evaluation is carried
out by invoking a circuit simulator through an application
programming interface (API).

The custom executable is then invoked to carry out the
actual inner optimization. Upon completion, transistor sizes
are snapped to a technology-imposed grid, a final timing run
is performed, and the required files for back-annotation of the
new sizes are generated by the outer layer.

4.2 Problem formulation

Several aspects of the problem formulation are noteworthy.
While any reasonable start point and any reasonable sim-
ple bounds should theoretically converge to the same tuned
circuit, we should keep in perspective that we are asking
the optimizer to solve problems in 1,000- or even 10,000-
dimensional space in a few hundred iterations. The situation
is further complicated by the presence of numerical noise in
the computed delays and slews. In fact, any simulation-based
data is inherently noisy. Hence many choices were made in
the problem formulation to make the situation conducive to
the optimizer being as aggressive as possible, and converging
in as few iterations as possible.

� Units, scale factors and weight factors were chosen with
great care so that the resulting problem was well-scaled.

� A concerted effort was made to keep the optimizer within
a “physical range” of variables. Slews at non-primary-
inputs were constrained to be within technology-specific
lower and upper slew bounds.

� To increase optimization efficiency, a special method
was used to determine the bounds and start points of
arrival times and slews. A quick “mock timing” run is
conducted before formulating the problem to determine
a lower bound on all arrival times. Weighted combi-
nations of the actual and lower bound arrival times are
used as initial values, thus starting the optimization in an
infeasible state. This choice was found to produce swift
and aggressive optimization.

� Fanout capacitances were treated as “internal variables”
[9] to reduce the dimensionality of the problem.

� Consider an optimization problem

min z
x; z
s:t: z � ci(x); i = 1; 2; : : : ; n:

(7)

We know from the Kuhn-Tucker optimality conditions
that the Lagrange multipliers corresponding to the con-
straints must sum up to -1 at the solution. Hence La-
grange multipliers were initialized to �1=n, where n is
twice the number of primary outputs of the network in
our case.

� Where possible, inequalities were converted to equali-
ties. For example, the arrival time and slew constraints
for any 1-input gate (such as an inverter) can be written
with equality constraints.

4.3 Simulation and gradient computation

EinsTuner is based on simulation and gradient computation
of each CCC by the fast event-driven simulator SPECS
[10, 11]. Whenever a transistor size, input slew or fanout
capacitance of a CCC is updated, the optimizer automatically
calls SPECS to re-compute the delays, slews, and gradients
thereof. SPECS uses table models for device i-v character-
istics. Specialized integration techniques, event-driven simu-
lation and simplified device models enable SPECS to be 70x
faster than AS/X, an IBM-internal SPICE-like simulator at a
relative stage timing accuracy of 5%. Path delays, however
are predicted more accurately. We note that the saturated-
ramp signal approximation is standard in most static timing
analyzers. Our use of transient simulation rather than analytic
formulas or delay tables leads to improved accuracy.

The key feature of SPECS exploited in EinsTuner is a
mature gradient computation capability that has been exten-
sively used in a dynamic tuner [12, 2, 3]. SPECS computes
incremental time-domain sensitivity information by both the
adjoint and direct methods. The adjoint method is used in
EinsTuner. The sensitivity of a time-domain measurement
(such as delay, slew, power or noise) can be computed with re-
spect to any number of parameters (such as transistor widths,
input slews or fanout capacitances) in a single adjoint analy-
sis. Each adjoint analysis is a small incremental overhead
on the nominal simulation. Gradients with respect to tran-
sistor widths include chain ruling and combining gradients
with respect to diffusion capacitances whose values depend
on those widths. “Group adjoints” are employed efficiently
to compute gradients of linear combinations of measurements
such as slews. In tuning the benchmark circuit c2670, for
example, an estimated 15 million time-domain gradients were
computed. Without a fast, accurate and reliable time-domain
sensitivity engine, it would not have been possible to create a
tool such as EinsTuner.

For each channel-connected component, the circuit is “con-
structed” by means of calls to a simulation application pro-
gramming interface (API). The simulation conditions for all
the propagate segments are concatenated in time and a single
simulation of the CCC is performed to compute all the delays
and slews. Simultaneously, the gradients of the delays and
slews are computed with respect to each transistor size, input
slew and fanout capacitance. All these gradients are cached
in local arrays until requested by the optimizer. Much care
was expended in the memory management of the API. Finally,
various measures were taken to minimize the noisiness of the
data provided by the simulator. Reduced noisiness in the data
was crucial to achieving convergence on some of the larger
benchmark circuits.

4.4 Nonlinear optimization

We use the large-scale, general-purpose nonlinear optimiza-
tion package LANCELOT [9, 13, 14] with several special



Table 1: Sizes of benchmark problems.
Problem size Area

Name # Gates # Transistors # Nodes # Variables # Constraints �m

inv3 3 6 4 23 15 69.7
c17 7 28 12 63 61 345.6
a3 3 9 34 12 67 75 549.9

f adder 14 46 17 97 97 307.8
c8 180 584 208 1193 1203 3187
ifti 218 880 270 1337 2249 11437

c432 299 960 335 1939 1929 2477
incrmtr 408 1554 472 2705 3237 8777

c880 481 1582 541 3127 3213 5914
ioperdf 559 2360 687 2659 5079 26777
adder 628 2726 728 3919 6809 17814
c1355 665 2180 706 4155 4425 9130
c499 667 2216 708 4167 4497 9240

c2670 837 2796 992 5643 5665 9358

modifications for EinsTuner. LANCELOT uses an aug-
mented Lagrangian merit function and employs a trust-region
based algorithm. The merit function consists of a Lagrangian
and a penalty term consisting of a weighted sum-of-squares
of the constraints. Simple bounds are accommodated easily
and efficiently by means of projections. The optimizer can be
configured to use different preconditioners, to solve the inner
bounded quadratic problem approximately or accurately, and
so on.

LANCELOT allows one to exploit group partial separa-
bility [9] in the problem structure. In the EinsTuner problem
formulation, the nonlinear contribution to each delay or slew
constraint depends on only a few variables. This sparsity is
communicated to LANCELOT via the SIF file and exploited
by the optimizer, a key enabler of being able to solve large
problems in relatively few iterations.

Since simulation and gradient computation are expensive
compared to the optimization algorithms, it is worth going
to great lengths in the optimizer to try to reduce the number
of iterations required to achieve convergence. This principle
was applied in several ways to speed up the optimization.
All the slack variables internally introduced by LANCELOT
to convert inequalities to equality constraints and the z vari-
able occur exclusively linearly in the objective function and
constraints. Thus they occur at most quadratically in the
merit function, since the penalty term in LANCELOT’s merit
function squares the constraints. After each regular step of
LANCELOT, a second step [15] can be computed analytically
that updates these variables so as to further minimize the merit
function. This two-step updating leads to fewer iterations.

Several steps were taken to encourage the optimizer to be
aggressive, such as forcing a large initial trust-region radius
and revising the criteria for trust-region management. As
a result, the optimizer often takes large steps that cause the
circuit to “fail,” meaning that one of the measured signals at
the output of a CCC fails to switch in a reasonable time. In
such a situation, the simulator sends a special return code to
the optimizer. The optimizer skips the rest of the iteration,
reduces the trust-region radius and tries again. In our opinion,

failure recovery is a necessary ingredient of efficient circuit
tuning.

Prior to the simulation-based version of EinsTuner, a ver-
sion that models delays and slews of gates by means of analytic
equations was developed. In this environment, exact gradi-
ents can be provided to the optimizer and the data is not noisy.
This software prototype was shown to consistently converge
to within arbitrarily small gradient and constraint tolerances
with default initializations and stopping criteria, thus validat-
ing the formulation of the problem. Therefore, if accurate and
convex analytic delay models are available, the EinsTuner
formulation can easily obtain the global optimum. Further,
the success of this prototype bodes well for being able in the
future to mix transistor-level modeling with analytic delay
rules.

Simulation data is inherently noisy. In analytic problems,
if the optimizer takes a small step, one expects a good match
between the optimizer’s model of the n-dimensional space
and reality. However, this safety net does not exist in the
case of simulation-based data. Several optimization choices
were made to deal with noise. In particular, a special stopping
criterion was developed to detect that no further significant
improvement is readily available because we have a step size
at which the change in the data is dominated by noise.

5 Numerical results
EinsTuner was tested on a number of combinational bench-
mark circuits, including two actual circuit designs from a
high-performance microprocessor. Tests were conducted on
a pool of IBM RS6000 machines.

Other than the actual designs (adder, ifti, incrmntr
and ioperdf) and the two artificially generated problems
(inv3 and a3 3) the testing procedure was as follows.

1. The design was synthesized from the ISCAS-85 suite
of combinational benchmarks into an implementation
consisting of restricted library cells using an internal
logic synthesis tool.

2. Each gate was treated as a parameterized cell with one
variable controlling the width of the NFETs and one



variable controlling the width of the PFETs. In some
gates (such as OAI21) not all NFETs or PFETs were
identical. Nonetheless, all NFETs and PFETs were each
ratio-ed to a single parameter.

3. The schematic was sized by employing a simple gain-
based heuristic that involves traversing the graph from
the primary outputs to the primary inputs. A gain factor
of 4.0 was used to convert the fanout capacitance seen at
each node of the network into a fanin capacitance. The
fanin capacitance was then converted into total equiva-
lent fanin gate width by means of a technology factor. A
� (PFET to NFET width parameter) ratio specific to the
type of gate was used to apportion the equivalent transis-
tor width between the NFETs and PFETs. The area of the
resulting heuristically-sized schematic was computed.

4. EinsTuner was then configured to minimize critical de-
lay, subject to staying within the same area as the heuris-
tic sizing.

The purpose of applying the heuristic sizing was so that
EinsTuner results could be compared to reasonably-tuned
circuits. More importantly, however, EinsTuner was able to
solve the optimization problems as indicated by the smallness
of the projected gradient and infeasibilities at the solution.

In the case of the remaining benchmarks, identical steps
to the above were followed, but instead of a heuristic initial
sizing, the real initial sizes were used. The optimization was
then constrained to tune at constant area and constant input
loading. These designs had already been well-tuned prior to
the application of EinsTuner.

Table 1 shows the size of the various benchmarks. Note that
the largest problem, while still being a modest-sized 2,796-
transistor circuit, had over 5,600 variables and over 5,600
constraints, a moderately large problem by nonlinear opti-
mization standards.

Table 2 shows the actual numerical results. The critical
path delay obtained by the heuristic method and the formal
optimization, and the percentage improvement are shown in
the third major column. In the case of the four actual de-
signs, the original delay is shown in the heuristic column for
convenience, but no heuristics were employed. An important
measure of the success of the optimization is revealed by the
smallness of the infeasibilities. The worst (“W”) and aver-
age (“A”) infeasibilities of the arrival time (“AT”) and slew
constraints are shown in the table. Every single constraint of
every single problem was satisfied to within 1.5 ps or less.
The number of iterations never exceeds 160 iterations even
for the largest problems. The projected gradient is reduced
substantially from the start point. While it is possible to try to
bring down the projected gradient further, our stopping crite-
ria kicked in and terminated the optimization in the interests
of efficiency. We have indications that any further progress
would be small relative to the cost of carrying it out. Fi-
nally, the CPU time is shown in the right-most column. The
adder design was the most time-consuming. It ran for over
three days! Several methods of reducing the long run times
of EinsTuner are enumerated in Section 7.

Profiling results on some smaller problems indicate that
about 20% of the CPU time is spent in transient simula-
tion, while the remaining 80% is consumed in the nonlin-

ear optimization routines. On c2670, SPECS simulated
0.25 million CCCs and computed 15 million gradients, and
LANCELOT executed almost half a million conjugate gradi-
ent iterations!

In order to make additional comparisons, we have recently
implemented a static tuning method similar to TILOS [4].
Instead of using a crude RC model, our version accurately
simulates CCCs in the time-domain, but otherwise it has the
same basic algorithm as TILOS, i.e., start with minimum area,
and then iteratively add area in small increments to the most
sensitive and timing-critical portions of the circuit. Our results
indicate that our formulation using nonlinear optimization can
achieve significantly better solutions than currently available
heuristic tuning methods.

Indeed, we first run both tuners, heuristic and optimal,
on a small 22-gate macro iqia (not shown in Tables 1 and
2). The heuristic TILOS-like algorithm resulted in a 7%
reduction of the delay along the critical path. The formal
optimization algorithm resulted in a 11% reduction. We then
run both algorithms on a much larger design: ioperdf (see
Table 2), a 64-bit comparator with 559 gates. Here also,
the optimization algorithm resulted in a significantly larger
improvement (16% reduction in the critical-path delay) than
the heuristic algorithm (12% reduction).

6 Circuit generalizations

The EinsTuner implementation described in this paper only
accommodates combinational circuits consisting of parame-
terized library cells. Because the approach is simulation-
based and includes a general-purpose nonlinear optimizer, it
is readily extended to arbitrary transistor-level custom designs
and sequential circuits. The software prototype will gain in
generality by incorporation into a transistor-level timer and
use of the timer’s graph to generate the list of constraints. This
section describes the additional considerations necessary.

6.1 Arbitrary transistor-level circuits

Two existing techniques will allow the extension of Eins-
Tuner to arbitrary custom circuits. First, pattern-matching
of the transistor topology in a CCC using graph isomorphism
algorithms allows the recognition of a wide variety of gates
[16], including dynamic logic such as self-resetting CMOS
or domino gates. Once the gate-type is recognized, a pre-
stored set of timing constraints is added to the SIF file for
each gate of a particular type. The constraints for dynamic
logic can include special timing requirements relating the ar-
rival of the pre-charge signal to the data signals or special
relationships between the forward and reset paths in the case
of self-resetting CMOS.

Second, for topologies that cannot be recognized by
pattern-matching, a state-traversal algorithm can be used to
set up the propagate segments for the CCC [17]. The end
result of either pattern-matching or state-traversal is a list of
propagate segments (based on which a list of constraints can
be generated), and the rules for simulating the CCC. Side-
path loading and initialization of internal nodes of the CCC
to actuate the worst-case pin-to-pin delay for each propagate
segment is an important part of this analysis.



Table 2: Numerical results.

Critical path delay AT infeas. Slew infeas. Proj. grad. CPU
Name #Tx Heur. Final W A W A # Beg. End time

(ps) (ps) % (ps) (ps) (ps) (ps) its. (s)
inv3 6 123.3 85.63 30.6 0.31 0.12 0.27 0.06 24 .98 0.016 6.05
c17 28 200.1 123.6 38.2 0.5 8e-2 .27 .02 45 2.7 .025 39.0
a3 3 34 320.5 192.0 40.1 0.41 4e-2 0.2 8e-3 116 4.8 0.013 162.4

f adder 46 310.2 229.6 26.0 0.25 3e-2 0.072 3e-3 89 2.6 8e-3 122.9
c8 584 712.3 569.1 20.1 0.61 9e-3 0.05 3e-4 103 4.1 .032 2338
ifti 584 712.3 569.1 20.1 0.61 9e-3 0.05 3e-4 103 4.1 .032 2338

c432 960 1431 1157 19.1 0.59 2e-3 0.33 4e-3 52 5.1 .056 1345
incrmtr 1554 589.8 584.4 0.92 1.1 6e-3 0.42 2e-3 30 4.8 .052 2951

c880 1582 1597 1317 17.5 1.46 4e-2 0.65 5e-3 106 4.7 0.18 9234
ioperdf 2236 884.1 742.6 16.0 0.9 2e-3 0.12 1e-4 107 16 0.016 52154
adder 2726 1277 1091 14.6 1.5 5e-3 .45 3e-3 159 23 .076 284445
c1355 2180 1218 1075 11.7 0.2 3e-3 .43 6e-3 59 2.6 .033 35354
c499 2216 1242 1064 14.3 0.38 2e-2 0.36 2e-3 101 2.9 .04 49840
c2670 2796 1082 965.6 10.8 0.5 7e-3 0.6 5e-3 50 4.7 .075 10384

6.2 Sequential circuits

Sequential elements such as latches must first be recognized
either by attributionof the netlist, or by pattern-matching. De-
pending on the type of sequential element, pre-compiled rules
are followed to generate timing constraints and to simulate
the element. For example, a latch will generate an addi-
tional set-up constraint. Special considerations are required
for edge-triggered and transparent latches. For any type of
latch, the required additional constraints must be added to
the SIF file and the “back-end” configured to simulate the
sequential element to evaluate each propagate segment.

7 Future work
In addition to the extensions described in the previous section,
several avenues of future work suggest themselves. The long
run times of EinsTuner can be ameliorated on many fronts.
The direct method of sensitivity analysis may prove to be
more efficient for the smaller (and most commonly encoun-
tered) CCCs. Employing a programming interface [18] to
communicate with the optimizer will improve efficiency. The
“adjoint Lagrangian” [3, 2] mode of gradient computation can
be employed to compute all the gradients needed for a CCC by
means of a single adjoint analysis, which would dramatically
reduce the CPU time for gradient computation. Automatic
criticality- and topology-based pruning can be used to reduce
the number of timing and slew constraints without loss of ac-
curacy. Failure recovery can be implemented more efficiently
to avoid the overhead of possible repeated failures. All CCCs
of a certain type (say, NAND2 gates) can be simulated one
after the other by “building” the circuit once and then repeat-
edly analyzing the gate after resetting transistor sizes each
time. CCC evaluations are independent of one another and
can be parallelized. Finally, SPECS simulation can be em-
ployed with a coarser device table model, thus trading some
accuracy for speed (the results in this paper used 50 mV table
model segments). More accurate models can be adaptively
employed as convergence is approached.

Much can be done to make the nonlinear optimization
more effective. Dealing with noisy data and determining
good stopping criteria are topics of ongoing, but difficult,
research. Two-step updating [15] can be applied to all arrival
time variables, since they appear only linearly in the timing
constraints.

In the future, one could envision taking noise constraints
into account during optimization, using the mapping of semi-
infinite noise constraints into equality constraints as in [19].
Simultaneous early and late-mode optimization could be em-
ployed to “fix” any fast-path problems. Tuning of wires along
with transistors dovetails nicely into the formulation. Inclu-
sion of timing constraints at several process corners and mini-
mizing the worst negative slack across all the process corners
can be used to improve parametric manufacturability. Where
analytic delay rules exist as a function of transistor widths,
they can be mixed with custom circuitry for the purposes of
optimization.

8 Conclusions

This paper presented a unique formulation of the circuit op-
timization problem based on static timing analysis. By using
large-scale, nonlinear optimization and fast transistor-level
simulation and gradient computation, a wide range of circuits
can be accurately optimized. Tuning of a number of datapath
and control benchmark circuits has been demonstrated.
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