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ABSTRACT
A feature selection algorithm should ideally satisfy four con-
ditions: reliably extract relevant features; be able to iden-
tify non-linear feature interactions; scale linearly with the
number of features and dimensions; allow the incorpora-
tion of known sparsity structure. In this work we propose a
novel feature selection algorithm, Gradient Boosted Feature
Selection (GBFS), which satisfies all four of these require-
ments. The algorithm is flexible, scalable, and surprisingly
straight-forward to implement as it is based on a modifi-
cation of Gradient Boosted Trees. We evaluate GBFS on
several real world data sets and show that it matches or out-
performs other state of the art feature selection algorithms.
Yet it scales to larger data set sizes and naturally allows for
domain-specific side information.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Miscellaneous;
I.5.2 [Pattern Recognition]: Design Methodology—Fea-
ture evaluation and selection

General Terms
Learning

Keywords
Feature selection; Large-scale; Gradient boosting

∗Work done while at Microsoft Research

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623635 .

1. INTRODUCTION
Feature selection (FS) [8] is an important problems in ma-

chine learning. In many applications, e.g., bio-informatics [21]
or neuroscience [12], researchers hope to gain insight by ana-
lyzing how a classifier can predict a label and what features
it uses. Moreover, effective feature selection leads to par-
simonious classifiers that require less memory [25] and are
faster to train and test [5]. It can also reduce feature extrac-
tion costs [29, 30] and lead to better generalization [9].

Linear feature selection algorithms such as LARS [7] are
highly effective at discovering linear dependencies between
features and labels. However, they fail when features in-
teract in nonlinear ways. Nonlinear feature selection algo-
rithms, such as Random Forest [9] or recently introduced
kernel methods [32, 23], can cope with nonlinear interac-
tions. But their computational and memory complexity typ-
ically grow super-linearly with the training set size. As data
sets grow in size, this is increasingly problematic. Balancing
the twin goals of scalability and nonlinear feature selection
is still an open problem.

In this paper, we focus on the scenario where data sets
contain a large number of samples. Specifically, we aim to
perform efficient feature selection when the number of data
points is much larger than the number of features (n� d).
We start with the (NP-Hard) feature selection problem that
also motivated LARS [7] and LASSO [26]. But instead of
using a linear classifier and approximating the feature selec-
tion cost with an l1-norm, we follow [31] and use gradient
boosted regression trees [7] for which greedy approximations
exist [2].

The resulting algorithm is surprisingly simple yet very ef-
fective. We refer to it as Gradient Boosted Feature Selection
(GBFS). Following the gradient boosting framework, trees
are built with the greedy CART algorithm [2]. Features are
selected sparsely following an important change in the im-
purity function: splitting on new features is penalized by
a cost λ> 0, whereas re-use of previously selected features
incurs no additional penalty.

GBFS has several compelling properties. 1. As it learns
an ensemble of regression trees, it can naturally discover
nonlinear interactions between features. 2. In contrast to,
e.g., FS with Random Forests, it unifies feature selection
and classification into a single optimization. 3. In contrast



to existing nonlinear FS algorithms, its time and memory
complexity scales as O(dn), where d denotes the number of
features dimensionality and n the number of data points1,
and is very fast in practice. 4. GBFS can naturally incorpo-
rate pre-specified feature cost structures or side-information,
e.g., select bags of features or focus on regions of interest,
similar to generalized lasso in linear FS [19].

We evaluate this algorithm on several real-world data sets
of varying difficulty and size, and we demonstrate that GBFS
tends to match or outperform the accuracy and feature se-
lection trade-off of Random Forest Feature Selection, the
current state-of-the-art in nonlinear feature selection.

We showcase the ability of GBFS to naturally incorporate
side-information about inter-feature dependencies on a real
world biological classification task [1]. Here, features are
grouped into nine pre-specified bags with biological mean-
ing. GBFS can easily adapt to this setting and select entire
feature bags. The resulting classifier matches the best accu-
racy of competing methods (trained on many features) with
only a single bag of features.

2. RELATED WORK
One of the most widely used feature selection algorithms

is Lasso [26]. It minimizes the squared loss with l1 regu-
larization on the coefficient vector, which encourages sparse
solutions. Although scalable to very large data sets, Lasso
models only linear correlations between features and labels
and cannot discover non-linear feature dependencies.

[17] propose the Minimum Redundancy Maximum Rel-
evance (mRMR) algorithm, which selects a subset of the
most responsive features that have high mutual information
with labels. Their objective function also penalizes select-
ing redundant features. Though elegant, computing mu-
tual information when the number of instance is large is
intractable, and thus the algorithm does not scale. HSIC
Lasso [32], on the other hand, introduces non-linearity by
combining multiple kernel functions that each uses a single
feature. The resulting convex optimization problem aligns
this kernel with a “perfect” label kernel. The algorithm re-
quires constructing kernel matrices for all features, thus its
time and memory complexity scale quadratically with input
data set size. Moreover, both algorithms separate feature
selection and classification, and require additional time and
computation for training classifiers using the selected fea-
tures.

Several other works avoid expensive kernel computation
while maintaining non-linearity. Grafting [18] combines l1
and l0 regularization with a non-linear classifier based on
a non-convex variant of the multi-layer perceptron. Fea-
ture Selection for Ranking using Boosted Trees [15] selects
the top features with the highest relative importance scores.
[27] and [9] use Random Forest. Finally, while not a fea-
ture selection method, [31] employ Gradient Boosted Trees
to learn cascades of classifiers to reduce test-time cost by
incorporating feature extraction budgets into the classifier
optimization.

3. BACKGROUND
Throughout this paper we type vectors in bold (xi), scalars

in regular math type (k or C), sets in cursive (S) and ma-

1In fact, if the storage of the input data is not counted, the
memory complexity of GBFS scales as O(n).

trices in capital bold (F) font. Specific entries in vectors or
matrices are scalars and follow the corresponding conven-
tion.

The data set consists of input vectors {x1, . . . ,xn} ∈ Rd
with corresponding labels {y1, . . . , yn} ∈ Y drawn from an
unknown distribution. The labels can be binary, categor-
ical (multi-class) or real-valued (regression). For the sake
of clarity, we focus on binary classification Y ∈ {−1,+1},
although the algorithm can be extended to multi-class and
regression as well.

3.1 Feature selection with the l1 norm
Lasso [26] combines linear classification and l1 regulariza-

tion

min
w

∑
(xi,yi)

`(xi, yi,w) + λ|w|1. (1)

In its original formulation, `(·) is defined to be the squared
loss, `(xi, yi,w) = (w>xi − yi)2. However, for the sake of
feature selection, other loss functions are possible. In the bi-
nary classification setting, where yi ∈ {−1,+1}, we use the
better suited log-loss, `(xi, yi,w) = log(1+exp(yiw

>xi)) [11].

3.2 The capped l1 norm
l1 regularization serves two purposes: It regularizes the

classifier against overfitting, and it induces sparsity for fea-
ture selection. Unfortunately, these two effects of the l1-
norm are inherently tied and there is no way to regulate the
impact of either one.

[33] introduce the capped l1 norm, defined by the element-
wise operation

qε(wi) = min(|wi|, ε). (2)

Its advantage over the standard l1 norm is that once a fea-
ture is extracted, its use is not penalized further — i.e., it
penalizes using many features does not reward small weights.
This is a much better approximation of the l0 norm, which
only penalizes feature use without interfering with the mag-
nitude of the weights. When ε is small enough, i.e., ε ≤
mini |wi|, we can compute the exact number of features ex-
tracted with qε(w)/ε. In other words, penalizing qε(w) is a
close proxy for penalizing the number of extracted features.
However, the capped l1 norm is not convex and therefore
not easy to optimize.

The capped l1 norm can be combined with a regular l1 (or
l2) norm, where one can control the trade-off between feature
extraction and regularization by adjusting the corresponding
regularization parameters, µ, λ ≥ 0:

min
w

∑
(xi,yi)

`(xi, yi,w) + λ|w|1 + µqε(w). (3)

Here qε(w) denotes [qε(w1), . . . , qε(wd)].

4. GRADIENT BOOSTED FEATURE SELEC-
TION

The classifier in Eq. (3) is better suited for feature selec-
tion than plain l1 regularization. However, it is still linear,
which limits the flexibility of the classifer. Standard ap-
proaches for incorporating non-linearity include the kernel
learning [22] and boosting [3]. HSIC Lasso [32] uses kernel
learning to discover non-linear feature interactions at a price
of quadratic memory and time complexity. Our method uses
boosting, which is much more scalable.



Boosting assumes that one can pre-process the data with
limited-depth regression trees. Let H be the set of all pos-
sible regression trees. Taking into account limited precision
and counting trees that obtain identical values on the entire
training set as one and the same tree, one can assume |H| to
be finite (albeit possibly large). Assuming that inputs are

mapped into R|H| through φ(x) = [h1(x), . . . , h|H|(x)]>, we
propose to learn a linear classifier in this transformed space.
Eq. (3) becomes

min
β

∑
(φ(xi),yi)

`(φ(xi), yi,β) + λ|β|1 + µqε(β). (4)

Here, β is a sparse linear vector that selects trees. Although
it is extremely high dimensional, the optimization in Eq. (4)
is tractable because β is extremely sparse. Assuming, with-
out loss of generalization, that the trees in H are sorted so
that the first T entries of β are non-zero, we obtain a final
classifier

H(x) =

T∑
t=1

βtht(x). (5)

Feature selection.
Eq. (4) has two penalty terms: plain l1 norm and capped

l1 norm. The first penalty term reduces overfitting while
the second selects features. However, in its current form,
the capped l1 norm selects trees rather than features. We
therefore have to modify our setup to explicitly penalize the
extraction of features.

To model the total number of features extracted by an
ensemble of trees, we define a binary matrix F ∈ {0, 1}d×T ,
where an entry Fft = 1 if and only if the tree ht uses fea-
ture f . With this notation, we can express the total weight
assigned to trees that extract feature f as

T∑
t=1

|Fftβt|. (6)

We modify qε(β) to instead penalize the actual weight as-
signed to features. The final optimization becomes

min
β
`(β) + λ|β|1 + µ

d∑
f=1

qε

(
T∑
t=1

|Fftβt|

)
. (7)

As before, if ε is sufficiently small (ε ≤ minf |
∑T
t=1 Fftβt|),

we can set µ = 1/ε and the feature selection penalty coin-
cides exactly with the number of features used.

4.1 Optimization
The optimization problem in Eq. (7) is non-convex and

non-differentiable. Nevertheless, we can minimize it effec-
tively (up to a local fixed point) with gradient boosting [7].
Let L(β) denote the loss function to be minimized and∇L(β)t
the gradient w.r.t βt. Gradient boosting can be viewed as
coordinate descent where we update the dimension with the
steepest gradient at every step. We can assume that the
set of all regression trees H is negation closed, i.e., for each
h ∈ H, we also have −h ∈ H. This allows us to only fol-
low negative gradients and always increase β. Thus there is
always a non-negative optimal β. The search for the dimen-
sions t∗ with the steepest negative gradient can be formal-

ized as

t∗ = argmin
t
∇L(β)t. (8)

In the remainder of this section we discuss approximate min-
imization strategies that does not require iterating over all
possible trees.

l1-regularization.
Since each step of the optimization increases a single di-

mension of β with a fixed step-size α > 0, the l1 norm of β
can be written in closed form as |β|1 = αT after T iterations.
This means that penalizing the l1 norm of β is equivalent
to early stopping after T iterations [7]. We therefore drop
the λ|β|1 term and instead introduce T as an equivalent
hyper-parameter.

Gradient Decomposition.
To find the steepest descent direction at iteration T ′+1,

we decompose the (sub-)gradient into two parts, one for the
loss function `(), and one for the capped l1 norm penalty

∇L(β)t =
∂`

∂βt
+ µ

d∑
f=1

∇qε

(
T ′∑
t=1

Fftβt

)
. (9)

(Hereafter we drop the absolute value around Fftβt, since
both Fft and βt are non-negative.) The gradient of qε(

∑
t Fftβt)

is not well-defined at the cusp when
∑
t Fftβt = ε. But we

can take the right-hand limit, since βt never decreases,

∇qε
( T ′∑
t=1

Fftβt
)

=

{
Fft, if

∑
t Fftβt < ε

0, if
∑
t Fftβt ≥ ε.

(10)

If we set ε=α, where α>0 is the step size, then
∑
t Fftβt ≥ ε

if and only if feature f has already been used in a tree from
a previous iteration. Let φf = 1 indicate that feature f is
still unused, and φf = 0 otherwise. With this notation we
can combine the gradients from the two cases and replace

∇qε
(∑T ′

t=1 Fftβt
)

with φfFft. We obtain

∇L(β)t =
∂`

∂βt
+ µ

d∑
f=1

φfFft. (11)

Note that φfFft = 1 if and only if feature f is extracted
for the first time in tree t. In other words, the second term
effectively penalizes trees that use many new (previously not
selected) features.

Greedy Tree construction.
With Eq. (11) we can compute the gradient with respect

to any tree. But finding the optimal t∗ would still require
searching all trees. In the remainder of this section, we
transform the search for t∗ from a search over all possible
dimensions t to a search for the best tree ht to minimize a
pre-specified loss function. The new search can be approxi-
mated with the CART algorithm [2].

To this end, we apply the chain rule and decompose ∂`
∂βt

into the derivative of the loss ` w.r.t. the current prediction
evaluated at each input H(xi) and the partial derivative



Algorithm 1 GBFS in pseudo-code.

1: Input: data {xi, yi}, learning rate ε, iterations T .
2: Initialize predictions H = 0 and selected feature set Ω =
∅.

3: for t = 1 to T do
4: Learn ht using greedy CART to minimize the impurity

function in Eq. (14).
5: Update H = H + εht.
6: For each feature f used in ht, set φf = 0 and Ω =

Ω ∪ f .
7: end for
8: Return H and Ω.

∂H(xi)
∂βt

,

∇L(β)t =

n∑
i=1

∂`

∂H(xi)

∂H(xi)

∂βt
+ µ

d∑
f=1

φfFft. (12)

Note that H(xi) = β>h(xi) is just a linear sum of all ht(xi),

the predictions over training data. Thus ∂H(xi)
∂βt

= ht(xi). If

we let gi denote the negative gradient gi = − ∂`
∂H(xi)

, we can

reformulate Eq. (12) as

ht = argmin
ht∈H

n∑
i=1

−giht(xi) + µ

d∑
f=1

φfFft. (13)

Similar to [3], we restrict H to only normalized trees (i.e.∑
i h

2
t (xi) = 1). We can then add two constant terms

1
2

∑
i h

2
t (xi) and 1

2

∑
i g

2
i to eq. (13), and complete the bi-

nomial equation.

ht = argmin
ht∈H

1

2

n∑
i=1

(
gi − ht(xi)

)2
+µ

d∑
f=1

φfFft. (14)

This is now a penalized squared loss—an impurity func-
tion—and a good solutions can be found efficiently via the
greedy CART algorithm for learning regression trees [7].
The first term in Eq. (14) encourages feature splits to best
match the negative gradient of the loss function, and the sec-
ond term rewards splitting on features which have already
been used in previous iterations. Algorithm 1 summarizes
the overall algorithm in pseudo-code.

4.2 Structured Feature Selection
In many feature selection applications, one may have addi-

tional qualitative knowledge about acceptable sparsity pat-
terns. Sometimes features can be grouped into bags and
the goal is to select as few bags as possible. Prior work
on handling structured sparsity include group lasso [10, 20]
and generalized lasso [19]. Our framework can easily handle
structured sparsity via the feature cost identity function φf .
For example, we can define φf = 1 if and only if no fea-
ture from the same bag as f has been used in the past, and
φf = 0 otherwise. The moment a feature from a particular
bag is used in a tree, all other features in the same bag be-
come “free” and the classifier is encouraged to use features
from this bag exclusively until it starts to see diminishing
returns.

In the most general setting, we can define φf : Ω→R+
0

as a function that maps from the set of previously extracted
features to a cost. For example, one could imagine settings
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Figure 1: Feature selection and classification per-
formance on a simulated data set. GBFS clearly
out-performs the l1 regularized logistic regression as
it successfully captures the nonlinear relations be-
tween labels and features.

where feature extraction appears in stages. Extracting fea-
ture f makes feature g cheaper, but not free. One such ap-
plication might be that of classifying medical images (e.g.,
MRI scans) where the features are raw pixels and feature
groups are local regions of interest. In this case, φf (Ω) may
reduce the “price” of pixels surrounding those in Ω to en-
courage feature selection with local focus.

5. RESULTS
In this section, we evaluate GBFS against other state-of-

the-art feature selection methods on synthetic as well as real-
world benchmark data sets. We also examine at its capacity
for dealing with known sparsity patterns in a bioinformatics
application. All experiments were conducted on a desktop
with dual 6-core Intel i7 cpus with 2.66GHz, 96 GB RAM,
and Linux version 2.6.32.x86 64.

5.1 Synthetic data
Figure 1 illustrates a synthetic binary classification data

set with three features. The data is not linearly separable
in either two dimensions or three dimensions. However, a
good nonlinear classifier can easily separate the data using
x and y. The z feature is simply a linear combination of x
and y and thus redundant. We randomly select 90% of the
instances for training and the rest for testing.

Figure 1 (left panel) illustrates results from l1-regularized
logistic regression (L1-LR) [11, 16]. The regularization pa-
rameter is tuned on a hold-out set. Although L1-LR suc-
cessfully detects and ignores the redundant feature z, it also
assigns zero weight to x and only selects a single feature y.
Consequently, it has poor classification error rate on the test
set (54.05%). In contrast, GBFS (Figure 1, right panel) not
only identifies the redundant feature z, but also detects that
the labels are related to a nonlinear combination of x, y. It
selects both x and y and successfully separates the data,
achieving 0% classification error.

5.2 Structured feature selection
In many applications there may be prior constraints on

the sparsity patterns. Since GBFS can naturally incorpo-
rate pre-specified feature structures, we use it to perform
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test error:           
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HSIC Lasso

test error:
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4
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test error:
36.15%

# of features:
23

Figure 2: Feature selection on structured feature
data set. Selected features are colored in green, and
unselected are in blue. The bag is highlighted with a
red/white box if at least one of its features is selected
by the classifier. (Some bags may require zooming
in to make the selected features visible.)

structured feature selection on the Colon data set2. In this
dataset, 40 tumor and 22 normal colon tissues for 6500 hu-
man genes are measured using affymetrix gene chips. [1]
select 2000 genes that have the highest minimal intensity
across the samples. [13] further analyze these genes and
cluster them into 9 clusters/bags by their biological mean-
ing. The task is to classify whether a tissue is normal or
tumor. We random split the 62 tissues into 80/20 training
and testing datasets, repeated over 10 random splits. We use
the feature-bag cost function φf mentioned in section 4.2 to
incorporate this side-information (setting the cost of all fea-
tures in a bag to zero once the first feature is extracted).
Feature selection without considering these bag information

2Available through the Princeton University gene expression
project (http://microarray.princeton.edu/oncology/)

not only performs and generalizes poorly, but are also diffi-
cult to interpret and justify.

Figure 2 shows the selected features from one random split
and classification results averaged over 10 splits. Selected
features are colored in green, and unselected ones are in blue.
A bag is highlighted with a red/white box if at least one of
its features is selected by the classifier. We compare against
l1-regularized logistic regression (L1-LR) [11, 16], Random
Forest feature selection (RF-FS) [9], HSIC Lasso [32] and
Group Lasso [14].

As shown in Figure 2, because GBFS can incorporate
the bag structures, it focusses on selecting features in one
specific bag. Throughout training, it only selects features
from bag 8 (highlighted with a red/white box). This con-
veniently reveals the association between diseases and gene
clusters/bags. Similar to GBFS, Group Lasso with logistic
regression can also deal with structured features. However,
its l2 regularization has side effects on feature weights, and
thus results in much higher classification error rate 36.15%.
In contrast, l1-regularized logistic regression, Random For-
est and HSIC Lasso do not take bag information into consid-
eration. They select scattered features from different bags,
making results difficult to interpret. In terms of classifi-
cation accuracy, GBFS and Random Forest has the lowest
test set error rate (15.38%), whereas l1-regularized logistic
regression (L1-LR) and HSIC Lasso achieve error rates of
17.69% and 21.85%, respectively.

There are two reason why GBFS can be accurate with
features from only a single bag. First, it is indeed the case
that the genes in bag 8 are very predictive for the task of
whether the tissue is malignant or benign (a result that may
be of high biological value). Second, GBFS does not penalize
further feature extraction inside bag 8 while other methods
do; since bag 8 features are the most predictive, penalizing
against them leads to a worse classifier.

5.3 Benchmark data sets

Data sets.
We evaluate GBFS on real-world benchmark data sets of

varying sizes, domains and levels of difficulty. Table 1 lists
data set statistics ordered by increasing numbers of train-
ing instances. We focus on data sets with a large number
of training examples (n � d). All tasks are binary classi-
fication, though GBFS naturally extends to the regression
setting, so long as the loss function is differentiable and con-
tinuous. Multi-class classification problems can be reduced
to binary ones, either by selecting the two classes that are
most easily confused or (if those are not known) by grouping
labels into two sets.

Baselines.
The first baseline is l1-regularized logistic regression (L1-

LR) [11, 16]. We vary the regularization parameter to se-
lect different numbers of features and examine the test error
rates under each setting.

We also compare against Random Forest feature selection
(RF-FS) [9], a non-linear classification and feature selection
algorithm. The learner builds many full decision trees by
bagging training instances over random subsets of features.
Features selection is done by ranking features based on their
impurity improvement score, aggregated over all trees and
all splits. Features with larger impurity improvements are



data set pcmac uspst spam isolet mnist3vs8 adult kddcup99

#training 1555 1606 3681 6238 11982 32562 4898431
#testing 388 401 920 1559 1984 16282 311029
#features 3289 256 57 617 784 123 122

Table 1: Data sets statistics. Data sets are ordered by the number of training instances.
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Figure 3: Classification error rates (in %) vs. feature selection performance for different algorithms on small
to medium sized data sets.

considered more important. For each data set, we train a
Random Forest with 2000 trees and a maximum number of
20 elements per leaf node. After training all 2000 trees, we
rank all features. Starting from top of the list, we re-train a
random forest with only the top-k features and evaluate its
accuracy on the test set. We increase the number of selected
features until all features are included.

The next state-of-the-art baseline is Minimum Redundancy
Maximum Relevance (mRMR) [17], a non-linear feature se-
lection algorithm that ranks features based on their mutual
information with the labels. Again, we increase the selected
feature set starting from the top of the list. At each stopping
point, we train an RBF kernel SVM using only the features
selected so far. The hyper-parameters are tuned on on 5
different random 80/20 splits of the training data. The final
reported test error rates are based on the SVM trained on
the full training set with the best hyper-parameter setting.

Finally, we compare against HSIC Lasso [32], a convex
extension to Greedy HSIC [23]. HSIC Lasso builds a kernel
matrix for each feature and combines them to best match an
ideal kernel generated from the labels. It encourages feature
sparsity via an l1 penalty on the linear combination coeffi-
cients. Similar to l1-regularized logistic regression, we eval-
uate a wide range of l1 regularization parameters to sweep
out the entire feature selection curve. Since HSIC Lasso is a
two steps algorithm, we train a kernel SVM with the selected
features to perform classification. Similar to the mRMR ex-

periment, we use cross-validation to select hyper-parameters
and average over 5 runs.

To evaluate GBFS, we perform 5 random 80/20 train-
ing/validation splits. We use the validation set to choose
the depth of the regression trees and the number of itera-
tions (maximum iterations is set to 2000). The learning rate
is set to ε = 0.1 for all data sets. In order to show the whole
error rates curve, we evaluate the algorithm at 10 values for
the feature selection trade-off parameter µ in Eq. (7) (i.e.,
µ = {2−3, 2−2, 2−1, 20, 21, 22, 23, 25, 27, 29}).

Error rates.
Figure 3 shows the feature selection and classification per-

formance of different algorithms on small and medium sized
data sets. We select up to 100 features except for spam
(d = 57) and pcmac (d = 3289). In general, l1-regularized
logistic regression (L1-LR), Random Forest (RF-FS) and
GBFS easily scale to all data sets. RF-FS and GBFS both
clearly out perform L1-LR in accuracy on all data sets due
to their ability to capture nonlinear feature-label relation-
ships. HSIC Lasso is very sensitive to the data size (both
the number of training instance and the number of features),
and only scales to two small data sets (uspst,spam). mRMR
is even more restrictive (more sensitive to the number of
training instance) and thus only works for uspst. Both of
them run out of memory on pcmac, which has the largest
number of features. In terms of accuracy, GBFS clearly out-



0 20 40 60 80 100
7

7.5

8

8.5

9

9.5

10

# of features

Er
ro

r r
at

es
 (i

n 
%

)

 

 
L1−LR (Lee et al., 2006)
RF FS (Hastie et al., 2009)
GBFS, µ = 2−32

GBFS, µ = 2−8

GBFS, µ = 2−2

GBFS, µ = 22

GBFS, µ = 28

GBFS, µ = 232

kddcup99

Figure 4: Feature selection and classification error
rates (in %) for different algorithms on the large
kddcup99 data set.

10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

20

# of features

Er
ro

r r
at

es
 (i

n 
%

)

 

 
L1−LR (Lee et al., 2006)
RF FS (Hastie et al., 2009)
HSIC Lasso (Yamada et al., 2012)
mRMR (Peng et al., 2005)
GBFS

feature quality

Figure 5: Error rates (in %) of SVM-RBF trained
on various feature subset obtained with different fea-
tures selection algorithms.

performs HSIC Lasso on spam but performs slightly worse on
uspst. On all small and medium datasets, GBFS either out-
performs RF-FS or matches its classification performance.
However, very different from RF-FS, GBFS is a one step
approach that selects features and learns a classifier at the
same time, whereas RF-FS requires re-training a classifier af-
ter feature selection. This means that GBFS is much faster
to train than RF-FS.

Large data set.
The last dataset in Table 1 (kddcup99 ) contains close to 5

million training instances. Training on such large data sets
can be very time-consuming. We limit GBFS to T = 500
trees with the default hyper-parameters of tree depth = 4
and learning rate = 0.1. Training Random Forest with de-
fault hyper-parameters would take more than a week. There-
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Figure 6: Classification error rates (in %) vs. feature
selection performance for different algorithms on a
high dimensional (d� n) data set.

fore, we limit the number of trees to 100 and the maximum
number of instances per leaf node to 500. Feature selection
and classification results are shown in Figure 4. For GBFS,
instead of plotting the best performing results for each µ, we
plot the whole feature selection iteration curve for multiple
values of µ. GBFS obtains lower error rates than Random
Forest (RF-FS) and l1 regularized logistic regression (L1-
LR) when few features are selected. (Note that due to the
extremely large data set size, even improvements of < 1%
are considered significant.)

Quality.
To evaluate the quality of the selected features, we sepa-

rate the contribution of the feature selection from the effect
of using different classifiers. We apply all algorithms on the
smallest data set (uspst) to select a subset of the features
and then train a SVM with RBF kernel on the respective
feature subset. Figure 5 shows the error rates as a function
of the number of selected features. GBFS obtains the lowest
error rates in the (most interesting) regions of only few se-
lected features. As more features are selected eventually all
FS algorithms converge to similar values. It is worth noting
that the linear classifier (L1-LR) slightly outperforms most
nonlinear methods when given enough features, which sug-
gests that the uspst digits data requires a nonlinear classifier
for prediction but not for feature discovery.

d� n scenario.
While GBFS focusses on the scenario where the number

of training data points is much larger than the number of
features (n � d), we also evaluate GBFS on a traditional
feature selection benchmark data set SMK-CAN-187 [24],
which is publicly available from [34]. This binary classifi-
cation data set contains 187 data points and 19, 993 fea-
tures. We average results over 5 random 80/20 train-test
splits. Figure 6 compares the results. GBFS out-performs
l1-regularized logistic regression (L1-LR), HSIC-Lasso and
Random Forest feature selection (RF-FS), though by a small
margin in some regions.



Computation time and complexity.
Not surprisingly, the linear method (L1-LR) is the fastest

by far. Both mRMR and HSIC Lasso take significantly more
time than Random Forest and GBFS because they involve
either mutual information or kernel matrix computation,
which scales as O(d2) or O(n2). Random Forest builds full

trees, requiring a time complexity of O(
√
dn logn) per tree.

The dependency on
√
d is slightly misleading, as the number

of trees required for Random Forests is also dependent on
the number of features and scales as O(

√
d) itself. In con-

trast, GBFS only builds limited depth (depth = 4, 5) trees,
and the computation time complexity is O(dn). The num-
ber of iterations T is independent of the number of input
features d; it is only a function of how the number of desired
features. Empirically, we observe that the two algorithms
are comparable in speed but GBFS is significantly faster
on data sets with many instances (large n). The training
time ranged from several seconds to minutes on the small
data sets to about one hour on the large data set kddcup99
(when Random Forest is trained with only 500 trees and
large leaf sizes). Admittedly, the empirical comparison of
training time is slightly problematic because our Random
Forest implementation is based on highly optimized C++
code, whereas GBFS is implemented in MatlabTM. We ex-
pect that GBFS could be made significantly faster if im-
plemented in faster programming languages (e.g. C++)
with the incorporation of known parallelization techniques
for limited depth trees [28].

6. DISCUSSION
This paper introduces GBFS, a novel algorithm for non-

linear feature selection. The algorithm quickly train very
accurate classifiers while selecting high quality features. In
contrast to most prior work, GBFS is based on a variation
of gradient boosting of limited depth trees [7]. This ap-
proach has several advantages. It scales naturally to large
data sets and it combines learning a powerful classifier and
performing feature selection into a single step. It can easily
incorporate known feature dependencies, a common setting
in biomedical applications [1], medical imaging [6] and com-
puter vision [4]. This has the potential to unlock interesting
new discoveries in a variety of application domains. From
a practitioners perspective, it is now worth investigating if
a data set has inter-feature dependencies that could be pro-
vided as additional side-information to the algorithm.

One bottleneck of GBFS is that it explores features us-
ing the CART algorithm, which has a complexity of O(dn).
This may become a problem in cases with millions of fea-
tures. Although this paper primarily focusses on the n� d
scenario, as future work we plan to consider improving the
scalability with respect to d. One promising approach is
to restrict the search to a random subsets of new features,
akin to Random Forest. However, in contrast to Random
Forest, the iterative nature of GBFS allows us to bias the
sampling probability of a feature by its splitting value from
previous iterations—thus avoiding unnecessary selection of
unimportant features.

We are excited by the promising results of GBFS and
believe that the use of gradient boosted trees for feature se-
lection will lead to many interesting follow-up results. This
will hopefully spark new algorithmic developments and im-
proved feature discovery across application domains.
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APPENDIX
A. SUPPLEMENTARY RESULTS

We further extend our experimental results by incorpo-
rating more one-vs-one pairs from MNIST data set. We
randomly pick 6 one-vs-one pairs from MNIST and evaluate
GBFS and other feature selection algorithms. The first base-
line is l1-regularized logistic regression (L1-LR). We vary
the regularization parameter to select different number of
features and examine the error rates under these different
settings. We also compare against Random Forest feature se-
lection [9]. Same to the procedure described in section 5, we
run Random Forest with 2000 trees and a maximum number
of 20 elements per leaf node. After training all 2000 trees,
we rank all features. Starting from the most important fea-
ture, we re-train a random forest with only selected features
and evaluate it on testing set. We gradually include less
important features until we include all features. The other
two baselines (include mRMR, HSIC-Lasso) do not scale on
the MNIST data set.

Figure 7 indicates that GBFS consistently matches Ran-
dom Forest FS, and clearly out-performs l1-regularized lo-
gistic regression.
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Figure 7: Classification error rates vs. feature selection performance for different algorithms on 6 random
chosen pairs of binary classification tasks from MNIST data set.


	Introduction
	Related Work
	Background
	Feature selection with the l1 norm
	The capped l1 norm

	Gradient Boosted Feature Selection
	Optimization
	Structured Feature Selection

	Results
	Synthetic data
	Structured feature selection
	Benchmark data sets

	Discussion
	Acknowledgments
	References
	Supplementary results

