
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Gradient Descent Effects on Differential
Neural Architecture Search: A Survey

SANTANU SANTRA1, JUN-WEI HSIEH 2, AND CHI-FANG LIN 3.
1
Department of Computer Science and Engineering Yuan Ze University, Taiwan (e-mail: santrasantanu@gmail.com)

2
College of Artificial Intelligence and Green Energy, National Chiao Tung University, Taiwan (e-mail: jwhsieh@nctu.edu.tw)

3
Department of Computer Science and Engineering Yuan Ze University, Taiwan (e-mail: cscflin@saturn.yzu.edu.tw)

Corresponding author: Jun-Wei Hsieh (e-mail: jwhsieh@nctu.edu.tw).

ABSTRACT Gradient Descent, an effective way to search for the local minimum of a function, can

minimize training and validation loss of neural architectures and also be incited in an appropriate order

to decrease the searching cost of neural architecture search. In recent trends, the neural architecture search

(NAS) is enormously used to construct an automatic architecture for a specific task. Mostly well-performed

neural architecture search methods have adopted reinforcement learning, evolutionary algorithms, or

gradient descent algorithms to find the best-performing candidate architecture. Among these methods,

gradient descent-based architecture search approaches outperform all other methods in terms of efficiency,

simplicity, computational cost, and validation error. In view of this, an in-depth survey is necessary to cover

the usefulness of gradient descent method and how this can benefit neural architecture search. We begin our

survey with basic concepts of neural architecture search, gradient descent, and their unique properties. Our

survey then delves into the impact of gradient descent method on NAS and explores the effect of gradient

descent in the search process to generate the candidate architecture. At the same time, our survey reviews

mostly used gradient-based search approaches in NAS. Finally, we provide the current research challenges

and open problems in the NAS-based approaches, which need to be addressed in future research.

INDEX TERMS Gradient descent, Neural architecture search, reinforcement learning, evolutionary

algorithm, Back-propagation.

I. INTRODUCTION

A
UTOMATIC machine learning (AutoML) has become

a favorable solution for developing deep learning (DL)

systems without any human efforts. An AutoML system

consists of data preprocessing, feature generation, network

model generation, and performance evaluation. Although an

AutoML system consists of several stages, the most critical

stages are model generation and performance estimation. The

model generation stage is either created by machine learning

experts or by an automatic design process. The automated

architecture design process is known as neural architecture

search (NAS). The rapid development and demand of NAS

continue to overwhelm the human experts designing archi-

tectures in many applications.

Constructing an automatic architecture with different net-

work topologies is first explored in [1]. The pioneering

frameworks developed in [2] and [3] have attracted much at-

tention, which bring many exciting ideas for NAS with high-

performance outputs. Unfortunately, most NAS approaches

require many GPU days and memory, which make the NAS

approaches fatally hindered. Hence, advanced approaches

that ensure low memory, low computing resources, and

power requirements over neural architecture search are oblig-

atory.

Apart from satisfying low memory and computing re-

sources requirements of searching processes, NAS ap-

proaches must include some features, such as scalability,

efficiency, reliability, and flexibility. Candidate architecture

searches in NAS can be performed by reinforcement learning

(RL), evolutionary algorithm (EA), gradient-based (GB), or

random search (RS) approaches. At present, the gradient-

based NAS approach [4, 5, 6, 7, 8] is considered one of the

better candidates for architecture search strategies. Gradient

descent has the ability to search for better architectures with

a local (or preferably global) minimum to satisfy the require-

ments, including low memory and computational loading. It

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. Comparative study of different survey papers. Xand × are used to

indicated the covered topic or not covered, respectively.

Works Context
of NAS

Search
Space

Search
Strategy

Evaluation
Strategy

Challenges
and solutions

[9] X X X X x

[13] X X X X x

[10] X x X x x

[11] X X X X X

[14] X x x x X

[15] X X X X X

is often adopted in back-propagation to repeatedly update

weight parameters, architecture parameters or both to min-

imize expected functional loss. Usually, NAS method can

be divided into three sequential stages: search space con-

struction, architecture search, and performance evaluation.

The search space construction stage explores a large set of

possible network architectures that can match or outperform

expert-designed architectures. The architecture search stage

explores possible searching techniques to identify the better

(or best) architecture from search space. The last stage, i.e.,

performance evaluation calculates predictive performance on

some collected datasets. NAS significantly reduces lots of

human efforts over traditional deep Convolutional Neural

Networks (CNN) designing, either by tuning architecture

parameters, weight parameters, or both. As NAS has been

recognized as the core technology of neural architecture

designing in next-generation, researchers have focused on

extending their knowledge to automatic architecture design

processes. Along this line, Elsken et al. [9] presented a

survey on NAS, where they have addressed the elementary

ideas of NAS, different search approaches and performance

estimation strategies, and future directions of NAS.

A review highlighting reinforcement learning (RL) for

NAS is provided by Jaâfra et al. [10]. The survey [9]

categorized NAS into different classes such as Bayesian

reasoning, evolution, reinforcement learning, and gradient

search. Moreover, an extensive study of NAS is presented

in [11]. Latterly, White et al. [12] have provided a survey

of NAS for candidate architecture generation. Table 1 shows

detailed comparisons among different survey papers [9, 13,

10, 11, 14, 15]. In this study, we begin by summarizing

the characteristics of different state-of-art (SoTA) NAS ap-

proaches and their challenges. We present an in-depth study

that explores architecture optimization strategies to generate

candidate architectures with good performance and helps

readers obtain possible research ideas and further directions,

which inspires us to write this survey article.

A. CONTRIBUTIONS

Our study provides an in-depth explanation that directs to-

wards gradient descent-based searching strategy in neural

architecture search. Its contents are categorized into two

parts: (i) Detailed backgrounds on automatic architecture

search for readers, and (ii) Comparisons among several GD-

based architecture search strategies, including their usability,

efficiency, and stability. Significant contributions in this arti-

cle are summarized below.

• Our survey explores the basics of NAS, its work princi-

pal, and its associated search strategies.

• We discuss the usability and effect of the gradient de-

scent method in NAS strategies.

• Our survey defines the taxonomies for GD-based search

and discusses different evaluation strategies to generate

better candidate architectures.

• We evaluate different search strategies in terms of their

validation errors, their numbers of architecture parame-

ters, and computational costs (GPU days).

• Finally, we summarize different research challenges and

discuss their issues in NAS approaches that further

researches can be conducted.

B. ORGANIZATION

The remainder of this survey paper is organized as follows.

Section II discusses the elementary concept of NAS and the

gradient descent technique. Section III provides an overview

of various commonly used search spaces. Different searching

strategies in NAS to find out a better candidate architecture

are explored in Section IV. Section V explores different

gradient-descent problems which are occurred during archi-

tecture search process. Different tricks to regularize gradient

descent method are explored in Section VI. Section VII

explores Differentiable Neural Architecture Search (DNAS)

techniques. The performance evaluations of various State-of-

The-Art (SoTA) GD-based NAS approaches are highlighted

in Section VIII. Different research challenges of DNAS are

discussed in Section IX. Finally, we summarize and conclude

this study in Section X.

II. BACKGROUND

A. OVERVIEW OF NAS

In last few decades, computer vision research attracts much

attention to find a well-performed structure that can extract

rich features for image or video understanding. Although

there are different feature extractors for image and speech

recognition, they can achieve only near 70% and 80% accu-

racy. AutoML has taken the attention of most researchers in

the field of computer vision. Instead of manually designing

architectures (e.g., Alex-Net [16], VGG-Net [17], Google-

Net [18], Res-Net [19], Dense-Net [20]), NAS explores the

possibility of discovering unexplored architectures with an

automatic algorithm. NAS finds the best performing neural

network by exploring all possible candidate architectures that

can match or outperform hand-designed architectures. NAS

has become an essential step to automate neural architecture

design and save a lot of expert efforts for boring trial-and-

error routines [3, 21] in various fields. The stick diagram of

a NAS with its stages is shown in Figure II-A. The search

module extracts each candidate architecture one by one from

the search space, and the evaluation module calculates the

performance (in terms of desired requirements) of each can-

didate architecture. During the search loop, the performance

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

is returned to the search module for finding next candidate

with better performance.

Search

Space

Search

Method

Searched

Architecture
Evaluation

No

Optimal

Architecture
Good Enough Yes

FIGURE 1. Basic building blocks of Neural Architecture Search methods.

B. PRELIMINARY OF GRADIENT DESCENT METHOD

Gradient descent (GD)-based optimization approaches use

the gradient information and iteratively tune the parameters

of architecture, weight, or both to search for the best architec-

ture candidate based on the desire tasks. Let LossW denote

the loss function and its gradient be ∇WLoss(W) w.r.t. to

the parameters W ∈ R
d. During searching, the loss function

LossW is minimized by updating W in the opposite direction

of ∇WLoss(W) with a learning rate η. η plays an important

role in the optimization loop but is often trapped at a local

minimum stationary point.

The GD methods can be divided to two stages, i.e., pa-

rameter updating and parameter scaling. For parameter

updating, GD methods can be further categorized to four

classes: vanilla GD, stochastic GD, momentum GD, and

adaptive GD. For the stage of parameter scaling, GD methods

can be further divided to two stages i.e., batch GD and

mini-batch GD. The vanilla GD based approach calculates

the gradient ∇WLoss(W) for each iteration and updates the

weight parameters according to Eq.(1) as follows.

Wt = W(t−1) − η · ∇W(t−1)
Loss(W(t−1)). (1)

It takes small steps towards the direction of the minima by

taking gradient of the cost function. The stochastic GD

(SGD) approach uses shuffle to randomly sample data from

training dataset, and in each iteration, the randomly selected

single data-point is used for gradient computation and tuning

the weight parameters by the following equation.

Wt = W(t−1) − η · ∇W(t−1)
Loss(W(t−1);x

(i); y(i)), (2)

where each training sample and its corresponding label is

indicated by x(i), and y(i), respectively. The frequent up-

date strategy of SGD can provide a pretty detailed rate of

improvement. However, a bigger learning rate may produce

wrong gradient updates, results in an inefficient learning

path, and slowly decreases loss function. The momentum

GD method works better and faster than the SGD one by

considering some kind of moving average gradient direction

to the updating rule as:

V = momentum ∗ PreviousUpdate;

Wt = W(t−1) + V − η · ∇W(t−1)
Loss(W(t−1)).

(3)

The SGD with momentum can accelerate the gradient vectors

in right directions as a result of faster converging. Due to

its superior effect in convergence, many SoTA models are

trained using it.

The adaptive GD method performs small updates (i.e.,

low learning rate) for parameters associated with recurring

features and performs larger updates (i.e., higher learning

rates) for parameters associated with infrequent features; that

is,

Wt = W(t−1) −
η

√

Gt−1 + ǫ
· ∇W(t−1)

Loss(W(t−1)), (4)

where Gt−1 is a diagonal matrix, and each diagonal element

is sum of squares of the past gradients to all parameters W ,

and ǫ is a smoothing term that avoids division by zero.

The SGD method uses only one sample to compute gra-

dient direction and leads to lots of local maxima/minima.

The batch GD approach computes the gradient using the

whole dataset. It is computationally efficient with stable

gradient error and great for convex or relatively smooth

error manifolds. However, it often leads to an over-fitting

model. Thus, in most conditions, the batch GD method uses

a mini-batch of several samples instead of the whole dataset

to compute the gradient direction. The mini-batch gradient

descent approach is the combination of both SGD and batch

GD methods, where the dataset is divided into many batches,

and each batch is used to calculate the gradient errors and

update weight parameters (as shown in Eq.5), i.e.,

Wt = W(t−1)−η·∇W(t−1)
Loss(W(t−1);x

(i:i+B); y(i:i+B)),
(5)

where B represents the mini-batch size of the training sam-

ples. Hence it can generate better gradient errors while bal-

ancing the robustness like SGD and efficiency likes batch

gradient descent.

In GD methods, to make the learning process faster and

more stable, the inputs of a model should be re-centered and

re-scaled for parameter scaling; if the mean and variance

of each layer’s input are estimated from the whole dataset,

the GD method is categorized as the batch GD; otherwise,

it is named as the mini-batch GD. For the mini-batch GD

approach, the mean and variance are calculated as follows:

µB =
1

B

B
∑

i=1

Xi and σ2
t =

1

B

B
∑

i=1

(Xi − µB)
2, (6)

where the mini-batch size B is the whole dataset for the batch

GD method, the inputs Xi are then normalized as follows:

Xi =
Xi − µB
√

σ2
B + ǫ

. (7)

III. SEARCH SPACE

The search space includes all possible candidate architectures

generated or evolved with a supernet according to various

desired properties. A well-organized search space can re-

duce the size, simplify the search strategies, and save the

search time for a specific task. However, there are some

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

caveats for representing good architecture. First, it requires

manually defining criteria (sometimes with biases), which

often prevent producing good and stable architectures beyond

human knowledge. Second, it also needs prior knowledge

about various types of datasets. Hence, it seldom works well

for all unknown domains.

There are two kinds of architecture search structures cre-

ated for NAS, namely, the macro and micro architectures

(shown in Figure 2). The macro architecture is usually used

for constructing the topological structure of a neural network,

and the micro architecture details the operations between

nodes (or cells) inside a neural network architecture. The

macro structure is represented by a supernet which is evolved

by an automata. The micro architecture is often referred to as

cell structure that are optimized according to different tasks.

Due to huge computational loading and search time, NAS

algorithms search for either macro or micro architectures

but not necessarily both of them together. In recent trends,

most of the NAS approaches consider a fixed macro ar-

chitecture and investigate better micro architectures because

micro architecture search is cheap in computational resource

requirements and has much more flexibility in the search

space than macro architecture.

Some popular search spaces used for vision-based tasks

and their evolution are illustrated in Figure 3. A reinforce-

ment learning automata evolve the NAS-RL search space,

and each macro cell structure has n layers where each layer

is connected to its precursors and forms a densely connected

structure. A macro cell architecture from the NAS-RL search

space has a maximum 2(n−1)(n−2)/2 possible connections.

A layer in micro cell architecture also consists of other hy-

perparameters, such as filter numbers and stride parameters.

Clearly, the search space is huge, and impossible to find

the best architecture with only fewer GPU resources (or

days). As to the NASNet search space [21], two repeated

types of convolutional cells are used to construct a network

architecture, i.e., Normal Cell and Reduction Cell. As shown

in Figure 2(a), in the NASNet search space, each cell re-

ceives bi-chain style inputs from two precursor layers or

the input image. Then, a child architecture is generated by

a recurrent neural network (RNN) controller, which repeats

five prediction steps to select two possible hidden inputs

and their operations to construct the micro structure of each

convolutional cell.

DARTS search space adopts the same strategy as NAS-

Net; instead of 13 candidate operations, it only considers 7

candidate operations and a dummy zero operation, which is

only used during micro cell searching process but discarded

in the final architecture. The DARTS search space also limits

the intermediate hidden nodes to 4, and each hidden node

can receive the inputs from any preceding hidden nodes,

but only two of them will survive for the intermediate

operations; hence the time for finding micro cell structure

is reduced. The space for operations searching in DARTS

is continuous. MobileNet search space simplifies NAS-RL

search space; instead of using dense connections and bi-chain

styled connection in layers of macro cell, it uses chain-styled

connections between layers. Each micro cell structure should

be chosen from the MobileNet (MB) search space [22].

Cell 1

Cell N

Cell 2

Cell 3

In

Out

(a) Macro (b) Micro

Node 1

Node 4

Node 2

Node 3

Ck-1 Ck-2

Ck

FIGURE 2. Macro and micro cell structures for a search space. (a) Macro

structure. (b) Micro structure.

NAS-RL Space

MobileNet

Space
DARTS Space

NASNet Space

 Right now most popular

FIGURE 3. Relationships among four most popular search spaces.

IV. STRATEGY FOR ARCHITECTURE SEARCH SPACE

GENERATION

A good strategy to generate a compact set of architecture

candidates can significantly impact search efficiency and

effectiveness of the final candidate architecture. Thus, se-

lecting an appropriate generation strategy can ensure that

the generated space is good and small to be fully explored,

and the generated architectures are as close as possible to

the global best solution. There are three commonly-used

strategies for architecture generation, i.e., evolutionary algo-

rithm(EA), reinforcement learning(RL), and gradient-based

scheme. In what follows, their details are discussed.

A. EVOLUTIONARY ALGORITHMS

Inspired by a natural evolution process, evolutionary algo-

rithms effectively optimize a function via various mutation,

crossover, and selection operators. Due to its effectiveness,

the recent development of deep learning also adopts EAs

to optimize a neural network in various applications. In

EA, the gene contains information on how a problem can

be optimized by evolving both the neural architecture and

its parameters. However, evolving millions of weights is

hugely time-consuming and impractical for a target task.

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Thus, more recent EA-based approaches solely optimize the

neural architectures and then use an SGD-based method to

optimize their weights via back-propagation. EA explores

large model-architecture search spaces starting with basic

initial architectures and evolving them by randomly selecting

a parent from a population of models with size S to generate

different off-springs to promote the system with good per-

formance. Since ‘mutation’ is a local operator and cheap in

computation cost, most EAs adopt it to evolve next genera-

tions. In addition, EA tries to kill the worst model from the

population of S samples to keep the population size constant

throughout iterations. This non-aging evolution scheme will

result in worse models (not worst) that remain alive in the

population for a long time. In [23], Real et al. introduced an

age property to favor the younger genotypes and designed a

new EA-based model, i.e., AmoebaNet which outperforms

other RL-based approaches on several open datasets such

as CIFA10, CIFA100, and Imagenet. EA tends to evolve a

population of architectures that guarantees the diversity of

potential results on random uncontrollable mutations. The

random uncontrollable mutations make the evolution of EA

much slow, and its efficiency no guarantee.

B. REINFORCEMENT LEARNING

The RL-based NAS methods [3, 25] use an agent to gener-

ate different candidate architectures by optimizing a reward

function. The generation of a new neural architecture can

be considered as an agent’s action, and the action space

is identical to the search space. Usually, the agent is an

RNN controller. The agent’s reward is based on an estimate

of the performance of the trained architecture on training

data. Designing a proper reward function is critical and

important to guide the optimization process to satisfy the

requirements of a task. Different RL approaches differ in how

they represent the agent’s policy and how they optimize it.

For example, in [3], Zoph et al. adopts an RNN controller to

control convolution operations between two cells. These cells

are then stacked in a predefined manner to find candidate

architectures. Evolution error of the architecture is used to

be the reward and further used to generate another better

architecture. Although [3] is the pioneering work of RL-

based NAS, its searching time is very expensive and results in

poor performance of the finally found architecture. Further-

more, in Efficient NAS (ENAS) [25], a share weight strategy

between sub-models is proposed to improve the search time

by using an RL-based controller to select various subgraphs

from a directed acyclic graph (DAG) so that expected return

on a validation set can be maximized. Sharing parameters

between sub-models enables ENAS to save search time and

provides powerful empirical performance. In [26], Cai et al.

introduces a Net2Net transform strategy in ENAS, where

an RL-based meta controller is used to select each edge

operation. The Net2Net strategy modifies different existing

architectures through a transformation operation, hence no

need to search and train the architecture from scratch.

RL-based NAS uses an RL controller to search an ar-

chitecture layer by layer and calculates rewards for fur-

ther searching. Although RL-based NAS approaches can

construct a stable architecture for evolution, the RL-based

controller needs a huge number of tries to get a positive

reward for updating architectures. Hence, RL-based methods

are computationally expensive during training. At to EA, its

evolution progress relies heavily on random uncontrollable

mutations and results in its inefficiency. Thus, in [27], Chen

et al. integrate the advantages of both of them and ensure the

search efficiency to propose a new neural architecture search

framework. It introduces a reinforced mutation controller to

efficiently explore the search space and benefits from the

nature of EA to make the child model inherit most parameters

from its parent, so the search for weight parameters becomes

more efficient. However, both EA- and RL-based methods

are very time-consuming since the search space is huge and

discrete.

C. GRADIENT BASED METHOD

To make the search stage of DNAS more efficient, the search

space should be continuous so that the SGD method can

be applied to find the final architecture directly. DAS [28]

converts the discrete network architecture search space into

a continuously differentiable one from which gradient opti-

mization can be applied for architecture search. In [4], the

framework "Differentiable ARchiTecture Search (DARTS)”

converts the combinatorial problem of searching the optimal

operations into a continuous and differentiable search space,

where a robust cell architecture can be efficiently determined

via gradient descent. DARTS [4] is a cell-based neural ar-

chitecture search approach and works on a Directed Acyclic

Graph (DAG) of nodes, where each node represents a set of

feature maps.

In DARTS, a supernet is constructed with a set of archi-

tectural parameters to form the search space. Two different

subnetworks or cells i.e. normal cell (operations have stride

one) and reduction cell (operations have stride two) itera-

tively updated through continuous relaxation. An essential

issue of DARTS is that easy-to-optimized operators (such

as skip-connections and pooling operations) may dominate

in early stages, hence hinder the selection of more powerful

operations (such as convolutions of large kernels). In [29],

P-DARTS enforces a strong prior to limit the number of

skip connections within a cell to a pre-determined value by

gradually increasing the depth of the network and reducing

the candidate operations according to a mixed operation

weight. To address this issue, Fair-DARTS [30] is proposed

by relaxing the choice of operations, such that each operator

has an equal opportunity to balance the architecture strength.

Another issue of NAS optimization is the embedding of

the evaluation procedure into the search procedure, which is

not explicitly performed in the aforementioned frameworks.

Various methods are developed to alleviate this problem, e.g.,

early stopping [6], [31] and progressive optimization [29],

with an aim to overcome the issue of discretization gap

[6],[32]. The discretization gap means performance of the

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

derived architecture often collapses at the final evaluation

stage when discretizing the continuous architecture repre-

sentation into a discrete one [32]. To address this prob-

lem, SGAS [32] proposes a greedy strategy to prevent the

problematic skip connections or other weak operators from

being often selected. However, potentially good operations

might be pruned out as well due to this greedy under-

estimation. Unlike SNAS, ProxylessNAS [33] constructs an

over-parameterized network with all operations in search

space and binarizes architecture parameters so that the over

parameterized network through gradient-based algorithm can

be better trained. DARTS-based methods prune operations

on every edge except the one with the largest architecture

weight. A significant performance drop will happen in de-

riving the discrete architecture from the continuous version

after projection. Zela et al. [6] empirically point out that the

stability is highly correlated with the dominant eigenvalue

λA
max of the Hessian matrix of the validation loss function of

an architecture A . Other approaches, e.g., partial channel

connection [5], scheduled drop path [21], and regularization

of architecture parameters are proposed to address the stabil-

ity of DARTS. The stability and generalization of DARTS

have become an important issue in the research topics of

differentiable architecture search.

Table IV-C summarizes different types of methods with

their search spaces (in Section III), search strategies (in

Section IV), and their search types proposed in the literature.

V. GRADIENT DESCENT PROBLEMS

Gradient descent-based approaches can solve an optimization

problem with limited computing resources, but they also suf-

fer from several issues. In this section, we explore different

issues and their tricks for tuning optimization functions.

A. VANISHING GRADIENT PROBLEM

In deep learning, architecture usually consists of more than

hundreds of layers. A lot of weight parameters are then

learned and updated with a back-propagation technique via

the SGD method for each layer. In this method, each of the

weight parameters receives an update proportional to partial

derivative of cost function concerning current weight in each

iteration during training. In some cases, the gradient value

becomes very small or vanishes, thus preventing the weight

from further changing its value. This vanishing gradient

problem may ultimately stop the neural network from further

training. This problem also makes architecture shallow with

few layers. In traditional neural network architectures, the

activation function is often designed as the Sigmoid function

or hyperbolic tangent one whose gradient value ranges (0, 1)

or (-1,1). In this case, when the back-propagation technique

uses the chain rule to compute the gradient of each weight

layer by layer, the gradient value will decrease exponentially

and lead to training failure.

To overcome this problem, two solutions can be proposed;

one is to change the activation function, and the other is to

change the link connections between network layers. For the

first one, most researchers chose the Rectified Linear Unit

(ReLU)[52] as the activation function. The ReLU function

maps x to max(0, x) to avoid vanishing gradient problem,

where the gradient of ReLU(x) is one if x is positive. Its

variants include Leaky ReLU [53], Swish [54], and Mish[55].

For the second solution to deal with the gradient vanishing

problem, in ResNet [56], He et al. proves that a skip connec-

tion in candidate architecture often passes gradient updates

directly to other layers and thus avoids the vanishing gradient

problem.

B. EXPLODING GRADIENT PROBLEM

Exploding gradient problem is another issue often happening

during the candidate architecture searching process. It is a

problem where large error gradients accumulate and result

in huge updates to neural network model weights during

training and the failure of architecture learning. Gradients are

used during searching to update both architecture and weight

parameters. The updating process can find a suitable solution

if the updates for parameter tuning are properly controlled.

Smaller magnitudes of gradients will cause the vanishing

gradient problem. Larger magnitudes of gradients may make

architecture unstable and cause poor (or over) prediction re-

sults. It is useful to know how to identify exploding gradients

so that the searching process is corrected to find the expected

solution. The standard solution for an explosion gradient

is to normalize architecture and weight parameters before

propagating back through network via batch normalization.

Changing the link connections between network layers via

skip connection in candidate architecture is another solution

to reduce gradient exploding issues. This connection in can-

didate architecture often directly passes gradient values to

next layer through back-propagation so that the exploding

problem is avoided. Similar to the microphone exploding

effect, this exploding problem still is an essential issue in

recurrent networks.

C. LEARNING RATE

Learning rate is one of the most important hyper-parameters

for any gradient descent approach. It is used to control each

step size for updating candidate architecture and weight pa-

rameters. In general, its default value is initialized with a tiny

positive value. A lower learning rate requires more training

epochs to optimize a candidate architecture for different

tasks, whereas a larger learning rate quickly converges with

a suboptimal result with fewer epochs. A larger learning rate

often skips stationary points (local minimum) and produces

deficient performance in the validation stage, whereas a too

small learning rate often gets stuck, as jumping step is tiny.

Hence a carefully chosen learning rate is necessary to find

optimal parameters for a candidate architecture. In what

follows, techniques for gradient updating (learning rate and

direction) will be discussed.

VI. GRADIENT DESCENT UPDATING TECHNIQUES

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. NAS-based methods with search spaces, search strategies, and search types.

Algorithms Search Space Search Method Search type

NASNet DARTS MobileNet Others RL EA GB Micro Macro

MetaQNN[2] X X X

SMASH[34] X X X

Large-Scale Evolution of
ICs 2017[24]

X X X

NOS with RL 2017[35] X X X

NASBOT 2018[36] X X X

SNAS[8] X X X

BlockQNN 2018[37] X X X

DARTS[4] X X X

Understanding One-Shot
Models [38]

X X X

ENAS[25] X X X X

Progressive NAS[39] X X X

NASNet [21] X X X

NAONet [40] X X X

Proxylessnas[33] X X X

FBNet[41] X X X

MNASNet[42] X X

ChamNet[43] X X

SPNAS[44] X X X

AmoebaNet [23] X X X

GDAS[45] X X X

EfficientNet[46] X X X

FairNAS[30] X X X

PCDARTS[5] X X X

RDARTS[6] X X X

BayenNAS[7] X X X

PDARTS[29] X X X

XNAS[47] X X X

DARTS+[31] X X X

NAT[48] X X X

SETN[49] X X X

SPOSNAS[50] X X X

Smooth DARTS[51] X X X

A. MOMENTUM

Gradient descent is an iterative algorithm for optimizing

an objective function with its negative gradient. One of its

problems is: the search moves downhill towards the minima,

but during the progression, it may move in another direction

event uphill due to the gradient of some specific (or noisy)

points, which slow down the progress of search. It can be

improved and accelerated by using momentum from past

updates to the search position. More precisely, a fraction of

history (the gradient encountered in the previous update) is

added to the parameter update equation as shown in Eq.(3).

Let γ denote the fraction of momentum term, and Vt−1 be the

history or the gradient encountered in the previous update.

Then, the update at the current tth iteration will add the

change used at the previous time weighted by the momentum

term γ, as follows:

Vt = γVt−1 + η∇W(t−1)
Loss(W(t−1)). (8)

Then, from Eq.(8), the set of current parameters Wt is up-

dated by

Wt = W(t−1) − Vt. (9)

In other words, the momentum rapidly moves towards de-

scent direction whereas slowly moves in opposite direction.

As a result, the SGD method with momentum can quickly

converge and decrease oscillation.

B. NESTEROV ACCELERATED GRADIENT (NAG)

Gradient descent with momentum can improve the perfor-

mance of loss function optimization, but sill can be further

improved via extrapolation. In Eq.(8), we know that we will

use our momentum term to move next position. A smarter

version of momentum, i.e., Nesterov accelerated gradient

(NAG), is to extrapolate the gradient of next point, an ap-

proximation to guess where our parameters W are going to

be. NAG looks "ahead" to where the parameters will be to

calculate the gradient as follows:

Vt = γVt−1 + η∇W(t−1)
Loss(W(t−1) − γVt−1)). (10)

NAG first takes a larger step towards exponentially accumu-

lated gradient, measures gradient, and then updates parame-

ters. This "ahead" update prevents the optimization function

from going too fast and increases the performance of the

final candidate architecture. The NAG method uses the new

version Vt defined in Eq.(10) to update Wt based on Eq.(9).

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

C. ADAGRAD METHOD

In addition, to find a better gradient direction, another impor-

tant issue is to choose a proper learning rate to control the

step size of movement so that the performance of optimiza-

tion can be improved. The early mentioned SGD methods

use a fixed learning rate to optimize the loss function. A small

learning rate will result in inefficiency of learning, and a large

value will cause an overfitting problem. Thus, the learning

rate ηt,r for the rth parameter Wt,r at the tth iteration in the

Adaptive gradient (AdaGrad) method is proportional to the

inverse of the sum of gradient magnitudes of all parameters

during the optimization process; that is,

ηt,r ∝
1

√

t
∑

t′=1

(

∂Loss(Wt′,r)

∂Wt′,r

)2

+ ǫ

, (11)

where ǫ is used to discard the division zero problem. With a

predefined learning rate η, a new adjustable learning rate η′r
can be defined and used to update the parameter movements

of a loss function as follows:

η′t,r =
η

√

t
∑

t′=1

(

∂Loss(Wt′,r)

∂Wt′,r

)2

+ ǫ

. (12)

With Eq.(12), the AdaGrad method updates Wt,r by

Wt,r = Wt−1,r − η′t,r ×
∂Loss(Wt,r)

∂Wt,r
, (13)

where η′r is adaptively scaled with the inverse of sum of

gradients of Wt,r from its past iterations.

D. ADADELTA

The AdaGrad method accumulates all past squared gradients

as the denominator to adaptively scale the learning rate. Since

each added term is positive, the accumulation will lead to an

infinitesimally small learning rate η′t,r; that is, η′t,r → 0 when

t → ∞. Hence, a modified version of AdaGrad (AdaDelta)

is used to avoid this problem. Instead of accumulating all

past squared gradients, in AdaDelta method, the sum of

gradients is recursively defined as a decaying average of all

past squared gradients. Let Gt,r denote the average of all past

squared gradients for the parameter Wt,r as

Gt,r =
1

t

t
∑

t′=1

(

∂Loss(Wt′,r)

∂Wt′,r

)2

. (14)

In the AdaDelta method, the running average Gt,r at time

step t is calculated only depending on the previous average

Gt−1,r and current gradient:

Gt,r = γGt−1,r + (1− γ)

(

∂Loss(Wt,r)

∂Wt,r

)2

, (15)

where the ratio γ is often set to around 0.9. Then, in the

AdaDelta method, Eq.(13) is written as

Wt,r = Wt−1,r −
η

√

Gt,r + ǫ

∂Loss(Wt,r)

∂Wt,r
. (16)

The main advantage of AdaDelta is that default learning

rate is not necessary for AdaDelta. It is tuned automatically

through the average gradient Gt,r.

E. ADAM

Another approach to calculate the adaptive learning rate

for parameter is the Adaptive Moment (AdaM) estimation

algorithm. It combines the advantages of momentum (see

Eq.(8)) and Adadelta (see Eq.(15)) to adaptively update the

parameters. In AdaM, the momentum term makes the average

gradient Vt,r for Wt,r be recursively updated with a balance

ratio βV as

Vt,r = βV Vt−1,r+(1−βV)∇W(t−1),r
Loss(W(t−1),r). (17)

Similar to Eq.(15), Gt,r is recursively updated with another

ratio βG by

Gt,r = βGGt−1,r + (1− βG)

(

∂Loss(Wt,r)

∂Wt,r

)2

. (18)

The initial value of Vt,r and Gt,r are recommended to 0

and result in a bias of moment estimates towards zero. To

overcome this issue, they are bias-corrected as follows:

V̂t,r =
Vt,r

1− βV
,

Ĝt,r =
Gt,r

1− βG
.

(19)

With Eq.(19), the Adam method updates Wt,r as Eq. (20)

below:

Wt,r = Wt−1,r −
η

√

Ĝt−1,r + ǫ

V̂t−1,r. (20)

The Adam approach works well compared to other gradient-

based approaches but needs three parameters βV , βG, and η

for updating the architecture weights.

F. ADAMAX

Adamax is a variant of Adam based on the infinity norm.

In Eq.(18), the current gradient term is generalized to the Ip
norm as

Gt,r = β
p
GGt−1,r + (1− β

p
G)

∣

∣

∣

∣

∂Loss(Wt,r)

∂Wt,r

∣

∣

∣

∣

p

. (21)

When putting p → ∞, a modified version of Adam, i.e.,

AdaMax calculates Gt,r by the following equation:

G∞

t,r = β∞

G Gt−1,r + (1− β∞

G)

∣

∣

∣

∣

∂Loss(Wt,r)

∂Wt,r

∣

∣

∣

∣

∞

= max(βG ·Gt−1,r,

∣

∣

∣

∣

∂Loss(Wt,r)

∂Wt,r

∣

∣

∣

∣

),

(22)

where G∞

t,r denotes the infinity norm of Gt,r. Then, the

AdaMax method updates the parameter Wt,r as follows:

Wt,r = Wt−1,r −
η

G∞

t−1,r

V̂t−1,r, (23)

where V̂t−1,r is defined in Eq.(19).

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

G. DATA ADJUSTMENT

Apart from the tricks mentioned above, in the following,

we discuss some mostly used tricks that can be combined

with any previously mentioned algorithms to enhance the

performance of SGD further.

Shuffling training data: It is common in NAS to shuffle

data and normalize it before every epoch for increasing data

variance during the architecture searching process. Differ-

ent shuffling orders of training data can reduce the risk of

overfitting for training a candidate architecture. Shuffling a

data point can create an "independent" change in architecture.

Most gradient-based NAS methods have adopted this strategy

to improve regularization during architecture searching.

Batch normalization: In searching an architecture, both

architecture and weight parameters are updated to different

extents and scales, which will cause the vanishing or explod-

ing gradient problem and make the learning process unstable.

To reduce the risk of searching failure to find a well perform-

ing network architecture, parameters are often normalized

with zero mean and unit variance. For example, ENAS [25]

applies this strategy to prevent gradient explosion during the

architecture search process. Suppose the mean and variance

of each layer’s input are estimated from the whole dataset

(see Eq.(6)), the method named as batch normalization is

inefficient and time-consumed. Another method named as

mini-batch normalization is adopted to estimate the mean and

variance from a small set of randomly selected training data

to enhance its efficiency.

Early stopping: Searching processes often face chal-

lenges of how long to search for good architecture. An archi-

tecture with fewer searching epochs will be under-fitted; with

more searching epochs, it is often over-fitted on current train-

ing datasets and performs poorly during inference. To make

the searching process more efficient and effective, it is better

to continually observe the loss on a validation dataset; if the

loss does not decrease further, it is better early-stopped. Most

gradient descent-based search approaches such as DARTS+

[31], R-DARTS[6], Fair-DARTS[57], and so on, adopt this

early-stopping strategy to reduce searching time, and thus

significantly improve the performance of candidate architec-

ture searching.

Gradient noise: A dataset with less data often faces

difficulties in finding suitable parameters for architectures.

Hence, adding tiny values in parameters can make searching

process more suitable and decrease generalization errors. For

example, Neelakantan et al. [58] and Chu et al. [59] used

a Gaussian distribution to add random noise in parameters

for each gradient update to improve data regularization and

reduce computational cost for candidate architecture search.

VII. DIFFERENTIABLE NAS

Both RL- and EA-based methods create a discrete search

space to find the desired candidate architecture. Since the

discrete search space is enormous and evaluating each can-

didate is both time- and resource-consuming, it is almost im-

possible to finish the searching task with limited computation

devices during a few GPU days or weeks. Another approach

is to create a continuous and differentiable search space

from which a better candidate architecture can search via a

gradient-based optimizer in an end-to-end manner, and thus

the search efficiency can be significantly improved. Instead

of searching over a discrete set of candidate architectures,

the “DARTS” framework [4] applies continuous relaxation

that converts the categorical choice problem into a contin-

uous and differentiable search space in which two different

subnetworks (or cells), i.e. normal cell and reduction cell are

iteratively updated by gradient descent. There are different

issues for a gradient-based method to accelerate the search

process and find the desired candidate within a few hours on

limited GPU resources: (I) Supernet, (II) Parameter Sharing,

and (III) Stability and continuous Relaxation. Details of all

the issues are discussed as follows.

A. SUPERNET

The NAS-based approaches require substantial computa-

tional resources to find the best candidate architecture for a

targeted task. The architecture searching time can be dras-

tically reduced by encoding a search space into an over-

parameterized neural network (i.e., supernet) with a weight-

sharing strategy. The NAS methods like [25, 50, 60] construct

or adopt a controller, which can sample the architecture to

train the supernet and, through a heuristic search method,

generates the best performing architecture for a specific task

from the discrete search space. Instead of training each archi-

tecture separately, the differentiable NAS builds a supernet

that assembles all the architectures as its subnetworks to form

a continuous space from which the candidate architecture

can be found via a decent gradient method. The supernet is

an over-parameterized network that can be categorized into

two classes according to how the architectures are modeled

and elaborated; that is, parameter-based and path-based. For

parameterized architectures, a real-value distribution is intro-

duced to categorize the architectures and then their weights

are jointly learned such as DARTS[4], FBNet [41] and Mde-

NAS [61]. Figure 4 shows an example of a supernet con-

structed by DARTS. Figure 4(a) is a searched architecture,

and (b) is an expansion of normal cells. Figure 4(c) represents

hidden nodes and their connections inside a micro cell. The

micro cell structure is searched from the supernet and stacked

to obtain the desired architecture. After training the supernet,

the optimal architecture can be found by sampling from

the categorical distribution via a gradient method. Besides

accuracy, another very important issue is integrating some

hardware constraints, e.g., FLOPS and latency, for designing

efficient neural network architectures for hardware. However,

since these constraints are not differentiable, it is challeng-

ing to integrate a hard constraint into the parameterized

approaches during a search. For path-based methods such

as Greedy NAS[62], the searching process is split into two

consecutive stages, i.e., supernet training and architecture

sampling. For training supernet, only one path consisting of a

single operation choice is activated, and thus the memory cost

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0 1

2

3

Input image

Normal cell

Reduction cell

Softmax

Normal cell

Reduction cell

Normal cell

 Nx

 Nx

 Nx

 1x

 1x
Normal cell

Normal cell

Normal cell

Normal cell

Total of

N cells

Input image

(a) (b) (c)

FIGURE 4. DARTS based architecture searching process from the search

space.

is less than parameterized methods and scales well on large-

scale datasets, e.g., ImageNet. After training, the supernet

acts as a performance estimator to greedily filter out weak

paths so that potentially good paths for generating good

candidates architecture. In this way, training efficiency can

be much improved since weak paths involving unnecessary

weight optimizations are avoided. Unlike the previous pa-

rameterized methods, the hard hardware constraint can be

easily integrated into the searching process.

B. PARAMETER SHARING AND CONTINUOUS SEARCH

SPACE

To improve the efficiency of NAS, different architectures are

derived from the supernet and share the same weights. The

technique of parameter sharing can avoid many redundant

searches, exploration time and thus improve the efficiency

of architecture search. For example, in ENAS [25], a sharing

strategy is adopted to optimize weights between sub-models

by using an RL-based controller to select various subgraphs

from a directed acyclic graph (DAG). However, the search

space for convolutional architectures is still discrete. As de-

scribed in [25], if there are 6 operations available for deciding

what feature function between two layers, the number of

possible networks in the search space will be 6L×2L(L−1)/2,

where L is the number of layers in a network. If L=12,

the number of networks will become 1.6 × 1029. Instead of

searching over a discrete set of candidate architectures, the

operation sharing technique [4] relaxes the search space to

be continuous so that the architecture can be optimized by

gradient descent. It relaxes the categorical choice of a par-

ticular operation as a set of mixing probabilities, where op-

erations are not binary in terms of their existence and can be

searched via a gradient descent-based method. With orders of

magnitude fewer computation resources, the unique method

"DARTS" [4] outperforms many existing approaches.

DARTS [4] introduces a novel algorithm to transform the

categorical selection problem to a differentiable search space

by weighting all possible operations as a continuous function.

Let O = {ok}k=1,...,N be the set of all possible N candidate

operations (e.g., convolution, pooling, skip, identify, etc.).

Thus, given a network architecture represented by a directed

acyclic graph (DAG), there are N paths (operations) to be

chosen between two adjacent nodes. To make search space

continuous and differentiable, DARTS sets the choice to be

a mixed operation with N parallel paths instead of setting

the choice to be a definite primitive operation. Figure 5

shows the structure of micro cell and its intermediate node

connection used in DARTS [4]. Only two hidden nodes and

their connection instead of four hidden nodes in a micro cell

are shown for better understanding and a clear view. Here,

C(k−1) and C(k−2) represent two predecessor micro cells

(input features), Node 0 and node 1 are two hidden nodes,

and the current micro cell is C(k).

C(k)

1

0

C(k-1) C(k-2)

? ?

?

?
?

?

?

C(k)

1

0

C(k-1) C(k-2)

C(k)

1

0

C(k-1) C(k-2)

x
x

x

x

x

x

xxx x

(a) (b) (c)

FIGURE 5. DARTS Cell Searching. (a) Unknown operations on edges. (b)

Continuous relaxation by placing a mixed operation on edge. (c) Bi-level

optimization and final architecture generation (best viewed in color).

Given an input x, the output of a mixed operation M
(i,j)
O

for an edge (i, j) in the DAG representation of network ar-

chitecture is obtained by mixing the N candidate operations

with Softmax:

M
(i,j)
O (x) =

∑

ok∈O

exp(α
(i,j)
ok)

∑

o∈O

exp(α
(i,j)
o)

ok(x), (24)

where α
(i,j)
ok is a real-valued weight parameter for the oper-

ation o
(i,j)
k . Then, the mixing weights for operations on the

edge (i, j) are parameterized by an N -dimensional vector

α(i,j). The architecture search is then relaxed to learning a

set of continuous architecture variables, i.e., A = {α(i,j)}.

With such relaxation, NAS becomes a bi-level optimization

problem: optimizing the architecture A and its weights w(A)
alternatively. In real implementations, since the outputs of

feature map of all N paths should be calculated and stored

in the memory, DARTS easily exceeds the memory limits

of hardware on large-scale datasets. Despite being computa-

tionally efficient, the stability and generalizability of DARTS

have been challenged recently [6, 63]. At the end of DARTS,

the continuous architecture should be projected onto a dis-

crete representation to derive the best discrete architecture.

Often this projection step can cause a significant performance

drop between the mixture architecture and the obtained dis-

crete architecture. Other GD-based NAS approaches trans-

form discrete search space operations into a differentiable

objective by applying either continuous relaxation [4, 8] or

stochastic relaxation [64, 25] to improve searching perfor-

mance and enhance GPU resource engagement. Apart from

this, Lian et al. [65] propose a general transferability-based

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

learning approach (T-NAS) to train supernet, and some spe-

cialized candidate architectures are extracted to easily adapt

new tasks through a few gradient steps. As it takes fewer

steps to find a suitable architecture for targeted tasks, the

computational cost is very low and much more flexible. Yan

et al.[66] propose a hierarchical mask-based neural archi-

tecture search approach to mask intermediate nodes, edges,

and weights parameters. Their multi-level encoding strategy

enables an architecture candidate to have arbitrary numbers

of edges and operations with different importance. This strat-

egy reduces the architecture search time since the supernet

does not require training. A different type of gradient-based

NAS approach, i.e., ISTA-NAS [67] formulates the searching

problem as a sparse encoding problem that compresses the

search space and recovers sparse candidate architectures in an

alternative way. The sparsity constraint is inherently satisfied

at each update, so the search is more efficiently performed

and consistent with evaluation. This strategy can improve

accuracy and reduce the searching time.

C. STABILITY AND CONVERGENCE ANALYSIS

Gradient descent is an iterative optimization approach ap-

plied in NAS to minimize loss of a candidate architecture. A

specific loss function is often defined and used to calculate

the performance of a current candidate architecture in its

parameters, and its gradients are used to tune architecture

parameters A, network parameters w, or both. Let Lvalid and

Ltrain denote the objectives estimated from the validation

dataset and the training dataset, respectively. DARTS aims to

learn a set of continuous variables A = {α(i,j)} by solving

the following bi-level optimization:

min
A

Lvalid(A,w
∗(A)),

s.t. w∗(A) = argmin
w

Ltrain(A,w),
(25)

where A represents the searched architecture in DARTS.

Finally, for the edge (i, j) in the DAG representation of an

architecture A, its mixed operation M
(i,j)
O is replaced by

the most similar operation, and a discrete architecture is

generated for further training from the equation:

o(i,j) = argmax
o∈O

α(i,j)
o . (26)

Although the DARTS-based approach effectively reduces

computational cost, this bi-level optimization problem is

difficult to solve directly since both A and w parameters

are high dimensional. It suffers from several problems as it

alternatively optimizes (as shown in Eq.(25)) the architec-

ture parameters and weight parameters. After convergence,

DARTS removes operations with relatively weak attentions

(see Eq.(26)) and causes a performance gap between the de-

rived child networks and converged parent networks. Hence,

SNAS [8] searches for operations and architecture topology

simultaneously. It defines a matrix Z whose rows indicate

masks multiplied to edges (i, j) in the DAG, and columns

correspond to operations as a random variable to sample

architectures. Then, a single-level stochastic optimization is

used to optimize a generic loss via a Monte Carlo estimate.

However, single-level optimization will overfit the architec-

ture A and result in performance degradation during the

validation process. Then, a mixed-level optimization [68]

is proposed to deal with this problem and reduce gradient

errors; that is,

min
w,A

[Ltrain(w
∗, A) + λLval(w

∗, A)], (27)

where λ is a non-negative regularization variable. When λ =
0, Eq.(27) degrades to single-level optimization. If λ ≈ ∞,

Eq.(27) becomes a bi-level optimization (see Eq.(25)).

While current differentiable NAS methods have achieved

impressive results, several works [6, 51] have cast doubt on

their stability and generalization. Firstly, the searched archi-

tectures are often over-fitted and dominated by parameter-

free operations. Secondly, the differential NAS methods work

well often only on smaller datasets for shallower and nar-

rower networks due to the large memory consumption of

differentiable NAS approaches. Another common shortcom-

ing is: the differential NAS approaches such as DARTS [4]

often converge to a sharp region of validation loss landscape,

i.e., Lvalid, which results in significant performance drops

in the final architecture. To tackle the problem of memory

consumption, in PC-DARTS [5], Xu et al. proposed a par-

tial connection strategy to randomly sample a subset of all

channels in each step while bypassing the rest directly in

a shortcut. The channel sampling task brings a tremendous

reduction in memory and computation costs and thus can

not only accelerate the network search but also stabilize the

process, particularly for large-scale datasets. In RDARTS

[6], Zela et al. pointed out that the approach adopted in

DARTS, keeping only one operation with the largest weight

in every edge and removing all operations from the edge,

will make the final architecture converge into a sharp region

of loss landscape. They also found that such stability is

highly correlated with the dominant eigenvalue λA
max of the

Hessian matrix ∇2
αLvalid of the estimated architecture, and

thus proposed an early stop strategy to prevent λA
max from

exploding. However, an early stop will fail if the convergence

occurs from the beginning of the search process. For other

approaches, e.g., scheduled drop path [21], a new regulariza-

tion of architecture parameters was proposed to address the

stability of DARTS. Furthermore, to overcome the discretiza-

tion gap, Fair-DARTS [57] observed that the amount of weak

operators (such as skip connections) increases as the search

process proceeds and will cause unfair competition among

the operators. Then, this issue is addressed by relaxing the

choice of operations, such that each operator has an equal

opportunity to develop the architecture strength. In [8], Xie

et al. used a concrete distribution to relax and make the dis-

crete search space continuous and differentiable. In addition,

Noy et al. [69] proposed an annealing-based soft pruning

strategy to gradually prune out weaker operations so that the

final candidate architecture can be efficiently searched and

found. The comparisons among different gradient descent-

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

based architecture search approach addressed in the study are

summarized in Table 3.

VIII. PERFORMANCE EVALUATION

The commonly used performance evaluation metrics are:

(i) Accuracy and efficiency, which can be calculated during

the learning process or inference stage. In order to select

different optimization strategies during search procedures,

it is necessary to measure the performance of each selected

candidate architecture by comparing intermediate results and

the expected ones. However, the evaluation of candidate

architectures is usually computationally expensive and dom-

inates the main computation cost. There have been different

frameworks proposed for reducing the computational load-

ing of performance evaluation during the search process in

literature. One of the most effective ways to significantly

reduce search cost in an evaluation process is to train an

architecture with few epochs. It is often adopted in different

SoTA architecture search approaches [33, 31, 23, 4, 6, 78]

with useful performance metrics. However, Zela et al. [79]

mentioned that the searching and training epochs do not

differ drastically. Kyriakides et al. [80] pointed out there

is a positive correlation between the searching and training

epochs. Actually, the absolute performance of each candidate

architecture in search process is not very useful. In order

to determine the quality of a candidate architecture, another

way to speed up the efficiency of architecture evaluation

is to evaluate architectures on small datasets during search

and finely tune their real architecture parameters on large

datasets. For example, DARTS[4], SmoothDARTS[51], and

FairDARTS[57] search the cell structures on small dataset,

i.e., CIFAR10, construct architectures using these cells and

estimate the performance on same dataset. Then the best cell

structure is used to construct the final architectures on large

targeted dataset, i.e., ImageNet. Invariant of this to speed

up the searching process, Stamoulis et al. [44] proposes a

single path supernet that encodes architectures with sharing

convolutional kernel parameters.

(ii) Latency, apart from accuracy, hardware-friendly con-

volutional neural networks are also necessary for different

devices. Generally, latency time and the number of param-

eters inside an architecture are used to measure the perfor-

mance of a hardware-friendly architecture. In architecture

search on latency constraint, instead of searching for the

best performing architecture, the architecture that satisfies

the latency constraints with less latency (or better efficiency)

must be extracted from a supernet. In this line, ProxylessNAS

[33] defines a supernet with binary variables and combines

the cross-entropy with latency constraints to finely tune

weight parameters and architecture parameters during the

searching stage. FBNet [41] also uses the same strategy as

ProxylessNAS; instead of binary parameters in a supernet,

it uses SGD to define the parameters. Based on the theory

of prediction with expert advice, in XNAS [47], a suitable

architecture is predicted and extracted from the supernet, and

the Exponentiated-Gradient (EG) algorithm is adopted for

mitigating the hard pruning.

Another way is to train a supernet as a performance es-

timator without further training. For example, GreedyNAS

[62] constructs a supernet using a chain-based search space

and adopts an evolution-based heuristic approach to find

architectures with less latency on targeted devices. This

progressive search space reduction strategy can significantly

speed up the entire search process to find the final target

architecture. Furthermore, SGNAS [81] proposes an archi-

tecture generator that can find out different architectures with

different latency constraints in only one search iteration. In

contrast, other one-shot approaches such as GreedyNAS [62]

find out one architecture with only one latency constraint.

To sum up, different NAS approaches propose different

varieties of architectures for satisfying different constraints

and purposes. Some of them can improve performance, but

computational cost is still high. Another kind can be light-

weighted (for mobile devices) with low latency or power, etc.

So we only highlight their accuracy and efficiency (model

parameters and computational costs) in Table 4 on different

image classification datasets (i.e., CIFAR-10, CIFAR-100,

and ImageNet).

IX. RESEARCH ISSUES AND CHALLENGES

So far, we have discussed many interesting GD-based search

strategies, their working principles, and how they can im-

prove the search process performance in NAS. This section

will discuss different challenging issues in NAS that need to

be further explored. Although GD-based NAS can achieve

impressive performance on different datasets with fewer

computing resources (less than 0.5 GPU days on CIFAR10

dataset to search a candidate architecture [4]), it is difficult

to predict why some approaches work well and how we can

expand generalized structures for different datasets. Apart

from this, gradient-based NAS suffers from the following

issues: (i) the discretization nature making performance gap,

(ii) challenging to support data-parallel technique, and (iii)

searched candidate architectures being precarious and unsta-

ble. Most differential NAS approaches such as Proxyless-

NAS [33], DARTS[4], and SNAS[8] focus only on reducing

the validation errors, which might not be good enough for

searching a stable and generalized architecture. It is also un-

clear why NAS methods adopt a “Concatenation” operation

instead of an element-wise addition operation for each block

or cell [37]. Most explanations to results are more likely to

hindsight, and there is no mathematical evidence [6, 84].

Many parameters in SoTA approaches need to be finely tuned

through expert’s advice during searching. However, more

details are not mentioned about these parameters, such as in

DARTS [4] why 8 cells are stacked together during searching

for preferred cell structures (i.e., normal and reduction cells),

and 20 cells are stacked to construct the supernet for a target

dataset. Usually, more cells to construct shallow and large

networks can improve accuracy and increase the computa-

tional cost, but most SoTA approaches do not try to improve

their architectures using more cells.

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 3. Gradient based NAS innovations.

Algorithm Main context Solving strategies Outcomes

DARTS [4] Formulate NAS as gradient descent based
optimization problem.

Relax the discrete search space to be contin-
uous. The softmax is used for smoothing the
operation choices, and a candidate architec-
ture is constructed by stacking the cell for
training.

Optimize the architecture parameters via
gradient descent and thus dramatically re-
duces the high search cost of NAS.

SNAS [8] Formulate NAS as a stochastic model. En-
hance RL with a smooth sampling scheme.

Samples and optimizes candidate architec-
tures directly with concrete optimization
[70].

More efficient and less regularization biased
framework (compared with DARTS)

Proxylessnas
[33]

A model trained and tested on different
datasets often not guaranteed to be optimal.

Directly learn the architectures for large-
scale target tasks and target hardware plat-
forms.

Latency regularization loss helps for differ-
ent hardware.

GDAS [45] Formulate NAS as gradient descent problem Samples one sub-graph at one training iter-
ation

Better performance with less computing re-
sources.

FairNAS [30] Unfair bias in supernet sometimes reduce
the performance of candidate architectures

Two levels of constraints: expectation fair-
ness and strict fairness.

It can be adopted on any search pipeline.

PCDARTS [5] DARTS based NAS suffered from large
memory and computing overhead

Sample the supernet into a subnet and par-
tially connect to construct a candidate archi-
tecture

Edge normalization can stabilize the search
process.

RDARTS [6] DARTS does not work robustly for new
problem

Add different types of regularization meth-
ods with early stops.

Generalization improves in the search pro-
cess.

BayesNAS [7] Nodes inside normal and reduction cells
often disregard their predecessors and suc-
cessors.

A Hierarchical automatic relevance deter-
mination (HARD) approach is used to
model architecture parameters.

Compress CNN by enforcing structural
sparsity without accuracy deterioration

PDARTS [29] Bridging the Depth Gap between Search
and Evaluation

Gradually increase the searched architecture
during training.

Regularized search space and improve accu-
racy.

XNAS [47] New optimization method for differential
NAS.

Designing for wiping out inferior architec-
tures and enhance superior ones dynami-
cally.

Fewer hyper-parameters need to be tuned.

DARTS+ [31] Skip connection increases for larger epochs. Early stopping into the original DARTS [4] Improved the performance of DARTS.

NAT [48] New optimization method for NAS Redundant operations are replaced by the
Markov decision process (MDP).

Reduces hyper-parameters and improve the
accuracy

SETN [49] After the search, a lengthy training requires
to train the hyper-parameters for evalua-
tions.

Template network shares parameters among
all candidates.

Improve the quality of the candidate archi-
tecture for evaluation

StacNAS [71] DARTS performs poorly when the search
space is changed

Calculates correlation of similar opera-
tors incurs unfavorable competition among
them.

Increase the stability and performance

Smooth
DARTS [51]

Stabilize the architecture search process. Perturbation-based regularization for im-
proving the generalizability.

Stable candidate architecture.

DOTS [72] Operation weights cannot indicate the im-
portance of cell topology

Decouple the Operation and Topology
Search (DOTS)

Topology search space to improve accuracy.

PARSEC [73] Search directly on large scale problems. Probability based architecture search ap-
proach

Reduce the computing costs.

SGAS [32] Searched architectures often fail to general-
ize in the final evaluation.

Divides the search procedure into sub-
problems, chooses, and greedily prunes can-
didate operations.

State-of-the-art architectures for tasks such
as image classification

GDAS-NSAS
[74]

Performance of preceding candidate ar-
chitecture often degraded during training
of new architecture with partially share
weights.

Formulate supernet training as One-Shot
NAS. During training, the performance of
current architecture should not degrade the
performance of preceding candidate archi-
tecture.

Improve predicatively of supernet in One-
Shot NAS

DropNAS [75] Co-adaption problem and Matthew Effect Propose a novel grouped operation dropout
algorithm

Achieves promising performance

DARTS- [76] Instability issue during architecture search-
ing

Skip connections with a learnable architec-
tural coefficient

Improves the robustness of DARTS.

DrNAS [77] Formulate the DARTS as a distribution
learning problem

Progressive learning scheme to search ar-
chitectures in a large dataset

Improves the generalization ability and in-
duces stochasticity in search space

Another interesting study is that a labeled dataset is often

with a limited scale; hence it is difficult to conclude whether a

searched architecture will work well for real-world problems.

Liu et al. [85] scoured the question, “can we find high-

quality neural architecture without human-annotated labels

?” and demonstrated a new idea called Unsupervised Neural

Architecture Search (UnNAS). Furthermore, a NAS-based

approach must learn features from new data without dis-

carding old learning, but when some pretrained architectures

are adapted for new data, their performances often degrade

significantly on old datasets. To deal with this issue, in

[86], Li et al. proposed the Learning without Forgetting

(LwF) approach to training architecture only for new data

without forgetting old learning. Although GD-based NAS

approaches can produce imperial performance, they cannot

explain why a specific candidate architecture produces better

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 4. Performance Analysis of gradient based architecture search approaches on Cifar10, Cifar100, and ImageNet datasets.

Algorithm Cifar10 Cifar100 ImageNet

- Error (%) Params(M) GPUDays Error (%) Params(M) GPUDays Error (%) Params(M) GPUDays

DARTS (1st) [4] 3.00± 0.14 3.3 0.4 17.76#△ 3.3#△ 1.5#△ 26.7/8.7 4.7 4.0

DARTS (2nd) [4] 2.76± 0.09 3.3 1 17.76 3.3 1.5 − − −

SNAS [8] 2.85± 0.02 2.8 1.5 − − − 27.3/9.2∗△ 4.3∗△ 1.5∗△

ProxylessNAS [33] 2.08 5.7 4 − − − 24.9/7.5∗� 7.1∗� 8.3∗�

PARSEC [73] 2.81± 0.03 3.7 1 − − − 26.0/8.4†△ 5.6†△ 1.0†△

GDAS [45] 2.93 3.4 0.3 18.38† 3.4† 0.2† 26.0/8.5†△ 5.3†△ 0.2†△

FairNAS[30] 1.8 − − 22.7 − − 24.9/7.5†△ 4.8†△ 0.4†△

24.4/7.4†� 4.3†� 3.0†�

PC-DARTS [5] 2.57± 0.07‡ 3.6‡ 0.1‡ 17.01±0.06 4.0 0.1 24.2/7.3∗� 5.3∗� 3.8∗�

25.1/7.8‡△ 5.3‡△ 5.3‡△

R-DARTS [6] 2.95± 0.21† 4.1 1.6 18.01± 0.26† – 1.6† − −

BayesNAS [7] 2.81± 0.04‡ 3.4‡ 0.2‡ − − − 26.5/8.9†△ 3.9†△ 0.2†△

P-DARTS[29] 2.50‡ 3.4‡ 0.3‡ 15.92# 3.6# 0.3# 24.4/7.4∗△ 4.9∗△ 0.3∗△

24.7/7.5†♦ 5.1†♦ 0.3†♦

XNAS [47] 1.60 7.2 0.3 − − − 24.0/−∗ 5.2∗ 0.3∗

DARTS+ [31] 2.37± 0.13# 4.3# 0.6# 15.45± 0.30#3.9# 0.5# 23.7/7.2∗♦ 5.1∗♦ 0.2∗♦

23.9/7.4∗IM 5.1∗� 6.8∗�

NAT[48] 1.99 113 − − − − 25.2 /07.7 8.36 −

SETN [49] 2.69 4.6 1.8 17.25 − − 25.7 / 8.0 5.3 1.8

StacNAS [71] 2.48± 0.08# 3.9# 0.8# 16.11± 0.2# 4.3# 0.8# 24.3/6.4# 5.7# 20#

SDARTS[51] 2.61± 0.02‡ 3.3‡ 1.3‡ 20.56 − − 25.2/7.8† 5.4† 1.3†

DATA + Cutout [82] 2.59 3.4 1 15.45± 0.3 3.9 0.5 − − −

TAS [83] 6.82 N/A 0.3 − − − − − −

SGAS [32] 2.66 3.7 0.25 − − − 24.4± 0.16/ 5.3 0.25
7.29± 0.09

GDAS-NSAS [74] 2.73 3.4 0.4 18.02 − − − − −

ASAP [69] 2.49± 0.04# 2.5# 0.2# 15.6# 2.5# 0.2# 26.7/−∗ − 0.2∗

DropNAS [75] 2.58± 0.14# 4.1# 0.6# 16.95± 0.41#4.4# 0.7# 23.4/6.7#△ 5.7#△ 0.6#△

23.5/6.8#♦ 6.1#♦ 0.7#♦

DOTS [72] 2.44 ±0.05 3.6 0.2 16.44 3.9 0.2 24.0 /7.2 5.3 1

DARTS- [76] 2.5† 3.5† 0.4† 17.51± 0.25† 3.3† 0.4† 23.8/7.0†� 4.9†� 4.5†�

DrNAS [77] 2.46± 0.03‡ 4.1‡ 0.6‡ − − − 23.7/7.1‡� 5.7‡� 4.6‡�

− represents the corresponding information is not provided in the original paper or in reputed articles. ∗, †, ‡, and # indicated the results are taken from [31],
[76], [77], and [75].
△, ♦, and � denote the performances of architecture search evaluated on CIFAR-10, CIFAR-100, and ImageNet datasets, respectively.

solutions and how similarly derived candidate architectures

are in independent runs. Identifying these common issues

and understanding what elements are essential for designing

architecture with high performance may need to be studied in

the future. Better mathematical interpretation of NAS will be

good for future research.

X. CONCLUDING REMARKS

A. LESSONS LEARNED

This study has reviewed various GD-based NAS approaches

from different directions, and here we summarize the lessons

learned from this survey. Gradient descent is a better solution

for architecture search in NAS approaches and ignoring it

will increase architecture search cost in terms of GPU days.

The working principle of NAS is divided into three stages:

search space, search strategy, and performance estimation. In

search strategy, different methods are used to optimize the

candidate architectures, such as evolutionary algorithm (EA),

reinforcement learning (RL), gradient-based (GD), and ran-

dom method. Among these optimization approaches, random

method is treated as a baseline for architecture search, and

gradient-based methods require low computational cost and

improve validation accuracy. Various types of search spaces

and their search strategies are also explored in this survey.

In Table 4, we have evaluated and compared significant

performance matrices in terms of a validation error, number

of architecture parameters, and computational costs (GPU

days) for different GD-based NAS approaches.

B. CONCLUSION

NAS has become one of the main steps for Auto-ML in

the current era. Automatic generation of neural architecture

goes through search space, search strategy, and performance

evolution stages. However, the demand for automatic archi-

tectures is gradually increasing as data increases continu-

ously at an exponential scale. GD-based architecture search

approaches are typically used to reduce computing costs

and increase the efficiency of architecture searching. This

survey has discussed different GD-based architecture search

techniques and their management approaches.

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

We started with a simple discussion of NAS and listed

its unique properties of GD approaches. We also discussed

different impacts of gradient descent during the search pro-

cess and compared their pros and cons. We compared dif-

ferent gradient descent-based architecture search approaches

in terms of their representation, accuracy, search costs, and

parameters on CIFAR-10, CIFAR-100, and ImageNet clas-

sification datasets. Finally, we addressed the research chal-

lenges, and open issues on NAS approaches.

References

[1] Kenneth O Stanley and Risto Miikkulainen. 2002.

Evolving neural networks through augmenting topolo-

gies. Evolutionary computation, 10, 2, 99–127.

[2] Bowen Baker, Otkrist Gupta, Nikhil Naik, and

Ramesh Raskar. 2017. Designing neural network

architectures using reinforcement learning. Interna-

tional Conference on Learning Representations, ICLR.

[3] Barret Zoph and Quoc V Le. 2017. Neural architec-

ture search with reinforcement learning. In OpenRe-

view.net.

[4] Hanxiao Liu, Karen Simonyan, and Yiming Yang.

2019. Darts: differentiable architecture search. In

OpenReview.net.

[5] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen,

Guo-Jun Qi, Qi Tian, and Hongkai Xiong. 2020.

Pc-darts: partial channel connections for memory-

efficient architecture search. In OpenReview.net.

[6] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine

Marrakchi, Thomas Brox, and Frank Hutter. 2020. Un-

derstanding and robustifying differentiable architec-

ture search. In International Conference on Learning

Representations.

[7] Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei

Pan. 2019. Bayesnas: a bayesian approach for neu-

ral architecture search. In Kamalika Chaudhuri and

Ruslan Salakhutdinov, editors. Volume 97. PMLR,

7603–7613.

[8] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang

Lin. 2019. Snas: stochastic neural architecture search.

7th International Conference on Learning Represen-

tations, ICLR.

[9] Thomas Elsken, Jan Hendrik Metzen, and Frank Hut-

ter. 2019. Neural architecture search: a survey. J.

Mach. Learn. Res., 20, 55:1–55:21.

[10] Yesmina Jaâfra, Jean Luc Laurent, Aline Deruyver,

and Mohamed Saber Naceur. 2019. Reinforcement

learning for neural architecture search: a review. Im-

age Vis. Comput., 89, 57–66.

[11] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-

Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin

Wang. 2020. A comprehensive survey of neural ar-

chitecture search: challenges and solutions. CoRR,

abs/2006.02903.

[12] Colin White, Willie Neiswanger, Sam Nolen, and

Yash Savani. 2020. A study on encodings for neu-

ral architecture search. Advances in Neural Informa-

tion Processing Systems (NeurIPS). Hugo Larochelle,

Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina

Balcan, and Hsuan-Tien Lin, editors.

[13] Martin Wistuba, Ambrish Rawat, and Tejaswini Peda-

pati. 2019. A survey on neural architecture search.

CoRR, abs/1905.01392.

[14] Radwa El Shawi, Mohamed Maher, and Sherif Sakr.

2019. Automated machine learning: state-of-the-art

and open challenges. CoRR, abs/1906.02287.

[15] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021.

Automl: a survey of the state-of-the-art. Knowl. Based

Syst., 212, 106622.

[16] Forrest N Iandola, Song Han, Matthew W Moskewicz,

Khalid Ashraf, William J Dally, and Kurt Keutzer.

2016. Squeezenet: alexnet-level accuracy with 50x

fewer parameters and< 0.5 mb model size. arXiv

preprint arXiv:1602.07360.

[17] Limin Wang, Sheng Guo, Weilin Huang, and Yu Qiao.

2015. Places205-vggnet models for scene recognition.

arXiv preprint arXiv:1508.01667.

[18] Pedro L Ballester and Ricardo Matsumura de Araújo.

2016. On the performance of googlenet and alexnet

applied to sketches. In Dale Schuurmans and Michael

P Wellman, editors. AAAI Press, 1124–1128.

[19] Sasha Targ, Diogo Almeida, and Kevin Lyman. 2016.

Resnet in resnet: generalizing residual architectures.

arXiv preprint arXiv:1603.08029.

[20] Forrest Iandola, Matt Moskewicz, Sergey Karayev,

Ross Girshick, Trevor Darrell, and Kurt Keutzer. 2014.

Densenet: implementing efficient convnet descriptor

pyramids. arXiv preprint arXiv:1404.1869.

[21] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and

Quoc V Le. 2018. Learning transferable architectures

for scalable image recognition. In IEEE Computer

Society, 8697–8710.

[22] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco

Andreetto, and Hartwig Adam. 2017. Mobilenets: effi-

cient convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861.

[23] Esteban Real, Alok Aggarwal, Yanping Huang, and

Quoc V. Le. 2019. Regularized evolution for im-

age classifier architecture search. In The Thirty-Third

AAAI Conference on Artificial Intelligence, AAAI,

AAAI Press, 4780–4789.

[24] Esteban Real, Sherry Moore, Andrew Selle, Saurabh

Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le,

and Alexey Kurakin. 2017. Large-scale evolution of

image classifiers. In International Conference on Ma-

chine Learning. PMLR, 2902–2911.

[25] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and

Jeff Dean. 2018. Efficient neural architecture search

via parameters sharing. In International Conference

on Machine Learning, 4095–4104.

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[26] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu,

and Jun Wang. 2018. Efficient architecture search by

network transformation. In Proceedings of the AAAI

Conference on Artificial Intelligence number 1. Vol-

ume 32.

[27] Yukang Chen, Gaofeng Meng, Qian Zhang, Shiming

Xiang, Chang Huang, Lisen Mu, and Xinggang Wang.

2019. Renas: reinforced evolutionary neural architec-

ture search. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition,

4787–4796.

[28] Richard Shin, Charles Packer, and Dawn Song. 2018.

Differentiable neural network architecture search. In

OpenReview.net.

[29] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. 2019.

Progressive differentiable architecture search: bridg-

ing the depth gap between search and evaluation. In

Proceedings of the IEEE International Conference on

Computer Vision, 1294–1303.

[30] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixi-

ang Li. 2019. Fairnas: rethinking evaluation fairness

of weight sharing neural architecture search. arXiv

preprint arXiv:1907.01845.

[31] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu

He, Weiran Huang, Kechen Zhuang, and Zhen-

guo Li. 2019. Darts+: improved differentiable archi-

tecture search with early stopping. arXiv preprint

arXiv:1909.06035.

[32] Guohao Li, Guocheng Qian, Itzel C Delgadillo,

Matthias Muller, Ali Thabet, and Bernard Ghanem.

2020. Sgas: sequential greedy architecture search. In

Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, 1620–1630.

[33] Han Cai, Ligeng Zhu, and Song Han. 2019. Proxyless-

nas: direct neural architecture search on target task and

hardware. 7th International Conference on Learning

Representations, ICLR.

[34] Andrew Brock, Theodore Lim, James M Ritchie, and

Nick Weston. 2018. Smash: one-shot model architec-

ture search through hypernetworks. 6th International

Conference on Learning Representations.

[35] Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc

V Le. 2017. Neural optimizer search with reinforce-

ment learning. In International Conference on Ma-

chine Learning. PMLR, 459–468.

[36] Kirthevasan Kandasamy, Willie Neiswanger, Jeff

Schneider, Barnabás Póczos, and Eric P Xing. 2018.

Neural architecture search with bayesian optimisation

and optimal transport. Advances in Neural Information

Processing Systems (NeurIPS).

[37] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and

Cheng-Lin Liu. 2018. Practical block-wise neural

network architecture generation. In Proceedings of

the IEEE conference on computer vision and pattern

recognition, 2423–2432.

[38] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph,

Vijay Vasudevan, and Quoc Le. 2018. Understanding

and simplifying one-shot architecture search. In In-

ternational Conference on Machine Learning. PMLR,

550–559.

[39] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,

Jonathan Huang, and Kevin Murphy. 2018. Progres-

sive neural architecture search. In Proceedings of the

European conference on computer vision (ECCV), 19–

34.

[40] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and

Tie-Yan Liu. 2018. Neural architecture optimization.

Advances in Neural Information Processing Systems

(NeurIPS), 7827–7838.

[41] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan

Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter

Vajda, Yangqing Jia, and Kurt Keutzer. 2019. Fbnet:

hardware-aware efficient convnet design via differen-

tiable neural architecture search. In Proceedings of

the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 10734–10742.

[42] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Va-

sudevan, Mark Sandler, Andrew Howard, and Quoc V

Le. 2019. Mnasnet: platform-aware neural architecture

search for mobile. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recogni-

tion, 2820–2828.

[43] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu

Yin, Fei Sun, Yanghan Wang, Marat Dukhan, Yun-

qing Hu, Yiming Wu, Yangqing Jia, et al. 2019.

Chamnet: towards efficient network design through

platform-aware model adaptation. In Proceedings of

the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 11398–11407.

[44] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dim-

itrios Lymberopoulos, Bodhi Priyantha, Jie Liu,

and Diana Marculescu. 2019. Single-path nas:

device-aware efficient convnet design. arXiv preprint

arXiv:1905.04159.

[45] Xuanyi Dong and Yi Yang. 2019. Searching for a

robust neural architecture in four gpu hours. In Pro-

ceedings of the IEEE Conference on computer vision

and pattern recognition, 1761–1770.

[46] Mingxing Tan and Quoc Le. 2019. Efficientnet:

rethinking model scaling for convolutional neural

networks. In International Conference on Machine

Learning. PMLR, 6105–6114.

[47] Niv Nayman, Asaf Noy, Tal Ridnik, Itamar Fried-

man, Rong Jin, and Lihi Zelnik. 2019. Xnas: neural

architecture search with expert advice. In Advances

in Neural Information Processing Systems (NeurIPS),

1977–1987.

[48] Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen,

Jian Chen, Peilin Zhao, and Junzhou Huang. 2019.

Nat: neural architecture transformer for accurate and

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

compact architectures. Advances in Neural Informa-

tion Processing Systems (NeurIPS). Hanna M Wal-

lach, Hugo Larochelle, Alina Beygelzimer, Florence

d’Alché Buc, Emily B Fox, and Roman Garnett, edi-

tors.

[49] Xuanyi Dong and Yi Yang. 2019. One-shot neural

architecture search via self-evaluated template net-

work. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, 3681–3690.

[50] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen

Heng, Zechun Liu, Yichen Wei, and Jian Sun. 2020.

Single path one-shot neural architecture search with

uniform sampling. In European Conference on Com-

puter Vision. Springer, 544–560.

[51] Xiangning Chen and Cho-Jui Hsieh. 2020. Stabiliz-

ing differentiable architecture search via perturbation-

based regularization. In International Conference on

Machine Learning. PMLR, 1554–1565.

[52] Vinod Nair and Geoffrey E Hinton. 2010. Rectified

linear units improve restricted boltzmann machines. In

Johannes Fürnkranz and Thorsten Joachims, editors.

Omnipress, 807–814.

[53] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng.

2013. Rectifier nonlinearities improve neural network

acoustic models. In Proc. icml number 1. Volume 30.

Citeseer, 3.

[54] Prajit Ramachandran, Barret Zoph, and Quoc V Le.

2018. Searching for activation functions. 6th Interna-

tional Conference on Learning Representations, ICLR.

[55] Diganta Misra. 2019. Mish: a self regularized

non-monotonic neural activation function. CoRR,

abs/1908.08681.

[56] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. 2016. Deep residual learning for image recogni-

tion. In IEEE Computer Society, 770–778. DOI: 10 .

1109/CVPR.2016.90.

[57] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixi-

ang Li. 2020. Fair darts: eliminating unfair advantages

in differentiable architecture search. In European Con-

ference on Computer Vision. Springer, 465–480.

[58] Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya

Sutskever, Lukasz Kaiser, Karol Kurach, and James

Martens. 2015. Adding gradient noise improves

learning for very deep networks. arXiv preprint

arXiv:1511.06807.

[59] Xiangxiang Chu, Bo Zhang, and Xudong Li.

2020. Noisy differentiable architecture search. arXiv

preprint arXiv:2005.03566.

[60] Liam Li and Ameet Talwalkar. 2020. Random search

and reproducibility for neural architecture search. In

Uncertainty in Artificial Intelligence. PMLR, 367–

377.

[61] Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang

Zhang, Jianzhuang Liu, and Qi Tian. 2019. Multino-

mial distribution learning for effective neural architec-

ture search. In IEEE, 1304–1313. DOI: 10.1109/ICCV.

2019.00139.

[62] Shan You, Tao Huang, Mingmin Yang, Fei Wang,

Chen Qian, and Changshui Zhang. 2020. Greedynas:

towards fast one-shot nas with greedy supernet. In

IEEE, 1996–2005. DOI: 10.1109/CVPR42600.2020.

00207.

[63] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu

Musat, and Mathieu Salzmann. 2020. Evaluating the

search phase of neural architecture search. 8th Interna-

tional Conference on Learning Representations, ICLR.

[64] Shinichi Shirakawa, Yasushi Iwata, and Youhei Aki-

moto. 2018. Dynamic optimization of neural net-

work structures using probabilistic modeling. In AAAI

Press, 4074–4082.

[65] Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu,

Leyu Lin, Peilin Zhao, Junzhou Huang, and Shenghua

Gao. 2020. Towards fast adaptation of neural architec-

tures with meta learning. In International Conference

on Learning Representations.

[66] Shen Yan, Biyi Fang, Faen Zhang, Yu Zheng, Xiao

Zeng, Mi Zhang, and Hui Xu. 2019. Hm-nas: efficient

neural architecture search via hierarchical masking. In

Proceedings of the IEEE/CVF International Confer-

ence on Computer Vision Workshops, 0–0.

[67] Yibo Yang, Hongyang Li, Shan You, Fei Wang, Chen

Qian, and Zhouchen Lin. 2020. Ista-nas: efficient and

consistent neural architecture search by sparse coding.

arXiv preprint arXiv:2010.06176.

[68] Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang.

2020. Milenas: efficient neural architecture search

via mixed-level reformulation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, 11993–12002.

[69] Asaf Noy, Niv Nayman, Tal Ridnik, Nadav Zamir,

Sivan Doveh, Itamar Friedman, Raja Giryes, and Lihi

Zelnik. 2020. Asap: architecture search, anneal and

prune. In International Conference on Artificial Intel-

ligence and Statistics. PMLR, 493–503.

[70] Chris J Maddison, Andriy Mnih, and Yee Whye Teh.

2017. The concrete distribution: a continuous relax-

ation of discrete random variables. 5th International

Conference on Learning Representations, ICLR.

[71] Li Guilin, Zhang Xing, Wang Zitong, Li Zhenguo, and

Zhang Tong. 2019. Stacnas: towards stable and consis-

tent optimization for differentiable neural architecture

search.

[72] Yu-Chao Gu, Yun Liu, Yi Yang, Yu-Huan Wu, Shao-

Ping Lu, and Ming-Ming Cheng. 2020. Dots: decou-

pling operation and topology in differentiable archi-

tecture search. arXiv preprint arXiv:2010.00969.

[73] Francesco Paolo Casale, Jonathan Gordon, and Nicolo

Fusi. 2019. Probabilistic neural architecture search.

arXiv preprint arXiv:1902.05116.

[74] Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, and

Steven Su. 2020. Overcoming multi-model forgetting

VOLUME 4, 2016 17

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2019.00139
https://doi.org/10.1109/ICCV.2019.00139
https://doi.org/10.1109/CVPR42600.2020.00207
https://doi.org/10.1109/CVPR42600.2020.00207

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

in one-shot nas with diversity maximization. In Pro-

ceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 7809–7818.

[75] Weijun Hong, Guilin Li, Weinan Zhang, Ruiming

Tang, Yunhe Wang, Zhenguo Li, and Yong Yu. 2020.

Dropnas: grouped operation dropout for differentiable

architecture search. In International Joint Conference

on Artificial Intelligence.

[76] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu,

Xiaolin Wei, and Junchi Yan. 2021. Darts-: robustly

stepping out of performance collapse without indica-

tors. International Conference on Learning Represen-

tations.

[77] Xiangning Chen, Ruochen Wang, Minhao Cheng,

Xiaocheng Tang, and Cho-Jui Hsieh. 2021. Drnas:

dirichlet neural architecture search. International Con-

ference on Learning Representations.

[78] Risto Miikkulainen, Jason Liang, Elliot Meyerson,

Aditya Rawal, Daniel Fink, Olivier Francon, Bala

Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel

Duffy, et al. 2019. Evolving deep neural networks. In

Artificial Intelligence in the Age of Neural Networks

and Brain Computing. Elsevier, 293–312.

[79] Arber Zela, Aaron Klein, Stefan Falkner, and Frank

Hutter. 2018. Towards automated deep learning: ef-

ficient joint neural architecture and hyperparameter

search. arXiv preprint arXiv:1807.06906.

[80] George Kyriakides and Konstantinos Margaritis. 2020.

The effect of reduced training in neural architecture

search. Neural Computing and Applications, 1–12.

[81] Sian-Yao Huang and Wei-Ta Chu. 2021. Searching

by generating: flexible and efficient one-shot nas with

architecture generator. In Proceedings of IEEE Con-

ference on Computer Vision and Pattern Recognition.

[82] Jianlong Chang, Yiwen Guo, GAOFENG MENG,

SHIMING XIANG, Chunhong Pan, et al. 2019. Data:

differentiable architecture approximation. Advances

in Neural Information Processing Systems (NeurIPS),

32, 876–886.

[83] Xuanyi Dong and Yi Yang. 2019. Network pruning via

transformable architecture search. Advances in Neural

Information Processing Systems (NeurIPS), 759–770.

Hanna M Wallach, Hugo Larochelle, Alina Beygelz-

imer, Florence d’Alché Buc, Emily B Fox, and Roman

Garnett, editors.

[84] Sebastien C Wong, Adam Gatt, Victor Stamatescu,

and Mark D McDonnell. 2016. Understanding data

augmentation for classification: when to warp? In

international conference on digital image computing:

techniques and applications (DICTA). IEEE, 1–6.

[85] Chenxi Liu, Piotr Dollár, Kaiming He, Ross Girshick,

Alan Yuille, and Saining Xie. 2020. Are labels nec-

essary for neural architecture search? In European

Conference on Computer Vision. Springer, 798–813.

[86] Zhizhong Li and Derek Hoiem. 2017. Learning with-

out forgetting. IEEE transactions on pattern analysis

and machine intelligence, 40, 12, 2935–2947.

SANTANU SANTRA received the B.Sc. and

M.Sc. degrees from Vidyasagar University, West

Bengal, India, in 2004 and 2006, respectively.

M.Tech. degree from West Bengal University of

Technology, West Bengal, India, in 2009. He

was an Assistant Professor at Bengal Institute of

technology and Management, West Bengal, India,

from 2009 to 2014. Presently he is a research

scholar at Department of Computer Science and

Engineering in Yuan Ze University, Taoyuan, Tai-

wan. His research interests include computer vision, image processing, and

VLSI backend design.

JUN-WEI HSIEH is currently a professor at the

College of AI at National Chiao-Tung University

(2019.08.01). He was a professor and dean of the

Department of Computer Engineering in National

Taiwan Ocean University (2009.8.01 present).

He was an associate professor at the Department

of Electrical Engineering in Yuan-Ze University

and a visiting researcher at the MIT AI Lab. His

research fields include AI, Deep learning, intel-

ligent transportation systems, image and video

processing, object recognition, machine learning, 3D printing, computer

vision, etc. He hosted or co-hosted a lot of large-scale AI projects from

different companies and governments in the past. In May of 2019, he won

the first prize of the Ministry of Science and Technology Best Display

Award and the third place of the AI Investment Potential Award. Due to

his contributions in traffic flow estimation, he helped the Elan company won

the Gold Award from Taipei International Computer Show in 2019. He also

won the Outstanding Research Award of National Taiwan Ocean University

in 2012, 2016, 2017, and 2019, the Outstanding Research Award of YuanZe

University in 2006. He has a lot of successful experiences in industrial-

academic cooperation and technology transferring, especially in ITS. He

finished more 30 technology transferring projects from 2013 to 2020. He

and his students won the silver medal of 2019 National College Software

Creation Competition, the silver medal of 2018 National Microcomputer

Competition, the Best Paper awards of Information Technology and Appli-

cations in Outlying Islands conference in 2013, 2014, 2016, 2017, and 2018,

respectively, and the Best Paper Award of Tanet 2017. He also won the Best

Paper Award of CVGIP conference in 1999, 2003, 2005 2007, 2014, 2017,

and 2018, the Best Paper Award of DMS Conference in 2011, the best paper

award of IIHMSP 2010, and the best patent award of Institute of Industrial

Technology Research in 2009 and 2010, respectively. His current researches

include deep learning, machine learning, intelligent transportation system,

video surveillance, smart farming, 3D printing, and medical image analysis.

18 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090918, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

CHI-FANG LIN was born in 1960 in Taiwan,

Republic of China. He received the B. S. degree

in Transportation Engineering and Management in

1983 and the M. S. and Ph. D. degrees in Institute

of Computer Engineering and Science in 1986 and

1991, all from National Chiao Tung University.

In the academic year 1987-1989, he was an in-

structor in Lien Hu Junior College of Technology,

and joined the Department of Computer Science

and Engineering at Yuan Ze University (YZU) in

August 1991, and is currently a professor there. From 1999-2002, he was the

chairman of the Department of Information Networking Technology, and

was also the director of Information Technology Research Center. He was

the Chief Information Officer of YZU in 2005-2008, and now he is the head

of Department of Computer Science and Engineering, and also the head of

Graduate Program in Biomedical Informatics.

VOLUME 4, 2016 19

