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Abstract

Gradient descent finds a global minimum in

training deep neural networks despite the objec-

tive function being non-convex. The current pa-

per proves gradient descent achieves zero train-

ing loss in polynomial time for a deep over-

parameterized neural network with residual con-

nections (ResNet). Our analysis relies on the par-

ticular structure of the Gram matrix induced by

the neural network architecture. This structure al-

lows us to show the Gram matrix is stable through-

out the training process and this stability implies

the global optimality of the gradient descent al-

gorithm. We further extend our analysis to deep

residual convolutional neural networks and obtain

a similar convergence result.

1. Introduction

One of the mysteries in deep learning is randomly initial-

ized first-order methods like gradient descent achieve zero

training loss, even if the labels are arbitrary (Zhang et al.,

2016). Over-parameterization is widely believed to be the

main reason for this phenomenon as only if the neural net-

work has a sufficiently large capacity, it is possible for this

neural network to fit all the training data. For example, Lu

et al. (2017) proved that except for a measure zero set, all

functions cannot be approximated by ReLU networks with a

width less than the input dimension. In practice, many neu-

ral network architectures are highly over-parameterized. For

example, Wide Residual Networks have 100x parameters

than the number of training data (Zagoruyko & Komodakis,

2016).
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The second mysterious phenomenon in training deep neural

networks is “deeper networks are harder to train.” To solve

this problem, He et al. (2016) proposed the deep residual

network (ResNet) architecture which enables randomly ini-

tialized first order method to train neural networks with an

order of magnitude more layers. Theoretically, Hardt & Ma

(2016) showed that residual links in linear networks prevent

gradient vanishing in a large neighborhood of zero, but for

neural networks with non-linear activations, the advantages

of using residual connections are not well understood.

In this paper, we demystify these two mysterious phenom-

ena. We consider the setting where there are n data points,

and the neural network has H layers with width m. We

focus on the least-squares loss and assume the activation

function is Lipschitz and smooth. This assumption holds

for many activation functions including the soft-plus and

sigmoid. Our contributions are summarized below.

• As a warm-up, we first consider a fully-connected

feedforward network. We show if m =
Ω
(

poly(n)2O(H)
)

1, then randomly initialized gradi-

ent descent converges to zero training loss at a linear

rate.

• Next, we consider the ResNet architecture. We show

as long as m = Ω(poly(n,H)), then randomly initial-

ized gradient descent converges to zero training loss at

a linear rate. Comparing with the first result, the depen-

dence on the number of layers improves exponentially

for ResNet. This theory demonstrates the advantage of

using residual architectures.

• Lastly, we apply the same technique to analyze con-

volutional ResNet. We show if m = poly(n, p,H)
where p is the number of patches, then randomly ini-

tialized gradient descent achieves zero training loss.

Our proof builds on two ideas from previous work on gra-

dient descent for two-layer neural networks. First, we use

the observation by (Li & Liang, 2018) that if the neural

network is over-parameterized, every weight matrix is close

to its initialization. Second, following (Du et al., 2018b),

1The precise polynomials and data-dependent parameters are
stated in Section 5, 6, 7.
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we analyze the dynamics of the predictions whose conver-

gence is determined by the least eigenvalue of the Gram

matrix induced by the neural network architecture and to

lower bound the least eigenvalue, it is sufficient to bound

the distance of each weight matrix from its initialization.

Different from these two works, in analyzing deep neural

networks, we need to exploit more structural properties of

deep neural networks and develop new techniques for ana-

lyzing both the initialization and gradient descent dynamics.

In Section 4 we give an overview of our proof technique.

1.1. Organization

This paper is organized as follows. In Section 2, we discuss

related works. In Section 3, we formally state the problem

setup. In Section 4, we present our main analysis techniques.

In Section 5, we give a warm-up result for the deep fully-

connected neural network. In Section 6, we give our main

result for the ResNet. In Section 7, we give our main result

for the convolutional ResNet. We conclude in Section 8 and

defer all proofs to the appendix.

2. Related Works

Recently, many works try to study the optimization problem

in deep learning. Since optimizing a neural network is a

non-convex problem, one approach is first to develop a gen-

eral theory for a class of non-convex problems which satisfy

desired geometric properties and then identify that the neu-

ral network optimization problem belongs to this class. One

promising candidate class is the set of functions that satisfy:

a) all local minima are global and b) there exists a negative

curvature for every saddle point. For this function class,

researchers have shown (perturbed) gradient descent (Jin

et al., 2017; Ge et al., 2015; Lee et al., 2016; Du et al.,

2017a) can find a global minimum. Many previous works

thus try to study the optimization landscape of neural net-

works with different activation functions (Soudry & Hoffer,

2017; Safran & Shamir, 2018; 2016; Zhou & Liang, 2017;

Freeman & Bruna, 2016; Hardt & Ma, 2016; Nguyen &

Hein, 2017; Kawaguchi, 2016; Venturi et al., 2018; Soudry

& Carmon, 2016; Du & Lee, 2018; Soltanolkotabi et al.,

2018; Haeffele & Vidal, 2015). However, even for a three-

layer linear network, there exists a saddle point that does

not have a negative curvature (Kawaguchi, 2016), so it is

unclear whether this geometry-based approach can be used

to obtain the global convergence guarantee of first-order

methods.

Another way to attack this problem is to study the dynamics

of a specific algorithm for a specific neural network architec-

ture. Our paper also belongs to this category. Many previous

works put assumptions on the input distribution and assume

the label is generated according to a planted neural net-

work. Based on these assumptions, one can obtain global

convergence of gradient descent for some shallow neural

networks (Tian, 2017; Soltanolkotabi, 2017; Brutzkus &

Globerson, 2017; Du et al., 2018a; Li & Yuan, 2017; Du

et al., 2017b). Some local convergence results have also

been proved (Zhong et al., 2017a;b; Zhang et al., 2018). In

comparison, our paper does not try to recover the underly-

ing neural network. Instead, we focus on minimizing the

training loss and rigorously prove that randomly initialized

gradient descent can achieve zero training loss.

The most related papers are (Li & Liang, 2018; Du

et al., 2018b) who observed that when training an over-

parametrized two-layer fully-connected neural network, the

weights do not change a large amount, which we also use to

show the stability of the Gram matrix. They used this obser-

vation to obtain the convergence rate of gradient descent on

a two-layer over-parameterized neural network for the cross-

entropy and least-squares loss. More recently, Allen-Zhu

et al. (2018b) generalized ideas from (Li & Liang, 2018)

to derive convergence rates of training recurrent neural net-

works.

Our work extends these previous results in several ways: a)

we consider deep networks, b) we generalize to ResNet ar-

chitectures, and c) we generalize to convolutional networks.

To improve the width dependence m on sample size n, we

utilize a smooth activation (e.g. smooth ReLU). For exam-

ple, our results specialized to depth H = 1 improve upon

(Du et al., 2018b) in the required amount of overparametriza-

tion from m = Ω
(

n6
)

to m = Ω
(

n4
)

. See Theorem 5.1

for the precise statement.

Chizat & Bach (2018b) brought to our attention the paper

of Jacot et al. (2018) which proved a similar weight stability

phenomenon for deep networks, but only in the asymptotic

setting of infinite-width networks and gradient flow run

for a finite time. Jacot et al. (2018) do not establish the

convergence of gradient flow to a global minimizer. In lieu

of their results, our work can be viewed as a generalization

of their result to: a) finite width, b) gradient descent as

opposed to gradient flow, and c) convergence to a global

minimizer.

Mei et al. (2018); Chizat & Bach (2018a); Sirignano &

Spiliopoulos (2018); Rotskoff & Vanden-Eijnden (2018);

Wei et al. (2018) used optimal transport theory to analyze

gradient descent on over-parameterized models. However,

their results are limited to two-layer neural networks and

may require an exponential amount of over-parametrization.

Daniely (2017) developed the connection between deep

neural networks with kernel methods and showed stochastic

gradient descent can learn a function that is competitive with

the best function in the conjugate kernel space of the net-

work. Andoni et al. (2014) showed that gradient descent can
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learn networks that are competitive with polynomial classi-

fiers. However, these results do not imply gradient descent

can find a global minimum for the empirical loss minimiza-

tion problem. Our analysis of the Gram matrices at random

initialization is closely related to prior work on the analysis

of infinite-width networks as Gaussian Processes (Raghu

et al., 2016; Matthews et al., 2018; Lee et al., 2017; Schoen-

holz et al., 2016). Since we require the initialization analysis

for three distinct architectures (ResNet, feed-forward, and

convolutional ResNet), we re-derive many of these prior

results in a unified fashion in Appendix E.

Finally, in concurrent work, Allen-Zhu et al. (2018c) also

analyze gradient descent on deep neural networks. The pri-

mary difference between the two papers is that we analyze

general smooth activations, and Allen-Zhu et al. (2018c)

develop specific analysis for ReLU activation. The two pa-

pers also differ significantly on their data assumptions. We

wish to emphasize a fair comparison is not possible due to

the difference in setting and data assumptions. We view the

two papers as complementary since they address different

neural net architectures.

For ResNet, the primary focus of this manuscript, the

required width per layer for Allen-Zhu et al. (2018c) is

m & n30H30 log2 1
ǫ

and for this paper’s Theorem 6.1 is

m & n4H2.2 Our paper requires a width m that does not

depend on the desired accuracy ǫ. As a consequence, Theo-

rem 6.1 guarantees the convergence of gradient descent to

a global minimizer. The iteration complexity of Allen-Zhu

et al. (2018c) is T & n6H2 log 1
ǫ

and of Theorem 6.1 is

T & n2 log 1
ǫ
.

For fully-connected networks, Allen-Zhu et al. (2018c) re-

quires width m & n30H30 log2 1
ǫ

and iteration complex-

ity T & n6H2 log 1
ǫ
. Theorem 5.1 requires width m &

n42O(H) and iteration complexity T & n22O(H) log 1
ǫ
. The

primary difference is for very deep fully-connected net-

works, Allen-Zhu et al. (2018c) has milder dependence on

H , but worse dependence on n. Commonly used fully-

connected networks such as VGG are not extremely deep

(H = 16), yet the dataset size such as ImageNet (n ∼ 106)

is very large.

In a second concurrent work, Zou et al. (2018) also analyzed

the convergence of gradient descent on fully-connected net-

works with ReLU activation. The emphasis is on different

loss functions (e.g. hinge loss), so the results are not directly

comparable. Both Zou et al. (2018) and Allen-Zhu et al.

(2018c) train a subset of the layers, instead of all the layers

as in this work, but also analyze stochastic gradient.

2In all comparisons, we ignore the polynomial dependency on
data-dependent parameters which only depends on the input data
and the activation function. The two papers use different measures
and are not directly comparable.

3. Preliminaries

3.1. Notations

We Let [n] = {1, 2, . . . , n}. We use N(0, I) to denote

the standard Gaussian distribution. For a matrix A, we

use Aij to denote its (i, j)-th entry. We will also use Ai,:

to denote the i-th row vector of A and define Ai,j:k =
(Ai,j ,Ai,j+1, · · · ,Ai,k) as part of the vector. Similarly

A:,i is the i-th column vector and Aj:k,i is a part of i-th
column vector. For a vector v, we use ‖v‖2 to denote the

Euclidean norm. For a matrix A we use ‖A‖F to denote

the Frobenius norm and ‖A‖2 to denote the operator norm.

If a matrix A is positive semi-definite, we use λmin(A) to

denote its smallest eigenvalue. We use 〈·, ·〉 to denote the

standard Euclidean inner product between two vectors or

matrices. We let O(·) and Ω (·) denote standard Big-O and

Big-Omega notations, only hiding constants. In this paper

we will use C and c to denote constants. The specific value

can be different from line to line.

3.2. Activation Function

We use σ (·) to denote the activation function. In this pa-

per we impose some technical conditions on the activa-

tion function. The guiding example is softplus: σ (z) =
log(1 + exp(z)).

Condition 3.1 (Lipschitz and Smooth). There exists a con-

stant c > 0 such that |σ (0)| ≤ c and for any z, z′ ∈ R,

|σ (z)− σ (z′)| ≤c |z − z′| ,
and |σ′(z)− σ′(z)| ≤c |z − z′| .

These two conditions will be used to show the stability of the

training process. Note for softplus both Lipschitz constant

and smoothness constant are 1. In this paper, we view all

activation function related parameters as constants.

Condition 3.2. σ (·) is analytic and is not a polynomial

function.

This assumption is used to guarantee the positive-

definiteness of certain Gram matrices which we will de-

fine later. Softplus function satisfies this assumption by

definition.

3.3. Problem Setup

In this paper, we focus on the empirical risk minimization

problem with the quadratic loss function

min
θ

L(θ) =
1

2

n
∑

i=1

(f(θ,xi)− yi)
2 (1)

where {xi}ni=1 are the training inputs, {yi}ni=1 are the labels,

θ is the parameter we optimize over and f is the prediction
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function, which in our case is a neural network. We consider

the following architectures.

• Multilayer fully-connected neural networks: Let

x ∈ R
d be the input, W(1) ∈ R

m×d is the first weight

matrix, W(h) ∈ R
m×m is the weight at the h-th layer

for 2 ≤ h ≤ H , a ∈ R
m is the output layer and σ (·)

is the activation function.3 We define the prediction

function recursively (for simplicity we let x(0) = x).

x(h) =

√

cσ
m

σ
(

W(h)x(h−1)
)

, 1 ≤ h ≤ H

f(x, θ) = a⊤x(H). (2)

where cσ =
(

Ex∼N(0,1)

[

σ(x)2
])−1

is a scaling factor

to normalize the input in the initialization phase.

• ResNet4: We use the same notations as the multilayer

fully connected neural networks. We define the predic-

tion recursively.

x(1) =

√

cσ
m

σ
(

W(1)x
)

,

x(h) = x(h−1) +
cres
H
√
m
σ
(

W(h)x(h−1)
)

for 2 ≤ h ≤ H,

fres(x, θ) = a⊤x(H) (3)

where 0 < cres < 1 is a small constant. Note here we

use a cres
H

√
m

scaling. This scaling plays an important

role in guaranteeing the width per layer only needs to

scale polynomially with H . In practice, the small scal-

ing is enforced by a small initialization of the residual

connection (Hardt & Ma, 2016; Zhang et al., 2019),

which obtains state-of-the-art performance for deep

residual networks. We choose to use an explicit scal-

ing, instead of altering the initialization scheme for

notational convenience.

• Convolutional ResNet: Lastly, we consider the convo-

lutional ResNet architecture. Again we define the pre-

diction function in a recursive way. Let x(0) ∈ R
d0×p

be the input, where d0 is the number of input channels

and p is the number of pixels. For h ∈ [H], we let

the number of channels be dh = m and number of

3We assume intermediate layers are square matrices for sim-
plicity. It is not difficult to generalize our analysis to rectangular
weight matrices.

4We will refer to this architecture as ResNet, although this dif-
fers by the standard ResNet architecture since the skip-connections
at every layer, instead of every two layers. This architecture was
previously studied in (Hardt & Ma, 2016). We study this archi-
tecture for the ease of presentation and analysis. It is not hard to
generalize our analysis to architectures with skip-connections are
every two or more layers.

pixels be p. Given x(h−1) ∈ R
dh−1×p for h ∈ [H],

we first use an operator φh(·) to divide x(h−1) into p
patches. Each patch has size qdh−1 and this implies a

map φh(x
(h−1)) ∈ R

qdh−1×p. For example, when the

stride is 1 and q = 3

φh(x
(h−1))

=









(

x
(h−1)
1,0:2

)⊤
, . . . ,

(

x
(h−1)
1,p−1:p+1

)⊤

. . . , . . . , . . .
(

x
(h−1)
dh−1,0:2

)⊤
, . . . ,

(

x
(h−1)
dh−1,p−1:p+1

)⊤









where we let x
(h−1)
:,0 = x

(h−1)
:,p+1 = 0, i.e., zero-padding.

Note this operator has the property

∥

∥

∥x
(h−1)

∥

∥

∥

F
≤
∥

∥

∥φh(x
(h−1))

∥

∥

∥

F
≤ √

q
∥

∥

∥x
(h−1)

∥

∥

∥

F
.

because each element from x(h−1) at least appears

once and at most appears q times. In practice, q is

often small like 3×3, so throughout the paper we view

q as a constant in our theoretical analysis. To proceed,

let W(h) ∈ R
dh×qdh−1 , we have

x(1) =

√

cσ
m

σ
(

W(1)φ1(x)
)

∈ R
m×p,

x(h) =x(h−1) +
cres
H
√
m
σ
(

W(h)φh(x
(h−1))

)

∈ R
m×p

for 2 ≤ h ≤ H,

where 0 < cres < 1 is a small constant. Finally, for

a ∈ R
m×p, the output is defined as

fcnn(x, θ) = 〈a,x(H)〉.

Note here we use the similar scaling O( 1
H

√
m
) as

ResNet.

To learn the deep neural network, we consider the randomly

initialized gradient descent algorithm to find the global min-

imizer of the empirical loss (1). Specifically, we use the

following random initialization scheme. For every level

h ∈ [H], each entry is sampled from a standard Gaussian

distribution, W
(h)
ij ∼ N(0, 1) and each entry of the output

layer a is also sampled from N(0, 1). In this paper, we

train all layers by gradient descent, for k = 1, 2, . . . , and

h ∈ [H]

W(h)(k) = W(h)(k − 1)− η
∂L(θ(k − 1))

∂W(h)(k − 1)
,

a(k) = a(k − 1)− η
∂L(θ(k − 1))

∂a(k − 1)

where η > 0 is the step size.
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4. Technique Overview

In this section, we describe our main idea of proving the

global convergence of gradient descent. Our proof technique

is inspired by Du et al. (2018b) who proposed to study the

dynamics of differences between labels and predictions.

Here the individual prediction at the k-th iteration is

ui(k) = f(θ(k),xi)

and we denote u(k) = (u1(k), . . . , un(k))
⊤ ∈ R

n. Du

et al. (2018b) showed that for two-layer fully-connected

neural network, the sequence {y − u(k)}∞k=0 admits the

following dynamics

y − u(k + 1) = (I− ηH(k)) (y − u(k))

where H(k) ∈ R
n×n is a Gram matrix with5

Hij(k) =

〈

∂ui(k)

∂W(1)(k)
,

∂uj(k)

∂W(1)(k)

〉

.

The key finding in (Du et al., 2018b) is that if m is suffi-

ciently large, H(k) ≈ H∞ for all k where H∞ is defined

as H∞
ij = Ew∼N(0,I)

[

σ′ (w⊤xi

)

σ′ (w⊤xj

)

x⊤
i xj

]

. No-

tably, H∞ is a fixed matrix which only depends on the

training input, but does not depend on neural network pa-

rameters θ. As a direct result, in the large m regime, the

dynamics of {y − u(k)}∞k=0 is approximately linear

y − u(k + 1) ≈ (I− ηH∞) (y − u(k)) .

For this linear dynamics, using standard analysis technique

for power method, one can show {y − u(k)}∞k=0 converges

to 0 where the rate is determined by the least eigenvalue of

H∞ and the step size η.

We leverage this insight to our deep neural network setting.

Again we consider the sequence {y − u(k)}∞k=0, which

admits the dynamics

y − u(k + 1) = (I− ηG(k)) (y − u(k))

where

Gij(k)

=

〈

∂ui(k)

∂θ(k)
,
∂uj(k)

∂θ(k)

〉

=

H
∑

h=1

〈

∂ui(k)

∂W(h)(k)
,

∂uj(k)

∂W(h)(k)

〉

+

〈

∂ui(k)

∂a(k)
,
∂uj(k)

∂a(k)

〉

,
H+1
∑

h=1

G
(h)
ij (k).

5This formula is for the setting that only the first layer is trained.

Here we define G(h) ∈ R
n×n with G

(h)
ij (k) =

〈

∂ui(k)
∂W(h)(k)

,
∂uj(k)

∂W(h)(k)

〉

for h = 1, . . . , H and

G
(H+1)
ij (k) =

〈

∂ui(k)
∂a(k) ,

∂uj(k)
∂a(k)

〉

. Note for all h ∈ [H + 1],

each entry of G(h)(k) is an inner product. Therefore,

G(h)(k) is a positive semi-definite (PSD) matrix for

h ∈ [H + 1]. Furthermore, if there exists one h ∈ [H] that

G(h)(k) is strictly positive definite, then if one chooses the

step size η to be sufficiently small, the loss decreases at the

k-th iteration according the analysis of power method. In

this paper we focus on G(H)(k), the gram matrix induced

by the weights from H-th layer for simplicity at the cost of

a minor degradation in convergence rate.6

We use the similar observation in (Du et al., 2018b) that

we show if the width is large enough for all layers, for all

k = 0, 1, . . ., G(H)(k) is close to a fixed matrix K(H) ∈
R

n×n which depends on the input data, neural network

architecture and the activation but does not depend on neural

network parameters θ. According to the analysis of the

power method, once we establish this, as long as K(H) is

strictly positive definite, then the gradient descent enjoys a

linear convergence rate. We will show for K(H) is strictly

positive definite as long as the training data is not degenerate

(c.f. Proposition F.1 and F.2).

While following the similar high-level analysis framework

proposed by Du et al. (2018b), analyzing the convergence

of gradient descent for deep neural network is significantly

more involved and requires new technical tools. To show

G(H)(k) is close to K(H), we have two steps. First, we

show in the initialization phase G(H)(0) is close to K(H).

Second, we show during training G(H)(k) is close to

G(H)(0) for k = 1, 2, . . .. Below we give overviews of

these two steps.

Analysis of Random Initialization Unlike (Du et al.,

2018b) in which they showed H(0) is close to H∞ via a

simple concentration inequality, showing G(H)(0) is close

to K(H) requires more subtle calculations. First, as will

be clear in the following sections, K(H) is a recursively

defined matrix. Therefore, we need to analyze how the per-

turbation (due to randomness of initialization and finite m)

from lower layers propagates to the H-th layer. Second,

this perturbation propagation involves non-linear operations

due to the activation function. To quantitatively characterize

this perturbation propagation dynamics, we use induction

and leverage techniques from Malliavin calculus (Malliavin,

1995). We derive a general framework that allows us to

analyze the initialization behavior for the fully-connected

neural network, ResNet, convolutional ResNet and other

potential neural network architectures in a unified way.

6Using the contribution of all the gram matrices to the mini-
mum eigenvalue can potentially improve the convergence rate.
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One important finding in our analysis is that ResNet archi-

tecture makes the “perturbation propagation” more stable.

The high level intuition is the following. For fully con-

nected neural network, suppose we have some perturbation
∥

∥G(1)(0)−K(1)
∥

∥

2
≤ E1 in the first layer. This perturba-

tion propagates to the H-th layer admits the form

∥

∥

∥G
(H)(0)−K(H)

∥

∥

∥

2
, EH . 2O(H)E1. (4)

Therefore, we need to have E1 ≤ 1
2O(H) and this makes m

have exponential dependency on H .7

On the other hand, for ResNet the perturbation propagation

admits the form

EH .

(

1 +O

(

1

H

))H

ǫ1 = O (ǫ1) (5)

Therefore we do not have the exponential explosion problem

for ResNet. We refer readers to Section E for details.

Analysis of Perturbation of During Training The next

step is to show G(H)(k) is close to G(H)(0) for k =
0, 1, . . .. Note G(H) depends on weight matrices from all

layers, so to establish that G(H)(k) is close to G(H)(0), we

need to show W(h)(k)−W(h)(0) is small for all h ∈ [H]
and a(k)− a(0) is small.

In the two-layer neural network setting (Du et al., 2018b),

they are able to show every weight vector of the first layer

is close to its initialization, i.e.,
∥

∥W(1)(k)−W(1)(0)
∥

∥

2,∞
is small for k = 0, 1, . . .. While establishing this condition

for two-layer neural network is not hard, this condition may

not hold for multi-layer neural networks. In this paper, we

show instead, the averaged Frobenius norm

1√
m

∥

∥

∥W
(h)(k)−W(h)(0)

∥

∥

∥

F
(6)

is small for all k = 0, 1, . . ..

Similar to the analysis in the initialization, showing Equa-

tion (6) is small is highly involved because again, we need

to analyze how the perturbation propagates. We develop

a unified proof strategy for the fully-connected neural net-

work, ResNet and convolutional ResNet. Our analysis in

this step again sheds light on the benefit of using ResNet

architecture for training. The high-level intuition is similar

to Equation (5). See Section B, C, and D for details.

7We not mean to imply that fully-connected networks neces-
sarily depend exponentially on H , but simply to illustrate in our
analysis why the exponential dependence arises. For specific ac-
tivations such as ReLU and careful initialization schemes, this
exponential dependence may be avoided.

5. Warm Up: Convergence Result of GD for

Deep Fully-connected Neural Networks

In this section, as a warm up, we show gradient descent

with a constant positive step size converges to the global

minimum at a linear rate. As we discussed in Section 4, the

convergence rate depends on least eigenvalue of the Gram

matrix K(H).

Definition 5.1. The Gram matrix K(H) is recursively de-

fined as follows, for (i, j) ∈ [n]× [n], and h = 1, . . . , H−1

K
(0)
ij =〈xi,xj〉,

A
(h)
ij =

(

K
(h−1)
ii K

(h−1)
ij

K
(h−1)
ji K

(h−1)
jj

)

, (7)

K
(h)
ij =cσE(u,v)⊤∼N

(

0,A
(h)
ij

) [σ (u)σ (v)] ,

K
(H)
ij =cσK

(H−1)
ij E

(u,v)⊤∼N
(

0,A
(H−1)
ij

) [σ′(u)σ′(v)] .

The derivation of this Gram matrix is deferred to Sec-

tion E. The convergence rate and the amount of over-

parameterization depends on the least eigenvalue of this

Gram matrix. In Section F.1 we show as long as the input

training data is not degenerate, then λmin

(

K(H)
)

is strictly

positive. We remark that if H = 1, then K(H) is the same

the Gram matrix defined in (Du et al., 2018b).

Now we are ready to state our main convergence result of

gradient descent for deep fully-connected neural networks.

Theorem 5.1 (Convergence Rate of Gradient Descent for

Deep Fully-connected Neural Networks). Assume for all

i ∈ [n], ‖xi‖2 = 1, |yi| = O(1) and the number of hidden

nodes per layer

m = Ω

(

2O(H) max

{

n4

λ4
min

(

K(H)
) ,

n

δ
,
n2 log(Hn

δ
)

λ2
min

(

K(H)
)

})

where K(H) is defined in Equation (7). If we set the step

size

η = O

(

λmin

(

K(H)
)

n22O(H)

)

,

then with probability at least 1− δ over the random initial-

ization the loss, for k = 1, 2, . . ., the loss at each iteration

satisfies

L(θ(k)) ≤
(

1− ηλmin

(

K(H)
)

2

)k

L(θ(0)).

This theorem states that if the width m is large enough

and we set step size appropriately then gradient descent

converges to the global minimum with zero loss at linear
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rate. The main assumption of the theorem is that we need

a large enough width of each layer. The width m depends

on n, H and 1/λmin

(

K(H)
)

. The dependency on n is

only polynomial, which is the same as previous work on

shallow neural networks (Du et al., 2018b; Li & Liang,

2018). Similar to (Du et al., 2018b), m also polynomially

depends on 1/λmin

(

K(H)
)

. However, the dependency on

the number of layers H is exponential. As we discussed

in Section B.1, this exponential comes from the instability

of the fully-connected architecture (c.f. Equation (4)). In

the next section, we show with ResNet architecture, we can

reduce the dependency on H from 2(H) to poly(H).

Note the requirement of m has three terms. The first term is

used to show the Gram matrix is stable during training. The

second term is used to guarantee the output in each layer is

approximately normalized at the initialization phase. The

third term is used to show the perturbation of Gram matrix

at the initialization phase is small. See Section B for proofs.

The convergence rate depends step size η and λmin

(

K(H)
)

,

similar to (Du et al., 2018b). Here we require η =

O

(

λmin(K(H))
n22O(H)

)

. When H = 1, this requirement is the

same as the one used in (Du et al., 2018b). However, for

deep fully-connected neural network, we require η to be

exponentially small in terms of number of layers. The rea-

son is similar to that we require m to be exponentially large.

Again, this will be improved in the next section.

6. Convergence Result of GD for ResNet

In this section we consider the convergence of gradient de-

scent for training a ResNet. We will focus on how much

over-parameterization is needed to ensure the global con-

vergence of gradient descent and compare it with fully-

connected neural networks. Again we first define the key

Gram matrix whose least eigenvalue will determine the con-

vergence rate.

Definition 6.1. The Gram matrix K(H) is recursively de-

fined as follows, for (i, j) ∈ [n]× [n] and h = 2, . . . , H−1:

K
(0)
ij =〈xi,xj〉,

K
(1)
ij =E

(u,v)⊤∼N






0,







K
(0)
ii K

(0)
ij

K
(0)
ji K

(0)
jj













cσσ (u)σ (v) ,

b
(1)
i =

√
cσEu∼N(0,K

(0)
ii

)
[σ (u)] ,

A
(h)
ij =

(

K
(h−1)
ii K

(h−1)
ij

K
(h−1)
ji K

(h−1)
jj

)

(8)

K
(h)
ij =K

(h−1)
ij +

E
(u,v)⊤∼N

(

0,A
(h)
ij

)

[

cresb
(h−1)
i σ (u)

H

+
cresb

(h−1)
j σ (v)

H
+

c2resσ (u)σ (v)

H2

]

,

b
(h)
i =b

(h−1)
i +

cres
H

E
u∼N(0,K

(h−1)
ii

)
[σ (u)] ,

K
(H)
ij =

c2res
H2

K
(H−1)
ij E

(u,v)⊤∼N
(

0,A
(H−1)
ij

) [σ′(u)σ′(v)] .

Comparing K(H) of the ResNet and the one of the fully-

connect neural network, the definition of K(H) also depends

on a series of {b(h)}H−1
h=1 . This dependency is comes from

the skip connection block in the ResNet architecture. See

Section E. In Section F.2, we show as long as the input

training data is not degenerate, then λmin

(

K(H)
)

is strictly

positive. Furthermore, λmin

(

K(H)
)

does not depend in-

versely exponentially in H .

Now we are ready to state our main theorem for ResNet.

Theorem 6.1 (Convergence Rate of Gradient Descent for

ResNet). Assume for all i ∈ [n], ‖xi‖2 = 1, |yi| = O(1)
and the number of hidden nodes per layer

m =Ω

(

max

{

n4

λ4
min

(

K(H)
)

H6
,

n2

λ2
min(K

(H))H2
, (9)

n

δ
,
n2 log

(

Hn
δ

)

λ2
min

(

K(H)
)

})

.

If we set the step size η = O

(

λmin(K(H))H2

n2

)

, then with

probability at least 1− δ over the random initialization we

have for k = 1, 2, . . .

L(θ(k)) ≤
(

1− ηλmin

(

K(H)
)

2

)k

L(θ(0)).

In sharp contrast to Theorem 5.1, this theorem is fully poly-

nomial in the sense that both the number of neurons and

the convergence rate is polynomially in n and H . Note the

amount of over-parameterization depends on λmin

(

K(H)
)

which is the smallest eigenvalue of the H-th layer’s Gram

matrix. The main reason that we do not have any exponen-

tial factor here is that the skip connection block makes the

overall architecture more stable in both the initialization

phase and the training phase.

Note the requirement on m has 4 terms. The first two terms

are used to show the Gram matrix stable during training.

The third term is used to guarantee the output in each layer

is approximately normalized at the initialization phase. The

fourth term is used to show bound the size of the pertur-

bation of the Gram matrix at the initialization phase. See

Section C for details.
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7. Convergence Result of GD for

Convolutional ResNet

In this section we generalize the convergence result of gra-

dient descent for ResNet to convolutional ResNet. Again,

we focus on how much over-parameterization is needed to

ensure the global convergence of gradient descent. Simi-

lar to previous sections, we first define the K(H) for this

architecture.

Definition 7.1. The Gram matrix K(H) is recursively de-

fined as follows, for (i, j) ∈ [n]× [n], (l, r) ∈ [p]× [p] and

h = 2, . . . , H − 1,

K
(0)
ij =φ1 (xi)

⊤
φ1 (xj) ∈ R

p×p,

K
(1)
ij =E

(u,v)∼N






0,







K
(0)
ii K

(0)
ij

K
(0)
ji K

(0)
jj













cσσ (u)
⊤
σ (v) ,

b
(1)
i =

√
cσE

u∼N
(

0,K
(0)
ii

) [σ (u)] ,

A
(h)
ij =

(

K
(h−1)
ii K

(h−1)
ij

K
(h−1)
ji K

(h−1)
jj

)

H
(h)
ij =K

(h−1)
ij +

E
(u,v)∼N

(

0,A
(h−1)
ij

)

[

cresb
(h−1)⊤
i σ (u)

H
(10)

+
cresb

(h−1)⊤
j σ (v)

H
+

c2resσ (u)
⊤
σ (v)

H2

]

,

K
(h)
ij,lr =tr

(

H
(h)

ij,D
(h)
l

D
(h)
r

)

,

b
(h)
i =b

(h−1)
i +

cres
H

E
u∼N

(

0,K
(h−1)
ii

) [σ (u)]

M
(H)
ij,lr =K

(H−1)
ij,lr E

(u,v)∼N
(

0,A
(H−1)
ij

) [σ′(ul)σ
′(vr)]

K
(H)
ij =tr(M

(H)
ij )

where u and v are both random row vectors and D
(h)
l ,

{s : x(h−1)
:,s ∈ the lth patch}.

Note here K
(h)
ij has dimension p× p for h = 0, . . . , H − 1

and Kij,lr denotes the (l, r)-th entry.

Now we state our main convergence theorem for the convo-

lutional ResNet.

Theorem 7.1 (Convergence Rate of Gradient Descent for

Convolutional ResNet). Assume for all i ∈ [n], ‖xi‖F = 1,

|yi| = O(1) and the number of hidden nodes per layer

m =Ω

(

max

{

n4

λ4
0H

6
,

n4

λ4
0H

2
,

n

δ
,
n2 log

(

Hn
δ

)

λ2
0

}

poly(p)

)

. (11)

If we set the step size η = O
(

λ0H
2

n2poly(p)

)

, then with proba-

bility at least 1− δ over the random initialization we have

for k = 1, 2, . . .

L(θ(k)) ≤
(

1− ηλmin

(

K(H)
)

2

)k

L(θ(0)).

This theorem is similar to that of ResNet. The number

of neurons required per layer is only polynomial in the

depth and the number of data points and step size is only

polynomially small. The only extra term is poly(p) in the

requirement of m and η. The analysis is also similar to

ResNet and we refer readers to Section D for details.

8. Conclusion

In this paper, we show that gradient descent on deep over-

parametrized networks can obtain zero training loss. Our

proof builds on a careful analysis of the random initialization

scheme and a perturbation analysis which shows that the

Gram matrix is increasingly stable under overparametriza-

tion. These techniques allow us to show that every step of

gradient descent decreases the loss at a geometric rate.

We list some directions for future research:

1. The current paper focuses on the training loss, but does

not address the test loss. It would be an important

problem to show that gradient descent can also find

solutions of low test loss. In particular, existing work

only demonstrate that gradient descent works under the

same situations as kernel methods and random feature

methods (Daniely, 2017; Li & Liang, 2018; Allen-Zhu

et al., 2018a; Arora et al., 2019). To further investigate

of generalization behavior, we believe some algorithm-

dependent analyses may be useful (Hardt et al., 2016;

Mou et al., 2018; Chen et al., 2018).

2. The width of the layers m is polynomial in all the

parameters for the ResNet architecture, but still very

large. Realistic networks have number of parameters,

not width, a large constant multiple of n. We consider

improving the analysis to cover commonly utilized

networks an important open problem.

3. The current analysis is for gradient descent, instead of

stochastic gradient descent. We believe the analysis can

be extended to stochastic gradient, while maintaining

the linear convergence rate.

4. The convergence rate can be potentially improved if the

minimum eigenvalue takes into account the contribu-

tion of all Gram matrices, but this would considerably

complicate the initialization and perturbation analysis.
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