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Gradient Bounds and Liouville Theorems
for Quasilinear Elliptic Equations.

L. A. PELETIER (*) - J. SERRIN (**)

dedicated to Jean Leray

1. - Introduction.

Let u be a solution of Laplace’s equation in the whole of Rn. The classical
Liouville Theorem states that if u is bounded on one side, say u  M for
all x E Rn, then u must be identically constant. In [8] Serrin has extended
this result to entire solutions of the nonlinear Poisson equation

where L1 denotes the Laplacian operator in Rn, x= (oei , ... , xn) is a point in Rn,
and Du = (8uj8zi , ..., is the gradient of u. His results were based

on gradient estimates obtained by means of the maximum principle: to
carry the method through, however, it was required that the solution be
bounded both from above and from below.

In this paper we shall show that for certain classes of quasilinear elliptic
equations of the form

where denotes the Hessian matrix it is possible to estab-
lish gradient bounds and Liouville theorems for solutions which (as in the
classical Liouville Theorem) are only bounded on one side. In addition

(*) Dept. of Math., University of Leiden.
(**) School of Math., University of Minnesota.
Pervenuto alla Redazione il 15 Aprile 1977.
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we shall prove corresponding results for solutions for which no bounds of

any sort are available.

To indicate the scope of our results, we shall formulate a number of
theorems for the simpler equation

in which we assume that the function f(u, p) is defined on R X Rn and con-

tinuously differentiable on R X (R~B~0~ ) , where p = (PI, p,,) denotes

a replacement variable for Du.
We first consider solutions of (1.2) for which no a priori bounds are given.

To simplify the notation we shall mean by f u the partial derivative 8fj8u
and by f1J the gradient When a function u E is

a solution of (1.2) in the entire space Rn we shall call it an entire solu-

tion of (1.2).

THEOREM 1.1. Let u be acn entire solution of (1.2) whose gradient Du is
bounded. Suppose that for each pair of positive numbers 8 and L (with 8  L)
there exist positive constants fl and N such that

for u E p ~ ~ L. T hen u = constant.

If f depends only on Du, and if f (p) =1= 0 for p =1= 0, then the hypotheses
of the theorem are automatically satisfied and any entire solution with

bounded gradient must be constant. If f depends only on u and if 
is positive and uniformly bounded from zero then the hypotheses of the
theorem are again automatically satisfied so that in this case also any
entire solution with bounded gradient is constant. An example in point
is the equation

Finally we observe that Theorem 1.1 implies that if f (c, 0) 0 0 for all c E R
then equation (1.2) can have no entire solutions with bounded gradient.

Theorem 1.1 has already been noted in [9]. It is not yet a Liouville
theorem of the ordinary type, however, since one of the required hypo-
theses is that Du be bounded. In many cases, however, it is possible to ob-
tain a bound for Du by separate means and thus to obtain a standard type
Liouville theorem. Such an additional result obviously must take into ac-
count the asymptotic behaviour of the function f(u, p) for large p, and ac-
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cordingly it is natural to consider this aspect of the problem separately.
As an example, the following gradient bound can be obtained by our present
approach. Here we shall denote the ball with radius .R and center at the

origin by B(R).

THEOREM 1.2. Let C3 (B (l~)) be a solution of (1.2) in B(R). Suppose
there exist positive constants v, x and L such that either

for all u E R and ¡pi&#x3E; L. Then there exists a positive constant K depending
only on v, x and n such that

As noted above, Theorems 1.1 and 1.2 together yield a standard Liouville
theorem, indeed one with no assumptions whatever concerning the asymp-
totic behaviour of the solution. As an example, observe that every entire
solution of the equation d u = is a constant if fl &#x3E; 0. It is also worth

noting that (1.4) can be used to deduce the behaviour of a solution near an
isolated singularity. In particular, if (1.3) holds and if u is a solution of (1.2 )
with an isolated singularity at the origin, y then we have

In Section 3 it will be shown by means of the example 4 u = that

this estimate is sharp.
In the above results no bounds for u were required. Next we turn to

solutions of equation (1.2) which are bounded on one side. We shall only
consider solutions which are bounded above; it is a trivial matter to extend
the results to solutions which are bounded below. We define the function

As in [8] we say that the function f(u, p) satisfies condition H if for any pair
of positive numbers 8 and L (with s  L) there exists a corresponding
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number C such that

THEOREM 1.3. Let u be an entire solution of equaction (1.2), where

and f satisfies condition H. Suppose Du is bounded and that M(d) = o(d)
as d --&#x3E; oo. T hen u - constant.

This result strengthens Theorem 3 in [8] by replacing the two-sided
condition = o(d) by the one-sided condition M(d) = o(d). Moreover,
just as Theorem 3 of [8] applies unchanged if the Laplace operator in (1.2)
is replaced by the quasilinear elliptic operator A(Du)D2 U, so also The-
orems 1.1 and 1.3 here remain unchanged if du is replaced by 
in (1.2).

In particular, y it follows that if u is an entire solution of the equation

such that Du is uniformly bounded and M(d) = o(d), then u - constant (1).
The growth condition on M(d) is obviously necessary. Conversely, if u is
an entire solution of the nonhomogeneous equation

such that Du is uniformly bounded, then u = constant if 93 ( p ) # 0 for

p =F 0. This result obviously does not hold when 93 is allowed to vanish for
arguments p =F 0, as is clear from Laplace’s equation. What is more sur-
prising, however, is that even a one-sided bound on u does not suffice to ensure
that an entire solution of (1.5) with bounded gradient is constant, as witness
the equation

which has the non-constant entire solution U = - (1 -f- X2)1.
This example shows moreover that Theorem 1.3 cannot be improved

by replacing condition g with a straightforward boundedness condition

(1) When n = 2 the boundedness condition on the gradient can be dropped;
see [1].
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on f ~ . Should the solution be bounded on both sides, however, then finally
we do regain the conclusion that an entire solution of (1.5) with gradient
must be constant; see Theorem 6 of [8]. These results can be summarized

briefly as follo’ws :

Let u be an entire solution of (1.5) with bounded gradient. If u = o(log d),
then u ._--_ constant. If M(d) = o(d) and i’~ satisfies condition H (in particular
if 93 = 0), then again u =- constant. Finally i f %(p) =1= 0 for p =1= 0 then,
without any additional growth hypotheses, we still have u = constant. These

results are best possible in the sense that none of the hypotheses can be dropped
without altering the conclusion.

The following two theorems give estimates for the gradient of a solution
which is bounded on one side.

THEOREM 1.4. Let u E C3(B(R)) be a solution of (1.2) in B(R), such that
u  M. Suppose that there exist positive constants x and l such that

for ~c ~ M, I p &#x3E; l. Then there exists constants K and L, depending only on
n, x, 1, such that

By strengthening the conditions on f, it is also possible to obtain a gradient
estimate similar to (1.6) but in which .L = 0.

THEOREM 1.5. Let u E be a solution of (1.2) in such that

u  M. Suppose that f satisfies the conditions 
-

and that

. Then there exists a constant K such that

Clearly Theorem 1.5 immediately yields a Liouville theorem, since if u
is an entire solution we have the freedom to choose R arbitrarily large.
The new condition in Theorem 1.5, namely that p ~ f D ~ (1 -+- 1 /n) f , is es-

sentially necessary. For consider the example
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where m is a large odd integer. This satisfies all the conditions of the

theorem except the new one (and even satisfies that if the factor 1 
is replaced by yet has the negative entire solution

Theorem 1.5 can also be used to obtain the following Harnack inequality.

THEOREM 1.6. Let u E C3(S~) be a solution of (1.2) in Q such that u  M
and let f satisfy the conditions of Theorem 1.5. Then for any compact subset
Q’ of Q there exists a constant A &#x3E; 1 such that for any two points x, y E Q’

We have observed that Theorem 1.5 yields a Liouville theorem. In fact
for this result it is even possible to replace the one-sided boundedness con-
dition u  .lVl by a growth condition on the function M(d), as in Theorem 1.3.
The precise result is as follows.

THEOREM 1.7. Let u be an entire solution of equation (1.2). Suppose that

and that for every positive there exists a number x such that

Then u =-= constant, provided that .
~u ---- .!Z,

As in the case of Theorem 1.5 the condition is essen-

tially necessary.
Examples of equations which satisfy the conditions of Theorems 1.5

and 1.7 are ,
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Since for equation (1.9) we have f (c, 0) = 1, Theorem 1.7 implies that there
exist no entire solutions of (1.9) which are bounded above.

Section 2 is devoted to some preliminary calculations needed for the
remaining parts of the paper. Section 3 considers solutions which have no

a priori bounds and Section 4 treats solutions which are bounded on one side.
The seven theorems noted above are obtained respectively from Theorem 3.4
(with 0 = 0), Theorems 3.2 and 3.1 (with 0 = 2 and 0 = 0), the corollary
of Theorem 4.4 (with 0 = 2 ), Theorem 4.1 (with 8 = 0, c~ _ ,u = 1, s = - 1~
t = 0), Theorem 4.2 (with 0 2 8 = - 1), Theorem 4.3 (with 0 = 2 , 7
s = -1 ), and Theorem 4.5 (with 0 = 2 , s = -1 ) .

Several important variational equations can be treated as special cases
of our results, particularly the equation of prescribed mean curvature

and the Euler-Lagrange equation for the problem

The first of these is considered in Section 4 after Theorem 4.4, and the
second in Section 5.

For comparison with the results of this paper, the reader may also note
the Liouville-type theorems of Bohn and Jackson [1], Gilbarg and Serrin [3],
Ivanov [4], and Redheffer [6], and Tavgelidze [10].

2. - Preliminaries.

We begin by introducing some notation. Let Y be a scalar function of
the variables x, u and p. Then we shall write

It will be convenient to define the differential operators 6, 6, as follows:
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The quantities s and t are respectively, a scalar and a vector valued func-
tion of x, u and p which we are free to choose. Whenever Y is a vector
valued or a matrix valued function, we shall continue to employ this notation.

The method we shall use to obtain estimates for the gradient of u is
based on one used by Serrin [7] and [8] for solutions which are bounded on
both sides. We consider solutions of the equation

where A and % are respectively a given symmetric positive definite matrix
and a given scalar function of the variables indicated, while denotes

the natural contraction ~i~ We shall suppose that A(x, u, p) is
of class C1 on S2 X R X Rn and that p) is of class C’ X R X (RnB~0~) .
(The reason for using instead of Rn in the differentiability class of 93
is so as to include examples of the p) = etc.)

Now define the function

in which i is a cut-off function of the form

and d and k are positive constants which will be chosen appropriately.
It follows from an elementary computation (see [7] or [8]) that in the ball
B(d) = {x: Ixl C dl the function z satisfies the equation

,where A is a continuous vector valued function on B(d) and D2uAD2u
denotes the contraction

The operators 6 and 52 are understood to apply only to the quantities im-
mediately following them.

The first term on the right hand side of (2.2) is non-negative and can
be used to estimate the terms involving 6A and ð2 Á. Indeed we have the
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inequality

where I is the lowest eigenvalue of the positive definite matrix A. We also
have

where tr A denotes the trace of A (2). Because (2.4) is in some cases stronger
than (2.3) we shall only use part of the first term, namely OD2UAD2U
(0  0  1), to estimate the terms involving ðA and 2 . The remainder
(1 - O)D2 uAD2 can then be estimated by means of (2.4). It is clear that

we may set 0 = 0 if 6A =62A = 0. Thus we obtain eventually (3)

in which

(2) To see this, note that since A is positive definite we have

for any matrices ~ and q and any real A. Thus, reverting to our vector notation,

whence obviously

Putting ~ = D 2 u and 17 = Identity, we get (1.4).
(3) See [8] for the case k = 2. For the general case it is easiest to suppose

A = A’, 9 = 0 in the calculation of [7], pp. 578-580; note also that in the present
paper the operator 6 has been defined without the minus sign which appears in [7]
and [8]. The introduction of the constant 6 has been explained above and causes
only minor modifications in these calculations.

Finally note that following misprints in [7]: in formula (13), D2w should be 
on page 572, line 7, the inequality should be reversed; on p. 575, middle of page,
31S should be 31S ; on p. 579, top line, replace second comma by z, and on line 3
from the bottom of the page 4k + n should be 4k + 2n and 1/k should be 2/k. In
formula (27), 31S should be followed by a + sign and should be (lpI2jZ)I/k;
in formula (28), should be ~293 and the exponent 2/k should be inserted at
the end; at the foot of page 580 the following phrase should be added: « (the factor 2
in the denominators of a and y should moreover be omitted) &#x3E;&#x3E;; in (29) the exponent 20
should be - 20 ; and, on page 589, one should delete 77 from (b) and add q to (d).
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Now suppose there exist constants 1, and 12 such that

Then it is clear that z cannot have an interior maximum in B(d) which ex-
ceeds max I’l. Because z = 0 on aB this implies

and Hence

In some cases it is necessary first to transform to a new dependent
variable u by means of the relation

before the program outlined above can be successfully carried out. In

place of (2.5) we then obtain the principal differential inequality (4)

where and

Here

(4) See [8], or [7], page 580. The reader should be reminded again that we are
taking ~’ _ = 0 in the calculations of [7], that the constant 0 is still to be
carried along as noted above, and finally that it is best to include a parameter r
in the operator 6 (as in [7], page 571), setting r = 0 only at the close of the whole
calculation.



75

and

As before, 9e(0,l] is a constant; the case 0=0 is allowed however if

6A = ~2 .~ = 0, in which case the terms and 

do not appear in the formulas for a, f3, y.
The maximum principle argument given previously can be equally ap-

plied to the function ~. This leads to an estimate for Du and thus, in turn,
to an estimate for Du.

In summary, we have above a program for obtaining gradient bounds for
solutions of AD2u+ = 93, applying (as we shall see) in each of the following
cases: (i) ~ bounded, bounded on one side, and (iii) u unbounded.

Case (i) was discussed in detail in [4] and [8], and will not be considered
further here. Our intention is to concentrate on the results obtainable in

cases (ii) and (iii). In [9] some preliminary results for case (iii) have

already been indicated.

3. - Solutions without a priori bounds.

In this section we shall obtain gradient estimates and a Liouville theorem
in the absence of any bounds on the solution, using a method based on in-
equality (2.8).

If u is a solution in the ball B(xo, d) = {.r: x - xol  dl, the bound we
obtain for IDu(xo)I will depend on d. We shall exploit this dependence to
establish a limit theorem for solutions near an isolated singularity and one
for the behavior of solutions as Ixl - 00.

To achieve a certain transparency in the statements of the results, we
shall only discuss in detail solutions of the slightly simpler equation

Generalization of these results to solutions of equation (1.1) is entirely
straightforward. For convenience we shall also assume that tr A = 1,
as can always be done.
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Let us define the quantity

where 8 E (0, 1~. The value of 0 will be fixed for any application, though
in general one would wish to choose it as small as possible.

THEOREM 3.1. Let u E 03(Q) satisfy equation (3.1). Assume that tr A = 1
and that there exist positive numbers v, x and L such that

and

for Then for any point Xo E Q z,ve have

where do is the distance from Xo to aS~ and K is ac eonstacnt which depends only
on X, v, n and 0.

PROOF. We consider (3.1) in the ball d), where d E (0, do ) . Shifting
the origin to xo , we then find that (2.5) holds for the function z 
The coefficient X in (2.6) can be estimated by

for p ~ &#x3E; L. In obtaining (3.5) we have set t = 0 in the formula for the

differential operator 6, and have used the fact that tr A = 1 (hence ]] A ][ 2  n)
and that A = A(p) (hence 6 A = 0 and ~2 ~ _ Ap). Clearly the constant C
depends only on k, n and 0.

We now choose k = 21v and use conditions (3.2) and (3.3). This yields
(with C’ a new constant)

By condition (3.2), X &#x3E; 0. Hence there exists a positive number g such
that if d2 zv &#x3E; .g2y, then JY’  0. It follows from (2.8), there-



77

fore, that

It is clear that K only depends on C’, that is, as one sees, only on v, x, n
and 0. [From another point of view .g also depends implicitly on L, this
dependence entering via the constant x in (3.2) and (3.3).]

REMARK. Since 6 A = 0 and 2 _ Aj) in the above calculations, we
may take 0 = 0 in the formula for X provided that is constant, and in
particular when A is the Laplace operator (see the remark preceding for-
mula (2.5)).

THEOREM 3.2. The conclusion of Theorem 3.1 still holds if condition (3.3)
is replaced by

PROOF. Whereas in the proof of Theorem 3.1 the function t in the dif-
ferential operator 6, was taken to be zero, we now choose t = - (5).
Then ð2 ~3 = 0 and we obtain instead of (3.5)

if Ipl &#x3E; L. The rest of the proof is the same as before.
The dependence on d in the bound (3.4) for can be used to obtain

results about the limiting behavior of u near an isolated singularity, which
for convenience we assume to be at the origin. In this case do = Ixo I as

xo -~ 0 and it follows from (3.4) that

For v &#x3E; 1, relation (3.7) implies

(5) At any point where 93 = 0 we define t = 0. This convention will also be
followed in later proofs.
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Moreover since is radially integrable to the origin when v &#x3E; 1 (again
by (3.7)) it follows that exists and is finite in this case.

x-O

This establishes the following result.

Let u E C3 be a solution of equation (3.1) in ac deleted neighbourhood of the
origin, and let the hypotheses of either Theorem 3.1 or 3.2 be satisfied. Then
u = if v C 1, and u is continuous at x = 0 if v &#x3E; 1.

The following example shows that the estimate (3.7) is sharp. Consider

the nonlinear Poisson equation

where a and # are positive constants. Here we have (after normalizing
to tr A = 1)

and

Thus conditions (3.2) and (3.3), or (3.2) and (3.6), are satisfied for v = #,
any L &#x3E; 0, and an appropriate constant x. It follows from (3.7) that if u
is a solution of (3.8) in a deleted neighbourhood of the origin, then

The function

where r = is a solution of (3.8) provided the constant k is chosen ap-
propriately :
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Clearly for this solution

in precise agreement with the conclusion (3.9) when f3 =1= 1 (n - 1) and

satisfying (3.9) when P = 1/(n - 1). We note also that this solution is

continuous at x = 0 when fl &#x3E; 1.

As an example of the application of Theorems 3.1 and 3.2, consider

the equation

Let u be an entire solution of (3.10). We shall show that

this result being best possible in view of the fact that U = - (1 -~- X2)1
is a solution.

It is clear that for any given c &#x3E; 0 the conditions of either Theorem 3.1

or 3.2 are verified when L = 1 -E- E, v = 2, and x is appropriately chosen.
Thus by (3.4)

at each x in Rn, where d is any finite value. Since we may choose d as

large as we wish, and .K does not depend on d, this gives idul  1 + 8 in Rn.
But 8 is arbitrary, and the result follows. Another corollary of Theorems 3.1
and 3.2 is the following Liouville theorem.

THEOREM 3.3. Let u be an entire solution of equation (3.1 ), where we
assume that tr A = 1.

Suppose for 8 &#x3E; 0 that there exist corresponding positive constants x and v
such that conditions (3.2) and (3.3), or alternately conditions (3.2) and (3.6),
hold for x E Rn, u E R, and 1PI &#x3E; ë.

T hen u - constant.

PROOF. Let xo be any point in Rn. We may apply either Theorem 3.1
or Theorem 3.2 with L = 8. By (3.4) we have, for any d &#x3E; 0,
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where K depends and 0. Let d - oo and then 8 -~ 0. This gives
= 0. Since zo was arbitrary, it follows that Du - 0 and u =- constant.

Theorem 3.3 applies, for example, to equation (3.8), and more generally
to the equation

In particular if q’ &#x3E; 0 and inf -+- &#x3E; 0 then every entire solution is

constant. Note that the last condition on 99 is necessary for this conclusion,
since otherwise Laplace’s equation arises as the special case 99 =-= 0. Whether
the conclusion holds simply when T’ + cp2 &#x3E; 0 we do not know.

It is also possible to establish a Liouville theorem under much weaker
conditions on A and 93 if we supply a bound for either by fiat or by
some alternative procedure.

THEOREM 3.4. Suppose u is an entire solution of equation (3.1 ) for which Du
is uniformly bounded. Assume also that for every pair of positive numbers 8
and L (with 8  L) there exist positive constants f.l and N such that

Then u == constant.

PROOF. We may suppose for all x E Rn. By Theorem 3.3 it is

enough to show for v = 1 and for every 8 in (0, 1) that there exists a

positive constant x, possibly depending on e, such that (3.2) and (3.3) are
satisfied for 7 But this follows at once from (3.12)
and the fact that II ~p~~ is bounded for L (recall that A == A(p) is

positive definite and continuously differentiable).

REMARK. The case 0 = 0 is allowed in Theorem 3.4 if A is constant,
and in particular, when A is the Laplacian.

If % = then the hypothesis (3.12) is satisfied automatically if

only % ~ 0 when p # 0. Thus if u is an entire solution of the equation

,where % ~ 0 when p # 0, and if the gradient of u is bounded, then u is a
constant. A similar conclusion also holds when % = and is

positive and uniformly bounded from zero.
A final corollary of Theorems 3.1 and 3.2 concerns the asymptotic be-

havior (as x ~ oo) of solutions of (3.1) in an exterior domain, i.e. a domain S~
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which contains a full neighborhood of infinity. We suppose that condi-
tions (3.2) and (3.3), or alternately (3.2) and (3.6), hold for 

Ipl &#x3E; 0, where v and x are fixed positive constants. Then by (3.4) with
L - 0 we have

We now suppose Xo - oo . Then eventually do &#x3E; so that obviously

As in the case of an isolated singularity at a finite point, this estimate leads
in turn to the following conclusion.

E C3 be a solution of equations (3.1) in an exterior domain Q. Sup-
pose conditions (3.2) and (3.3), or alternately (3.2) and (3.6), hold for x E Q,

and 0, where v and x are positive constants.
Then = oo, when v &#x3E; 1. On the other hand, if v  1

then lim exists and is finite.

4. - Solutions with a one-sided bound.

In Section 3 we made no special assumptions about the solution beyond
requiring it to be of class C3 ; on the other hand this generality was bought
at the price of assuming X &#x3E; 0, an assumption which rules out the Laplace
equation for example. In this section we shall assume that is bounded

on one side, a supposition which will allow us in particular to include equa-
tions for which X = 0. For definiteness, we formulate our results for solu-
tions which are bounded above, say u  ~f for all x E Q. It is easy to trans-

late these results into the corresponding ones for solutions which are

bounded below.

To exploit the bound we first transform to a new dependent variable u,
by means of the relation

and then proceed as before. We thus obtain an elliptic differential inequality
for the variable

to which the maximum principle may be applied, as in Section 2.

6 - Annali della Scuola Norm. Sup. di Pisa
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The transformation T will be chosen so that E is either proportional
to a power of (m - u) or to the logarithm of m - u, where m is an ap-
propriate parameter which is related to the bound M. More precisely, let m
and a be constants, with a &#x3E; 0. Then we assume that

the domain of definition being (- oo, 0) if a &#x3E; 1, (0, oo) if 0 C ac  1, and

(- oo, 00) if a = 1. Obviously this implies at once that

Moreover by direct calculation the following properties hold:

Note in particular that ~p’ and ware positive.
We begin by establishing a number of results for the full equation (1.1).

Theorems 1.3 to 1.7 in the introduction are obtained by specializing these
to the case A = I, 93 = f (u, p). For this special case we have from (2.11)

where we have taken s = -1, and where 0 E (U,1] (6). The reader may
use these explicit formulae to give more immediate meaning to the following
calculations, if so desired.

(6) If we wish to take 0 = 0 it is additionally necessary to have 6,A = 0 and
thus t = 0.
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We define the quantities

where a and l are positive constants.

THEOREM 4.1. Let u E C3 be a solution of equation (1.1) in S~ such that

Suppose that for some positive constants ac and l have

assume that there exist constants x and x’ such that

for any fl &#x3E; 0. The constants K and .L dep end only on 
~* and y*.

PROOF. We consider (1.1) in the ball where d E (0, do ) . Shifting
the origin to ro as in the proof of Theorem 3.1, we then obtain inequality (2.9)
for ~. The function ~N’ in (2.10) can be estimated by

for x E B(d). We now choose qJ from the family of functions
defined above, with m = .M~--~ p. Using property (d) of q and the given
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asymptotic behavior of A, ~3 and 8 we obtain (with k = 21a)

for p ~ u  M, where the generic constant C depends only on n, a, 0,
and x.

Next we use property (c) of q. Since p = where p = we

find that

and

Therefore

It follows that if

and also

then 

From this estimate, it is apparent that ~N’  0 provided we have, in
addition,

(7) If either P* or y* are negative, they should be omitted.
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Then by (2.8) applied in the barred variables

Finally, y using the relation p = lfJ’P once again, y we get

where

As a simple application of Theorem 4.1, consider the linear elliptic equation

where and, of course, the standard summation con-

vention is used. Here one finds easily that

where we have put s = - 1, 0 = 2 . Consequently, y if u is bounded, say

lul  M, then the first set of displayed conditions in Theorem 4.1 holds with

provided constant &#x3E; 0 and the quantities

are bounded. The second set of displayed conditions likewise holds for
some constants x, x’ depending only on 2 and Ilaiill ~~ and Ibil. If we now

choose p = Z, then the condition of Theorem 4.1 yields the gradient estimate
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where the constant depends only on I and on bounds for the coefficients
au, bi, c and their first derivatives. Of course, this is no new result but it

does indicate clearly the strength of Theorem 4.1. The result moreover shows
that when c = 0 there is no need to assume the solution bounded on two

sides; indeed if we suppose in this case that u &#x3E; 0 then we obtain the estimate

the constant now depending only on A and on bi and their derivatives.
It follows from Theorem 4.1 that

Hence, if S~ is a deleted neighbourhood of an isolated singularity ro and
u E C3(Q) is a solution of (1.1) which is uniformly bounded above in SZ, then

If a &#x3E; 1 integration shows that u must be bounded, while if a = 1 the

singularity can be no worse than algebraic. A more precise result is stated
in Theorem 4.9 below.

THEOREM 4.2. Let u E C3 be a solution of equation (1.1) in such that

u  M. Suppose that (1.1 ) is uniformly elliptic and that there exist positive
constants a  1 and x such that

for x E S2, ~c ~ M, p =1= 0. Then there exists a constant K, depending only
on n, 0, 02, x, and the ellipticity modulus, such that

I f (4.4) is replaced by

then the conclusion holds in the weaker form
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REMARK.

(roughly speaking, combining the two parts of the theorem) then the con-
clusion (4.6) still holds. We omit the proof, which is quite similar to the

following.

PROOF oF THEOREM 4.2. Consider (1.1) in the set B (xo , d), where d E (0, do ),
and shift the origin to xo . Then as in (4.2) and (4.3) we get (with a = 1,
k = 2, and t = - so that ~2 ~ = 0)

valid for p ~= 0 and u  M. Since A is uniformly elliptic we have also

Hence, since we find from (4.7) that

where C depends only on n, 0, x and the ellipticity modulus. The rest of
the proof is essentially the same as that of Theorem 4.1, except that we
can take L = L, = 0. This gives the estimate

Since .g is independent of p in the present case, as one easily sees, we can
finally let p tend to zero, completing the proof of the first part of the theorem.

To prove the final part we note that if t = 0 (rather than t = - 
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the inequality (4.7) becomes

valid 0, u  M. Using the given conditions on A and %, we get in
place of (4.8)

Now so that (with c~ = min(d, d2))

The rest of the proof is the same as before.

REMARK. A result similar to Theorem 4.2 can also be obtained for non-

uniformly elliptic equations, but is omitted here because the statement of
the hypotheses would be more involved. This comment applies equally
to the following Theorems 4.4, 4.5 and 4.6.

Theorem 4.2 can be used to obtain a Harnacki nequality for a class of
uniformly elliptic equations. Let U E C3 be a solution of (1.1) in Q such
that u  M. Let us write

The following lemma provides a bound for v (x) in a sufficiently small ball
around a point oeo E Q in terms of v(xo).

LEMMA 4.1..Let B (xo , d) c and let the conditions of the first part of
Theorem 4.2 be satis f ied. Then

where and K is the constant in (4.5).

PROOF. Let x - xo = r$, where r = ix - x,,1. Keeping $ fixed we write
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Because it follows from Theorem 4.2 that

In particular

and by integration

for 

It is now easy to prove the following Harnack inequality.

THEOREM 4.3. Let u E 03(Q) be a solution of equation (1.1), and let the

conditions of Theorem 4.2 be satisfied. Let Q’ be a compact subdomain o f Q.
Then there exists ac constant A &#x3E; 1 such that for any points x, y E Q’

PROOF. From Lemma 4.1 and a standard compactness argument
(e.g. see [5], p. 109) there exists a constant ~l &#x3E; 1 such that for any two

points x, y E S2’,

Recalling that v(x) = M - u(x), we obtain (4.9).
Another corollary of Theorem 4.2 is a Liouville theorem. If u E C3 is

a solution of (1.1 ) in Rn, we may let do - oo and it follows then that
= 0. Since any point x E Rn may be chosen as origin we get Du(x) = 0

and hence ~c w constant.

Next we shall prove a Liouville theorem of a slightly different type, in
that we assume that Du is uniformly bounded in Rn. Such a bound may be
obtained by means of Theorem 4.1 or by entirely different methods.

THEOREM 4.4. Suppose equation (1.1 ) is uniformly elliptic for any bounded
range of the arguments Du. Let u be an entire solution such that Du is bounded.
Assume also that for each pair of positive numbers 8 and L (with 8  L) there
exist constants â and x such that
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and

u =-= constant.

If (4.10) is replaced by

then the conclusion again holds, provided M(d) = o(Vd) as d - 00.

PROOF. Without loss of generality we may suppose that M(d) &#x3E; 0 for

all d &#x3E; 0. Choose

and

in the selection of the function 99. Then inequality (2.9) holds for z in B(d).
The coefficient X given by (2.10) can be estimated by setting t = - 

(hence ð2 $ = 0) and using property (d) of ç. This yields

for x E B(d). Now set k = 2/a. Then by (4.10) and the same calculations
which led to (4.8) we get

for Ipl &#x3E; 8 and x E B(d). Here C depends only on I (the given bound for Du),
on s (through x and a = max(0, 02) + 1), on n and 0, and on the ellipticity
modulus of A over the range u e R, x E Rn.

Now as in the proof of Theorem 4.1 we find

since m = 2M(d). Thus

Consequently,



91

If also for some appropriate constant K, then JY’  0 as in

the proof of Theorem 4.1. Hence by (2.8) applied in the barred variables

Consequently

Here we may let it follows that

where = lim M(d), possibly infinite. Now we may let s - 0. The ex-

ponent ac can only increase because o2 serves as an upper bound for a when lpl [
ranges over the increasingly large interval [£, Z~ . Hence the factor

remains bounded, and we conclude that = 0. The origin, however,
may be arbitrarily shifted to any point; hence Du 1 0 and u == constant.
This proves the first half of the theorem.

The second part follows the same pattern, using however the calculations
of the last part of the proof of Theorem 4.2.

COROLLARY. Suppose A = A(p) in (1.1). Let u be acn entire solution such

that Du is bounded. Assume also that for each pair of positive numbers 8 and
L (with 8  L) there exists a constant x such that (8)

for we have u =-= constant.

PROOF. This is essentially the same as before. We choose

so that # = 0 (recall here that A = A(p), 6 = 6(p)) . It is also easy to

see that the ellipticity modulus of A is bounded, and II Ap for  L.

(8) Here X is defined at the beginning of Section 3, except that now since tr A
is no longer assumed equal to 1 we must replace the term $2 by %2/tr A.
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Finally, since s is bounded it is clear that so also is a.

Because y = - when A = A(p) we have and accordingly The-
orem 4.4 applies.

As an application of this result, consider the equation representing
surfaces whose mean curvature is a given function A = Du), namely

Suppose the following conditions hold:

when p lies in any bounded set, say With the identification

= + it is clear that

and

Choosing

it is easily checked that X &#x3E; 0 for Thus by the corollary of The-
orem 4.4, any solution with bounded gradient which also satisfies M(d) = o(d)
must be constant. (We believe the constant n/(n -1 ) in the principal con-
dition is best possible, though algebraic complications make it difficult

to create an explicit counterexample.)
Additionally, if we suppose that

for some constant It and for then we can apply Theorem 3.4 to
show that any entire solution with a bounded gradient must be constant.
An even stronger result holds if 11 = constant"* 0, for then there can be no
entire solution swhatever, as shown by Finn [2]. Finally, if Au&#x3E; 0, Ax = 0,
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then any entire solution with bounded gradient which is o(d) must be con-
stant, according to [8], Theorem 3.

The next result extends the conclusion of Theorem 4.4 to solutions

without a priori bounds on the gradient. Unfortunately, considerably stronger
conditions are required of the coefficient matrix A.

THEOREM 4.5. Assume that (1.1 ) is uniformly elliptic, and let u be an

entire solution. Suppose for each positive 8 there exist positive constants o2  1

and x such that

and

I f (4.13) is replaced by

then the conclusion remains true provided -1

PROOF. This is exactly the same as the proof of Theorem 4.4 with the

condition omitted. It is this omission which accounts for the

appearance of the factor Ip I in the displayed hypotheses and the fact that
we must have o2  1 in order to take ac = 1.

In the results we have established so far the dependence on x of the
functions A(x, u, p) and p) has not played a significant r6le. Never-

theless it is known from linear theory that this dependence can be important.
For instance suppose u E C3 is a solution of the equation

in the whole of Rn, and b(x) is uniformly bounded on Rn. Then if u is bounded
on one side and b = O(lxl-1) as Ixi - 00, u must be a constant [3, p. 324].

In the following two results we shall similarly exploit corresponding
conditions on the asymptotic behaviour of A and 93 as Ixl - oo.

We define the following functions
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and

In what follows we shall tacitly assume that these quantities are finite.
Our first result concerns solutions of (1.1) in an exterior domain Q and

is closely related to Theorem 4.2, though the conditions ~0y ~0 in that
theorem are here replaced by growth conditions on fl, y as As

we are mainly interested in the convergence of Du to zero, we assume a
uniform bound on Du. For convenience we shall also suppose that the

complement of D contains a ball 0.

THEOREM 4.6. Let u E C3 be a solution of equation (1.1 ) in an exterior
domain Q. Suppose (1.1) is uniformly elliptic, that

and that

as d - 00. Assume also that there exists a constant x such that

for x E Q, u E R, p =1= 0. Then there exists a constant K such that

for any point Xo such that &#x3E; 2R.

If (4.15) is replaced by

the conclusion continues to hold.

PROOF. For d &#x3E; 2R the ball B(x,,, 2 d) is in Q and also in the set

 Ix C Proceeding as in the proof of Theorem 4.2, we obtain
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for some constant C. In view of the asymptotic behaviour of # as d --&#x3E;. oo,
we have, using property (c) of T’ as in the proof of Theorem 4.1,

and similarly for y. Hence, for p # 0

which leads to the desired result.

Of special interest is the case when solutions cannot have an interior
maximum. Then we can use a method from [3] to obtain a Liouville theorem
and limit theorems. We shall need the following standard maximum principle.

LEMMA 4.2. 29et % be ac non-constant solution of equation (1.1), and let

for all c in the range of u. Then u can not have an interior maximum (minimum) .

THEOREM 4.7. Let u be an entire solution of equation (1.1) such that u  M.
Suppose the conditions of Theorem 4.6 are satisfied and assume that

for all c  M. Then u = constant.

PROOF. Let be a sequence such that

(we may suppose that M = sup u without loss of generality). In view of

Lemma 4.2, lxkl ~ oo.
For a given k &#x3E; 1, set lxkl = d. Denote by the sphere with center

at the origin and radius d. Let y E S(d), and let r be the shortest arc on S(d)
connecting xk and y. If s measures distance along 1~ such that s = 0 at
x = xk, and s = so at x = y, then, by Theorem 4.6,

’where v(s) = in an obvious notation, and v’ - dv/ds.
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Integration of (4.17) yields

or

Applying Lemma 4.2 again we obtain

Now, given xo E Rn and s &#x3E; 0, we choose k so that (i) lxkl &#x3E; Ixol and
(ii) exp (nK)  £. Then 1Vl -  s. Since for any xo E Rn and any
E &#x3E; 0 such a k can be found, it follows that ~c (x) - M in Rn.

If S~ is an exterior domain, Theorem 4.6 can be used to obtain a limit
theorem for u(x) as r - oo. Let

and let the conditions of Theorem 4.6 be satisfied. Moreover, let c, 0)  0

for all c  M. Suppose

õ.(í-"- vv

If uo = - oo, then x lim u(x) _ - oo, and the limit exists. Suppose, there-

fore, that o &#x3E; - oo .
It follows from (4.18) that, given any 8 &#x3E; 0, there exists a radius

j5 _ such that

If 1 we have, of course, u(x)  Uo. Thus

where ife = .M if Uo = M and lVlE = uo + ê if uo  M. Throughout we shall
choose E so small that Me  M.

It also follows from (4.18) that there exists a sequence - -I

such that kiim u(xk) = Hence there exists a number N such that
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We now apply Theorem 4.6, evaluating the bounds on a, and the

constant x for u E (- oo, M]. Choosing k such that k &#x3E; N and dk = I xk &#x3E; 2f?,
we obtain

for all x E where K does not depend on 8.
We now follow the proof of Theorem 4.7. Then for x E S(dk)

By Lemma 4.2, (4.19) holds on any spherical shell where

dk &#x3E; 2.R and k, I &#x3E; N. Hence

we have

Since 8 may be chosen arbitrarily small, it follows in both cases that

Thus lim u(x) exists, and we have proved

THEOREM 4.8. Let u E C3 be a solution of (1.1 ) in an exterior domain 92
such that u  M. Suppose the conditions of Theorem 4.6 are satisfied and that

for all Then lim u(x) exists.
x--

A similar result can be proved for the behavior of u(x) near an isolated

singularity. Let S2 be a deleted neighbourhood of an isolated singularity,
which we choose as the origin.

7 - Annali della Scuola Norm. Sup. di Pisa
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THEOREM 4.9. Let U E C3 be a solution of (1.1 ) in S2, such that u  M.

Suppose the conditions of Theorem 4.1 are satisfied and that 93 (x, c, 0)  0
for all c M. Then exists.

x-O

As an example consider the linear equation

Then with and

and

Consequently the hypotheses of Theorem 4.6, and in particular (4.16), hold.
It then follows from Theorem 4.7 that any entire solution which is bounded

on one side must be constant, and from Theorem 4.8 that a solution defined
in an exterior domain and bounded on one side must tend to a limit at in-

finity. This gives an alternate proof of a result of Gilbarg and Serrin [3],
pages 323-324, when the principal part of the equation is the Laplace operator.
On the other hand the present result is in a different way stronger than
that of [3], since (as is readily apparent from the proof technique) it con-
tinues to hold for nonlinear operators which are suitably close to the

Laplacian.
Rather than making asymptotic assumptions on the behavior of the

coefficient b(x), let us instead suppose that the matrix ablax is non-positive
definite. Then if 0 = 1 we find that # = 0 and y  0. Now assume also
that b is bounded. Then the hypothesis (4.14) of Theorem 4.5 applies,
and we see that every entire solution such that M(d) = o(ild) must be a
constant.

5. - A variational example.

Consider the Euler-Lagrange equation associated with the variational
problem
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This has the form

where

the primes denoting differentiation with respect to the (real) argument of F.
The corresponding matrix A is then

where I is the identity, y a = pllpl, and ~~ is the associated dyadic.
In order that the integrand be a smooth function of Du near flu = 0

we suppose that F’(0) = 0; ellipticity is then guaranteed by the assump-
tion F"&#x3E; 0 (thus g &#x3E; 0).

THEOREM 5.1. Suppose that eguation (5.1) is uniformly elliptic and that

Then every entire solution, such that M(d) = o(d) is constant.

PROOF. It is enough to show that the gradient of u is bounded when
M(d) = o(d), for then u - constant by the corollary to Theorem 4.4.

The idea of the proof is basically to apply Theorem 4.1 with ac = 1;
indeed it is not hard to verify that the hypotheses of that result are all

satisfied with the exception of the condition a*  1. This difficulty, how-
ever, must be overcome in a circuitous manner. We use the following lemma.

Suppose the matrix A(x, u, p) in Theorem 4.1 has the form

where Y is a vector f unction and Yp and pY are dyadics. Then Theorem 4.1

remains valid if A is replaced by I in the computation of a, f3, y and 2 and
in the displayed hypotheses (but 6 still equal to pAp), and if also the condition

is added to the list of hypotheses.
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This result may be proved in exactly the same way as Theorem 4.1,
except that, at the start, instead of (2.10 ) we use the more sophisticated
formula noted on p. 580 of [7], setting ~’ = I. Since the term 

appears there in conjunction with ð2E and the term in conjunc-
tion with and since ]] A]]  ]]1]] ~~ + it is apparent that the ad-
ditional condition (5.3) is precisely what is required to carry through
the proof.

The lemma being shown, we next verify that its hypotheses are satis-
fied in the case at hand, where

By direct calculation, with we find

and

where

We shall show that, when a = 1, the conditions of Theorem 4.1 and the
lemma hold. Using the above formulae, it is easy to check that the in-

equality a* = 1 reduces to

and that the remaining conditions are satisfied if

h bounded,

where of course we need only consider values Ipl &#x3E; Z, where I is as large
as we please.
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Now by hypothesis equation (5.1) is uniformly elliptic. Thus g is bounded,
both from zero and infinity. Moreover

Since tends to a limit as t -~ oo and since g(t) is bounded it follows that

Jim = 0. But A = gh so that

Thus the required conditions for the lemma are demonstrated.
It follows from (4.1) therefore that at any (fixed) point x we have

where d is arbitrary and Here the con-

stant .L has the specific form (see the proof of Theorem 4.1, noting that
x’= ~* = y* = 0 in the present case):

while the constant K depends only on x, n and the difference 1 - a*. If

we choose p = then (5.4) becomes

Here we may let d ~ oo. Since It = M(d) = o(d) this yields

as required (if is bounded, choose It= v/(i and the result follows
equally). This completes the proof.

We note that the hypothesis of uniform ellipticity as well as condi-
tion (5.2) can be weakened to the form
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(when t - oo) without affecting the proof; recall here that

Moreover, y if the growth condition on u is strengthened to u = o(d) it is

enough in place of (5.5) merely to assume

(see Theorem 5.2(c), below). Unfortunately, the minimal surface equation,
corresponding to the area integrand I’(t) = (1 + t2)~, is not covered by
either set of conditions, since g = 1/(1 + t2) and lim g = 0. The integrand

on the other hand, satisfies the conditions of Theorem 5.1 since g = 1 +
+ (a - 2 ) t2/(1 + t2) is bounded from both zero and infinity, and tg’ =
- 2(a - 2 ) t2/ (1 + t2) 2 tends to zero as t - oo . The same holds true for

any integrand of the form

where F(r) is a three times continuously differentiable function of 7: with
.(0) = 0, provided of course that F"&#x3E; 0 and F’(0) = 0.

The equation

is another example of interest, being non-uniformly elliptic with the same
ellipticity ratio (namely AjAi = 1 + lpl2) as the minimal surface equation.
Here g = 1 + t2 ~ 1, 2t2/(1 -E- t2) ~ 2 and as

t - oo, so that the result of Theorem 5.1 clearly holds: any entire solu-
tion of (5.7) satisfying the condition M(d) = o(d) is constant.

The situation of the related variational problem

is somewhat more complicated. For example if F(t) = t2 and G(u) = u2 the
Euler-Lagrange equation is L1u = u, which has the negative entire solution
u = - exp (x1). Consequently we cannot expect a one-sided Liouville the-
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orem to hold merely when 0, though of course that condition must
play a major role in any considerations. The following result gives an idea
of the conclusions which can be obtained.

THEOREM 5.2. Consider the Euler-Lagrange equation

associated with the variational problem (5.8), and suppose that F’(0) = 0,
.F’"(t) &#x3E; 0 and G" (u) &#x3E; 0 -

(a) If G’&#x3E; 0 there are no entire solutions satisfying M(d) = o(d) ;

(b) If G’ ~ 0 and if conditions (5.5) hold, then any entire solution

satisfying M(d) = o(d) is constant.

(c) If conditions (5.6) hold, then any entire solution satisfying u = o(d)
is constant.

REMARK. Case (b) includes Theorem 5.1 as the special case G’ 1 0.

We note also that the condition G" (u) ~ 0 together with the ellipticity guar-
antees that solutions of the Dirichlet problem in a bounded region are unique.

PROOF oF THEOREM 5.2. By [9], Theorem 3, or more specifically by the
proof of that result together with the remark following the proof, it is clear
that G’(c) ~ 0 for each value c in the range of an entire solution u satisfying
M(d) = o(d). This proves (a), and shows moreover in case (b) that u is an
entire solution of (5.1). But then by Theorem 5.1y or more precisely by the
remark at the end of the proof, y we get u - constant.

In case (c) the result of [9], Theorem 3, again shows that G’(c) = 0 for
each c in the range of u, so that once more u is a solution of (5.1). The

proof is then essentially the same as that of Theorems 3 and 4 in [7], the
only difference being that the Laplace operator is replaced by I --f- (g 
the changes which result from this are exactly the same as those already
treated in the proof of Theorem 5.1. Finally, note that the condition a*  1
is not required in [8] so that we no longer need to assume lim sup h  0. This

completes the proof.
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