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Abstract

We consider the problem of learning a one-hidden-

layer neural network with non-overlapping con-

volutional layer and ReLU activation, i.e.,

f(Z,w,a) =
P

j aj�(w
T
Zj), in which both the

convolutional weights w and the output weights a

are parameters to be learned. When the labels are

the outputs from a teacher network of the same ar-

chitecture with fixed weights (w⇤,a⇤), we prove

that with Gaussian input Z, there is a spurious lo-

cal minimizer. Surprisingly, in the presence of the

spurious local minimizer, gradient descent with

weight normalization from randomly initialized

weights can still be proven to recover the true pa-

rameters with constant probability, which can be

boosted to probability 1 with multiple restarts. We

also show that with constant probability, the same

procedure could also converge to the spurious lo-

cal minimum, showing that the local minimum

plays a non-trivial role in the dynamics of gradi-

ent descent. Furthermore, a quantitative analysis

shows that the gradient descent dynamics has two

phases: it starts off slow, but converges much

faster after several iterations.

1. Introduction

Deep convolutional neural networks (DCNN) have achieved

the state-of-the-art performance in many applications such

as computer vision (Krizhevsky et al., 2012), natural lan-

guage processing (Dauphin et al., 2016) and reinforcement

learning applied in classic games like Go (Silver et al., 2016).

Despite the highly non-convex nature of the objective func-

tion, simple first-order algorithms like stochastic gradient

descent and its variants often train such networks success-
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fully. Why such simple methods in learning DCNN is suc-

cessful remains elusive from the optimization perspective.

Recently, a line of research (Tian, 2017; Brutzkus & Glober-

son, 2017; Li & Yuan, 2017; Soltanolkotabi, 2017; Shalev-

Shwartz et al., 2017b) assumed the input distribution is

Gaussian and showed that stochastic gradient descent with

random or 0 initialization is able to train a neural net-

work f(Z, {wj}) =
P

j aj�(w
T
j Z) with ReLU activation

�(x) = max(x, 0) in polynomial time. However, these

results all assume there is only one unknown layer {wj},

while a is a fixed vector. A natural question thus arises:

Does randomly initialized (stochastic) gradient descent

learn neural networks with multiple layers?

In this paper, we take an important step by showing that

randomly initialized gradient descent learns a non-linear

convolutional neural network with two unknown layers w

and a. To our knowledge, our work is the first of its kind.

Formally, we consider the convolutional case in which a

filter w is shared among different hidden nodes. Let x 2 R
d

be an input sample, e.g., an image. We generate k patches

from x, each with size p: Z 2 R
p⇥k where the i-th column

is the i-th patch generated by selecting some coordinates

of x: Zi = Zi(x). We further assume there is no overlap

between patches. Thus, the neural network function has the

following form:

f(Z,w,a) =

kX

i=1

ai�
�
w

>
Zi

�
.

We focus on the realizable case, i.e., the label is generated

according to y = f (Z,w⇤,a⇤) for some true parameters

w
⇤ and a

⇤ and use `2 loss to learn the parameters:

min
w,a

`(Z,w,a) :=
1

2
(f (Z,w,a)� f (Z,w⇤,a⇤))2 .

We assume x is sampled from a Gaussian distribution and

there is no overlap between patches. This assumption is

equivalent to that each entry of Z is sampled from a Gaus-

sian distribution (Brutzkus & Globerson, 2017; Zhong et al.,

2017b). Following (Zhong et al., 2017a;b; Li & Yuan, 2017;



Gradient Descent Learns One-hidden-layer CNN

(a) Convolutional neural network with an unknown non-
overlapping filter and an unknown output layer. In the first
(hidden) layer, a filter w is applied to nonoverlapping parts
of the input x, which then passes through a ReLU activation
function. The final output is the inner product between an
output weight vector a and the hidden layer outputs.
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(b) The convergence of gradient descent for learning a CNN
described in Figure 1a with Gaussian input using different
initializations. The success case and the failure case corre-
spond to convergence to the global minimum and the spurious
local minimum, respectively. In the first ⇠ 50 iterations the
convergence is slow. After that gradient descent converges at
a fast linear rate.

Figure 1. Network architecture that we consider in this paper and convergence of gradient descent for learning the parameters of this

network.

Tian, 2017; Brutzkus & Globerson, 2017; Shalev-Shwartz

et al., 2017b), in this paper, we mainly focus on the popula-

tion loss:

` (w,a) :=
1

2
EZ

h
(f (Z,w,a)� f (Z,w⇤,a⇤))2

i
.

We study whether the global convergence w ! w
⇤ and

a ! a
⇤ can be achieved when optimizing `(w,a) using

randomly initialized gradient descent.

A crucial difference between our two-layer network and

previous one-layer models is there is a positive-homogeneity

issue. That is, for any c > 0, f
�
Z, cw, a

c

�
= f (Z,w,a).

This interesting property allows the network to be rescaled

without changing the function computed by the network. As

reported by (Neyshabur et al., 2015), it is desirable to have

scaling-invariant learning algorithm to stabilize the training

process.

One commonly used technique to achieve stability is

weight-normalization introduced by Salimans & Kingma

(2016). As reported in (Salimans & Kingma, 2016), this

re-parametrization improves the conditioning of the gradient

because it couples the magnitude of the weight vector from

the direction of the weight vector and empirically acceler-

ates stochastic gradient descent optimization.

In our setting, we re-parametrize the first layer as w = v

kvk
2

and the prediction function becomes

f (Z,v,a) =

kX

i=1

ai
�
�
Z

>
i v
�

kvk2
. (1)

The loss function is

` (v,a) =
1

2
EZ

h
(f (Z,v,a)� f (Z,v⇤,a⇤))2

i
. (2)

In this paper we focus on using randomly initialized gradient

descent for learning this convolutional neural network. The

pseudo-code is listed in Algorithm 1.1

Main Contributions. Our paper have three contributions.

First, we show if (v,a) is initialized by a specific random

initialization, then with high probability, gradient descent

from (v,a) converges to teacher’s parameters (v⇤,a⇤). We

can further boost the success rate with more trials.

Second, perhaps surprisingly, we prove that the objective

function (Equation (2)) does have a spurious local minimum:

using the same random initialization scheme, there exists

a pair (ṽ0, ã0) 2 S±(v,a) so that gradient descent from

(ṽ0, ã0) converges to this bad local minimum. In contrast to

previous works on guarantees for non-convex objective func-

tions whose landscape satisfies “no spurious local minima”

property (Li et al., 2016; Ge et al., 2017a; 2016; Bhojana-

palli et al., 2016; Ge et al., 2017b; Kawaguchi, 2016), our

result provides a concrete counter-example and highlights a

conceptually surprising phenomenon:

Randomly initialized local search can find a global

1With some simple calculations, we can see the optimal solu-
tion for a is unique, which we denote as a⇤ whereas the optimal
for v is not because for every optimal solution v

⇤, cv⇤ for c > 0
is also an optimal solution. In this paper, with a little abuse of
the notation, we use v

⇤ to denote the equivalent class of optimal
solutions.
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Algorithm 1 Gradient Descent for Learning One-Hidden-

Layer CNN with Weight Normalization

1: Input: Initialization v0 2 R
p, a0 2 R

k, learning rate

⌘.

2: for t = 1, 2, . . . do

3: v
t+1  v

t � ⌘
@`(vt,at)

@vt ,

4: a
t+1  a

t � ⌘
@`(vt,at)

@at .

5: end for

minimum in the presence of spurious local minima.

Finally, we conduct a quantitative study of the dynamics

of gradient descent. We show that the dynamics of Algo-

rithm 1 has two phases. At the beginning (around first 50

iterations in Figure 1b), because the magnitude of initial

signal (angle between v and w
⇤) is small, the prediction

error drops slowly. After that, when the signal becomes

stronger, gradient descent converges at a much faster rate

and the prediction error drops quickly.

Technical Insights. The main difficulty of analyzing the

convergence is the presence of local minima. Note that

local minimum and the global minimum are disjoint (c.f.

Figure 1b). The key technique we adopt is to characterize

the attraction basin for each minimum. We consider the

sequence {(vt,at)}
1
t=0 generated by Algorithm 1 with step

size ⌘ using initialization point
�
v
0,a0

�
. The attraction

basin for a minimum (v⇤,a⇤) is defined as the

B (v⇤,a⇤) =
n�

v
0,a0

�
, lim
t!1

�
v
t,at

�
! (v⇤,a⇤)

o

The goal is to find a distribution G for weight initialization so

that the probability that the initial weights are in B (v⇤,a⇤)
of the global minimum is bounded below:

P(v0,a0)⇠G [B (v⇤,a⇤)] � c

for some absolute constant c > 0.

While it is hard to characterize B (v⇤,a⇤), we find that the

set B̃(v⇤,a⇤) ⌘ {
�
v
0,a0

�
:
�
v
0
�>

v
⇤ � 0,

�
a
0
�>

a
⇤ �

0,
��1>

a
0
�� 

��1>
a
⇤��} is a subset of B(v⇤,a⇤) (c.f.

Lemma 5.2-Lemma 5.4). Furthermore, when the learn-

ing rate ⌘ is sufficiently small, we can design a specific

distribution G so that:

P(v0,a0)⇠G [B(v⇤,a⇤)] � P(v0,a0)⇠G

h
B̃(v⇤,a⇤)

i
� c

This analysis emphasizes that for non-convex optimization

problems, we need to carefully characterize both the trajec-

tory of the algorithm and the initialization. We believe that

this idea is applicable to other non-convex problems.

To obtain the convergence rate, we propose a potential

function (also called Lyapunov function in the literature).

For this problem we consider the quantity sin2 �t where

�t = ✓ (vt,v⇤) and we show it shrinks at a geometric rate

(c.f. Lemma 5.5).

Organization This paper is organized as follows. In Sec-

tion 3 we introduce the necessary notations and analytical

formulas of gradient updates in Algorithm 1. In Section 4,

we provide our main theorems on the performance of the

algorithm and their implications. In Section 6, we use simu-

lations to verify our theories. In Section 5, we give a proof

sketch of our main theorem. We conclude and list future

directions in Section 7. We place most of our detailed proofs

in the appendix.

2. Related Works

From the point of view of learning theory, it is well

known that training a neural network is hard in the worst

cases (Blum & Rivest, 1989; Livni et al., 2014; Šı́ma, 2002;

Shalev-Shwartz et al., 2017a;b) and recently, Shamir (2016)

showed that assumptions on both the target function and the

input distribution are needed for optimization algorithms

used in practice to succeed.

Solve NN without gradient descent. With some additional

assumptions, many works tried to design algorithms that

provably learn a neural network with polynomial time and

sample complexity (Goel et al., 2016; Zhang et al., 2015;

Sedghi & Anandkumar, 2014; Janzamin et al., 2015; Goel &

Klivans, 2017a;b). However these algorithms are specially

designed for certain architectures and cannot explain why

(stochastic) gradient based optimization algorithms work

well in practice.

Gradient-based optimization with Gaussian Input. Fo-

cusing on gradient-based algorithms, a line of research ana-

lyzed the behavior of (stochastic) gradient descent for Gaus-

sian input distribution. Tian (2017) showed that popula-

tion gradient descent is able to find the true weight vector

with random initialization for one-layer one-neuron model.

Soltanolkotabi (2017) later improved this result by show-

ing the true weights can be exactly recovered by empirical

projected gradient descent with enough samples in linear

time. Brutzkus & Globerson (2017) showed population

gradient descent recovers the true weights of a convolu-

tion filter with non-overlapping input in polynomial time.

Zhong et al. (2017b;a) proved that with sufficiently good

initialization, which can be implemented by tensor method,

gradient descent can find the true weights of a one-hidden-

layer fully connected and convolutional neural network. Li

& Yuan (2017) showed SGD can recover the true weights

of a one-layer ResNet model with ReLU activation under

the assumption that the spectral norm of the true weights is

within a small constant of the identity mapping. (Panigrahy

et al., 2018) also analyzed gradient descent for learning



Gradient Descent Learns One-hidden-layer CNN

a two-layer neural network but with different activation

functions. This paper also follows this line of approach

that studies the behavior of gradient descent algorithm with

Gaussian inputs.

Local minimum and Global minimum. Finding the op-

timal weights of a neural network is non-convex problem.

Recently, researchers found that if the objective functions

satisfy the following two key properties, (1) all saddle points

and local maxima are strict (i.e., there exists a direction with

negative curvature), and (2) all local minima are global

(no spurious local minmum), then perturbed (stochastic)

gradient descent (Ge et al., 2015) or methods with sec-

ond order information (Carmon et al., 2016; Agarwal et al.,

2017) can find a global minimum in polynomial time. 2

Combined with geometric analyses, these algorithmic re-

sults have shown a large number problems, including tensor

decomposition (Ge et al., 2015), dictionary learning (Sun

et al., 2017), matrix sensing (Bhojanapalli et al., 2016; Park

et al., 2017), matrix completion (Ge et al., 2017a; 2016)

and matrix factorization (Li et al., 2016) can be solved in

polynomial time with local search algorithms.

This motivates the research of studying the landscape of neu-

ral networks (Kawaguchi, 2016; Choromanska et al., 2015;

Hardt & Ma, 2016; Haeffele & Vidal, 2015; Mei et al.,

2016; Freeman & Bruna, 2016; Safran & Shamir, 2016;

Zhou & Feng, 2017; Nguyen & Hein, 2017a;b; Ge et al.,

2017b; Zhou & Feng, 2017; Safran & Shamir, 2017). In

particular, Kawaguchi (2016); Hardt & Ma (2016); Zhou &

Feng (2017); Nguyen & Hein (2017a;b); Feizi et al. (2017)

showed that under some conditions, all local minima are

global. Recently, Ge et al. (2017b) showed using a modi-

fied objective function satisfying the two properties above,

one-hidden-layer neural network can be learned by noisy

perturbed gradient descent. However, for nonlinear activa-

tion function, where the number of samples larger than the

number of nodes at every layer, which is usually the case in

most deep neural network, and natural objective functions

like `2, it is still unclear whether the strict saddle and “all

locals are global” properties are satisfied. In this paper, we

show that even for a one-hidden-layer neural network with

ReLU activation, there exists a spurious local minimum.

However, we further show that randomly initialized local

search can achieve global minimum with constant probabil-

ity.

2Lee et al. (2016) showed vanilla gradient descent only con-
verges to minimizers with no convergence rates guarantees. Re-
cently, Du et al. (2017a) gave an exponential time lower bound
for the vanilla gradient descent. In this paper, we give polynomial
convergence guarantee on vanilla gradient descent.

3. Preliminaries

We use bold-faced letters for vectors and matrices. We use

k·k2 to denote the Euclidean norm of a finite-dimensional

vector. We let wt and a
t be the parameters at the t-th

iteration and w
⇤ and a

⇤ be the optimal weights. For two

vector w1 and w2, we use ✓ (w1,w2) to denote the angle

between them. ai is the i-th coordinate of a and Zi is

the transpose of the i-th row of Z (thus a column vector).

We denote Sp�1 the (p � 1)-dimensional unit sphere and

B (0, r) the ball centered at 0 with radius r.

In this paper we assume every patch Zi is vector of i.i.d

Gaussian random variables. The following theorem gives

an explicit formula for the population loss. The proof uses

basic rotational invariant property and polar decomposition

of Gaussian random variables. See Section A for details.

Theorem 3.1. If every entry of Zis i.i.d. sampled from a

Gaussian distribution with mean 0 and variance 1, then

population loss is

` (v,a) =
1

2

"
(⇡ � 1) kw⇤k22

2⇡
ka⇤k22 +

(⇡ � 1)

2⇡
kak

2
2

�
2 (g (�)� 1) kw⇤k2

2⇡
a
>
a
⇤ +
kw⇤k22
2⇡

�
1
>
a
⇤�2

+
1

2⇡

�
1
>
a
�2
� 2 kw⇤k2 1

>
a · 1>

a
⇤
�

(3)

where � = ✓ (v,w⇤) and g(�) = (⇡ � �) cos�+ sin�.

Using similar techniques, we can show the gradient also has

an analytical form.

Theorem 3.2. Suppose every entry of Zis i.i.d. sampled

from a Gaussian distribution with mean 0 and variance 1.

Denote � = ✓ (w,w⇤). Then the expected gradient of w

and a can be written as

EZ


@` (Z,v,a)

@v

�

=�
1

2⇡ kvk2

 
I�

vv
>

kvk
2
2

!
a
>
a
⇤ (⇡ � �)w⇤

EZ


@` (Z,v,a)

@a

�

=
1

2⇡

�
11

> + (⇡ � 1) I
�
a

�
1

2⇡

�
11

> + (g(�)� 1) I
�
kw⇤k2 a

⇤

As a remark, if the second layer is fixed, upon proper scal-

ing, the formulas for the population loss and gradient of

v are equivalent to the corresponding formulas derived

in (Brutzkus & Globerson, 2017; Cho & Saul, 2009). How-

ever, when the second layer is not fixed, the gradient of v

depends on a
>
a
⇤, which plays an important role in deciding

whether converging to the global or the local minimum.
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4. Main Result

We begin with our main theorem about the convergence of

gradient descent.

Theorem 4.1. Suppose the initialization satisfies�
a
0
�>

a
⇤ > 0,

��1>
a
0
�� 

��1>
a
⇤��, �0 < ⇡/2 and step size

satisfies

⌘ = O

0
@min

8
<
:

�
a
0
�>

a
⇤ cos�0

⇣
ka⇤k22 + (1>a⇤)

2
⌘
kw⇤k22

,

(g(�0)� 1) ka⇤k22 cos�
0

⇣
ka⇤k22 + (1>a⇤)

2
⌘
kw⇤k22

,

cos�0

⇣
ka⇤k22 + (1>a⇤)

2
⌘
kw⇤k22

,
1

k

9
=
;

1
A .

Then the convergence of gradient descent has two phases.

(Phase I: Slow Initial Rate) There exists T1 =

O
⇣

1
⌘ cos�0�0 + 1

⌘

⌘
such that we have �T1 = Θ (1) and

�
a
T1

�>
a
⇤ kw⇤k2 = Θ

⇣
ka⇤k22 kw

⇤k22

⌘
where �0 =

min
n�

a
0
�>

a
⇤ kw⇤k2 , (g(�

0)� 1) ka⇤k22 ka
⇤k22

o
.

(Phase II: Fast Rate) Suppose at the T1-th iteration, �T1 =

Θ (1) and
�
a
T1

�>
a
⇤ kw⇤k2 = Θ

⇣
ka⇤k22 kw

⇤k22

⌘
, then

there exists T2 = eO(
⇣

1
⌘kw⇤k2

2
ka⇤k2

2

+ 1
⌘

⌘
log
�
1
✏

�
)3 such

that `
�
v
T1+T2 ,aT1+T2

�
 ✏ kw⇤k22 ka

⇤k22.

Theorem 4.1 shows under certain conditions of the initial-

ization, gradient descent converges to the global minimum.

The convergence has two phases, at the beginning because

the initial signal (cos�0�0) is small, the convergence is

quite slow. After T1 iterations, the signal becomes stronger

and we enter a regime with a faster convergence rate. See

Lemma 5.5 for technical details.

Initialization plays an important role in the conver-

gence. First, Theorem 4.1 needs the initialization satisfy�
a
0
�>

a
⇤ > 0,

��1>
a
0
�� 

��1>
a
⇤�� and �0 < ⇡/2. Second,

the step size ⌘ and the convergence rate in the first phase

also depends on the initialization. If the initial signal is very

small, for example, �0 ⇡ ⇡/2 which makes cos�0 close to

0, we can only choose a very small step size and because T1

depends on the inverse of cos�0, we need a large number

of iterations to enter phase II. We provide the following

initialization scheme which ensures the conditions required

by Theorem 4.1 and a large enough initial signal.

Theorem 4.2. Let v ⇠ unif
�
Sp�1

�
and a ⇠

3 eO (·) hides logarithmic factors on
��1>

a
⇤
�� kw⇤k2 and

ka⇤k2 kw
⇤k2

unif

✓
B

✓
0,

|1>
a
⇤|kw⇤k

2p
k

◆◆
, then exists

�
v
0,a0

�
2 {(v,a) , (v,�a) , (�v,a) , (�v,�a)}

that
�
a
0
�>

a
⇤ > 0,

��1>
a
0
�� 

��1>
a
⇤�� and �0 < ⇡/2.

Further, with high probability, the initialization satisfies
�
a
0
�>

a
⇤ kw⇤k2 = Θ

✓
|1>

a
⇤|ka⇤k

2
kw⇤k2

2

k

◆
, and �0 =

Θ

⇣
1p
p

⌘
.

Theorem 4.2 shows after generating a pair of random vec-

tors (v,a), trying out all 4 sign combinations of (v,a),
we can find the global minimum by gradient descent. Fur-

ther, because the initial signal is not too small, we only

need to set the step size to be O(1/poly(k, p, kw⇤k2 kak2))
and the number of iterations in phase I is at most

O(poly(k, p, kw⇤k2 kak2)). Therefore, Theorem 4.1 and

Theorem 4.2 together show that randomly initialized gradi-

ent descent learns an one-hidden-layer convolutional neural

network in polynomial time. The proof of the first part of

Theorem 4.2 uses the symmetry of unit sphere and ball and

the second part is a standard application of random vector

in high-dimensional spaces. See Lemma 2.5 of (Hardt &

Price, 2014) for example.

Remark 1: For the second layer we use O
⇣

1p
k

⌘
type ini-

tialization, verifying common initialization techniques (Glo-

rot & Bengio, 2010; He et al., 2015; LeCun et al., 1998).

Remark 2: The Gaussian input assumption is not necessar-

ily true in practice, although this is a common assumption

appeared in the previous papers (Brutzkus & Globerson,

2017; Li & Yuan, 2017; Zhong et al., 2017a;b; Tian, 2017;

Xie et al., 2017; Shalev-Shwartz et al., 2017b) and also con-

sidered plausible in (Choromanska et al., 2015). Our result

can be easily generalized to rotation invariant distributions.

However, extending to more general distributional assump-

tion, e.g., structural conditions used in (Du et al., 2017b)

remains a challenging open problem.

Remark 3: Since we only require initialization to be smaller

than some quantities of a⇤ and w
⇤. In practice, if the op-

timization fails, i.e., the initialization is too large, one can

halve the initialization size, and eventually these conditions

will be met.

4.1. Gradient Descent Can Converge to the Spurious

Local Minimum

Theorem 4.2 shows that among

{(v,a) , (v,�a) , (�v,a) , (�v,�a)}, there is a pair

that enables gradient descent to converge to the global

minimum. Perhaps surprisingly, the next theorem shows

that under some conditions of the underlying truth, there

is also a pair that makes gradient descent converge to the
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spurious local minimum.

Theorem 4.3. Without loss of generality, we let kw⇤k2 =

1. Suppose
�
1
>
a
⇤�2 < 1

poly(p) ka
⇤k22 and ⌘ is suf-

ficiently small. Let v ⇠ unif
�
Sp�1

�
and a ⇠

unif

✓
B

✓
0,

|1>
a
⇤|p

k

◆◆
, then with high probability, there ex-

ists
�
v
0,a0

�
2 {(v,a) , (v,�a) , (�v,a) , (�v,�a)} that

�
a
0
�>

a
⇤ < 0,

��1>
a
0
�� 

��1>
a
⇤��, g

�
�0
�


�2(1>
a
⇤)

2

ka⇤k2

2

+1.

If
�
v
0,a0

�
is used as the initialization, when Algorithm 1

converges, we have

✓ (v,w⇤) = ⇡,a =
�
11

> + (⇡ � 1) I
��1 �

11
> � I

�
a
⇤

and ` (v,a) = Ω

⇣
ka⇤k22

⌘
.

Unlike Theorem 4.1 which requires no assumption on the

underlying truth a
⇤, Theorem 4.3 assumes

�
1
>
a
⇤�2 <

1
poly(p) ka

⇤k22. This technical condition comes from the

proof which requires invariance g(�t) 
�2(1>

a
⇤)

2

ka⇤k2

2

for

all iterations. To ensure there exists
�
v
0,a0

�
which makes

g(�0) 
�2(1>

a
⇤)

2

ka⇤k2

2

, we need
(1>

a
⇤)

2

ka⇤k2

2

relatively small. See

Section E for more technical insights.

A natural question is whether the ratio
(1>

a
⇤)

2

ka⇤k2

2

becomes

larger, the probability randomly gradient descent converging

to the global minimum, becomes larger as well. We verify

this phenomenon empirically in Section 6.

5. Proof Sketch

In Section 5.1, we give qualitative high level intuition on

why the initial conditions are sufficient for gradient descent

to converge to the global minimum. In Section 5.2, we

explain why the gradient descent has two phases.

5.1. Qualitative Analysis of Convergence

The convergence to global optimum relies on a geometric

characterization of saddle points and a series of invariants

throughout the gradient descent dynamics. The next lemma

gives the analysis of stationary points. The main step is to

check the first order condition of stationary points using

Theorem 3.2.

Lemma 5.1 (Stationary Point Analysis). When the gradient

descent converges, a>a⇤ 6= 0 and kvk2 < 1, we have

either

✓ (v,w⇤) = 0,a = kw⇤k2 a
⇤

or ✓ (v,w⇤) = ⇡,

a =
�
11

> + (⇡ � 1) I
��1 �

11
> � I

�
kw⇤k2 a

⇤.

This lemma shows that when the algorithm converges,

and a and a
⇤ are not orthogonal, then we arrive at

either a global optimal point or a local minimum.

Now recall the gradient formula of v:
@`(v,a)

@v
=

� 1
2⇡kvk

2

⇣
I� vv

>

kvk2

2

⌘
a
>
a
⇤ (⇡ � �)w⇤. Notice that �  ⇡

and
⇣
I� vv

>

kvk2

2

⌘
is just the projection matrix onto the com-

plement of v. Therefore, the sign of inner product between

a and a
⇤ plays a crucial role in the dynamics of Algorithm 1

because if the inner product is positive, the gradient update

will decrease the angle between v and w
⇤ and if it is nega-

tive, the angle will increase. This observation is formalized

in the lemma below.

Lemma 5.2 (Invariance I: Tje Angle between v and w
⇤

always decreases.). If (at)
>
a
⇤ > 0, then �t+1  �t.

This lemma shows that when (at)
>
a
⇤ > 0 for all t, gradient

descent converges to the global minimum. Thus, we need to

study the dynamics of (at)
>
a
⇤. For the ease of presentation,

without loss of generality, we assume kw⇤k2 = 1. By the

gradient formula of a, we have

�
a
t+1
�>

a
⇤

=

✓
1�

⌘(⇡ � 1)

2⇡

◆�
a
t
�>

a
⇤ +

⌘(g(�t)� 1)

2⇡

��at
��2
2

+
⌘

2⇡

⇣�
1
>
a
⇤�2 �

�
1
>
a
t
� �

1
>
a
⇤�⌘ . (4)

We can use induction to prove the invariance. If (at)
>
a
⇤ >

0 and �t < ⇡
2 the first term of Equation (4) is non-negative.

For the second term, notice that if �t < ⇡
2 , we have g(�t) >

1, so the second term is non-negative. Therefore, as long

as
⇣�

1
>
a
⇤�2 �

�
1
>
a
t
� �

1
>
a
⇤�
⌘

is also non-negative, we

have the desired invariance. The next lemma summarizes

the above analysis.

Lemma 5.3 (Invariance II: Positive Signal from the Second

Layer.). If (at)
>
a
⇤ > 0, 0  1

>
a
⇤ · 1>

a
t 

�
1
>
a
⇤�2,

0 < �t < ⇡/2 and ⌘ < 2, then
�
a
t+1
�>

a
⇤ > 0.

It remains to prove
⇣�

1
>
a
⇤�2 �

�
1
>
a
t
� �

1
>
a
⇤�
⌘

> 0.

Again, we study the dynamics of this quantity. Using the

gradient formula and some algebra, we have

1
>
a
t+1 · 1>

a
⇤ 

✓
1�

⌘ (k � ⇡ � 1)

2⇡

◆
1
>
a
t · 1>

a
⇤

+
⌘ (k + g(�t)� 1)

2

�
1
>
a
⇤�2



✓
1�

⌘ (k � ⇡ � 1)

2⇡

◆
1
>
a
t · 1>

a
⇤

+
⌘ (k + ⇡ � 1)

2

�
1
>
a
⇤�2
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where have used the fact that g(�)  ⇡ for all 0  �  ⇡
2 .

Therefore we have
�
1
>
a
⇤ � 1

>
a
t+1
�
· 1>

a
⇤

�

✓
1�

⌘(k + ⇡ � 1)

2⇡

◆�
1
>
a
⇤ � 1

>
a
t
�
1
>
a
⇤.

These imply the third invariance.

Lemma 5.4 (Invariance III: Summation of Second Layer Al-

ways Small.). If 1>
a
⇤ · 1>

a
t 

�
1
>
a
⇤�2 and ⌘ < 2⇡

k+⇡�1

then 1
>
a
⇤ · 1>

a
t+1 

�
1
>
a
⇤�2.

To sum up, if the initialization satisfies (1) �0 < ⇡
2 , (2)

�
a
0
�>

a
⇤ > 0 and (3) 1

>
a
⇤ · 1>

a
0 

�
1
>
a
⇤�2, with

Lemma 5.2, 5.3, 5.4, by induction we can show the conver-

gence to the global minimum. Further, Theorem 4.2 shows

these three conditions are true with constant probability

using random initialization.

5.2. Quantitative Analysis of Two Phase Phenomenon

In this section we demonstrate why there is a two-phase

phenomenon. Throughout this section, we assume the

conditions in Section 5.1 hold. We first consider the con-

vergence of the first layer. Because we are using weight-

normalization, only the angle between v and w
⇤ will affect

the prediction. Therefore, in this paper, we study the dynam-

ics sin2 �t. The following lemma quantitatively characterize

the shrinkage of this quantity of one iteration.

Lemma 5.5 (Convergence of Angle between v and w
⇤).

Under the same assumptions as in Theorem 4.1. Let

�0 = min
n�

a
0
�>

a
⇤,
�
g(�0)� 1

�
ka⇤k22

o
kw⇤k22.

If the step size satisfies ⌘ =

O(min{ �0 cos�0

(ka⇤k2

2
+(1>a⇤)2)kw⇤k2

2

, cos�0

(ka⇤k2

2
+(1>a⇤)2)kw⇤k2

2

, 1
k
}),

we have

sin2 �t+1 
�
1� ⌘ cos�t�t

�
sin2 �t

where �t =
kw⇤k

2(⇡��t)(at)
>
a
⇤

2⇡kvtk2

2

.

This lemma shows the convergence rate depends on two

crucial quantities, cos�t and �t. At the beginning, both

cos�t and �t are small. Nevertheless, Lemma C.3 shows

�t is universally lower bounded by Ω
�
�0
�
. Therefore,

after O( 1
⌘ cos�0�0 ) we have cos�t = Ω (1). Once

cos�t = Ω (1), Lemma C.2 shows, after O
⇣

1
⌘

⌘
itera-

tions, (at)a⇤ kw⇤k = Ω

⇣
kw⇤k22 ka

⇤k22

⌘
. Combining the

facts kvtk2  2 (Lemma C.3) and �t < ⇡/2, we have

cos�t�t = Ω

⇣
kw⇤k22 ka

⇤k22

⌘
. Now we enter phase II.

In phase II, Lemma 5.5 shows

sin2 �t+1 
⇣
1� ⌘C kw⇤k22 ka

⇤k22

⌘
sin2 �t

for some positive absolute constant C. Therefore, we have

much faster convergence rate than that in the Phase I. After

only eO
⇣

1
⌘kw⇤k2

2
kak2

2

log
�
1
✏

�⌘
iterations, we obtain �  ✏.

Once we have this, we can use Lemma C.4 to show��1>
a
⇤ � 1

>
a
��  O (✏ ka⇤k2) after eO( 1

⌘k
log
�
1
✏

�
) iter-

ations. Next, using Lemma C.5, we can show after

eO
⇣

1
⌘
log 1

✏

⌘
iterations, ka� a

⇤k2 = O (✏ ka⇤k2). Lastly,

Lemma C.6 shows if ka� a
⇤k2 = O (✏ ka⇤k2) and � =

O (✏) we have we have ` (v,a) = O
⇣
✏ ka⇤k22

⌘
.

6. Experiments

In this section, we illustrate our theoretical results with

numerical experiments. Again without loss of generality,

we assume kw⇤k2 = 1 in this section.

6.1. Multi-phase Phenomenon

In Figure 2, we set k = 20, p = 25 and we consider 4 key

quantities in proving Theorem 4.1, namely, angle between

v and w
⇤ (c.f. Lemma 5.5), ka� a

⇤k (c.f. Lemma C.5),��1>
a� 1

>
a
⇤�� (c.f. Lemma C.4) and prediction error (c.f.

Lemma C.6).

When we achieve the global minimum, all these quanti-

ties are 0. At the beginning (first ⇠ 10 iterations),��1>
a� 1

>
a
⇤�� and the prediction error drop quickly. This

is because for the gradient of a, 11>
a
⇤ is the dominating

term which will make 11
>
a closer to 11

>
a
⇤ quickly.

After that, for the next ⇠ 200 iterations, all quantities de-

crease at a slow rate. This phenomenon is explained to the

Phase I stage in Theorem 4.1. The rate is slow because the

initial signal is small.

After ⇠ 200 iterations, all quantities drop at a much faster

rate. This is because the signal is very strong and since the

convergence rate is proportional to this signal, we have a

much faster convergence rate (c.f. Phase II of Theorem 4.1).

6.2. Probability of Converging to the Global Minimum

In this section we test the probability of converging to the

global minimum using the random initialization scheme

described in Theorem 4.2. We set p = 6 and vary k

and
(1>

a
⇤)2

kak2

2

. We run 5000 random initializations for each

(k, (1>
a
⇤)2

kak2

2

) and compute the probability of converging to

the global minimum.

In Theorem 4.3, we showed if
(1>

a
⇤)2

kak2

2

is sufficiently small,

randomly initialized gradient descent converges to the spu-

rious local minimum with constant probability. Table 1

empirically verifies the importance of this assumption. For
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Figure 2. Convergence of different measures we considered in

proving Theorem 4.1. In the first ⇠ 200 iterations, all quanti-

ties drop slowly. After that, these quantities converge at much

faster linear rates.

every fixed k if
(1>

a
⇤)2

kak2

2

becomes larger, the probability of

converging to the global minimum becomes larger.

An interesting phenomenon is for every fixed ratio
(1>

a
⇤)2

kak2

2

when k becomes lager, the probability of converging to the

global minimum becomes smaller. How to quantitatively

characterize the relationship between the success probability

and the dimension of the second layer is an open problem.

7. Conclusion and Future Works

In this paper we proved the first polynomial convergence

guarantee of randomly initialized gradient descent algo-

rithm for learning a one-hidden-layer convolutional neural

network. Our result reveals an interesting phenomenon that

randomly initialized local search algorithm can converge to

a global minimum or a spurious local minimum. We give a

quantitative characterization of gradient descent dynamics

to explain the two-phase convergence phenomenon. Experi-

mental results also verify our theoretical findings. Here we

list some future directions.

Our analysis focused on the population loss with Gaussian

input. In practice one uses (stochastic) gradient descent on

the empirical loss. Concentration results in (Mei et al., 2016;

Soltanolkotabi, 2017) are useful to generalize our results

to the empirical version. A more challenging question is

how to extend the analysis of gradient dynamics beyond

rotationally invariant input distributions. Du et al. (2017b)

proved the convergence of gradient descent under some

structural input distribution assumptions in the one-layer

convolutional neural network. It would be interesting to

P
P
P

P
P
P

P
P
P

k

(1>
a
⇤)2

ka⇤k2

2 0 1 4 9 16 25

25 0.50 0.55 0.73 1 1 1

36 0.50 0.53 0.66 0.89 1 1

49 0.50 0.53 0.61 0.78 1 1

64 0.50 0.51 0.59 0.71 0.89 1

81 0.50 0.53 0.57 0.66 0.81 0.97

100 0.50 0.50 0.57 0.63 0.75 0.90

Table 1. Probability of converging to the global minimum with dif-

ferent
(1>

a
⇤)2

kak2
2

and k. For every fixed k, when
(1>

a
⇤)2

kak2
2

becomes

larger, the probability of converging to the global minimum be-

comes larger and for every fixed ratio
(1>

a
⇤)2

kak2
2

when k becomes

lager, the probability of converging to the global minimum be-

comes smaller.

bring their insights to our setting.

Another interesting direction is to generalize our result to

deeper and wider architectures. Specifically, an open prob-

lem is under what conditions randomly initialized gradient

descent algorithms can learn one-hidden-layer fully con-

nected neural network or a convolutional neural network

with multiple kernels. Existing results often require suf-

ficiently good initialization (Zhong et al., 2017a;b). We

believe the insights from this paper, especially the invari-

ance principles in Section 5.1 are helpful to understand the

behaviors of gradient-based algorithms in these settings.
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Šı́ma, Jiřı́. Training a single sigmoidal neuron is hard. Neu-

ral Computation, 14(11):2709–2728, 2002.

Soltanolkotabi, Mahdi. Learning ReLUs via gradient de-

scent. arXiv preprint arXiv:1705.04591, 2017.

Sun, Ju, Qu, Qing, and Wright, John. Complete dictionary

recovery over the sphere I: Overview and the geometric

picture. IEEE Transactions on Information Theory, 63

(2):853–884, 2017.

Tian, Yuandong. An analytical formula of population gra-

dient for two-layered ReLU network and its applications

in convergence and critical point analysis. arXiv preprint

arXiv:1703.00560, 2017.

Xie, Bo, Liang, Yingyu, and Song, Le. Diverse neural net-

work learns true target functions. In Artificial Intelligence

and Statistics, pp. 1216–1224, 2017.

Zhang, Yuchen, Lee, Jason D, Wainwright, Martin J, and

Jordan, Michael I. Learning halfspaces and neural

networks with random initialization. arXiv preprint

arXiv:1511.07948, 2015.

Zhong, Kai, Song, Zhao, and Dhillon, Inderjit S. Learning

non-overlapping convolutional neural networks with mul-

tiple kernels. arXiv preprint arXiv:1711.03440, 2017a.

Zhong, Kai, Song, Zhao, Jain, Prateek, Bartlett, Peter L, and

Dhillon, Inderjit S. Recovery guarantees for one-hidden-

layer neural networks. arXiv preprint arXiv:1706.03175,

2017b.

Zhou, Pan and Feng, Jiashi. The landscape of deep learning

algorithms. arXiv preprint arXiv:1705.07038, 2017.


