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Abstract

Detecting objects as multiple keypoints is an important ap-
proach in the anchor-free object detection methods while cor-
ner pooling is an effective feature encoding method for cor-
ner positioning. The corners of the bounding box are located
by summing the feature maps which are max-pooled in the x
and y directions respectively by corner pooling. In the unidi-
rectional max pooling operation, the features of the densely
arranged objects of the same class are prone to occlusion. To
this end, we propose a method named Gradient Corner Pool-
ing. The spatial distance information of objects on the fea-
ture map is encoded during the unidirectional pooling pro-
cess, which effectively alleviates the occlusion of the homo-
geneous object features. Further, the computational complex-
ity of gradient corner pooling is the same as traditional corner
pooling and hence it can be implemented efficiently. Gradient
corner pooling obtains consistent improvements for various
keypoint-based methods by directly replacing corner pool-
ing. We verify the gradient corner pooling algorithm on the
dataset and in real scenarios, respectively. The networks with
gradient corner pooling located the corner points earlier in the
training process and achieve an average accuracy improve-
ment of 0.2%-1.6% on the MS-COCO dataset. The detectors
with gradient corner pooling show better angle adaptability
for arrayed objects in the actual scene test.

Introduction
Object detection is the foundation of a large number of vi-
sion tasks, such as automatic driving, scene understanding,
and video surveillance. According to the method that the
bounding box proposed, there are currently two mainstream
frameworks for object detection. One is the anchor-based
method. These methods generate a large number of candi-
date anchors according to certain image features or rules
and have the highest detection accuracy on object detection
datasets such as MS-COCO (Lin et al. 2014). The other is
the anchor-free method, represented by a series of papers
such as FCOS (Tian et al. 2019), CornerNet (Law and Deng
2018; Law et al. 2019), ExtremeNet (Zhou, Zhuo, and Kra-
henbuhl 2019), Objects as Points (Zhou, Wang, and Krahen-
buhl 2019), RepPoints (Yang et al. 2019; Chen et al. 2020),
CenterNet (Duan et al. 2019) and etc. Among these methods,
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Figure 1: A shows the detection result of an image in the
MS-COCO validation dataset. (a) is the detection result of
CornerNet-Saccade with gradient corner pooling (GCP). (b)
is the result of this detector with corner pooling. There is
a significant improvement in the performance of detecting
array-placed objects for keypoint-based detectors with GCP.
B is the illustration of top direction in the gradient corner
pooling, which encodes the distance in directional max pool-
ing with the modulation factor α.

CornerNet (Law and Deng 2018) proposes a novel model,
which detects an object as a set of paired corner points. The
width and height of the bounding box of the object are di-
rectly calculated by the paired top-left and bottom-right cor-
ner points.

Corner pooling consists of max pooling in four directions:
top pooling, left pooling, bottom pooling, and right pooling.
The pooling results in the two directions are added respec-
tively to obtain top-left pooling and bottom-right pooling.
This encoding method diverts the maximum points of the
object feature response on the feature map to the top-left and
bottom-right corners. However, max pooling in one direc-
tion leads to the occlusion in feature responses of objects of
the same class in this direction, which in turn makes corner
detection difficult. The essential reason is that max pooling
loses part of the spatial information on feature maps. Based
on the corner pooling, we propose gradient corner pooling
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Algorithm 1: Gradient corner pooling

Require: Fij

1: Fij is a batch of feature maps with dimension Height ×
Width

2: X,Y,R← Fij

3: n = 0
4: while n < log2H do
5: Y H

0:H−2n ← max(XH
0:H−2n , X

H
2n:H)

6: X ← Y . Corner pooling
7: R← α′R+ Y . Gradient corner pooling
8: end while
9: return R

(GCP), which includes a modulation factor to encode the
spatial distance information of features during the pooling
process. The point with the largest value will be multiplied
by the coefficient of distance and be moved to the current
point in the process of four directions max pooling. Such
a proportional decrease enables other similar objects fea-
tures within the coverage of the direction pooling in the cor-
ner pooling to be highlighted, which greatly alleviates the
feature occlusion problem of homogeneous object features
nearby. The top pooling in gradient corner pooling of differ-
ent modulation factors is shown in Figure 1B. This encoding
algorithm can be computed efficiently by dynamic program-
ming with only adding one line of code, which is shown in
Algorithm 1. X,Y and R are initialized with a batch of fea-
ture maps Fij , and they are exactly the same. The subscript
i, j represent the index of the height and width of the feature
maps. The arrow represents the directional assignment.

In order to alleviate the influence of the distance de-
cay brought by the modulation factor, we design a set of
handcrafted convolution kernels to discover fixed patterns of
corners, providing better detection performance for densely
arranged objects with various angles. To demonstrate the
effectiveness of the proposed gradient corner pooling, we
evaluate the performance of the method on the MS-COCO
dataset and in real scenes in Section 4.

CornerNet-Saccade is regarded as a baseline in this arti-
cle, which is more efficient in training and inference than
CornerNet. GCP is also used for optimizing the attention
module in CornerNet-Saccade. GCP encodes the center
point in attention mechanism to the corner point, and we
named it corner attention. The corner attention and predic-
tion head with GCP act on the feature map generated by
backbone in a consistent manner, which can significantly
improve the recall rate by 2.1%.

The gradient corner pooling, as an alternative to the
original corner pooling algorithm in the current keypoint-
based object detection pipeline, brings about 0.8%, 1.1%,
0.5%, 0.3% average accuracy improvements on CornerNet,
CornerNet-Saccade, CenterNet, and RepPoints v2, respec-
tively. The networks show better angle adaptability on ar-
rayed objects with GCP in the actual scene test.

Our contributions are three-fold:

• We propose gradient corner pooling, an encoding method
with the spatial distance of homogeneous object features

embedded for corner localization. Our method is concise
and general, it can be applied to keypoint-based detectors
which detect corners without increasing inference time.

• We propose a fixed pattern of finding corners by combin-
ing gradient corner pooling and handcrafted convolution
kernels, which is well interpretable.

• Corner attention is proposed to keep the optimization of
attention mechanism and prediction head consistent for
the backbone. In this way, performance of the saccade
mechanism is improved.

The remainder of the article is organized as follows: in
the next section, we discuss the related object detectors us-
ing corner pooling. In Sec. 3 we describe the expression and
calculation process of gradient corner pooling. Then we ana-
lyze the roles of the handcrafted convolution kernel and cor-
ner attention. Evaluations of our methods on datasets and in
real scenarios are presented in Sec. 4. Finally, in Sec. 5, we
summarize our work and give conclusions.

Related Work
According to the different forms of proposals, object de-
tection approaches powered by deep neural networks can
be divided into two main types: anchor-based methods and
anchor-free methods. The size and shape of the rectangu-
lar representation of the object are usually pre-defined for
anchor-based methods. These anchor boxes distributed on
the feature map learn scale information from the object fea-
tures. The representative methods are Fast R-CNN (Girshick
2015), Faster R-CNN (Ren et al. 2015), SSD (Liu et al.
2016), YOLOv2 (Redmon and Farhadi 2017), Mask R-CNN
(He et al. 2017), RetinaNet (Lin et al. 2017), TridentNet
(Li et al. 2019), Grid R-CNN (Lu et al. 2019), RefineDet
(Zhang et al. 2018), Cascade R-CNN (Cai and Vasconcelos
2018), and the others in YOLO series (Bochkovskiy, Wang,
and Liao 2020; Ge et al. 2021; Wang, Bochkovskiy, and
Liao 2022). Scaled-YOLOv4 (Wang, Bochkovskiy, and Liao
2021) and EfficientDet series (Tan, Pang, and Le 2020) pro-
pose a compound scaling method that uniformly scales the
resolution, depth, and width for all backbone, feature net-
work, bounding box and class prediction networks at the
same time. A large number of anchor boxes can cover ad-
jacent or even partial occluded objects, which is one of the
reasons that anchor-based methods perform well on object
detection tasks. YOLO (Redmon et al. 2016) and FCOS
(Tian et al. 2019) are the earlier anchor-free methods, YOLO
(Redmon et al. 2016) predicts bounding box coordinates
directly from an image and is later improved in YOLOv2
(Redmon and Farhadi 2017) by switching to anchor boxes.
FCOS (Tian et al. 2019) detects all the positive points and
learns the distance from the point to the border of the bound-
ing box to predict height and width.

Detecting object as keypoints. CornerNet (Law and
Deng 2018) proposes the approach to detect an object
bounding box as a pair of keypoints, which makes the
anchor-free method directly get the bounding box from the
paired keypoints. Subsequently, Objects as Points (Zhou,
Wang, and Krahenbuhl 2019) uses keypoint estimation to
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find center points and regresses to all other object proper-
ties, such as size, 3D location, orientation. CenterNet (Duan
et al. 2019) designs cascade corner pooling and center pool-
ing to detect each object as a triplet of keypoints: two corner
points and a center point. Extreme Clicking (Papadopou-
los et al. 2017) labels the object with extreme points in
four directions instead of width and height of the bounding
box. ExtremeNet (Zhou, Zhuo, and Krahenbuhl 2019) de-
tects four extreme points (top-most, left-most, bottom-most,
right-most) and one center point of the object using a stan-
dard keypoint estimation network, and groups the five key-
points into a bounding box if they are geometrically aligned.
RepPoints (Yang et al. 2019) proposes a new finer represen-
tation of objects as a set of sample points useful for both
localization and recognition.

Keypoints prediction with corner pooling. CornerNet
proposes a novel corner pooling, which optimizes the posi-
tioning of keypoints. This method provides more candidate
boxes with high IOU and improves the network performance
by about 2.0% of average precision than the max pooling
on the MS-COCO dataset. Corner pooling aims to find the
maximum values on the boundary and encode them into the
corners. This method is widely used in keypoint-based state-
of-the-art object detection methods such as CornerNet-Lite
(Law et al. 2019), CPNDet (Duan et al. 2020), RepPoints
v2 (Chen et al. 2020), CenterNet (Duan et al. 2019), Cen-
tripetalNet (Dong et al. 2020) and CenterNet++ (Duan et al.
2022). CornerNet-Saccade designs an attention mechanism
to eliminate the need for exhaustively processing all pixels
of the image, and improves the efficiency of CornerNet by
6.0× and the AP by 1.0% on MS-COCO. By combining the
corner pooling in different directions, CenterNet and Center-
Net++ propose cascade corner pooling and center pooling.
Cascade corner pooling enables corners to extract features
from central regions of the object. As a basic encoding mod-
ule that assists corner points locating, corner pooling is very
important in the solution of object detection as multiple key-
points.

Approach
Spatial distance information is prior knowledge of feature
maps. Gradient corner pooling is an encoding method that
adds such prior knowledge in directional max pooling. We
employ gradient corner pooling to solve the possible inter-
ference problem of arrayed similar objects on the feature
map in the process of encoding information. Object features
of the same class nearby will lead to occlusion when look-
ing horizontally towards the right for the topmost bound-
ary of an object and vertically towards the bottom for the
leftmost boundary on the feature map. Objects of the same
class can be clearly distinguished on the feature map by en-
coding features and spatial distances. We propose the mod-
ulation factor α of the distance between the current point
and the pooling point to adjust the value of the corner point
pooling process according to the distance. This spatial dis-
tance encoding process requires only one line of code added
to the original corner pooling in the actual implementation
process. Then, we perform corner pattern discovery via fixed
handcrafted kernels which significantly enhance the model’s

0.70.7   

0.00.0   

1.01.0   

0.30.3   

2.02.0   

0.50.5   

Figure 2: Illustration of the gradient top pooling. This fig-
ure shows the simulated feature maps of the object array at
different modulation coefficients, which calculated by algo-
rithm 1. The objects feature after pooling is the same as the
original feature when the modulation factor α is zero. As
the modulation factor increases, the value at the point away
from the unidirectional maximum value increases.

adaptability to angles. In the end, corner attention is adopted
to ensure the consistency of features extracted by the back-
bone and prediction head, which improves the recall and ac-
curacy of the model.

Gradient Corner Pooling
A detected object is represented by a bounding box in object
detection. The bounding box is usually represented by two
points on the top-left and bottom-right. Corner pooling (Law
and Deng 2018) can re-encode the feature map to obtain ac-
curate corner positions. Gradient corner pooling is designed
to address the occlusion problem of homogeneous object
features in the encoding process of the directional max pool-
ing. The computation of top and left pooling are expressed
by the following equations:

tij =

{
max(ftij , t(i+1)j) if i < H

ftHj
otherwise

(1)

lij =

{
max(flij , li(j+1)) if j < W

fliW otherwise
(2)

In the above ftij and flij are defined as the vectors at
location (i, j) in feature map ft and fl which are the input
of top-left corner pooling. tij and lij are the outputs. H and
W represent the height and width of the feature maps. The
corner pooling layer max-pools all feature vectors between
(i, j) and (i,H) in ft to a feature vector tij , and max-pools
all feature vectors between (i, j) and (W, j) in fl to a feature
vector lij .

As Figure 2 (α′ = 0) shows, the boundary of objects fea-
ture disappeared during the max pooling in the top direc-
tion, making it hard to differentiate objects of the same class
above. The modulating factor αlog2 d is related to the spatial
distance in each direction of the corner pooling. As shown
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Figure 3: A shows calculated value of the gradient top-left pooling. B shows the pipeline of gradient top-left pooling module.
We replace the original corner pooling with gradient corner pooling and add a group of handcrafted convolution kernels after
the corner pooling to identify fixed corner patterns.

in Eq. 3 and Eq. 4, dftij , dflij represent the pixel distance
on the feature map from location (i, j) to the location of the
row or column with the maximum feature value after modu-
lation. We define the gradient top-left corner pooling as:

f(dflij ) = α
log2(dflij

+1)
(3)

f(dftij ) = α
log2(dftij

+1)
(4)

tij =

{
max(ftij , f(dftij )t(i+dftij

)j) if i < H

ftHj
otherwise

(5)

lij =

{
max(flij , f(dflij )li(j+dflij

)) if j < W

fliW otherwise
(6)

When the modulation factor α = 1, the computation
above is exactly the same as corner pooling. As α decreases,
the feature maps that pass through the gradient corner pool-
ing layer are more similar to the input features. GCP is vi-
sualized for several values of α ∈ (0, 1] in Figure 1B. The
gradient bottom-right pooling is defined in a similar way.

As shown in algorithm 1, in the code implementation, the
parallel comparison calculation is performed in blocks, so
the actual distance modulation changes with the distance of
an exponential of 2. The relationship between the fast calcu-
late modulation factorα′ andα isα′ = (1−α)

/
α, α ∈ (0, 1]

and α′ ∈ [0,+∞). The fast computation result of top direc-
tion in gradient corner pooling is shown in Figure 2. Gradi-
ent corner pooling effectively improves the detection perfor-
mance of object detection algorithms on arrayed objects of
the same class.

Object Angle and Handcrafted Convolution Kernel
Due to the presence of modulation, GCP and CP present dif-
ferent values at the corners. Objects with different angles

(a) Right oblique object (b) Left oblique object

0.70.7 Handcrafted 

Handcrafted Handcrafted 

Handcrafted Handcrafted    0.70.7   

0.00.0   0.0   0.00.0   0.0   Handcrafted Handcrafted 

Figure 4: (a) is corner recognition of handcrafted convolu-
tion kernel for right oblique objects on the simulated feature
map while (b) is for left oblique objects. GCP and hand-
crafted convolution kernels improve the performance of lo-
cating the corners of objects in different oblique directions.

on the feature map exhibit different patterns during gradient
corner pooling. In the method of objects as paired keypoints,
when the upper part of the object is close to the top-left cor-
ner and the lower part is close to the bottom-right corner,
which is regarded as the left oblique object, the corner points
are easier to be detected. On the contrary, the top-left and
bottom-right corners are not the positions where the feature
map is lighted up significantly after gradient corner pooling
when the object is right oblique. We note two approximately
fixed patterns of the top-left and bottom-right corners on the
feature map and design two handcrafted convolution kernels
to extract features of such patterns. As shown in Figure 4,
the handcrafted convolution kernels extract the keypoints at
the top-left and bottom-right corners, respectively. Gradient
corner pooling and handcrafted convolution kernels extract
the localization information of the corners while the values
on the entire feature map change non-linearly, which leads
to the loss of partial semantic information. To this end, the
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feature map branch that pass through GCP is added for ef-
fective information completion. The final GCP module with
handcrafted convolution kernels is shown in Figure 3B.

Corner Attention with Gradient Corner Pooling
CornerNet-Saccade detects objects within small regions
around possible object locations in an image. It uses the
downsized full image to predict attention maps and coarse
bounding boxes which both suggest possible object loca-
tions. CornerNet-Saccade then detects objects by examining
the regions centered at the locations in high resolution. Sac-
cade is an effective mechanism for small object detection.
However, the final prediction head pushes the backbone net-
work to learn more features about the edges while the at-
tention mechanism makes the network pay more attention to
the center point of the object. There needs to be a balance
between center point attention and prediction head for cor-
ner points. We add the GCP module to the attention branch
to encode the attention map, which ensures the corner atten-
tion and prediction head act on the backbone in the same
way. An overview of the corner attention is shown in Figure
5. For a downsized image, corner attention predicts 6 atten-
tion maps, two for small objects, two for medium objects and
two for large objects. Each two feature maps are the top-left
corner and bottom-right corner of the object, respectively.
The feature maps are obtained from the backbone network in
CornerNet-Saccade, which is an hourglass network (Newell,
Yang, and Deng 2016). The feature maps from the upsam-
pling layers in the hourglass are used to predict the attention
maps. The feature maps at finer scales are used for smaller
objects and the ones at coarser scales are for larger objects.
We predict the corner attention maps by applying a 3 × 3
Conv-ReLU module followed by GCP modules and a 1× 1
Conv-Sigmoid module to each feature map. During training,
we set the top-left and bottom-right corner of each bound-
ing box on the corresponding attention map positive and the
rest negative. During the inference, we crop the image at the
lower right position of the point in the top-left attention map
and crop at upper left based on the bottom-right attention
map. NMS is adopted to remove redundant locations. We ap-
ply the focal loss, which is the same as CornerNet-Saccade.

Experiments
We test our method on the dataset and real-world scenar-
ios respectively and conduct ablation experiments for each
module.

Dataset, Metrics and Baseline
We evaluate our method on the MS-COCO dataset (Lin
et al. 2014). We follow common practice (Lin et al. 2017)
and use the COCO trainval35k split (union of 80k images
from train and a random 35k subset of images from the 40k
image val split) for training networks such as CornerNet,
CornerNet-Saccade, CenterNet and CenterNet++. The test-
ing of networks is performed on the test-dev 2017, which has
no public labels and requires the use of the evaluation server.

Corner attention 
feature maps

Top-left corners

Bottom-right corners

Next locations

(x0, y0)

(x2, y2)

(x1, y1)

Backbone

GCP GCP GCP Prediction head
with GCP (x3, y3)

(x3, y3)
(x2, y2)
(x0, y0)
(x1, y1)
Ranking and 
picking top K 
locations

Figure 5: Illustration of corner attention module. Each
scale’s corner attention maps consist of the top-left atten-
tion map and the bottom-right attention map. In the infer-
ence process, the center (x, y) of the next location needs
to be caculated according to the scale and top-left point or
bottom-right point, respectively. Then non-maximum sup-
presion (NMS) operations are performed together to remove
redundancy.

The ablation studies and visualization experiments are per-
formed on the corresponding validation set. To evaluate the
effectiveness of GCP module, we construct a subset of ar-
rayed objects to quantitatively compare the performance of
GCP module and original corner pooling. We select the im-
ages with arrayed objects in MS-COCO val2017 to form a
subset of 1251 images. There are more than five objects of
the same class in each of these images. We also construct
an arrayed objects subset consisting of images in real sence.
These images are rotated in 5◦ intervals to verify the angu-
lar adaptability of GCP module. There are a total of 3528
images in this subset. Part of them are shown in Figure 7.

We also test GCP module on the arrayed objects subset
of the MS-COCO val2017. GCP module obtains more im-
provements on the arrayed objects subset.

Comparison with Keypoint-Based Models
As shown in Table 1, to evaluate the proposed method, we
test GCP with four state-of-the-art keypoint-based detectors,
namely CornerNet-Saccade, CenterNet, CenterNet++ and
RepPoints v2. We replace the corner pooling with the GCP
module in the network and retrain these networks with their
original initialization. The proposed gradient corner pooling
module achieves improvements. Our method achieves 0.8%
AP improvement compared to the CornerNet (Hourglass-
104) with corner pooling. Improvements of 0.3% and 1.1%
AP are achieved on RepPoints v2 and CornerNet-Saccade
with GCP module. We also report the detection results of
CenterNet and CenterNet++ using gradient corner pool-
ing, which obtain improvements of 0.5% and 0.2% with
the backbone of Hourglass-52 and ResNet-50, respectively.
A comparison of some detections is shown in Figure 6.
For all the experiments, due to limited resources, we train
CornerNet-104, CenterNet-52, CenterNet++, RepPoints v2,
CornerNet-Saccade on four GeForce RTX3090 GPUs and
follow the training details in (Law and Deng 2018; Duan
et al. 2019, 2022; Chen et al. 2020; Law et al. 2019), respec-
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Method Backbone AP AP50 AP75 APS APM APL

keypoint-based:
Objects as Points (ss) Hourglass-104 42.1 61.1 45.9 24.1 45.5 52.8
FCOS (Tian et al. 2019) ResNet-101-FPN 41.5 60.7 45.0 24.4 44.8 51.6
RepPoints (ss) (Yang et al. 2019) ResNet-101 41.0 62.9 44.3 23.6 44.1 51.7
RepPoints v2 (ss) (Chen et al. 2020) ResNet-50 (24 epoch) 44.4 63.5 47.7 26.6 47.0 54.6
CPNDet (ss) (Duan et al. 2020) DLA-34 41.7 44.9 20.2 23.9 44.1 56.4
CPNDet (ss) (Duan et al. 2020) Hourglass-104 47.0 65.0 51.0 26.5 50.2 60.7
CentripetalNet (ss) (Dong et al. 2020) Hourglass-104 45.8 63.0 49.3 25.0 48.2 58.7
CornerNet511 (ss) (Law and Deng 2018) Hourglass-52 37.8 53.7 40.1 17.0 39.0 50.5
CornerNet511 (ss) (Law and Deng 2018) Hourglass-104 40.6 56.4 43.2 19.1 42.8 54.3
CornerNet511 (ms) (Law and Deng 2018) Hourglass-104 42.2 57.8 45.2 20.7 44.8 56.6
CornerNet-Saccade (Law et al. 2019) Hourglass-54 43.2 59.1 46.5 25.0 44.7 56.7
CenterNet511 (ss) (Duan et al. 2019) Hourglass-52 41.6 59.4 44.2 22.5 43.1 54.1
CenterNet++ (ss) (Duan et al. 2022) ResNet-50 (24 epoch) 46.4 63.7 50.3 27.1 48.9 58.8
CornerNet511 (ss) w/ GCP† Hourglass-104 41.4 (+0.8) 57.3 43.8 20.9 44.1 55.6
CornerNet511 (ms) w/ GCP† Hourglass-104 42.8 (+0.6) 58.5 46.0 22.3 45.3 57.1
CornerNet-Saccade w/ GCP‡ Hourglass-54 44.3 (+1.1) 60.8 47.9 26.5 45.6 57.6
CenterNet511 w/ GCP† Hourglass-52 42.1 (+0.5) 59.6 44.8 23.4 43.6 54.5
RepPoints v2 (ss) w/ GCP† ResNet-50 (24 epoch) 44.7 (+0.3) 64.1 48.0 27.2 47.3 54.6
CenterNet++ (ss) w/ GCP† ResNet-50 (24 epoch) 46.6 (+0.2) 64.0 50.4 27.3 49.0 59.1

Table 1: Performance(%) comparison of keypoint-based methods on the MS-COCO test-dev dataset. The abbreviations are:
‘ss’ − singe-scale testing, ‘ms’ − multi-scale testing, ‘w/ GCP’ – training and inference with gradient corner pooling, † − add
handcrafted convolution kernel, ‡ − replace center attention with corner attention.

tively.
We rotate the images shot in the actual scene to observe

the sensitivity of the detector on various object angles with
the corner pooling and GCP module. As shown in Figure 7,
the results suggest that the encoding ways in GCP signifi-
cantly improve the performance of detecting arrayed objects
in the pooling process, and enhance the adaptability of the
detector for various angles.

Ablation Study
The main contribution of the GCP module is to solve the
occlusion problem of homogeneous object features through
distance encoding, which improves the performance of ar-
rayed objects detection. We further evaluate the GCP mod-
ule on the arrayed objects subset of the MS-COCO val2017.
As shown in Table 2, as the number of arrayed objects
increases, the performance of CornerNet-Saccade with the
GCP module is significantly improved. The CornerNet-
Saccade with GCP outperforms that with CP by 6.5% when
the number of arrayed objects in the same category is greater
than 15.

We conduct ablation experiments on gradient corner pool-
ing, handcrafted convolution kernel, and corner attention to
evaluate their effects. As shown in Table 3, GCP encodes lo-
cation information in homogeneous objects feature and ad-
dresses the information loss caused by directional max pool-
ing. The handcrafted convolution kernels are used as filters
to locate the corners in feature maps encoded by GCP. The
combination of two parts is a complete pooling process and
achieves the 0.7% and 0.9% improvements in AP and AR,
respectively. Corner attention enables the backbone network
to perform consistent feature learning with the prediction

Numbers w/ CP w/ GCP‡
AP AR100 AP AR100

> 5 34.3 51.1 35.5 (+1.2) 52.2 (+1.1)
> 10 32.7 47.3 34.7 (+2.0) 50.6 (+1.2)
> 15 39.5 42.0 46.0 (+6.5) 56.4 (+14.4)

Table 2: Performance(%) comparison of CornerNet-Saccade
on the arrayed objects subset of MS-COCO val2017.

Method Time AP AR100

CornerNet-Saccade-54 145ms 42.6 61.2
replace CP with GCP 145ms 42.8 61.4

+ handcrafted Conv kernel 146ms 43.3 62.1
replace attn with corner attn 179ms 44.1 64.2

Table 3: Ablation study(%) on gradient corner pooling,
handcrafted convolution kernel, and corner attention in
CornerNet-Saccade.

head, which improves the recall rate of the network. There
is a boost of 2.1% in AR100 with the corner attention mech-
anism and an improvement of 0.8% in AP .

The patches of the image that need to be cropped which
predicted by the attention mechanism are calculated in par-
allel on the GPU, the processing is efficient. In the infer-
ence process, the number of patches is dynamic and changes
with the number of objects in the scene image. The threshold
(THatt) and the maximum number of attention locations are
the hyperparameters of the attention mechanism. We mea-
sure the quality of the attention maps by average precision,
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Figure 6: The first row in this figure is the detection result of CornerNet-Saccade with corner pooling while the second row is
that with GCP module. The performance of keypoint-based detector is significantly improved with GCP for arrayed objects.

0°                                50°                                80°                                90°                                100°                                180°                                

Figure 7: This is a picture taken in the real scene and then rotated clockwise by multiple angles. The detection results of the
two rows of pictures are that the CornerNet-Saccade with the corner pooling and gradient corner pooling module, respectively.
Since the top-left and bottom-right corners are far from the object itself for right oblique objects, corner detection becomes
difficult. Identifying fixed geometric patterns by handcrafted convolution kernels fixes this problem well.

Attention AP att
30 AP att

40 AP att
50 AP AR100

Center 52.0 52.0 52.0 42.6 61.2
TL 52.8 52.8 52.8 42.8 61.2
BR 53.1 53.0 53.0 42.8 61.0

TL+BR 54.6 54.8 54.8 44.1 64.2

Table 4: Comparison(%) of center attention and corner at-
tention. The abbreviations are: ‘TL’ − top-left corners at-
tention, ‘BR’− bottom-right corners attention. The AP and
AR100 are tested at AP att

30 on MS-COCO val2017.

denoted as AP att. We set the maximum number of patches
that the attention mechanism is able to generate as 30, 40,
and 50 respectively. There is little difference among AP att

30 ,
AP att

40 and AP att
50 , indicating that the top 30 locations of

THatt = 0.3 are sufficient whether it is the center atten-
tion or the corner attention. As Table 4 shows, the AP att

of top-left corner attention and bottom-right corner atten-
tion are both slightly higher than the center attention. The

final AP and AR100 of corner attention have a better qual-
ity, suggesting that it is effective to enhance the consistency
of backbone network and prediction head learning through
GCP encoding attention.

Conclusions

We propose gradient corner pooling (GCP) module and use
it to build a corner attention mechanism. GCP encodes dis-
tance information in directional max pooling for the first
time. These contributions refine the related theory of direc-
tional pooling and reveal the potential of a general direc-
tional max pooling for keypoint-based object detection.
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