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Abstract

We propose a novel coding theoretic framework
for mitigating stragglers in distributed learning.
We show how carefully replicating data blocks
and coding across gradients can provide toler-
ance to failures and stragglers for synchronous
Gradient Descent. We implement our schemes
in python (using MPI) to run on Amazon EC2,
and show how we compare against baseline ap-
proaches in running time and generalization error.

1. Introduction

We propose a novel coding theoretic framework for miti-
gating stragglers in distributed learning. The central idea
can be seen through the simple example of Figure 1: Con-
sider synchronous Gradient Descent (GD) on three work-
ers (W1,W2,W3). The baseline vanilla system is shown in
the top figure and operates as follows: The three workers
have different partitions of the labeled data stored locally
(D1,D2,D3) and all share the current model. Worker 1 com-
putes the gradient of the model on examples in partition D1,
denoted by g1. Similarly, Workers 2 and 3 compute g2 and
g3. The three gradient vectors are then communicated to a
central node (called the master/aggregator) A which com-
putes the full gradient by summing these vectors g1+g2+g3
and updates the model with a gradient step. The new model
is then sent to the workers and the system moves to the next
round (where the same examples or other labeled examples,
say D4,D5,D6, will be used in the same way).

The problem is that sometimes worker nodes can be strag-
glers (Li et al., 2014; Ho et al., 2013; Dean et al., 2012)
i.e. delay significantly in computing and communicating
gradient vectors to the master. This is especially pronounced
for cheaper virtual machines in the cloud. For example on
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g2 − g3 and g1/2 + g3.

Figure 1: The idea of Gradient Coding.

t2.micro machines on Amazon EC2, as can be seen in
Figure 2: some machines can be 5× slower in computing
and communicating gradients compared to typical perfor-
mance.

First, we discuss one way to resolve this problem if we
replicate some data across machines by considering the
placement in Fig.1 (b) but without coding. As can be seen,
in Fig. 1 (b) each example is replicated two times using
a specific placement policy. Each worker is assigned to
compute two gradients on the two examples they have for
this round. For example, W1 will compute vectors g1 and
g2. Now lets assume that W3 is the straggler. If we use
control messages, W1,W2 can notify the master A that they
are done. Subsequently, if feedback is used, the master
can ask W1 to send g1 and g2 and W2 to send g3. These
feedback control messages can be much smaller than the
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actual gradient vectors but are still a system complication
that can cause delays. However, feedback makes it possible
for a centralized node to coordinate the workers, thereby
avoiding straggler. One can also reduce network commu-
nication further by simply asking W1 to send the sum of
two gradient vectors g1 + g2 instead of sending both. The
master can then create the global gradient on this batch by
summing these two vectors. Unfortunately, which linear
combination must be sent depends on who is the straggler:
If W2 was the straggler then W1 should be sending g2 and
W3 sending g1 + g3 so that their sum is the global gradient
g1 + g2 + g3.

In this paper we show that feedback and coordination is not
necessary: every worker can send a single linear combina-
tion of gradient vectors without knowing who the straggler
will be. The main coding theoretic question we investigate
is how to design these linear combinations so that any two
(or any fixed number generally) contain the g1 + g2 + g3
vector in their span. In our example, in Fig. 1b, W1 sends
1
2g1 + g2, W2 sends g2 − g3 and W3 sends 1

2g1 + g3. The
reader can verify that A can obtain the vector g1 + g2 + g3
from any two out of these three vectors. For instance,
g1 + g2 + g3 = 2

(
1
2g1 + g2

)
− (g2 − g3). We call this

idea gradient coding.

We consider this problem in the general setting of n ma-
chines and any s stragglers. We first establish a lower bound:
to compute gradients on all the data in the presence of any
s stragglers, each partition must be replicated s+ 1 times
across machines. We propose two placement and gradient
coding schemes that match this optimal s+1 replication fac-
tor. We further consider a partial straggler setting, wherein
we assume that a straggler can compute gradients at a frac-
tion of the speed of others, and show how our scheme can
be adapted to such scenarios. All proofs can be found in the
supplementary material.

We also compare our scheme with the popular ignoring the
stragglers approach (Chen et al., 2016): simply doing a gra-
dient step when most workers are done. We see that while
ignoring the stragglers is faster, this loses some data and
which can hurt the generalization error. This can be espe-
cially pronounced in supervised learning with unbalanced
labels or heavily unbalanced features since a few examples
may contain critical, previously unseen information.

1.1. The Effects of Stragglers

In Figure 2, we show measurements on the time required for
t2.micro Amazon EC2 instances to communicate gradi-
ents to a master machine (a c3.8xlarge instance). We
observe that a few worker machines were incur a communi-
cation delay of up to 5x the typical behavior. Interestingly,
throughout the timescale of our experiments (a few hours),
the straggling behavior was consistent in the same machines.

We have also experimented extensively with other Amazon
EC2 instances: Our finding is that cheaper instance types
have significantly higher variability in performance. This
is especially true for t2 type instance which on AWS are

Figure 2: Average measured communication times for a
vector of dimension p = 500000 using n = 50 t2.micro
worker machines (and a c3.8xlarge master machine).
Error bars indicate one standard deviation.

described as having Burstable Performance. Fortunately,
these machines have very low cost.

The choices of the number and type of workers used in
training big models ultimately depends on total cost and
time needed until deployment. The main message of this
paper is that going for very low-cost instances and using
coding to mitigate stragglers, may be a sensible choice for
some learning problems.

1.2. Related Work

The slow machine problem is the Achilles heel of many dis-
tributed learning systems that run in modern cloud environ-
ments. Recognizing that, some recent work has advocated
asynchronous approaches (Li et al., 2014; Ho et al., 2013;
Mitliagkas et al., 2016) to learning. While asynchronous
updates are a valid way to avoid slow machines, they do
give up many other desirable properties, including faster
convergence rates, amenability to analysis, and ease of re-
producibility and debugging.

Attacking the straggling problem in synchronous machine
learning algorithms has surprisingly not received much at-
tention in the literature. There do exist general systems so-
lutions such as speculative execution (Zaharia et al., 2008)
but we believe that approaches tailored to machine learning
can be vastly more efficient. In (Chen et al., 2016) the au-
thors use synchronous minibatch SGD and request a small
number of additional worker machines so that they have an
adequate minibatch size even when some machines are slow.
However, this approach does not handle well machines that
are consistently slow and the data on those machines might
never participate in training. In (Narayanamurthy et al.,
2013) the authors describe an approach for dealing with
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failed machines by approximating the loss function in the
failed partitions with a linear approximation at the last iter-
ate before they failed. Since the linear approximation is only
valid at a small neighborhood of the model parameters, this
approach can only work if failed data partitions are restored
fairly quickly.

The work of (Lee et al., 2015) is the closest in spirit to
our work, using coding theory and treating stragglers as
erasures in the transmission of the computed results. How-
ever, we focus on codes for recovering the batch gradient
of any loss function while (Lee et al., 2015) and the more
recent work (Dutta et al., 2016) describe techniques for mit-
igating stragglers in two different distributed applications:
data shuffling and matrix multiplication. We also mention
(Li et al., 2016a), which investigates a generalized view
of the coding ideas in (Lee et al., 2015). Further closely
related work showed how coding can be used for distributed
MapReduce and how to trade off communication and com-
putation (Li et al., 2015), (Li et al., 2016b). All these prior
works develop novel coding techniques, but do not code
across gradient vectors in the way we are proposing in this
paper.

2. Preliminaries

Given data D = {(x1, y1), . . . , (xd, yd)}, with each tuple
(x, y) ∈ R

p×R, several machine learning tasks aim to solve
the following problem:

β∗ = argmin
β∈Rp

d∑

i=1

ℓ (β;xi, yi) + λR(β) (1)

where ℓ(·) is a task-specific loss function, and R(·) is a
regularization function. Typically, this optimization prob-
lem can be solved using gradient-based approaches. Let

g :=
∑d

i=1 ∇ℓ(β(t);xi, yi) be the gradient of the loss at the

current model β(t). Then the updates to the model are of
the form:

β(t+1) = hR

(

β(t), g
)

(2)

where hR is a gradient-based optimizer, which also depends
on R(·). Several methods such as gradient descent, acceler-
ated gradient, conditional gradient (Frank-Wolfe), proximal
methods, LBFGS, and bundle methods fit in this framework.
However, if the number of samples, d, is large, a computa-
tional bottleneck in the above update step is the computation
of the gradient, g, whose computation can be distributed.

2.1. Notation

Throughout this paper, we let d denote the number of
samples, n denote the number of workers, k denote
the number of data partitions, and s denote the num-
ber of stragglers/failures. The n workers are denoted
as W1,W2, . . . ,Wn. The partial gradients over k data
partitions are denoted as g1, g2, . . . , gk. The ith row of
some matrices A or B is denoted as ai or bi respectively.
For any vector x ∈ R

n, supp(x) denotes its support i.e.

supp(x) = {i | xi 6= 0}, and ‖x‖0 denotes its ℓ0-norm i.e.
the cardinality of the support. 1p×q and 0p×q denote all
1s and all 0s matrices respectively, with dimension p × q.
Finally, for any r ∈ N, [r] denotes the set {1, . . . , r}.

2.2. The General Setup

We can generalize the scheme in Figure 1b to n workers and
k data partitions by setting up a system of linear equations:

AB = 1f×k (3)

where f denotes the number of combinations of surviving
workers/non-stragglers, 1f×k is the all 1s matrix of dimen-

sion f × k, and we have matrices A ∈ R
f×n, B ∈ R

n×k.

We associate the ith row of B, bi, with the ith worker,
Wi. The support of bi, supp(bi), corresponds to the data
partitions that worker Wi has access to, and the entries of bi
encode a linear combination over their gradients that worker
Wi transmits. Let ḡ ∈ R

k×d be a matrix with each row
being the partial gradient of a data partition i.e.

ḡ = [g1, g2, . . . , gk]
T .

Then, worker Wi transmits biḡ. Note that to transmit biḡ,
Wi only needs to compute the partial gradients on the par-
titions in supp(bi). Now, each row of A is associated with
a specific failure/straggler scenario, to which tolerance is
desired. In particular, any row ai, with support supp(ai),
corresponds to the scenario where the worker indices in
supp(ai) are alive/non-stragglers.

Also, by the construction in Eq. (3), we have:

aiBḡ = [1, 1, . . . , 1]ḡ =





k∑

j=1

gj





T

and, (4)

aiBḡ =
∑

k∈supp(ai)

ai(k)(bkḡ) (5)

Thus, the entries of ai encode a linear combination which,
when taken over the transmitted gradients of the alive/non-
straggler workers, {bkḡ}k∈supp(ai), would yield the full gra-
dient.

Going back to the example in Fig. 1b, the corresponding A
and B matrices under the above generalization are:

A =

(
0 1 2
1 0 1
2 −1 0

)

, and B =

(
1/2 1 0
0 1 −1
1/2 0 1

)

(6)

with f = 3, n = 3, k = 3. It is easy to check that AB =
13×3. Also, since every row of A here has exactly one zero,
we say that this scheme is robust to any one straggler.

In general, we shall seek schemes, through the construction
of (A,B), which are robust to any s stragglers.
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The rest of this paper is organized as follows. In Section 3
we provide two schemes applicable to any number of work-
ers n, under the assumption that stragglers can be arbitrarily
slow to the extent of total failure. In Section 4, we relax this
assumption to the case of worker slowdown (with known
slowdown factor), instead of failure, and show how our con-
structions can be appended to be more effective. Finally,
in Section 5 we present results of empirical tests using our
proposed distribution schemes on Amazon EC2.

3. Full Stragglers

In this section, we consider schemes robust to any s strag-
glers, given n workers (with s < n). We assume that any
straggler is (what we call) a full straggler i.e. it can be
arbitrarily slow to the extent of complete failure. We show
how to construct the matrices A and B, with AB = 1, such
that the scheme (A,B) is robust to any s full stragglers.

Consider any such scheme (A,B). Since every row of A
represents a set of non-straggler workers, all possible sets
over [n] of size (n − s) must be supports in the rows of
A. Thus f =

(
n

n−s

)
=
(
n
s

)
i.e. the total number of failure

scenarios is the number of ways to choose s stragglers out
of n workers. Now, since each row of A represents a linear
span over some rows of B, and since we require AB = 1,
this leads us to the following condition on B:

Condition 1 (B-Span). Consider any scheme (A,B) robust
to any s stragglers, given n workers (with s < n). Then we
require that for every subset I ⊆ [n], |I| = n− s:

11×k ∈ span{bi | i ∈ I} (7)

where span{·} is the span of vectors.

The B-Span condition above ensures that the all 1s vector
lies in the span of any n − s rows of B. This is of course
necessary. However, it is also sufficient. In particular, given
a B satisfying Condition 1, we can construct A such that
AB = 1, and A has the support structure discussed above.
The construction of A is described in Algorithm 1 (in MAT-
LAB syntax), and we have the following lemma.

Lemma 1. Consider B ∈ R
n×k satisfying Condition 1 for

some s < n. Then, Algorithm 1, with input B and s, yields

an A ∈ R
(ns)×n such that AB = 1(ns)×n

and the scheme

(A,B) is robust to any s full stragglers.

Based on Lemma 1, to obtain a scheme (A,B) robust to
any s stragglers, we only need to furnish a B satisfying
Condition 1. A trivial B that works is B = 1n×k, the all
ones matrix. However, this is wasteful since it implies that
each worker gets all the partitions and computes the full
gradient. Our goal is to construct B satisfying Condition 1
while also being as sparse as possible in each row. In this
regard, we have the following theorem, which gives a lower
bound on the number of non-zeros in any row of B.

Theorem 1 (Lower Bound on B’s density). Consider any
scheme (A,B) robust to any s stragglers, given n workers

(with s < n) and k partitions. Then, if all rows of B have the
same number of non-zeros, we must have: ‖bi‖0 ≥ k

n
(s+1)

for any i ∈ [n].

Theorem 1 implies that any scheme (A,B) that assigns the
same amount of data to all the workers must assign at least
s+1
n

fraction of the data to each worker. Since this fraction
is independent of k, for the remainder of this paper we shall
assume that k = n i.e. the number of partitions is the same
as the number of workers. In this case, we want B to be a
square matrix satisfying Condition 1, with each row having
atleast (s+1) non-zeros. In the sequel, we demonstrate two
constructions for B which satisfy Condition 1 and achieve
the density lower bound.

3.1. Fractional Repetition Scheme

In this section, we provide a construction for B that works
by replicating the task done by a subset of the workers.
We note that this construction is only applicable when the
number of workers, n, is a multiple of (s+ 1), where s is
the number of stragglers we seek tolerance to. In this case,
the construction is as follows:

• We divide the n workers into (s + 1) groups of size
(n/(s+ 1)).

• In each group, we divide all the data equally and dis-
jointly, assigning (s+ 1) partitions to each worker

• All the groups are replicas of each other

• When finished computing, every worker transmits the
sum of its partial gradients

Fig. 3 shows an instance of the above construction for
n = 6, s = 2. A general description of B constructed in
this way (denoted as Bfrac) is shown in Eq. (9). Each group
of workers in this scheme can be denoted by a block matrix

Algorithm 1 Algorithm to compute A

Input :B satisfying Condition 1, s(< n)
Output :A such that AB = 1(ns)×n

f = binom(n, s);
A = zeros(f, n);
foreach I ⊆ [n] s.t. |I| = (n− s) do

a = zeros(1, k);
x = ones(1, k)/B(I, :);
a(I) = x;
A = [A; a];

end
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Figure 3: Fractional Repetition Scheme for n = 6, s = 2

Bblock(n, s) ∈ R
n

s+1
×n. We define:

Bblock(n, s) =






11×(s+1) 01×(s+1) · · · · · · 01×(s+1)

01×(s+1) 11×(s+1) · · · · · · 01×(s+1)

...
...

. . .
...

01×(s+1) 01×(s+1) · · · · · · 11×(s+1)







n
s+1

×n

(8)

Thus, the first worker in the group gets the first (s+ 1) par-
titions, the second worker gets the second (s+1) partitions,
and so on. Then, B is simply (s + 1) replicated copies of

Bblock(n, s):

B = Bfrac =









B
(1)

block

B
(2)

block
...

B
(s+1)

block









n×n

(9)

where for each t ∈ {1, . . . , s+ 1}, B
(t)

block = Bblock(n, s).

It is easy to see that this construction can yield robustness
to any s stragglers. Since any particular partition of data
is replicated over (s+ 1) workers, any s stragglers would
leave at least one non-straggler worker to process it. We
have the following theorem.

Theorem 2. Consider Bfrac constructed as in Eq. (9), for
a given number of workers n and stragglers s(< n). Then,
Bfrac satisfies the B-Span condition (Condition 1). Conse-
quently, the scheme (A,Bfrac), with A constructed using
Algorithm 1, is robust to any s stragglers.

The construction of Bfrac matches the density lower bound
in Theorem 1 and, the above theorem shows that the scheme
(A,Bfrac), with A constructed from Algorithm 1, is robust
to s stragglers.

3.2. Cyclic Repetition Scheme

In this section we provide an alternate construction for B
which also matches the lower bound in Theorem 1 and

Algorithm 2 Algorithm to construct B = Bcyc

Input :n, s(< n)
Output :B ∈ R

n×n with (s+ 1) non-zeros in each row

H = randn(s, n);
H(:, n) = −sum(H(:, 1 : n− 1), 2);
B = zeros(n);
for i = 1 : n do

j = mod(i− 1 : s+ i− 1, n) + 1;
B(i, j) = [1;−H(:, j(2 : s+ 1))\H(:, j(1))];

end

satisfies Condition 1. However, in contrast to construction
in the previous section, this construction does not require n
to be divisible by (s+1). Here, instead of assigning disjoint
collections of partitions, we consider a cyclic assignment of
(s+ 1) partitions to the workers. We construct a B = Bcyc

with the following support structure:

supp(Bcyc) =












s+1
︷ ︸︸ ︷

⋆ ⋆ · · · ⋆ ⋆ 0 0 · · · 0 0
0 ⋆ ⋆ · · · ⋆ ⋆ 0 · · · 0 0
...

...
...

...
...

...
. . .

. . .
...

...
0 0 · · · 0 0 ⋆ ⋆ · · · ⋆ ⋆
...

...
...

...
...

...
. . .

. . .
...

...
⋆ · · · ⋆ ⋆ 0 0 · · · 0 0 ⋆












n×n

(10)

where ⋆ indicates non-zero entries in Bcyc. So, the first row
of Bcyc has its first (s + 1) entries assigned as non-zero.
As we move down the rows, the positions of the (s + 1)
non-zero entries shift one step to the right, and cycle around
until the last row.

Given the support structure in Eq. 10, the actual non-zero
entries must be carefully assigned in order to satisfy Con-
dition 1. The basic idea is to pick every row of Bcyc, with
its particular support, to lie in a suitable subspace S that
contains the all ones vector 1n×1. We consider a (n− s) di-
mensional subspace, S = {x ∈ R

n |Hx = 0, H ∈ R
s×n}

i.e. the null space of the matrix H , for some H satisfying
H1 = 0. Now, to make the rows of Bcyc lie in S, we re-
quire that the null space of H must contain vectors with
all the different supports in Eq. 10. This turns out to be
equivalent to requiring that any s columns of H are linearly
independent, and is also referred to as the MDS property
in coding theory. We show that a random choice of H suf-
fices for this, and we are able to construct a Bcyc with the
support structure in Eq. 10. Moreover, for any (n− s) rows
of Bcyc, we show that their linear span also contains 1n×1,
thereby satisfying Condition 1. Algorithm 2 describes the
construction of Bcyc (in MATLAB syntax) and, we have the
following theorem.

Theorem 3. Consider Bcyc constructed using the random-
ized construction in Algorithm 2, for a given number of
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Figure 4: Scheme for Partial Stragglers, n = 3, s = 1, α =
2. g(·) represents the partial gradient.

workers n and stragglers s(< n). Then, with probability
1, Bcyc satisfies the B-Span condition (Condition 1). Con-
sequently, the scheme (A,Bcyc), with A constructed using
Algorithm 1, is robust to any s stragglers.

4. Partial Stragglers

In this section, we revisit our earlier assumption of full
stragglers. Under a full straggler assumption, Theorem 1
shows that any non-straggler worker must incur an (s +
1)-factor overhead in computation, if we want to attain
tolerance to any s stragglers. This may be prohibitively huge
in many situations. One way to mitigate this is by allowing
at least some work to be done also by the straggling workers.
Therefore, in this section, we consider a more plausible
scenario of slow workers, but assume a known slowdown
factor. We say that a straggler is an α-partial straggler (with
α > 1) if it is at most α slower than any non-straggler. This
means that if a non-straggler completes a task in time T ,
an α-partial straggler would require at most αT time to
complete it. Now, we augment our previous schemes (in
Section 3.1 and Section 3.2) to be robust to any s stragglers,
assuming that any straggler is an α-partial straggler.

Note that our earlier constructions are still applicable: a
scheme (A,B), with B = Bfrac or B = Bcyc, would still
provide robustness to s partial stragglers. However, given
that no machine is slower than a factor of α, a more efficient
scheme is possible by exploiting at least some computation
on every machine. Our basic idea is to couple our earlier
schemes with a naive distribution scheme, but on different
parts of the data. We split the data into a naive component,
and a coded component. The key is to do the split such that
whenever an α-partial straggler is done processing its naive
partitions, a non-straggler would be done processing both
its naive and coded partitions.

In general, for any (n, s, α), our two-stage scheme works as
follows:

• We split the data D into n+ n s+1
α−1 equal-sized parti-

tions — of which n partitions are coded components,
and the rest are naive components

• Each worker gets s+1
α−1 naive partitions, distributed dis-

jointly.

• Each worker gets (s+ 1) coded partitions, distributed
according to an (A,B) distribution scheme robust to s
stragglers (e.g. with B = Bfrac or B = Bcyc)

• Any worker, Wi, first processes all its naive partitions
and sends the sum of their gradients to the master. It
then processes its coded partitions, and sends a linear
combination, as per the (A,B) distribution scheme.

Note that each worker now has to send two partial gradients
(instead of one, as in earlier schemes). However, a speedup
gained in processing a smaller fraction of the data may
mitigate this overhead in communication, since each non-

straggler only has to process a s+1
n

(
α

s+α

)

fraction of the

data, as opposed to a s+1
n

fraction in full straggler schemes.

Fig. 4 illustrates our two-stage strategy for n = 3, s =
1, α = 2. We see that each non-straggler gets 4/9 = 0.44
fraction of the data, instead of a 2/3 = 0.67 fraction (for
e.g. in Fig 1b).

5. Experiments

In this section, we present experimental results on Amazon
EC2, comparing our proposed gradient coding schemes with
baseline approaches. We compare our approaches against:
(1) the naive scheme, where the data is divided uniformly
across all workers without replication and the master waits
for all workers to send their gradients, and (2) the ignoring
s stragglers scheme where the data is divided as in the naive
scheme, however the master performs an update step after
some n− s workers have successfully sent their gradient.

Experimental setup: We implemented all methods in
python using MPI4py (Dalcin et al., 2011), an open source
MPI implementation. Based on the method being consid-
ered, each worker loads a certain number of partitions of
the data into memory before starting the iterations. In it-

eration t the master sends the latest model β(t) to all the
workers (using Isend()). Each worker receives the model
(using Irecv()) and starts a gradient computation. Once
finished, it sends its gradient(s) back to the master. When
sufficiently many workers have returned with their gradi-
ents, the master computes the overall gradient, performs a
descent step, and moves on to the next iteration.

Our experiments were performed using two different
worker instance types on Amazon EC2: m1.small and
t2.micro — these are very small, very low-cost EC2
instances. We also observed that our system was often bot-
tlenecked by the number of incoming connections i.e. all
workers trying to talk to the master concurrently. For that
reason, and to mitigate this additional overhead to some
degree, we used a larger master instance of c3.8xlarge
in our experiments.

We ran the various approaches to train logistic regression
models, a well-understood convex problem that is widely
used in practice. Moreover, Logistic regression models are
often expanded by including interaction terms that are often
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(a) s = 1 Straggler

(b) s = 2 Stragglers

Figure 5: Empirical running times on Amazon EC2 with n = 12 machines for s = 1 and s = 2 stragglers. In this
experiment, the stragglers are artificially delayed while the other machines run at normal speed. We note that the partial
straggler schemes have much lower data replication, for example with α = 1.2 we need to only replicate approximately
10% of the data.

one-hot encoded for categorical features. This can lead to
100’s of thousands of parameters (or more) in the trained
models.

Results:
Artificial Dataset: In our first experiment, we solved a
logistic regression problem using gradient descent, on a
artificially generated dataset. We generated a dataset of
d = 554400 samples D = {(x1, y1), . . . , (xd, yd)}, us-
ing the model x ∼ 0.5 × N (µ1, I) + 0.5 × N (µ2, I)
(for random µ1, µ2 ∈ R

p), and y ∼ Ber(p), with p =
1/(exp(2xTβ∗) + 1), where β∗ ∈ R

p is the true regressor.
In our experiments, we used a model dimension of p = 100,
and chose β∗ randomly.

In this experiment, we also artificially added delays to s
random workers in each iteration (using time.sleep()).
Figure 5 presents the results of our experiments with s = 1
and s = 2 stragglers, on a cluster of n = 12 m1.small
machines. As expected, the baseline naive scheme that waits
for the stragglers has poorer performance as the delay in-
creases. The Cyclic and Fractional schemes were designed
for one straggler in Figure 5a and for two stragglers 5b.

Therefore, we expect that these two schemes would not be
influenced at all by the delay of the stragglers (up to some
variance due to implementation overheads). The partial
straggler schemes were designed for various α. Recall that
for partial straggler schemes, α denotes the slowdown factor.

Real Dataset: Next, we trained a logistic regression model
on the Amazon Employee Access dataset from Kaggle 1. We
used d = 26200 training samples, and a model dimension of
p = 241915 (after one-hot encoding with interaction terms).
These experiments were run on n = 10, 20, 30 t2.micro
instances on Amazon EC2.

In Figure 7 we show the Generalization AUC of our method
(FracRep and CycRep) versus the popular approach of ignor-
ing s stragglers. As can be seen, Gradient coding achieves
significantly better generalization error. We emphasize that
the results in figures 6 and 7 do not use any artificial strag-
gling, only the natural delays introduced by the AWS cluster.

How is this stark difference possible? When stragglers are

1https://www.kaggle.com/c/amazon-employee-access-
challenge
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Figure 6: Avg. Time per iteration on Amazon Employee Access dataset.

Figure 7: AUC vs Time on Amazon Employee Access dataset. The two proposed methods are FracRep and CycRep
compared against the frequently used approach of Ignoring s stragglers. As can be seen, gradient coding achieves significantly
better generalization error on a true holdout. Note that for Ignoring stragglers, we used a learning rate of c1/(t+ c2), with
c1 and c2 chosen as optimal in a range. This is typical for SGD. For FracRep and CycRep, we used Nesterov’s accelerated
gradient descent with a constant learning rate (since these get the full gradient). Also, see discussion below in this regard.

ignored we are, at best, receiving a stochastic gradient (when
random machines are straggling in each iteration). In this
case the best we can do as an optimization algorithm is to run
gradient descent as it is robust to noise. When using gradient
coding however, we can retrieve the full gradient which
gives us access to faster optimization algorithms. In Figure 7
we use Nesterov’s Accelerated Gradient (NAG) but other
optimizers are also applicable such as LBFGS. Though we
do not present any empirical results here, we refer the reader
to (Devolder et al., 2014) for a theoretical and empirical
analysis of the effect of noisy gradients in NAG. The upshot
is that ignoring stragglers cannot be combined with NAG
because errors quickly accumulate and eventually cause the
method to diverge.

Another advantage of using full gradients is that we can
guarantee that we are training on the same distribution as
the training set was drawn from. This is not true for the
approach that ignores stragglers. If a particular machine
is more likely to be a straggler, samples on that machine
will likely be underrepresented in the final model, unless
particular countermeasures are deployed. There may even
be inherent reasons why a particular sample will systemati-
cally be excluded when we ignore stragglers. For example,
in structured models such as linear-chain CRFs, the com-
putation of the gradient is proportional to the length of the
sequence. Therefore, extraordinarily long examples can be
ignored very frequently.

6. Conclusion

In this paper, we have experimented with various gradient
coding ideas on Amazon EC2 instances. This is a com-
plex trade-off space between model sizes, number of sam-
ples, worker configurations, and number of workers. Our
proposed schemes create computation overhead and keep
communication the same.

The benefit of this additional computation is fault-tolerance:
we are able to recover full gradients, even if s machines do
not deliver their assigned work, or are slow in doing so. Our
partial straggler schemes provide fault tolerance while al-
lowing all machines to do partial work. Another interesting
open question here is approximate gradient coding: can we
get a vector that is close to the true gradient, with lesser
computation overheads ?

For several model-cluster configurations that we tested, com-
munication was the bottleneck and hence the additional
computation’s effect on iteration times was negligible. This
is the regime where gradient coding is most useful. How-
ever, this design space needs further exploration, that is
also varying as different architectures change the parameter
landscape. Overall, we believe that gradient coding is an
interesting idea to add in the distributed learning arsenal.
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