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SUMMARY

A plasticity theory is proposed in which the yield strength not only depends on an equivalent plastic strain
measure (hardening parameter), but also on the Laplacian thereof. The consistency condition now results in
a differential equation instead of an algebraic equation as in conventional plasticity. To properly solve the
set of non-linear differential equations the plastic multiplier is discretized in addition to the usual
discretization of the displacements. For appropriate boundary conditions this formulation can also be
derived from a variational principle. Accordingly, the theory is complete.

The addition of gradient terms becomes significant when modelling strain-softening solids. Classical
models then result in loss of ellipticity of the governing set of partial differential equations. The addition of
the gradient terms preserves ellipticity after the strain-softening regime has been entered. As a result,
pathological mesh dependence as obtained in finite element computations with conventional continuum
models is no longer encountered. This is demonstrated by some numerical simulations.

INTRODUCTION

Classical continuum models, i.e. continuum models that do not incorporate an internal length
scale, suffer from pathological mesh dependence when strain-softening models are employed in
numerical analyses. The underlying reason is that in this case the critical condition for localiza-
tion coincides with the condition for loss of ellipticity of the governing differential equations.
Consequently, the standard continuum theories commonly adopted to model localization leave
the size of the localization zone unspecified.! ¢

In contrast to conventional theories, higher-order continuum theories do not necessarily suffer
from loss of ellipticity of the field equations when a strain-localization zone develops and are
therefore able to provide meaningful numerical solutions of boundary-value problems involving
strain softening and localization. In the past, various higher-order plasticity models have been
suggested to model pattern formation and to regularize the governing field equations. Recent
research suggests that especially the eighty-year-old Cosserat” ™ !9 theory and gradient plasticity
theories'! ~*3 are well suited to achieve this objective. ‘

While theoretically sound in the sense that these higher-order continuum theories result in a
well-posed set of partial differential equations, the difficulties involved in producing solutions for
these models seem almost insurmountable. This is true not only for analytical solutions, but also
for numerical solutions, since established algorithms in computational plasticity cannot normally
be transferred easily to higher-order plasticity models.
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An exception is the Cosserat continuum. In this continuum model rotational degrees-of-
freedom are added to the conventional translational degrees-of-freedom. Additional strain
quantities (namely independent relative rotations and micro-curvatures) and additional stress
quantities (couple-stresses) enter the continuum description as a result of this enhancement. It
appears that the theory can be organized such that the classical format of computational
plasticity can be recovered, enabling a straightforward use of the by now established concepts of
return mapping and consistent tangent operators.'®~!° Use of this model yields efficient and fully
mesh-independent solutions for static problems’:%:1% as well as for dynamic problems.?%2!

A problem with the Cosserat continuum, however, is that the rotational degrees-of-freedom are
activated only under shear loadings. In pure (mode-I) tension rotational degrees-of-freedom do
not become active, the micro-curvatures remain zero and accordingly also the couple-stresses.
Although pure mode-I problems are of academic rather than of practical interest, and although
all external actions on a structure generally result in a combination of mode-I (tension) and mode-
II (shear) behaviour, numgrical experiments suggest that, when decohesion is the predominant
failure mode rather than frictional slip, the Cosserat effect is generally too weak to preserve
ellipticity of the boundary-value problem. For this reason other possible enhancements of the
conventional continuum should be investigated.

In the present contribution we shall utilize one such class of models, namely the gradient
approach in which spatial derivatives of the inelastic state variables enter the constitutive
description of the solid apart from the inelastic state variables themselves. Such models have been
considered actively by others,’2 !5 but a general methodology to incorporate such dependencies
in a proper numerical strategy has not been presented hitherto. Previous numerical results were
confined to one-dimensional applications!-?13:15 and the algorithms used to solve the bound-
ary-value problems cannot readily be extended to more dimensions. In this article we shall
propose and use such a general methodology in a finite element context. In this approach the
notion is abandoned that, within the setting of a displacement-based finite element approach, the
constitutive equations and the kinematic relations can be enforced in a strong sense, and that only
equilibrium has to be satisfied in a weak sense. Instead, the key idea is introduced that the part of
the constitutive equations that governs the evolution of the inelastic state variables is also
satisfied only in a weak sense. For the case of a plasticity theory, as will be elaborated in this
paper, this proposal implies that the yield condition is satisfied in a distributed sense, rather than
pointwise. While in a conventional continuum little advantage seems to be gained, it seems a most
natural approach when gradient or non-focal continuum models are considered. In fact, the
conclusion that in a non-local continuum the consistency condition can no longer be satisfied in a
pointwise fashion was reached before, amongst others, by Simo.??

The paper is organized as follows. First the governing differential equations of an elasto-plastic
continuum are derived in which the yield function not only depends on the stress tensor and a
scalar-valued hardening parameter, but also on the Laplacian of the latter quantity. By resorting
to the variational principle for gradient plasticity recently proposed by Miihlhaus and Aifantis,'*
it is shown that the theory is complete, including a proper formulation of the appropriate
boundary conditions. It is also argued that, because of the dependence of the yield strength on the
spatial gradients of the equivalent plastic strain measure, higher-order continuity requirements
are imposed on the discretization of the plastic multiplier. Next a consistent treatment of the
governing equations for finite increments of stress and strain is laid out. Finally the example of a
bar loaded in uniaxial tension is considered. Analytical as well as numerical results are presented.
The numerical results converge towards the analytical solution, both with respect to the
load—displacement curve as well as with respect to the analytically predicted width of the
localization zone.
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FORMULATION OF A GRADIENT-DEPENDENT PLASTICITY MODEL

We consider the following set of equations;

L6 =0 1)
6=D[t—/n], 120 ‘ ©)
f(o,x, V) =0 | (3)
&¢=Lu @

which define the elasto-plastic rate problem during continued yielding, In the equilibrium
equation (1) o is a vector that contains the stress components (., Oyys Oazs Oxys Oyzy O). The
differential operator matrix L is then defined as

6.
o 0 0
a.
0 ;9; 0
a.
L 0 o % .
oo ©
dy 0x
o 0
0 J
o0 =
_52 6x_

and the superscript T is the transpose symbol. Under the assumption of small displacement
gradients (which is made solely not to complicate the mathematical expressions unnecessarily) the
operator matrix L can also be used to relate the strain components as assembled in the vector
€ = (Bxxs Eyp» B2z» Vxp» Vya» Vzx) 1O the displacement vector w = (u,, u,, u,) in equation (4). As in
classical plasticity, stress and the elastic strain £€° = § — An are related through the elastic rigidity
matrix D. The superimposed dots in equation (2) denote differentiation with respect to time. 1is a
non-negative scalar-valued quantity which is a measure of the plastic flow intensity and n is the
gradient to the yield surface as defined in (3):

of

= (6)

The salient feature of the plasticity theory which we shall consider in this article is the
functional dependence of the yield function on the Laplacian of the hardening parameter x in
addition to the usual dependence of f on « itself. The main departure from standard piasticity
theory comes from the introduction of higher-order spatial gradients of the equivalent plastic
strain in the yield criterion (3). Note that in the case of isotropy there must be even powers of the
Laplacian. The only way to introduce the gradient of x itself (in an isotropic medium) would be in
a non-linear format, e.g. through /(Vk)"Vi. Formally the introduction of higher-order spatial
gradients corresponds to a singular perturbation of the original yield criterion. The perturbation
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terms are either thought to enrich the solution of the boundary-value problem by adding short-
wavelength terms (if second- and fourth-order gradients are included), or are to stabilize the
solution at a certain wavelength, set by the intrinsic length scale (second gradient only). The
short-wavelength part may be periodic or of the boundary layer type, depending on the type of
perturbation terms. Physically, the gradient terms imply or reflect the fact that below a certain
size scale interaction between the microstructural carriers of the deformation is non-local. For a
detailed discussion of non-local effects the reader is referred to the review paper by Kubin and
Lépinoux.?® A particularly convincing example of non-local hardening models, based on the
interaction of a Frank-Read source with dipolar dislocation arrangements, can be found in the
papers by Kratochvil,2#2° whose work was again inspired by the reaction diffusion approach
when modelling interactions between mobile and immobile dislocation species by Walgraef and
Aifantis.?® Furthermore, there is a non-local interaction between neighbouring slip planes by
double cross-slip,2”?® and in the context of granular materials the introduction of higher-order
gradient terms has been motivated in Reference 10.

The dependence of the yield function on spatial gradients of an invariant measure of the plastic
strain has a major impact when elaborating the condition that, during plastic flow, the stress
point must remain on the yield surface:

f(o, x, VZk) =0 0

which is commonly referred to as Prager’s consistency condition. Taking into account the above
dependencies equation (7) can be reworked to give

af of
T i)
n G+6KK+5V2K

Vi =0 ®)

Next the hardening modulus 4 is defined as in classical, gradient-independent plasticity:

1of
= ia" ®)
so that the usual hardening diagram can be used. When the notation
of
- {
€= vk (10
is adopted, equation (8) can be rewritten as
nT6 — hi+ V3 =0 (11)

In the following we assume ¢ to be a constant for simplicity.
A further assumption that will be made at this point is that a relationship can be established
between A and & of the form

k= ol (12)
with a a constant. This obviously limits the applicability of the theory somewhat. Nevertheless,

large classes of hardening hypotheses and yield functions actually do result in a relationship as
laid down in equation (12). For instance, for the von Mises yield function

f=./3J, — &(x, V2k) (13)
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with J, the second invariant of the deviatoric stress tensor and & the yield strength, and either the

strain-hardening hypothesis
k= \/HER)TE (14)

or the work-hardening hypothesis
K =oTgP (15)

we obtain a = 1. Similar results can be obtained for the Tresca yield function and the pressure-
dependent Mohr-Coulomb and Drucker-Prager yield functions, provided that the softening
mechanism is assumed to affect the cohesion and not the amount of friction that can be mobilized.
It is thus believed that the above assumption does not significantly narrow the realm of
application, while, if necessary, the theory can be extended to cases that o is not a constant.
However, more complicated expressions than

n"¢ —hi+cVii=0 ‘ (16)

which is obtained upon substitution of equation (12) in equation (11) and use of ¢ = «7, then
ensue.

We observe that, unlike conventional plasticity, the consistency condition results in a partial
differential equation (16). This has the far-reaching consequence that an explicit expression for /
cannot be obtained at a local (integration point) level,

WEAK FORM OF THE FIELD EQUATIONS
While equations (1) and (16) describe incremental equilibrium and the evolution of the elasto-
plastic process in a strong sense, a weak form of these rate equations is obtained by setting

j SaT[LT¢]dV =0 (17)
14

and
J 8A[nT6 — hi +cV2A]dV =0 (18)
14

with the d-symbol denoting the variation of a quantity. With aid of the divergence theorem
equation (17) can be transformed as

J 6éT6dV—J suTtdS =0 (19)
14 S

with t the rate of the tractions at the stress boundary. Substitution of the relationship between
stress rate and the elastic part of the total strain rate, equation (2), in equations (18) and (19)
subsequently leads to

J 8™TD(& — In)dV — f saTids =0 (20)
14 S

and
f 8A[n"D¢ — (h +n"Dn)i + cV2i]dV =0 1)
14
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It is emphasized that, in contrast to the conventional approach in computational plasticity, the
plastic multiplier / is taken as an independent variable. While this approach is, in principle, also
possible in gradient-independent plasticity it does not seem to entail major advantages when
compared with the return-mapping algorithms.!® 18 For gradient plasticity, i.e. when ¢ 5 0 in
equation (21), however, the discretization of A seems natural and automatically gives satisfaction
of the consistency condition in a distributed sense, cf. Simo.??

We now proceed in the usual manner, namely by discretizing the continuous displacement field
u as

u = Ha (22)

with H a matrix that contains the interpolation polynomials and a the nodal displacement vector.
Combining equations (4) and (22) and introducing the matrix

B=LH (23)
the following relation between strain and nodal displacements is obtained:
g=Ba (24)

In a similar fashion the plastic multiplier 4 can be discretized:
A=hTA (25)

and, since the Laplacian operator of { must also be computed, the differential operator vector p is
introduced:

V2i=pTA (26)
Ifhy, ..., h,are the shape functions for the interpolation of the plastic multiplier, p is defined by
p=[V3h,...,V?R,]" (27

Generally, the vector h will not contain the same interpolation polynomials as H. While the
interpolation of the displacement degrees-of-freedom requires only C°-continuity, the fact that
second derivatives of 1 enter the weak form of the consistency condition makes it necessary to
select C'-continuous shape functions for the interpolation of 4. For instance, for the one-
dimensional examples that will be treated in a subsequent section, a Hermitian interpolation is
employed for 1 and linear interpolation is used for u,, quite similar to beam-column elements
where the interpolation of the transverse displacements is usually also achieved through Hermi-
tian shape functions and the axial displacements are interpolated linearly.
Next we substitute equations (22), (24) and (25) in equation (20). The result is

5aT f [B"DBa — B"Dnh™A]dV — 55Tj H'tdS =0 (28)
14

S

Since this identity must hold for any admissible d4 the following set of algebraic equations ensues:

j [B"DBa — B'DnhTA]dV = J HTidS (29)
| 4

N

A similar operation on equation (21) results in

5ATJ [ — bn™DBa + (h + n"Dn)bhTA — chpTATdV = 0 (30)
14
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and, by requiring that equation (30) must hold for all admissible SA, subsequently in
J [ —hn™DBa + (h + n"Dn)hhTA — chp"A]dV = 0 (31)
v ‘

Equations (29) and (31) can be written in a compact fashion as

Kaa Ka). a - fé
Pl S o

where
K, = j B"DBdV 33)
14
K, = —f B™Dnh7dV (34)
|4
K;, = j [(k + n"Dn)hh™ — chpT]dV (35)
v
and the external force vector
f,= J HTidS (36)
S

Evidently the tangent stiffness matrix as defined in equations (32)—(35) is non~-symmetric. This is
solely due to the fact that gradient terms have entered the constitutive relationship. If ¢ = 0 in
equation (35) the non-symmetry disappears. We retrieve a symmetric operator as one would
expect in classical plasticity with an associated flow rule (6).

For the pure rate problem as considered in this section the non-symmetric tangent operator
defined in equations (32)—(35) can be symmetrized. However, when we consider finite loading
steps, this is not possible and symmetrization of equation (35) therefore does not seem to offer
much practical advantage. The main significance is that the present formulation, which sets out
from a weak formulation of the evolution equation for the inelastic state variables, can be shown
to be identical to the formulation that arises upon application of the variational principle for
gradient plasticity, recently proposed by Miihlhaus and Aifantis!! (for a brief summary the reader
is referred to the Appendix). The other advantage is that the role of the additional boundary
condition on 1 is elucidated. For this discussion it is sufficient to consider only the last term of
equation (35), or, more conveniently, equation (18). Application of Green’s theorem to this term
yields

f ¢dIV2idV = — J (VoA (VIYdV + j ¢8A(VA)™n,dS, (37

v 14 S,

with n, the outward normal at the elastic—plastic boundary S;. From equation (37) it follows that

the condition on 1 at the boundary of the plastically deforming part of the body must either be
8i=0 or (Vi)'m, =0 (38)

Equation (38.1) is automatically satisfied at each point of the (internal) elastic—~plastic boundary in
the interior of the body. When the spread of the plastic zone extends to an external boundary of
the body either of conditions (38) may be imposed.
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With equation (37) and assuming that the appropriate boundary conditions are satisfied K ;
can be written as

K, = f [(h + n"Dn)hh" + cqq"]dV (39)
14

where
q=[Vhy,...,Vh,]" (40)

Comparing equation (32) containing K, K,; and K,; as defined by equations (33), (34) and (39)
with the tangent stiffness operator that follows from the variational principle of Miihlhaus and
Aifantis,!! shows that both formulations yield the same result for infinitesimally small load
increments. When finitely sized loading steps are used this is no longer the case and the non-
symmetric definition of equation (35) must be utilized to obtain proper convergence character-
istics in an incremental-iterative procedure.

ALGORITHMIC ASPECTS

In order to devise a proper algorithm that enforces equilibrium and satisfaction of the yield
function, albeit both in a distributed sense, at the end of every loading step, we set out to achieve
that, at iteration j + 1 of the current loading step, we have

LTGJ"_'.I = 0 (41)
and
f(o-j+11Kj+1,V2Kj+1)=0 (42)

In the same way as in the preceding section we shall formulate the weak form of equations (41)
and (42) as follows:

L SuT[L%6;,]dV =0 43)
or, invoking the divergence theorem,
L 6&Ta;,, dV — L saTt;, dS =0 (44)
and
Laif(am,xJ.H,VZx,.“)dV:o (45)

To arrive at a proper incremental-iterative procedure the stress at iteration j + 1 is decomposed
into the stress at iteration j and the stress increment

so that equation (44) changes into
J S¢TdedV = J du't;,, ds — f 0tTe;dV (47)
| 4 S v
Next, the yield function f is developed in a Taylor series that is truncated after the linear terms;

f(6;,,, V2ic,)) + nT do — hd + cV2(d2) =0 (48)

PR
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where n; = n(s;) and
dd= A, — 4 (49)

and where it has been assumed that, in a spirit similar to that of the preceding section, dx = ad4.
With equation (48), equation (45) is modified to

j §A[nTde — hdA + cV3(dA)]dV = — J 841 (e}, x5, V2k;) AV (50)
v v

Substitution of the relationship between the stress increment and the elastic part of the strain
increment, '

do = D(de — din;) (51)
in equations (47) and (50), then leads to

S

J 3%T(Dds — dADn)dV = J SuTt, , dS — J 7o, dV (52)
14 14

and
J 54[n"Dde — (h + n™Dn)dA + cV?(dA)]dV = — J 811 (65 1, Vik,))dV (53)
14 |4

Upon substitution of the analogue of equations (24) and (25) for finite increments in equations (52)
and (53) we obtain

547 | [BTDBda — B"Dnh"dA]dV = 6a" | H™t,,,dS — 64T | BTe,dV (54)
v s J J

4

and
5ATJ [ — bn"DBda + (h + n"Dn)hhTdA — chpTdA]dV = 5ATJ flo;,x;, Vikj)hdV  (55)
v 14

Since these identities must hold for any admissible 64 and SA the following sets of algebraic
equations ensue:

L [B"DBda — BTDnh"dA]dV = L H™t;,, dS — L BTe,dV (56)
and
j [ — hn™DBda + (h + n"Dn)hh"dA — chp"dA]dV = Jyf(cj’ k;, Vi) hdV  (57)
v
Equations (56) and (57) can be written in a compact fashion as
e wella)- e 6
where K,,, K,, and K, are defined in (33)-(35). f, and f, are defined by

(- — f BTo,dV (59)
Vv
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and

f,= f flo;, k5, V2c)hdV (60)
4

The algorithm as described in the preceding equations is summarized in Box 1. Noteworthy is
that the condition f(o; + Dde) > — ¢ is used to determine whether a point is in a plastic state. If
this condition is not fulfilled elastic behaviour is assumed and an artificial hardening modulus
h = E* is substituted in the next iteration to form the tangent operator in that particular
integration point.

Instead of penalizing the hardening modulus by assigning it an artificially high value, degrees-
of-freedom that correspond to the interpolation of 4 can be omitted from the set of equations.
This has two-4mportant drawbacks. Firstly, there is the issue of a constantly changing number of
degrees-of-freedom, as even between two consecutive iterations points may change from an elastic
state to a plastic state and vice versa. This is usually highly inconvenient when adapting existing

Box 1. Summary of algorithm for gradient von Mises plasticity

1. Compute K., K., K;;, f, and f; according to equations (33)—(36), (59) and (60)
2. Solve for da and dA according to equation (58)

For each integration point:

3. Compute: de = Bda
di =hTdA
VZ(dA) = pTdA
4. Update: Ajpr = 4;+dA
V2241 = V24, + V2(d4)
5. Compute trial stress: Gy = 6; + Dde

6. If f(Oupiarr Ay 1 ViAj01) = — 8
then: Gjy1 = Oy — dADN;
compute h for next iteration
else: 611 = Guin
set h = E* for next iteration
7. Check f(6;41,4j41, VEAj41) 2> — &
If this condition is violated, compute R such that
S (O — RAADN, A1, VA5, 2 — ¢
Aj+1=4;+ RdA
V24,4, = V21; + RV2(dA)

8. Check global convergence criterion. If not converged, go to 1
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finite element codes. Secondly, the extent of the plastic region is monitored at the Gauss points,
which do not coincide with the nodes. It is not straightforward to determine which nodal degrees-
of-freedom for the interpolation of 4 must be made active and inactive, tespectively, when the
plasticity status in one or more integration points of an element changes.

Finally, it is emphasized again that the current formulation does not satisfy the yield condition
f=0 in a pointwise fashion, but merely in a distributed sense. Moreover, the latter condition,
namely jéi (o, x, V2x)dV = 0, is not satisfied at each iteration, but only at the end of a loading
step. This is because / is taken as an independent variable and is included in the solution process
at global, structural level. For gradient plasticity this is inevitable. For local plasticity formula-
tions the by now established return-mapping algorithms are probably as good as the current
formulation, while being simpler in the sense that they do not carry the overhead of including 1 as
an independent variable at global level. Nevertheless, for gradient-independent plasticity the
proposed procedure can be related to return-mapping approaches in the sense that for homogen-
eous stress states the algorithm reduces to the Tangent Cutting Plane algorithm proposed by
Ortiz and Simo.!”

EXAMPLE

Problem statement

The model problem that we shall consider to test our solution strategy for gradient plasticity is
depicted in Figure 1. It is a one-dimensional bar of length L that is loaded in pure tension. In the
elastic regime Young’s modulus E governs the relation between stress and strain: ¢ = Ee. When
the maximum tensile strength o, is attained softening occurs according to the linear diagram of
Figure 2. For this situation a second-order gradient plasticity theory can be summarized by the
set of equations

2.p
f=o- a(sv, s ) (61
and
2,p
6=a‘+h8”—c%——:2— (62)
Yy
o.__ ! o
=l e 1=
1 L ]

Figure 1. Bar with length L subjected to an axial stress o

Ot

€ eP

Figure 2. Linear softening diagram for local action in gradient plasticity
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with &P the plastic strain. For the linear softening diagram h will have a negative, constant value,
Note that the restriction that 4 is a constant implies that the solution that will be derived below
ceases to be valid if e® exceeds the strain g, = — h™ 0, at which the stress due to the local effect
has come down to zero (Figure 2). Also c is assumed to have a constant value, although the
numerical simulations to be presented in the following suggest that this is probably not a very
appropriate choice. Finally, the boundary condition

& =0 (63)

is imposed at the elastic-plastic boundary.

Analytical solution
From equation (62) we can derive that the solution for &® has the form
e = Acos(x/l) + h~*(6 — a,) (64)
with A an integration constant, and

4
I= -1 (65)

For softening h < 0, so that ¢ must be positive in order that equations (64) and (65) make sense.
For the general case of a three-dimensional continuum this observation was also made by
Miihlhaus and Aifantis.*! Furthermore, I has the dimension of length. Accordingly, an internal
length scale is present in our continuum model.

Differentiation of equation (64) with respect to the time gives for the plastic strain rate

62 = Acos(x/l) + h~ ‘6 (66)

where equation (61) and the fact that f= 0 during continued plastic flow have been utilized.
Suppose that the plastic zone has a width w. Application of the boundary condition (63) at
x = w/2 (elastic—plastic boundary) then results in

o _ g _ cos(x/l)
=y [1 cosw/l) (67)
Addition of the elastic strain rate é° = ¢/E results in
, 6 @ cos(x/l)
“=ETh [1 - cos(w/(ZI))] (68)
so that the velocity at the elastic-plastic boundary (x = w/2) is given by
éw & ["? cos(x/l)
i = e — l—————|d 69
wwf2) = 5p +5 L [ cosowi2l)) | <~ (69

Integration of equation (69) and addition of the velocity in the elastic part of the bar (from
x = w/2 to x = L/2) results in the following expression for the velocity at the right end of the bar:

SER) _ Ly L tw — tanGwi2i)] (70
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We are now interested in the aperiodic solution that results in the steepest descending branch, i.e.
the most critical equilibrium path. This solution is obtained by requiring that

dL) _

71
d(w/2) 7n
Imposing this requirement results in

cos?(w/(21)) =1 (72)

The smallest non-trivial argument that satisfies equation (72) is x, so that

4

- i 73
w=2% W (73)

which, for a steady-state solution, establishes a relation between the width of the localizétion zone
w and the model parameters h and c.
Substitution of equation (73) in equation (70) now results in the following expression for the
relation between the velocity of the right end of the bar and the stress rate:
u(L/2 L w
(L/2) +

¢ 2E ' 2h

The relation between the difference in velocities of both ends of the bar, Au = a(L/2) — u( — L/2),
and the stress rate then becomes

(74)

Ad_L w

el + A (75)
The above analytical solution shows, firstly, that the width of the localization zone is fully
determined by the model parameters k and c, and secondly, that the length of the bar, L, enters the
expression for the slope of the stress—displacement curve. The latter property implies that a size
effect is incorporated in the model. Indeed, if L is made larger the ratio Au/d becomes smaller, so
that a more brittle post-peak behaviour is predicted. For L > — wE/h we even obtain snap-back
behaviour.

Numerical results

As an example a bar with a length L = 100 mm is taken. A Young’s modulus E = 20000
N/mm? is used for the entire bar, The initial tensile strength is g, = 2 N/mm? except for the
elements which are between x = 45 and x = 55 mm. For these elements the initial tensile strength
has been reduced by 10 per cent. After reaching the peak strength a softening modulus h =
— 0-1E is used for all elements, including the weakened elements. When the ultimate tensile strain
g, = 1073 (Figure 2) has been reached at which the residual load-carrying capacity has been
reduced to zero the stress due to local softening is kept at that value, so that the softening
modulus also becomes zero.

The reference solution has been carried out for a value of the internal length parameter of

= 5 mm. The numerical solutions show that upon mesh refinement the width of the localization
zone and the strain profile over this zone rapidly converge towards a unique value. This is shown
in Figures 3 and 4, in which the plastic and the total strain distributions along the axis of the bar
have been plotted for Au = 0-02 mm. While the strain profiles of the solution for 20 elements still
deviate somewhat, the solutions for 40, 80 and 160 elements are very similar. For these
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Figure 3. Plastic strain distribution along the axis of a tension bar with an imperfection at the centre for different
discretizations (I/L = 0:05 and Au = 0-02)
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Figure 4. Total strain distribution along the axis of a tension bar with an imperfection at the centre for different
discretizations (I/L = 0-05 and Au = 0:02)
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Figure 5. Axial stress vs difference in axial displacements of both ends of a tension bar with an imperfection at the centre
(/L = 0-05)
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discretizations the cosine distribution for the plastic strains that is predicted by the analytical
solution also comes out nicely.

Figure 5 shows the convergence of the load-displacement curves. Again the solution for 20
elements is still slightly stiff, but the solutions for the discretizations with 40, 80 and 160 elements
agree well, not only mutually, but also with the analytical solution. For the present geometry and
set of material parameters (I = 5 mm) equation (75) gives

Ai/L 1 .
=g (76)

Especially the results for the meshes with 80 and 160 elements match the analytical solution
perfectly.

All numerical solutions correspond to perfectly converged equilibrium states (force norm
107 ¢). When the steady-state solution has developed the problem is linear until the strain ¢, is
reached in the centre of the bar. Indeed, in this part of the localization process only one iteration
with a tangent operator is needed to achieve equilibrium.

For the mesh with 160 elements the problem has also been analysed for [ = 2:5 and [ = 10 mm.
The load-displacement curves are given in Figure 6. It is interesting to observe that for a residual
stress level ¢ ~ IN/mm? the load-displacement curves for I = 25 and | = 5 mm show a rather
sharp cusp. At this point the centre two integration points exit from the softening part of the local
stress—strain diagram. All residual load-carrying capacity in these integration points is then due
to the gradient effect. The zone in which all load-carrying capacity is due to the gradient effect
gradually grows from this point onwards until a new steady-state situation is attained where the
residual stress level becomes constant. Indeed, when ¢ is rigorously assigned a constant value and
if h is set equal to zero, equation (75) predicts that ¢ — 0 and the stress—displacement curve
converges towards a horizontal asymptote. To avoid that even in pure tension a steady-state
solution is reached at a non-zero residual stress level, ¢ would have to be made a function of
K: ¢ = c(k).

Figures 7 illustrate the gradual growth of the localization zone for a division of the bar into 160
elements. For I = 2'5, 1 = 5 and | = 10 mm the plastic strain distribution has been plotted for
Au = 0-01, 0:0125, 0-015 and 0-02 mm respectively. In Figure 7(c) the plastic strain distribution is
also shown for Au = 0-03 mm (/L = 0-1). The numerical solutions show that, starting from the
initial imperfect elements, a localization zone grows gradually until the analytically predicted
widths are reached.

2
2 o [N/mm*]
1/L=0.1
1.5
1/L=0.05
1 4
1/L=0.025
0.5
0 :
0.005 0.b1" 0.015 0.02 0.025 0.03

Au [mm]

Figure 6. Axial stress vs difference in axial displacements of both ends of a-tension bar with an imperfection at the centre
for different ratios of I/L (all results are for 160 elements)
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CONCLUDING REMARKS

A plasticity theory has been proposed that includes a dependence upon the second gradient of an
invariant measure of the inelastic strain. The model thus obtained has the favourable property
that the governing set of partial differential equations remains elliptic after the onset
of localization. This ensures that meaningful solutions are obtained both analytically and
numerically. For the simple boundary value of a bar loaded in uniaxial tension this has been

demonstrated rigorously.
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Figure 7. Evolution of the plastic strain distribution along the axis of a tension bar with an imperfection at the centre: (a)
I/L = 0-025; (b) I/L = 0-05; (c) /L = 0-1
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The major novel aspect of the present study is that the inelastic variables (in the present case:
the plastic multiplier) are considered as independent variables. Hence, these variables are
interpolated separately from the displacements. While not much seems to be gained in conven-
tional plasticity it is a very natural approach for gradient or non-local plasticity and ensures
satisfaction of the consistency and yield conditions in a distributed sense.?

For appropriate boundary conditions the pure rate problem can also be derived from a
variational principle.*! This explicit consideration of the boundary conditions ensures that the
theory is complete.

The present gradient plasticity theory can be used for degrading materials in which the
prevailing failure mechanism is frictional slip and for materials in which decohesion plays a
predominant role. For the latter category of materials the present approach seems better suited
than the Cosserat continuum model, which has proved very approprlate to analyse materials in
which frictional slip plays an important role, e.g. sand.®~1°

A disadvantage of the gradient model is the smoothness requirement on the interpolation of the
inelastic state variable. For instance, the second-order gradient plasticity theory as used here
necessitates C*-continuity of the interpolation functions for the plastic multiplier 1.
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APPENDIX
We consider the following functional:!!
. 1 s
Fli,4) = J [(s — in)™D(& — An) + hi? + c(VA)T(VA)]dV — J aTids (77)
14 S

subject to the constraint 4 > 0. In equation (77) all symbols have the same meaning as in the body
of the paper. Substitution of the strain-nodal displacement relation (24), the interpolations (22)
and (25), and equation (40) results in

F(a,A) = % L [(Ba — nh™A)"D(Ba — nh™A) + h(hTA)? + c(qTA)2]dV — f aTH™tdS (78)

N

Differentiation with respect to 4 and A respectively yields

= J [B"DBa — B'DnhTA]dV — f HTtds (79)
14 S
oF T : | T TA T A
A [—hn"DBa + (h +n"Dn)hh"A + cqq"A]dV ~ (80)
v
Stationarity requires that
6F oF

which precisely gives equation (32) with K, K,;, K, and f, as defined through equations (33)
(34), (39) and (36).
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It now remains to show that equation (77) indeed corresponds to the Euler equations
L™D( — in)=0 (82)
nDTs — (h + n"™Dn)i 4+ ¢V2I=0 _ (83)

cf. equations (1), (2) and (16). To this end we first require that F be stationary with respect to (4, A):
6F = 0. This yields

J [(68 — 8/n)"D(& — An) + hIoA + c(VAY'(VSL)1dV — J sa'tdS =0 (84)
v S
With aid of the divergence theorem we obtain
f — Sa[L™D(& — in)1dV + f sa(En, — t)dS (85)
14 S
+ j — 8i[n™Dé — (h +n"Dn)d + cV2A1dV + J ¢8A(V1)n,dS, =0 (86)
v S;

I being the stress tensor in matrix form, and n, and n,; denoting the outward normal to the body
and the plastic part thereof, respectively. S and S, are the boundaries of the body and its plastified
part, respectively. From equations (85) and (86) we can identify the Euler equations (82) and (83),
the normal boundary conditions

Si=0 or In=t 87

and the non-standard boundary conditions (38).
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