
Gradient Coding from Cyclic MDS Codes and Expander Graphs

Netanel Raviv 1 Itzhak Tamo 2 Rashish Tandon 3 Alexandros G. Dimakis 4

Abstract

Gradient coding is a technique for straggler mit-

igation in distributed learning. In this paper we

design novel gradient codes using tools from clas-

sical coding theory, namely, cyclic MDS codes,

which compare favourably with existing solutions,

both in the applicable range of parameters and in

the complexity of the involved algorithms. Sec-

ond, we introduce an approximate variant of the

gradient coding problem, in which we settle for

approximate gradient computation instead of the

exact one. This approach enables graceful degra-

dation, i.e., the ℓ2 error of the approximate gra-

dient is a decreasing function of the number of

stragglers. Our main result is that the normalized

adjacency matrix of an expander graph can yield

excellent approximate gradient codes, and that

this approach allows us to perform significantly

less computation compared to exact gradient cod-

ing. We experimentally test our approach on Ama-

zon EC2, and show that the generalization error

of approximate gradient coding is very close to

the full gradient while requiring significantly less

computation from the workers.

1. Introduction

Data intensive machine learning tasks have become ubiq-

uitous in many real-world applications, and with the in-

creasing size of training data, distributed methods have

gained increasing popularity. However, the performance of

distributed methods (in synchronous settings) is strongly

dictated by stragglers, i.e., nodes that are slow to respond

or unavailable. In this paper, we focus on coding theoretic

(and graph theoretic) techniques for mitigating stragglers in

1Department of Electrical Engineering, California Institute
of Technology, Pasadena, CA, USA. 2Department of Electrical
Engineering–Systems, Tel-Aviv University, Israel. 3Apple, Seattle,
WA, USA. 4Department of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, TX, USA.. Correspon-
dence to: Netanel Raviv <netanel.raviv@gmail.com>.

Proceedings of the 35
th International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

distributed synchronous gradient descent.

The coding theoretic framework for straggler mitigation

called gradient coding was first introduced in (Tandon et al.,

2017). It consists of a system with one master and n worker

nodes, in which the data is partitioned into k parts, and one

or more parts is assigned to each one of the workers. In turn,

each worker computes the partial gradient on each of its

assigned partitions, linearly combines the results according

to some predetermined vector of coefficients, and sends this

linear combination back to the master node. Choosing the

coefficients at each node judiciously, one can guarantee that

the master node is capable of reconstructing the full gradient

even if any s machines fail to perform their work. The stor-

age overhead of the system, which is denoted by d, refers

to the amount of redundant computations, or alternatively,

to the number of data parts that are sent to each node (see

example in Fig. 1).

The importance of straggler mitigation was demonstrated

in a series of recent studies (e.g., (Li et al., 2014) and (Yad-

wadkar et al., 2016)). In particular, it was demonstrated

in (Tandon et al., 2017) that stragglers may run up to ×5
slower than the typical worker performance (×8 in (Yad-

wadkar et al., 2016)) on Amazon EC2, especially for the

cheaper virtual machines; such erratic behavior is unpre-

dictable and can significantly delay training. One can, of

course, use more expensive instances but the goal here is

to use coding theoretic methods to provide reliability out

of cheap unreliable workers, overall reducing the cost of

training.

The work of (Tandon et al., 2017) established the fundamen-

tal bound d ≥ s+ 1, provided a deterministic construction

which achieves it with equality when s + 1|n, and a ran-

domized one which applies to all s and n. Subsequently,

deterministic constructions were also obtained by (Dutta

et al., 2016) and (Halbawi, 2017). These works have fo-

cused on the scenario where s is known prior to the con-

struction of the system. Furthermore, the exact computation

of the full gradient is guaranteed if the number of stragglers

is at most s, but no error bound is guaranteed if this number

exceeds s.

The contribution of this work is twofold. For the compu-

tation of the exact gradient we employ tools from classic

coding theory, namely, cyclic MDS codes, in order to ob-

Gradient Coding from Cyclic MDS Codes and Expander Graphs

S1 → g1

S2 → g2

S3 → g3

S1 → g1

S2 → g2

S3 → g3

g1/2 + g2 g2 − g3 g1/2 + g3

M

any two → g1 + g2 + g3

W1 W2 W3

Figure 1. Gradient coding for n = 3, k = 3, d = 2,

and s = 1 (Tandon et al., 2017). Each worker node Wi obtains

two parts Si1
, Si2

of the data set S = S1 ∪S2 ∪S3, computes the

partial gradients gi1 , gi2 , and sends their linear combination back

to the master node M . By choosing the coefficients judiciously,

the master node M can compute the full gradient from any two

responses, providing robustness against any one straggler.

tain a deterministic construction which compares favourably

with existing solutions; both in the applicable range of pa-

rameters, and in the complexity of the involved algorithms.

Some of these gains are a direct application of well known

properties of these codes.

Second, we introduce an approximate variant of the gradient

coding problem. In this variant, the requirement for exact

computation of the full gradient is traded by an approximate

one, where the ℓ2 deviation of the given solution is a de-

creasing function of the number of stragglers. Note that by

this approach, the parameter s is not a part of the system

construction, and the system can provide an approximate so-

lution for any s < n, whose quality deteriorates gracefully

as s increases. In the suggested solution, the coefficients at

the worker nodes are based on an important family of graphs

called expanders. In particular, it is shown that setting these

coefficients according to a normalized adjacency matrix of

an expander graph, a strong bound on the error term of the

resulting solution is obtained. Moreover, this approach en-

ables to break the aforementioned barrier d ≥ s+ 1, which

is a substantial obstacle in gradient coding, and allows the

master node to decode using a very simple algorithm.

This paper is organized as follows. Related work regarding

gradient coding (and coded computation in general) is listed

in Section 2. A framework which encapsulates all the results

in this paper is given in Section 3. Necessary mathematical

notions from coding theory and graph theory are given in

Section 4. The former is used to obtain an algorithm for

exact gradient computation in Section 5, and the latter is

used for the approximate one in Section 6. Experimental

results are given in Section 7. Many proofs, extensions, and

examples are omitted due to space constraints, and are given

in the online version of this paper (Raviv et al., 2017).

2. Related Work

The work of Lee et al. (Lee et al., 2017) initiated the use of

coding theoretic methods for mitigating stragglers in large-

scale learning. This work is focused on linear regression and

therefore can exploit more structure compared to the general

gradient coding problem that we study here. The work by Li

et al. (Li et al., 2016), investigates a generalized view of the

coding ideas in (Lee et al., 2017), showing that their solution

is a single operating point in a general scheme of trading off

latency of computation to the load of communication.

Further closely related work has shown how coding can

be used for distributed MapReduce, as well as a similar

communication and computation tradeoff (Li et al., 2015;

2018). We also mention the work of (Karakus et al., 2017)

which addresses straggler mitigation in linear regression by

using a different approach, that is not mutually exclusive

with gradient coding. In their work, the data is coded rather

than replicated at the master node, and the nodes perform

their computation on coded data.

The work by (Dutta et al., 2016) generalizes previous work

for linear models (Lee et al., 2017) but can also be applied

to general models to yield explicit gradient coding construc-

tions. Our results regarding the exact gradient are closely

related to the work by (Halbawi, 2017; Halbawi et al., 2017)

which was obtained independently from our work. In (Hal-

bawi, 2017), similar coding theoretic tools were employed

in a fundamentally different fashion. Both (Halbawi, 2017)

and (Dutta et al., 2016) are comparable in parameters to

the randomized construction of (Tandon et al., 2017) and

are outperformed by us in a wide range of parameters. A

detailed comparison of the theoretical asymptotic behaviour

is given in the online version of this paper (Raviv et al.,

2017).

None of the aforementioned works studies approximate

gradient computations. However, we note that subsequent

to this work, two unpublished manuscripts (Charles et al.,

2017; Li et al., 2017) study a similar approximation set-

ting and obtain related results albeit using randomized as

opposed to deterministic approaches.

3. Framework

This section provides a unified framework which accommo-

dates straggler mitigation in both the exact and approximate

gradient computation which follow. In order to distribute

the execution of gradient descent from a master node M
to n worker nodes {Wj}nj=1, the training set S is partitioned

Gradient Coding from Cyclic MDS Codes and Expander Graphs

Algorithm 1 Gradient Coding

1: Input: Data S = {zi = (xi, yi)}mi=1, number of itera-

tions T > 0, learning rate schedule ηt > 0, straggler

tolerances (st)t∈[T], a matrix B ∈ Cn×n, and a func-

tion A : P(n) → Cn.

2: Initialize w
(1) = (0, . . . , 0).

3: Partition S = ∪n
i=1Si and send {Sj : j ∈ supp(Bi)}

to Wi for every i ∈ [n].
4: for t = 1 to T do

5: M broadcasts w(t) to all nodes.

6: Each Wj sends 1
n

∑

i∈supp(Bj)
Bj,i · ∇LSi

(w(t))
to M .

7: M computes vt = A(Kt) · a, where ai is the re-

sponse from Wi if it responded and 0 otherwise, for

each i.
8: M updates w(t+1) , w

(t) − ηtvt

9: end for

10: return w
(T+1).

by M to n disjoint subsets {Si}ni=1 of size1 m
n each, that

are distributed among {Wj}ni=1. Each node computes the

gradients ∇LSi
(w) of the empirical risks of the Si-s which

it obtained, evaluates them in the current model w(t), and

sends some linear combination of the results to M . After

obtaining the results of the computation from at least st
workers, where (st)t∈[T] are straggler tolerance parameters,

M aggregates them to form the gradient ∇LS(w
(t)) of the

overall empirical risk at w(t).

To support mitigation of stragglers in this setting, the fol-

lowing notions are introduced. Let B ∈ Cn×n be a matrix

whose i-th row Bi contains the coefficients of the linear

combination
∑n

j=1 Bi,j · ∇LSj
(w(t)) that is sent to M

by Wi. Note that the support supp(Bi) contains the indices

of the sets Sj that are to be sent to Wi by M . Given a set

of non-stragglers K ∈ P(n), where P(n) is the set of all

nonempty subsets of [n], a function A : P(n) → Cn pro-

vides M with a vector by which the results from {Wi}i∈K

are to be linearly combined to obtain the vector vt. For

convenience of notation, assume that supp(A(K)) ⊆ K for

all K ∈ P(n). In most of the subsequent constructions, the

matrix B and the function A will be defined over R rather

than over C.

The construction of the matrix B and the function A in

Algorithm 1 enables to compute the gradient both exactly

(which requires the storage overhead d to be at least st + 1
for all t ∈ [T]) and approximately. In what follows, the

1For simplicity, assume that m|n. The given scheme could be
easily adapted to the case m ∤ n. Further, the assumption that
the number of partitions equals to the number of nodes is a mere
convenience, and all subsequent schemes may be easily adapted to
the case where the number of partitions is at most the number of
nodes.

respective requirements and guarantees from A and B are

discussed. In the following definition, for an integer a let 1a

be the vector of a ones, where the subscript is omitted if

clear from context.

Definition 1. A matrix B ∈ Cn×n and a function A :
P(n) → Cn satisfy the Exact Computation (EC) condi-

tion if for all K ⊆ [n] such that |K| ≥ maxt∈[T] st, we

have A(K) · B = 1. Further, for a non-decreasing func-

tion ǫ : [n − 1] → R≥0 such that ǫ(0) = 0, A and B
satisfy the ǫ-Approximate Computation (ǫ-AC) condition,

if for all K ∈ P(n), we have d2(A(K)B, 1) ≤ ǫ(|Kc|)
(where d2 is the ordinary Euclidean distance).

Notice that the error term ǫ in the above definition is a

function since it is required to decrease with the number of

stragglers. The conditions which are given in Definition 1

guarantee the exact and approximate computation by the

following lemmas, whose proofs are given in (Raviv et al.,

2017).

Lemma 2. If A and B satisfy the EC condition, then for

all t ∈ [T] we have vt = ∇LS(w
(t)).

The next lemma bounds the deviance of vt from the gradient

of the empirical risk at the current model w(t) by using the

function ǫ and the spectral norm ‖·‖spec of the matrix of

empirical losses.

Lemma 3. For a function ǫ as above, if A and B satisfy

the ǫ-AC condition, then d2(vt,∇LS(w
(t))) ≤ ǫ(|Kc

t |) ·
‖N(w(t))‖spec.

Due to Lemma 2 and Lemma 3, in the remainder of this pa-

per we focus on constructing A and B that satisfy either the

EC condition (Section 5) or the ǫ-AC condition (Section 6).

4. Mathematical Notions

This section provides a brief overview on the mathematical

notions that are essential for the suggested schemes. The

exact computation (Sec. 5) requires notions from coding

theory, and the approximate one (Sec. 6) requires notions

from graph theory. The coding theoretic material in this

section is taken from (Roth, 2006), which focuses on finite

fields, and yet the given results extend verbatim to the real

or complex case (see also (Marshall, 1984), Sec. 8.4).

For F ∈ {R,C} an [n, κ] (linear) code C over F is

a subspace of Fn. The minimum distance δ of C
is min{dH(x, y) : x, y ∈ C, x 6= y}, where dH denotes

the Hamming distance dH(xi, yi) = |{i|xi 6= yi}|. Note

that the minimum distance of a code is equal to its minimum

Hamming weight wH(x) = ‖x‖0 = | supp(x)|. The well-

known Singleton bound states that δ ≤ n−κ+1, and codes

which attain this bound with equality are called Maximum

Distance Separable (MDS) codes. A code C is called cyclic

if the cyclic rotation of any codeword in C is yet another

Gradient Coding from Cyclic MDS Codes and Expander Graphs

codeword in C. The dual of C is C⊥ , {y ∈ Fn|y · c⊤ =
0 for all c ∈ C}. Several well-known and easy to prove

properties of MDS codes are used throughout this paper.

Lemma 4. If C ⊆ Fn is an [n, κ] MDS code, then

A1. C⊥ is an [n, n−κ] MDS code, and hence its minimum

Hamming weight is κ+ 1.

A2. For any subset K ⊆ [n] , {1, . . . , n} of size n−κ+1
there exists a codeword in C whose support (i.e., the

set of nonzero indices) is K.

A3. The reverse code CR , {(cn, . . . , c1)|(c1, . . . , cn) ∈
C} is an [n, κ] MDS code.

Two common families of codes are used in the sequel—

Reed-Solomon (RS) codes and Bose-Chaudhuri-Hocquen-

ghem (BCH) codes. An RS code C of length n, dimen-

sion s, and pairwise distinct evaluation points {αi}n−1
i=0 ⊆ F

is defined as C = {(f(α0), f(α1), . . . , f(αn−1)) : f ∈
F<s[x]}, where F<s[x] is the set of polynomials of degree

less than s and coefficients from F. Alternatively, RS codes

can be defined as the left image of a Vandermonde matrix

on {αi}n−1
i=0 . It is widely known that RS codes are MDS

codes, and in some cases, they are also cyclic.

In contrast with RS codes, a codeword of a BCH code

is considered as a polynomial. That is, a codeword c =
(c0, c1, . . . , cn−1) is identified by the univariate polyno-

mial c(x) , c0 + c1x + . . . + cn−1x
n−1. For a set of

complex numbers A ⊆ C, the (real) BCH code on A is the

set of polynomials The set A on which a given BCH code C
vanishes is called the root set of C. For some sets A, the

resulting codes are cyclic.

Lemma 5. (Marshall, 1984; Roth, 2006) If the root set A
of a BCH code C of length n consists of n-th roots of unity,

then C is cyclic.

Proof. If c(x) is a codeword in C, then its cyclic shift is

given by c̃(x) , c(x) ·x mod (xn − 1) = x · c(x)− cn−1 ·
(xn − 1). Since the root set consists of n-th roots of unity,

it follows that for any α ∈ A,

c̃(α) = α · c(α)− cn−1 · (αn − 1) = α · c(α) = 0,

and hence c̃ is a codeword in C.

Further, the structure of A may also imply a lower bound

on the distance of C.

Theorem 6. (The BCH bound) (Marshall, 1984; Roth,

2006) If A contains a subset of D consecutive pow-

ers of a primitive root of unity (i.e., a subset of the

form ωb, ωb+1, . . . , ωb+D−1, where ω is an n-th root of

unity of multiplicative order n), then the minimum distance

of C is at least D + 1.

In the remainder of this section, a brief overview about ex-

pander graphs is given. The interested reader is referred

to (Hoory et al., 2006) for further details. Let G = (V,E)
be a d-regular, undirected, and connected graph on n
nodes. Let AG ∈ Rn×n be the adjacency matrix of G,

i.e., (AG)i,j = 1 if and only if {i, j} ∈ E. Since AG is a

real symmetric matrix, it follows that it has real eigenval-

ues λ1 ≤ λ2 ≤ . . . ≤ λn, and denote λ , max{|λ2|, |λn|}.

It is widely known (Hoory et al., 2006) that λ1 = d, and

that λn ≥ −d, where equality holds if and only if G is

bipartite. Further, it also follows from AG being real and

symmetric that it has a basis of orthogonal real eigenvectors

v1 = 1, v2, . . . , vn, and w.l.o.g assume that ‖vi‖2 = 1 for

every i ≥ 2. The parameters λ and d are related by the

famous Alon-Boppana Theorem.

Theorem 7. (Hoory et al., 2006) Any d regular graph on n
vertices satisfies that λ ≥ 2

√
d− 1 − on(1), where on(1)

is an expression which tends to zero as n tends to infinity.

Constant degree regular graphs (i.e., families of graphs with

fixed degree d that does not depend on n) for which λ
is small in comparison with d are largely referred to as

expanders. In particular, graphs which attain the above

bound asymptotically (i.e., λ ≤ 2
√
d− 1) are called Ra-

manujan graphs, and several efficient constructions are

known (Lubotzky et al., 1988; Cohen, 2016).

5. Exact Gradient Computation from Cyclic

MDS Codes

For a given n and s, let C be a cyclic [n, n− s] MDS code

over F that contains 1 (explicit codes are given in the sequel).

According to Lemma 4, there exists a codeword c1 ∈ C
whose support is {1, . . . , s+1}. Let c2, . . . , cn be all cyclic

shifts of c1, which lie in C by its cyclic property. Finally,

let B be the n × n matrix whose columns are c1, . . . , cn,

i.e., B , (c⊤1 , c
⊤
2 , . . . , c

⊤
n).

Lemma 8. The matrix B satisfies the following properties.

B1. ‖b‖0 = s+ 1 for every row b of B.

B2. Every row of B is a codeword in CR.

B3. The column span of B is the code C.

B4. Every set of n− s rows of B are linearly independent

over F.

Proof. To prove B1 and B2, observe that B is of the follow-

Gradient Coding from Cyclic MDS Codes and Expander Graphs

ing form, where c1 , (β1, . . . , βs+1, 0, . . . , 0).





























β1 0 · · · 0 βs+1 βs . . . β2

β2 β1 0 · · · 0 βs+1 . . . β3

...
...

. . .
. . .

...
. . .

. . .
...

βs βs−1 · · · β1 0 · · · 0 βs+1

βs+1 βs · · · β2 β1 0 · · · 0
0 βs+1 · · · β3 β2 β1 · · · 0
...

...
. . .

...
...

...
. . .

...

0 · · · 0 βs+1 βs βs−1 · · · β1





























.

To prove B3, notice that the leftmost n − s columns of B
have leading coefficients in different positions, and hence

they are linearly independent. Thus, the dimension of the

column span of B is at least n−s, and since dimC = n−s,

the claim follows.

To prove B4, assume for contradiction that there exist a set

of n − s linearly dependent rows. Hence, there exists a

vector v ∈ Fn of Hamming weight n− s such that vB = 0.

According to B3, the columns of B span C, and hence the

vector v lies in the dual C⊥ of C. Since C⊥ is an [n, s] MDS

code by Lemma 4, it follows that the minimum Hamming

weight of a codeword in C⊥ is n−s+1, a contradiction.

Since CR is of dimension n − s, it follows from parts B2

and B4 of Lemma 8 that every set of n − s rows of B
are a basis to CR. Furthermore, since 1 ∈ C it follows

that 1 ∈ CR. Therefore, there exists a function A : P(n) →
Fn such that for any set K ⊆ [n] of size n − s we have

that supp(A(K)) = K and AK ·B = 1.

Theorem 9. . The above A and B satisfy the EC condition

(Definition 1).

In the remainder of this section, two cyclic MDS codes

over the complex numbers and the real numbers are sug-

gested, from which the construction in Theorem 9 can be

obtained. These constructions are taken from (Marshall,

1984) (Sec. II.B), and are given with a few adjustments

to our case. The contributions of these codes is summa-

rized in the following theorem, and omitted proofs are given

in (Raviv et al., 2017).

Theorem 10. For any given n and s there exist explicit com-

plex matrices A and B that satisfy the EC-condition with

optimal d = s+ 1. The respective encoding (i.e., construct-

ing B) and decoding (i.e., constructing A(K) given K)

complexities are O(s(n − s)) and O(s log2 s + n log n),
respectively. Over R, for any given n and s such that

n 6= s mod 2 there exist explicit matrices A and B that sat-

isfy the EC-condition with optimal d = s+1. The encoding

and decoding complexities are O(min{s log2 s, n log n})
and O(gs + s(n− s)), where gs is the complexity of invert-

ing a generalized Vandermonde matrix.

5.1. Cyclic-MDS Codes Over the Complex Numbers

For a given n and s, let i =
√
−1, and let A , {αj}n−1

j=0

be the set of complex roots of unity of order n, i.e., αj ,

e2πij/n. Let G ∈ C(n−s)×n be a complex Vandermonde

matrix over A, i.e., Gk,j = αk
j for any j ∈ {0, 1, . . . , n−1}

and any k ∈ {0, 1, . . . , n−s−1}. Finally, let C , {xG|x ∈
Cn−s}. It is readily verified that C is an [n, n − s] MDS

code that contains 1, whose codewords may be seen as the

evaluations of all polynomials in C<n−s[x] on the set A.

Lemma 11. C is a cyclic code.

Corollary 12. The code C is a cyclic MDS code which

contains 1, and hence it can be used to obtain the matrices A
and B, as described in Theorem 9.

Given a set K of n−s non-stragglers, an algorithm for com-

puting the encoding vector A(K) in O(s log2 s + n log n)
operations over C (after a one-time initial computation

of O(s2 + s(n − s))), is given in Appendix B. The com-

plexity of this algorithm is asymptotically smaller than the

corresponding algorithm in (Dutta et al., 2016) and (Hal-

bawi, 2017) whenever s = o(n). Furthermore, the cyclic

structure of the matrix B enables a very simple algorithm

for its construction; this algorithm compares favorably with

previous works for any s, and is given in Appendix B as

well.

5.2. Cyclic-MDS Codes Over the Real Numbers

If one wishes to abstain from using complex numbers, e.g.,

in order to reduce bandwidth, we suggest the following con-

struction, which provides a cyclic MDS code over the reals.

This construction relies on (Marshall, 1984) (Property 3),

with an additional specialized property.

Construction 13. For a given n and s such that n 6= s mod
2, define the following BCH codes over the reals. In both

cases denote ω , e2πi/n.

1. If n is even and s is odd let s′ , ⌊ s
2⌋, and

let C1 be a BCH code which consists of all poly-

nomials in R<n[x] that vanish over the set A1 ,

{ωn/2−s′ , ωn/2−s′+1, . . . , ωn/2+s′}.

2. If n is odd and s is even let n′ , ⌊n
2 ⌋, and

let C2 be a BCH code which consists of all poly-

nomials in R<n[x] that vanish over the set A2 ,

{ωn′−s/2+1, ωn′−s/2+2, . . . , ωn′+s/2}.

Lemma 14. The codes C1 and C2 from Construction 13

are cyclic [n, n− s] MDS codes that contain 1.

Algorithms for computing the matrix B and the vector A(K)
for the codes in this subsection are given in Appendix C. The

algorithm for construction B outperforms previous works

whenever s = o(n), and the algorithm for computing A(K)

Gradient Coding from Cyclic MDS Codes and Expander Graphs

outperforms previous works for a smaller yet wide range

of s values.

6. Approximate Gradient Computation from

Expander Graphs

Setting B as the identity matrix and A as the function which

maps every K ∈ P(n) to its binary characteristic vector 1K ,

clearly satisfies the ǫ-AC scheme for ǫ(K) =
√

|Kc|, since

d2(A(K)B, 1) = d2(1K , 1) =
√

|Kc|. (1)

It is readily verified that this approach (termed hereafter

as “trivial”) amount to ignoring the stragglers, which is

essentially equivalent to (Chen et al., 2016). We show that

this can be outperformed by setting B to be a normalized

adjacency matrix of a connected regular graph on n nodes,

which is constructed by the master before dispersing the

data, and setting A to be some carefully chosen yet simple

function.

The resulting error function ǫ(s) depends on the parameters

of the graph, whereas the resulting storage overhead d is

given by its degree (i.e., the fixed number of neighbors of

each node). The error function is given below for a general

connected and regular graph, and particular examples with

their resulting errors are given in the sequel. In particular,

it is shown that taking the graph to be an expander graph

provides a deviation ǫ which is asymptotically less than
√
s

(Eq. (1)) whenever s = o(n). In some cases, smaller devia-

tion is also obtained for larger values of s.

For a given n let G be a connected and d-regular graph

on n nodes, with eigenvalues λ1 ≥ . . . ≥ λn and corre-

sponding eigenvectors v1 = 1, v2, . . . , vn as described in

Subsection 4. Let B , 1
d ·AG, and for a given K ⊆ [n] of

size n− s, define uK ∈ Rn as

(uK)i =

{

−1 i /∈ K
s

n−s i ∈ K
. (2)

Lemma 15. For any K ⊆ [n] of size n − s, uK ∈
〈v2, . . . , vn〉.

Proof. First, observe that 〈v2, . . . , vn〉 is exactly the sub-

space of all vectors whose sum of entries is zero. This

follows from the fact that {1, v2, . . . , vn} is an orthogonal

basis, hence vi · 1 = 0 for every i ≥ 2, and from the fact

that {v2, . . . , vn} are linearly independent. Since the sum

of entries of uK is zero, the result follows.

Corollary 16. For any K ⊆ [n] there exists α2, . . . , αn ∈
R such that uK = α2v2 + . . . + αnvn, and ‖uK‖2 =
√

∑n
i=2 α

2
i =

√

ns
n−s .

Proof. The first part follows immediately from Lemma 15.

The second part follows by computing the ℓ2 norm of uK

in two ways, once by its definition (2) and again by using

the representation of uK as a linear combination of the

orthonormal set {v2, . . . , vn}.

Now, define A : P(n) → Rn as A(K) = uK + 1, and

observe that supp(A(K)) = K for all K ∈ P(n). Note

that computing A(K) given K is done by a straightfor-

ward O(n) algorithm. The error function ǫ is given by the

following lemma.

Lemma 17. For every set K ⊆ [n] of size n − s,

d2(AKB, 1) ≤ λ
d ·

√

ns
n−s , ǫ(s).

Proof. Notice that the eigenvalues of B are µi ,
λi

d , and

hence µ , max{|µ2|, |µn|} equals λ
d . Further, the eigen-

vectors are identical to those of AG. Therefore, it follows

from Corollary 16 that

d2(AKB, 1) = d2((1 + uK)B, 1)

= d2((1 + α2v2 + . . .+ αnvn)B, 1)

= d2(1 + α2µ2v2 + . . .+ αnµnvn, 1)

= ‖α2µ2v2 + . . .+ αnµnvn‖2,

and since {v2, . . . , vn} are orthonormal, it follows that

‖α2µ2v2 + . . .+ αnµnvn‖2

=

√

√

√

√

n
∑

i=2

µ2
iα

2
i ≤

√

√

√

√

n
∑

i=2

µ2α2
i

= µ

√

√

√

√

n
∑

i=2

α2
i =

λ

d

√

ns

n− s
.

Corollary 18. The above A and B satisfy the ǫ-AC con-

dition for ǫ(s) = λ
d

√

ns
n−s . The storage overhead of

this scheme equals the degree d of the underlying regular

graph G.

It is evident that in order to obtain small deviation ǫ(s), it

is essential to have a small λ and a large d. However, most

constructions of expanders have focused in the case were d
is constant (i.e., d = O(1)). On one hand, constant d serves

our purpose well since it implies a constant storage overhead.

On the other hand, a constant d does not allow λ/d to tend

to zero as n tends to infinity due to Theorem 7.

To present the contribution of the suggested scheme, it is

compared to the trivial one. Clearly, for any given number

of stragglers s, it follows from (1) and from Lemma 17 that

the latter scheme outperforms the trivial one if

Gradient Coding from Cyclic MDS Codes and Expander Graphs

(a) n = 30, d = 3 (b) n = 30, d = 5 (c) n = 30, s = 5

(d) n = 50, d = 5 (e) n = 50, d = 8 (f) n = 50, s = 5

Figure 2. ℓ2-error for recovery of 1 using normalized adjacency matrices of random d-regular graphs.

λ

d

√

n

n− s
< 1. (3)

Since any connected and non-bipartite graph satisfies

that λ < d, it follows that Eq. (3) holds asymptotically

for any s = o(n). The following example shows the im-

proved error rate for Margulis graphs (given in (Hoory et al.,

2006), Sec. 8), that are rather easy to construct. Several

additional examples for Ramanujan graphs, which attain

much better error rate but are harder to construct, are given

in Appendix A.

Example 19. For any integer n there exists an 8-regular

graph on n nodes with λ ≤ 5
√
2. For example, by us-

ing these graphs with the parameters n = 500, d = 8,

s = 50, we have that ǫ(s) = λ
d

√

ns
n−s ≤ 5

√
2

8

√

500·50
500−50 ≈

6.59, whereas
√
s ≈ 7.07, an improvement of approxi-

mately 6.8%.

Restricting d to be a constant (i.e., not to grow with n) is

detrimental to the error term in (3) due to Theorem 7, but

allows lower storage overhead. If one wishes a lower error

term at the price of higher overhead, the following is useful.

Example 20. (Bilu & Linial, 2006) There exists a poly-

nomial algorithm (in n) to produce a graph G with the

parameters (n, d, λ) = (2m,m− 1,
√

m log3 m). For this

family of graphs, the relative error term (3) goes to zero

as n goes to infinity for s = δn, 0 < δ < 1.

We also note that for bipartite expanders, for whom λ = d,

can be employed in a slightly different fashion to achieve

smaller error terms. The analysis relies on the singular

values of its adjacency matrix, and the details are in Ap-

pendix D. Finally, we have the following lower bound on

approximation error of any Approximate Computation (AC)

scheme, that establishes asymptotic optimality (up to con-

stants) of our earlier proposed scheme, when used with

Ramanujan graphs. The proof of this bound is deferred to

Appendix E.

Lemma 21. Consider any B ∈ Rn×n with each row having

at most d non-zeros. Then, for any s > d there exists a

set K ⊆ [n] of size n− s such that

min
a∈R

n

supp(a)⊆K

d2(aB, 1) ≥
√

⌊ s

d

⌋

(4)

7. Experimental Results

In this section, we present results of experiments on our

proposed approximate gradient coding schemes.

7.1. ℓ2 Error

We measured the performance of our approximate coding

schemes in terms of the ℓ2-error for recovery of the all 1s

vector. We chose the normalized adjacency matrix of a

random d-regular graph (on n vertices) as the matrix B in

our schemes. We randomly chose n − s rows of B to be

Gradient Coding from Cyclic MDS Codes and Expander Graphs

the surviving workers in any particular iteration, where s is

the number of stragglers. For the decoding vector AK , we

chose the vector specified in our schemes in Eq. (2) (called

the Linear decoder here) as well as the optimal least squares

solution (called the Optimal decoder here), given as:

AK = min
a

‖aB(K, :)− 1‖2

Note that even though we have no additional theoretical

guarantees for the optimal decoder, it is always possible to

compute it.

Figure 2 presents the results using graphs on n = 30, 50
vertices, and various values of s and d. The results shown

are averaged over multiple samples of K and multiple draws

of the matrix B.

Figures 2a, 2b, 2d and 2e show ℓ2-error vs no. of stragglers

s. As the no. of stragglers increases, the recovery gets worse

for a fixed computation budget (or degree) d. Figures 2c and

2f show ℓ2-error vs degree d. As the computation budget,

d, increases, the recovery error gets better, for a fixed no.

of stragglers s. Also, as expected, in all cases, the Optimal

decoder does better than the Linear decoder in terms of

ℓ2-error. Interestingly, we can also observe that on average

both the Linear decoder and the Optimal decoder are better

than the theoretical upper bound in our paper. One could

even think of exploiting this empirically by randomizing

the assignment of the rows of B to the different workers in

every iteration.

7.2. Generalization Error

In this section, our Approximate Gradient Coding (Approxi-

mate Gradient Coding) scheme is compared to other base-

line approaches. We compare against Gradient Coding

(Gradient Coding) (Tandon et al., 2017), as well as the Ig-

nore Stragglers (Ignoring Stragglers) approach, where the

data is divided equally among all workers, but the master

only uses the first n− s gradients.

We measured the performance of our coding schemes in

terms of AUC on a validation set for a logistic regression

problem, on a real dataset. The dataset we used was the

Amazon Employee dataset from Kaggle. We used 26, 200
training samples, and a model dimension of 241, 915 (after

one-shot encoding with interaction terms), and used gradi-

ent descent to train the logistic regression. For Gradient

Coding we used a constant learning rate, chosen using cross-

validation. For Approximate Gradient Coding and Ignoring

Stragglers, we used a learning rate of c1/(t + c2), which

is typical for SGD, where c1 and c2 were also chosen via

cross-validation.

All our methods were implemented in python using MPI4py

(similar to (Tandon et al., 2017)). We ran our experiments

using t2.micro worker instance types on Amazon EC2

and a c3.8xlarge master instance type. The results

for n = 30, 50 are given in Fig. 3 and Fig, 4, in which

Approximate Gradient Coding corresponds to our approx-

imation schemes with the optimal decoder, whereas Ap-

proximate Gradient Coding (Linear), termed Approximate

Gradient Coding (Linear) is our full proposed approxima-

tion scheme.

We observe that both these approaches are only slightly

worse than Gradient Coding, which utilizes the full gradient,

and are quite better than the Ignoring Stragglers approach.

Compared to each other, Approximate Gradient Coding and

Approximate Gradient Coding (Linear) seem equivalent,

however Approximate Gradient Coding was marginally bet-

ter. That being said, Approximate Gradient Coding (Lin-

ear) can be faster since computing the Linear decoder only

requires O(n) time, in contrast to O(n3) time for the opti-

mal decoder.

Figure 3. Generalization error vs No. of iterations using n = 30

t2.micro worker instances on EC2, with d = 3, and s = 5.

Note that in case of Gradient Coding (Tandon et al., 2017), the

computational overhead here is ×6 times (instead of ×3 in our

approach).

Figure 4. Generalization error vs No. of iterations using n = 50

t2.micro worker instances on EC2, with d = 5, and s = 10.

Note that in case of Gradient Coding (Tandon et al., 2017), the

computational overhead here is ×11 times (instead of ×5 in our

approach).

Gradient Coding from Cyclic MDS Codes and Expander Graphs

Acknowledgments

This research has been supported by NSF Grants CCF

1422549, 1618689, DMS 1723052, ARO YIP W911NF-

14-1-0258 and research gifts by Google, Western Digital

and NVIDIA. The work of Rashish Tandon was done while

he was at UT Austin, prior to joining apple. The work of

Itzhak Tamo and Netanel Raviv was supported in part ISF

Grant 1030/15 and NSF-BSF Grant 2015814. The work

of Netanel Raviv was supported in part by the postdoctoral

fellowship of the Center for the Mathematics of Information

(CMI), Caltech, and in part by the Lester-Deutsch postdoc-

toral fellowship.

References

Bilu, Y. and Linial, N. Lifts, discrepancy and nearly optimal

spectral gap. Combinatorica, 26(5):495–519, 2006.

Charles, Z., Papailiopoulos, D., and Ellenberg, J. Approx-

imate gradient coding via sparse random graphs. arXiv

preprint arXiv:1711.06771, 2017.

Chen, J., Monga, R., Bengio, S., and Jozefowicz, R. Re-

visiting distributed synchronous sgd. arXiv preprint

arXiv:1604.00981, 2016.

Cohen, M. B. Ramanujan graphs in polynomial time. In

Foundations of Computer Science (FOCS), 2016 IEEE

57th Annual Symposium on, pp. 276–281. IEEE, 2016.

Dutta, S., Cadambe, V., and Grover, P. Short-dot: Com-

puting large linear transforms distributedly using coded

short dot products. In Advances In Neural Information

Processing Systems, pp. 2100–2108, 2016.

Halbawi, W. Error-Correcting Codes for Networks, Storage

and Computation. PhD thesis, California Institute of

Technology, 2017.

Halbawi, W., Ruhi, N. A., Salehi, F., and Hassibi, B. Im-

proving distributed gradient descent using reed-solomon

codes. CoRR, abs/1706.05436, 2017. URL http:

//arxiv.org/abs/1706.05436.

Hoory, S., Linial, N., and Wigderson, A. Expander graphs

and their applications. Bulletin of the American Mathe-

matical Society, 43(4):439–561, 2006.

Karakus, C., Sun, Y., Diggavi, S., and Yin, W. Straggler mit-

igation in distributed optimization through data encoding.

In Advances in Neural Information Processing Systems,

pp. 5440–5448, 2017.

Lee, K., Lam, M., Pedarsani, R., Papailiopoulos, D., and

Ramchandran, K. Speeding up distributed machine learn-

ing using codes. IEEE Transactions on Information The-

ory, 2017.

Li, M., Andersen, D. G., Smola, A., and Yu, K. Com-

munication efficient distributed machine learning with

the parameter server. In Proceedings of the 27th Inter-

national Conference on Neural Information Processing

Systems - Volume 1, NIPS’14, pp. 19–27, Cambridge,

MA, USA, 2014. MIT Press. URL http://dl.acm.

org/citation.cfm?id=2968826.2968829.

Li, S., Maddah-Ali, M. A., and Avestimehr, A. S. Coded

mapreduce. In Communication, Control, and Computing

(Allerton), 2015 53rd Annual Allerton Conference on, pp.

964–971. IEEE, 2015.

Li, S., Maddah-Ali, M. A., and Avestimehr, A. S. A unified

coding framework for distributed computing with strag-

gling servers. In Globecom Workshops (GC Wkshps),

2016 IEEE, pp. 1–6. IEEE, 2016.

Li, S., Kalan, S. M. M., Avestimehr, A. S., and

Soltanolkotabi, M. Near-optimal straggler mitiga-

tion for distributed gradient methods. arXiv preprint

arXiv:1710.09990, 2017.

Li, S., Maddah-Ali, M. A., Yu, Q., and Avestimehr, A. S. A

fundamental tradeoff between computation and commu-

nication in distributed computing. IEEE Transactions on

Information Theory, 64(1):109–128, 2018.

Lubotzky, A., Phillips, R., and Sarnak, P. Ramanujan graphs.

Combinatorica, 8(3):261–277, 1988.

Marshall, T. Coding of real-number sequences for error

correction: A digital signal processing problem. IEEE

Journal on Selected Areas in Communications, 2(2):381–

392, 1984.

Raviv, N., Tamo, I., Tandon, R., and Dimakis, A. G.

Gradient coding from cyclic MDS codes and expander

graphs. CoRR, abs/1707.03858, 2017. URL http:

//arxiv.org/abs/1707.03858.

Roth, R. Introduction to coding theory. Cambridge Univer-

sity Press, 2006.

Tandon, R., Lei, Q., Dimakis, A. G., and Karampatzi-

akis, N. Gradient coding: Avoiding stragglers in dis-

tributed learning. In Langley, P. (ed.), Proceedings of

the 34th International Conference on Machine Learn-

ing, ICML 2017, Sydney, NSW, Australia, 6-11 August

2017, pp. 3368–3376, Stanford, CA, 2017. Morgan Kauf-

mann. URL http://proceedings.mlr.press/

v70/tandon17a.html.

Yadwadkar, N. J., Hariharan, B., Gonzalez, J. E., and

Katz, R. Multi-task learning for straggler avoiding pre-

dictive job scheduling. Journal of Machine Learning

Research, 17(106):1–37, 2016. URL http://jmlr.

org/papers/v17/15-149.html.

http://arxiv.org/abs/1706.05436
http://arxiv.org/abs/1706.05436
http://dl.acm.org/citation.cfm?id=2968826.2968829
http://dl.acm.org/citation.cfm?id=2968826.2968829
http://arxiv.org/abs/1707.03858
http://arxiv.org/abs/1707.03858
http://proceedings.mlr.press/v70/tandon17a.html
http://proceedings.mlr.press/v70/tandon17a.html
http://jmlr.org/papers/v17/15-149.html
http://jmlr.org/papers/v17/15-149.html

