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We propose a class of enhancement techniques suitable for scenes captured by fixed
cameras. The basic idea is to increase the information density in a set of low quality
images by extracting the context from a higher-quality image captured under different
illuminations from the same viewpoint. For example, a night-time surveillance video
can be enriched with information available in daytime images. We also propose a new
image fusion approach to combine images with sufficiently different appearance into a
seamless rendering. Our method ensures the fidelity of important features and robustly
incorporates background contexts, while avoiding traditional problems such as aliasing,
ghosting and haloing. We show results on indoor as well as outdoor scenes.
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1. Introduction

In recent years, a number of techniques have emerged to extract useful information

from multiple images taken from a fixed viewpoint. They include video summariza-

tion, generation of intrinsic images, multispectral image fusion and high dynamic

range (HDR) compression.

∗This paper is an invited submission of revised material previously published in the proceedings
of ACCV 2004.8 It contains more detailed presentations of our methods, as well as expanded
versions of the algorithms.

533



534 A. Ilie, R. Raskar & J. Yu

In this paper we propose a different class of image and video enhancement

techniques, which we call context enhanced rendering (CER, for simplicity and

because there is no common term). The goal of CER is to extract scene information

from one image and use it as context for important features from another image of

the same scene. HDR imaging and image fusion are special cases of CER. We call

the image that provides environmental context the background image, and the one

that provides desirable features the foreground image.

A typical example of CER we consider in this paper is enhancing night-time

traffic or surveillance videos using daytime images taken from the same viewpoint.

Usually a night-time video is very difficult to understand because it lacks back-

ground context due to poor illumination. However, the elements of this background

context, such as roads and buildings are critical to understanding the video as shown

in Figs. 1 and 2. While a trained traffic controller may easily recognize important

features in night-time videos, we think that our method would help nonspecial-

ists achieve the same performance. Moreover, even traffic controllers may benefit

Fig. 1. Enhancing a night-time scene from an airport surveillance camera. A low quality night-
time image, and the final output of our algorithm.

Fig. 2. Enhancing a traffic video. A low quality night-time video frame, and the final output of
our algorithm.
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from our approach: they may confirm their suspicions by switching between normal

imagery and our context-enhanced imagery.

1.1. Overview

Our approach is a new image fusion approach to combine snapshots of the same

scene with significantly different appearance into a seamless rendering. For the

rest of the paper, we limit ourselves to this type of CER. The method maintains

the fidelity of important features and robustly incorporates background contexts,

while avoiding problems encountered in traditional methods, such as aliasing, ghost-

ing and haloing. We compute the importance of a pixel from the local variance

in the input snapshots or videos. Afterwards, instead of a convex combination of

pixel intensities, we combine the intensity gradients scaled by the importance. By

reconstructing the result image through integration of the combined gradients, our

method achieves a smooth blend of the inputs, and at the same time preserves their

important features.

Just as the compression of HDR images, the goal of CER should be to produce

“visually pleasing” results, with very few artifacts and a smooth transition from

background to foreground. Our method accomplishes this by using the underlying

properties of integration. We show how this can be used for synthetic as well as

natural indoor and outdoor scenes.

A common artifact of gradient-based reconstruction is that it introduces observ-

able color shifting. We discuss in detail the causes of these artifacts and show a color

assignment scheme that can efficiently reduce them.

1.2. Contributions

Our main contribution is the idea of exploiting information available from fixed

cameras to create context-rich, seamless results. Our technical contributions include

a scheme for asymmetrically fusing two snapshots of the same scene while preserving

useful features; and a method for context enhancement of videos in the presence of

unreliable frame differencing.

In addition, we modify the reconstruction from gradients method with a padding

scheme to overcome common integration artifacts such as aliasing, ghosting and

haloing; and we use a color assignment strategy to address color shifting problems.

1.3. Related work

Methods to combine information from multiple images into a single result have

been explored for various other applications. They range from image editing11 and

tone mapping for compression of variable-exposure high-dynamic range images,5,13

to art such as “Nude on a step” by Duchamp and “The Empire of Light” by René

Magritte.

The authors of Ref. 1 use multiresolution splines for combining images into

a seamless image mosaic. The source images are first decomposed into a set of
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band-pass filtered component images. Next, the component images in each spa-

tial frequency band are assembled into a corresponding band-pass mosaic using

a weighted average within a transition zone which is proportional in size to the

wavelengths represented in the band. Finally, these band-pass mosaic images are

summed to obtain the desired image mosaic.

In HDR imaging, a set of images taken under different levels of exposure are com-

bined into a single image where details in all of the images are preserved while the

overall contrast is reduced. However, in HDR, the pixel intensities increase mono-

tonically. Usually cameras can only capture images one fixed exposure at a time,

hence can only capture part of the scene when the radiance range of the scene is

large. The goal of HDR is to compensate for context that is missing in one expo-

sure setting by using information from another. Two classes of approaches have

been suggested: image space4 and gradient space5 methods. A recent approach9

combines classic HDR techniques with motion estimation and other video methods

to obtain HDR video.

While its goals are similar, our problem is quite different from combining HDR

images. For example, in combining day-night images we encounter intensity gra-

dient reversals (such as objects that are darker than their surroundings during

the day, but brighter than their surroundings during the night). An example of

such a reversal is a building that is lit during the night so it becomes brighter

than the night-time sky, yet during the day it is darker than the day-time sky.

These reversals do not appear in HDR, but need to be dealt with in general CER

methods.

Another example of CER is image fusion for multispectral imagery e.g. to merge

satellite imagery captured at different wavelengths. Here, the images are relatively

similar. Many ideas from multispectral image fusion can mutually benefit CER. Our

approach is closest to the one proposed in Ref. 15. They put forward a gradient

space method by first forming a unified gradient image and then searching for an

optimal image that satisfies the gradient image.

A similar problem to enhancing images with context is removing or reducing

undesirable context in images, such as shadows or fog. Authors of Ref. 6 removed

shadows in an image by first computing its gradient, then distinguishing shadow

edges, setting the gradient values at the shadow edges to zero and finally reintegrat-

ing the image. Nayar et al. used time-lapsing image sequences to model the effect

of fog.10 By setting appropriate parameters, they are able to efficiently enhance

images and reduce undesirable weather artifacts.

Image and video matting2 uses Bayesian models for robust foreground segmen-

tation. Continuous blending methods are employed to integrate the foreground and

the background e.g. using distance fields.

Pèrez et al.11 presented a technique that uses integration of modified gradients

from several images to produce one seamless result. However, since their goal is to

provide a framework for seamless image editing, they rely heavily on user input

to assign the areas from which the gradients are taken. The user designates which
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areas should come from which image, which is equivalent to a particular case of our

method with simple or no blending and precise manual segmentation.

We believe robust foreground extraction in image space is difficult to achieve

in practice, especially in real-time or when dealing with low contrast and noisy

snapshots and videos. Therefore we propose a gradient space algorithm that avoids

a lot of undesirable artifacts like aliasing, ghosting and haloing that appear when

using conventional methods, while being simple enough to warrant a future hard-

ware implementation. Our algorithm consists of two major steps similar to video

matting: foreground extraction and background fusion.

We demonstrate our algorithm in different situations and show that our method

is robust to poor background segmentation and generates results with very few

artifacts. We are inspired by many of the techniques mentioned here and aim to

address some of their limitations.

2. Basic Technique

To illustrate our new image fusion approach of combining snapshots of the same

scene with sufficiently different appearance into a seamless rendering, we focus on

enhancing poor-context night-time snapshots or videos with context elements from

high-quality daytime snapshots. This section describes our basic fusion technique.

We first present the basic algorithm, then our approach to ensure better reconstruc-

tion and color assignment.

2.1. Basic algorithm

Our method combines information from two snapshots in a meaningful way, by

picking high-quality background information from a daytime snapshot and using it

to enhance the low-quality but important information from a night-time snapshot.

A straightforward approach is to use a linear combination of the input snapshots.

Instead, we specify the desired local attributes of the final result and solve the

inverse problem of obtaining a global solution that satisfies the desired attributes.

This leads to a nonlinear combination, which means pixels with the same intensities

map to different intensities in the final result.

Our method for determining the important areas of each snapshot relies on the

widely accepted assumptions3 that the human visual system is not very sensitive to

the absolute luminance reaching the retina, but rather responds to local intensity

ratio changes. Hence, the local attribute that we use is the local variance. We

define an importance function for each input snapshot based on the spatial intensity

gradients, which are a measure of the local spatial variance.

We apply two heuristics to decide what information to carry into the desired

result: (a) we take the gradients from the night-time snapshot that appear to be

locally important and (b) we use gradients from the daytime snapshot to pro-

vide context to locally-important areas while maintaining intra-image coherence.

Our method does not improve the quality of the pixels themselves, it simply gives
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sufficient context to improve human interpretation. Consequently, operations such

as contrast enhancement, histogram equalization, mixed Gaussian models for back-

ground estimation16 are orthogonal to our approach and can be easily used alongside

to improve the final result.

The regions of high spatial variance across each snapshot are computed by

thresholding the intensity gradients, G = (GX , GY ), for the horizontal and vertical

directions using a simple forward difference. We then compute an importance image

(a weighting function) W , by processing the gradient magnitudes |GD| and |GN | of

the daytime snapshot D and the night-time snapshot N , respectively. The weighted

combination of the input gradients gives us the gradient of the desired output. The

basic steps are as described in Algorithm 1 and illustrated in Fig. 3.

Fig. 3. The basic algorithm.

As described in the following sections, the process of determining importance

weights, W(x,y), depends on the specific application.

Algorithm 1 Basic algorithm

Find gradient field of daytime snapshot GD = ∇D

Find gradient field of night-time snapshot GN = ∇N

Compute importance image W from variances |GD| and |GN |

Compute mixed gradient field at each pixel

G(x,y) = GN(x,y)W(x,y) + GD(x,y)(1 − W(x,y))

Reconstruct result I ′ from gradient field G

Normalize pixel intensities in I ′ to closely match N(x,y)W(x,y)+D(x,y)(1−W(x,y))
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Fig. 4. Overcoming integration artifacts by padding. (Left to right) The original image, the
integration result without padding, and the integration result using padding.

2.2. Image reconstruction

Image reconstruction from gradients fields is an approximate invertibility problem,

and still a very active research area. In 2D, a modified gradient vector field G may

not be integrable. We use one of the direct methods recently proposed5 to minimize

the error |∇I ′ − G|. The estimate of the desired intensity function I ′, so that

G = ∇I ′, can be obtained by solving the Poisson differential equation ∇2I ′ = divG,

involving a Laplace and a divergence operator. We use the full multigrid method12

to solve the Laplace equation. We pad the input images to square images of size

the nearest power of two before applying the integration, and then crop back the

result to the original size.

The solver needs to have the boundary conditions specified (at the border of

the image). A natural choice is Neumann condition ∇I ′ · n = 0 i.e. the derivative

in the direction normal to the boundary is zero. This is clearly not true when

high gradients are present near the image boundary, resulting in noticeable color

bleeding and shifting artifacts. The padding of the image to the nearest power of

two that is necessary for multigrid integration also helps alleviate this problem.

Figure 4 shows a comparison of integrating the gradient field of an image with and

without padding.

The integration of the gradient field involves a scale and shift ambiguity, I ′′(x,y) =

c1I
′

(x,y) + c2. To obtain the final image, I ′′, we compute the unknowns, c1 and c2,

(in the least square sense) using a simple heuristic: the intensity of each pixel of

the reconstructed image should be close to the corresponding combination of the

pixel intensities of the foreground and background images. Each pixel leads to a

linear equation, N(x,y)W(x,y) + D(x,y)(1 − W(x,y)) = c1I
′

(x,y) + c2. We do image

reconstruction in all three color channels separately and compute the unknowns

per channel.

3. Enhancement of Dynamic Scenes

For dynamic scenes, our results are based on the observation that if the camera and

most of the viewed geometry remain static, the only changes are the illumination
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and the moving parts of the scene (e.g. people, devices, vehicles). Thus, the intensity

gradients corresponding to the stationary parts in a night-time snapshot can be

replaced with better quality gradients from a daytime snapshot.

We use the notion of a static background to provide context for dynamic actions

or events happening in the foreground. The static component can be captured at

high resolution, under controlled illumination conditions. The dynamic component

can be captured in multiple snapshots of lower quality. A good example of applying

our technique is enhancing pictures of theme park visitors taken during a ride

through a dark environment, when bright flashes cannot be used because they may

harm the visitors’ eyes. The static background can be inserted from a snapshot

captured using brighter illumination, when there are no visitors in the scene. Also,

using a higher resolution background image can increase the perceived resolution

of the dynamic foreground.

To compute the desired gradient field, the authors of Ref. 11 made the choice of

using the local maximum of the input gradients for the weights W(x,y), i.e. G(x,y) =

max(Gd(x,y), Gn(x,y)). In this case importance weights are either 0 or 1. A better

choice for our application is to give more importance to night-time gradients in the

region of the night-time snapshot where gradients or intensities are above a fixed

threshold. This is to make sure that no information in the night-time snapshot is

lost in the final result.

To provide context to foreground changes in the illumination and geometry of

a series of night-time snapshots, we replace low-detail background areas using data

from the daytime snapshot. This is where many of the traditional methods using

linear combination will fail to create seamless results. Let us consider the case

where we want to provide context to a night-time snapshot N using information

from another night-time reference snapshot R and a daytime snapshot D. We create

Algorithm 2 Algorithm for enhancing dynamic scenes

Compute mask image M(x,y) = |N(x,y) − R(x,y)| at each pixel

Threshold and smooth mask image M

Find gradient field of daytime snapshot GD = ∇D

Find gradient field of night-time snapshot GN = ∇N

Compute importance image W from variances |GD| and |GN |

Compute aggregate weighting function W ′

(x,y) = W(x,y) + M(x,y) at each pixel

Normalize the weighting function W ′

Compute mixed gradient field at each pixel

G(x,y) = GN(x,y)W
′

(x,y)GD(x,y)(1 − W ′

(x,y))

Reconstruct result I ′ from gradient field G

Normalize pixel intensities in I ′ to closely match N(x,y)W
′

(x,y)+D(x,y)(1−W ′

(x,y))
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Fig. 5. The algorithm for enhancing dynamic scenes.

a mask image M , and set M(x,y) = |N(x,y) − R(x,y)| so that the importance is

scaled by the difference between the two night-time snapshots, thus accounting for

the areas with changes (temporal variance). Mask M is thresholded and smoothed,

then added with the weighting function W , which accounts for the areas with

high spatial variance. Algorithm 2 (illustrated in Fig. 5) presents the steps in

order.

Although we use a very simple segmentation technique (pixel-wise difference in

color space between snapshots N and R) to detect important changes at nighttime,

our method is robust and does not need to rely on complicated segmentation tech-

niques to obtain reasonable results (Fig. 6 shows the example in Fig. 5 at a higher

resolution). This is because we need to detect the difference between N and R only

where gradients of N are sufficiently large. In a pair of snapshots, flat regions may

have similar color but they naturally differ in regions of high gradient.

We allow for graceful degradation of the result when the underlying com-

puter vision methods fail. More sophisticated segmentation techniques would bring

marginal improvements to our results. Additionally, user input can help guide the

algorithm by manually modifying the importance image.

4. Enhancement of Videos

We also apply our technique to enhance low quality videos, such as the ones obtained

from security and traffic surveillance cameras. In such videos, enhanced context can

help answer questions such as: why is a person standing near a part of a building
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Fig. 6. Enhancing a dynamic scene. (Top row) A high quality daytime snapshot, a low quality
night-time reference, and with a foreground person. (Bottom row) A simple binary mask, the
importance image obtained after processing, the final output of our algorithm.

(they are looking at a poster), what is the person’s hand hidden by (they are behind

a dark object that is not illuminated), what are the reflections in the dark areas

(car headlights reflecting from windows of dark buildings), what is a blinking light

(traffic light clearly seen at daytime).

The static background, as in the previous section, comes from a single higher-

quality daytime snapshot. The dynamic foreground is composed of regions of high

variance, both spatial and temporal. As a straightforward extension of the algorithm

for dynamic scenes, regions of high temporal variance between two video frames are

computed by comparing the intensity gradients of corresponding pixels from the two

frames.

Videos present several additional challenges: (a) inter-frame coherence must also

be maintained, i.e. the weights in successive frames should change smoothly and

(b) a pixel from a night-time frame may be important even if the local variance

is small (e.g. the area between the headlights and the tail-lights of a moving car).

Our solution is based on the simple observation that in a sequence of video frames,

moving objects span approximately the same pixels from head to tail. For example,

the front of a moving car covers all the pixels that will be covered by rest of the car

in subsequent frames. Using temporal hysteresis, although the body of a car may

not show enough intra-frame or inter-frame variance, we maintain the importance
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Algorithm 3 Algorithm for enhancing videos

Compute spatial gradients for daytime GD = ∇D

Smooth video using SUSAN

for each video frame Fi do

Compute spatial gradients GNi = ∇Fi

Threshold temporal differences into binary masks Mi

Create weights Wi using Mi, |GD| and |GNi|

end for

for each weight image Wi do

Average into W ′

i over 2c+1 time steps

W ′

k(x,y) = (
∑k+c

i=k−c Wi(x,y))/(2c + 1)

end for

for each video frame Fi do

for each pixel (x,y) do

if W ′

i(x,y) > 0 then

Compute mixed gradient field as

G(x,y) = GNi(x,y)W
′

i(x,y) + GD(x,y)(1 − W ′

i(x,y))

else

Compute mixed gradient field as G(x,y) = max(GNi(x,y), GD(x,y))

end if

end for

Reconstruct frame F ′

i from gradient field G

Normalize pixel intensities in F ′

i to closely match

Fi(x,y)W
′

i(x,y) + D(x,y)(1 − W ′

i(x,y))

end for

weight high in the interval between the head and the tail. The steps are as described

in Algorithm 3 and illustrated in Fig. 7.

The importance is based on the spatial and temporal variation as well as the

hysteresis computed at a pixel. A binary mask Mj for each frame Fi is calculated by

thresholding the difference with the previous frame, |Fi − Fi−1|. To maintain tem-

poral coherence, we compute the importance image Wj by averaging the processed

binary masks Mk, for frames in the interval k = i-c..i + c. We chose the extent of

influence c, to be five frames in each direction. Thus, weight due to temporal varia-

tion Wi is a mask with values in [0,1] that vary smoothly in space and time. Then

for each pixel of each frame, if Wi(x,y) is nonzero, we use the method of context

enhancement of dynamic scenes i.e. blend the gradients of the night-time frame and

daytime snapshot scaled by Wi(x,y) and (1 − Wi(x,y)). If Wi(x,y) is zero, we revert

to a special case of the method of enhancement for static scenes i.e. choose the gra-

dient with the larger magnitude. Finally, each frame is individually reconstructed
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Fig. 7. The algorithm for enhancing videos.

from the mixed gradient field for that frame. Figure 7 shows a visual description of

the algorithm, and Fig. 8 shows the same example at a higher resolution.

The noise in the input video is reduced by using a feature-preserving bilat-

eral filtering in three dimensions (space and time). This eliminates false positives

when frame-differences are computed. For a practical implementation we repeatedly

applied a 3D SUSAN filter14 (3×3×5 neighborhood, sigma = 15 and t = 20). The

daytime snapshot used for filling in the context is obtained by median filtering a

daytime video clip (about 15 seconds).

Just as in the case of dynamic scenes, a good quality video segmentation or opti-

cal flow technique will marginally improve our results. We intentionally use a very

simple technique (pixel-wise difference) to show that the result of our techniques

does not need to rely completely on complicated optical flow or image change detec-

tion techniques. User input can also easily be incorporated in the process. Since the

camera position is static, the user can either designate areas to be filled from the

daytime image for all frames, or for each frame separately.

5. Discussion

5.1. Comparison

We introduced a practical method for improving a low-quality night-time image

by combining it with a high-quality daytime scene. This idea appears to be very

simple in retrospect. However, despite our search efforts, the idea appears to have

been unexplored in image enhancement.
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Fig. 8. Enhancing traffic video. (Top row) A high quality daytime and a low quality night-time
video frame. (Bottom row) The importance image obtained after processing, and the final output
of our algorithm. Notice the road features and background buildings.

A näıve approach to automatically combine a daytime and night-time snapshot

would be to use a pixel substitution method based on some importance measure.

This works well only when the inputs are almost identical (e.g. two snapshots of the

same scene with different focus7). Similarly, blending strategies such as maxi(Ii(x,y))

or averagei(Ii(x,y)) also create problems. For example, when combining day-night

snapshots, one needs to deal with high variance in daytime snapshots and with

mostly low contrast and patches of high contrast in night-time snapshots. Taking

the average simply overwhelms the subtle details in the night-time snapshot, and

presents “ghosting” artifacts around areas that are bright at night-time. Further-

more, juxtaposing or blending pixels usually leads to visible artifacts (e.g. sudden

jumps from dark night pixels to bright day pixels) that distract from the subtle

information conveyed in the night snapshots. Figure 9 shows a comparison of our

method (shown in Fig. 6 with averaging pixel values, as well as blending pixel values

using the same importance function we used for blending the gradients.

5.2. Issues

We have shown that our algorithm avoids most of the visual artifacts as ghosting,

aliasing and haloing. However, our method may cause observable color shifts in the
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Fig. 9. Comparison with average and blending pixel intensities. Averaging (left image) leads to
ghosting, while blending intensities (right image) lead to visible transitions from day to night. Our
method (Fig. 6) avoids both problems and maintains important gradients.

results. This phenomenon unfortunately has been a common problem of gradient-

based approaches and can be observed in most previous works.5,6 There are two

major reasons that cause the color shifting. First of all, a valid vector field is not

guaranteed to be maintained when modifying it with nonlinear operators. The gra-

dient field of the result computed by our method is only an approximation of the

desirable one. Secondly, in some cases, it is difficult to maintain the perception of

high contrast in the result because the daytime and night-time snapshots are taken

at significantly different exposure times.

Another issue is to capture the high-quality daytime background. Although we

used medians of several images, in some cases some objects may remain in the

frame for a long time. Good examples where this becomes an issue are the trucks

parked on the ramp in Fig. 2 or the truck on the right lane in Fig. 8. Maintaining

a running average or a database of daytime images may alleviate this problem.

A possible extension to our work will be to enforce the validity of the vector field

when computing the gradients of the result. This requires using analytical operators

to approximate our nonlinear mask and blending function. Separating intrinsic17

and color images, then applying our algorithm on intrinsic images and fusing them

back with the color images could be another possible solution.

6. Results

Our data for video enhancement is from the Washington State Department of Trans-

portation website (used by permission). The data for enhancement using the basic

algorithm was captured with a Canon PowerShot G3TM camera, placed on a fixed

tripod. We show an example of a dynamic outdoor scene combined from a day and
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a night snapshot (see Fig. 1). Notice the dark regions of the night-time snapshot

are filled in by daytime snapshot pixels but with a smooth transition. We also show

enhanced videos of traffic cameras (see Figs. 2 and 8). The camera resolution is

320 × 240 pixels and it is very difficult to get an idea of the context, especially at

night-time. In our experience, even on a well-organized website, where cameras are

labeled and placed on a map, it is still hard to correctly evaluate the traffic situation

because architectural features, which are essential for location recognition, cannot

be readily discerned.

Processing was done offline as proof of concept and took approximately one

second per frame after noise removal. We are working on a faster version of our

method that can be applied to enhance traffic camera videos in real time.

6.1. User experience

One common complaint about techniques that create stylized outputs is the diffi-

culty in judging their effectiveness and quantifying their usefulness. We performed

an informal user study by asking seven users of various backgrounds to judge our

results. Reactions to static enhanced night-time images were mixed. Some users at

first were hesitant to believe the image is a (modified) photograph given its contra-

dicting appearance: brightly lit buildings but night-time illumination of shops and

streets. One user complained that the objects appeared deeper than they should

be. Most users were, however, fascinated by the images. All users agreed that the

enhanced images conveyed more information about the scene. Reactions to the

enhanced videos were mostly positive when we asked which video they would like

to see on the web for traffic cameras.

7. Conclusion

We have presented techniques to extract useful information from multiple snapshots

taken using fixed cameras. By providing context to dark or low-quality snapshots or

videos, we can create more useful images and easier to interpret surveillance videos.

Our methods are suitable for processing low-contrast and noisy inputs while avoid-

ing artifacts present in conventional combining methods such as aliasing, ghosting

or haloing.

References

1. P. J. Burt and E. H. Adelson, A multiresolution spline with application to image
mosaics, ACM Trans. Graph. 2(4) (1983) 217–236.

2. Y. Chuang, B. Curless, D. Salesin and R. Szeliski, A Bayesian approach to digital
matting, in Proc. CVPR 2 (2001) 264–271.

3. J. M. DiCarlo and B. A. Wandell, Rendering high dynamic range images, in Proc.

SPIE: Image Sensors 3965 (2000), pp. 392–401.
4. F. Durand and J. Dorsey, Fast bilateral filtering for high-dynamic-range images, in

Proc. SIGGRAPH 2002, ACM SIGGRAPH (2002), pp. 257–266.



548 A. Ilie, R. Raskar & J. Yu

5. R. Fattal, D. Lischinski and M. Werman, Gradient domain high dynamic range com-
pression, in Proc. SIGGRAPH 2002, ACM SIGGRAPH (2002), pp. 249–256.

6. G. D. Finlayson, S. D. Hordley and M. S. Drew, Removing shadows from images, in
Proc. ECCV 4 (2002), pp. 823–836.

7. P. Haeberli, A multifocus method for controlling depth of field, Availavle at:
http://www.sgi.com/grafica/depth/index.html (1994).

8. A. D. Ilie, R. Raskar and J. Yu, Gradient domain context enhancement for fixed
cameras, in Proc. ACCV 1 (2004), pp. 414–419.

9. S. B. Kang, M. Uyttendaele, S. Winder and R. Szelinski, High dynamic range video,
in Proc. SIGGRAPH 2003, ACM SIGGRAPH (2003), pp. 319–325.

10. S. K. Nayar and S. G. Narasimhan, Vision in bad weather, in Proc. ICCV (1999),
pp. 820–827.

11. P. Pèrez, M. Gagnet and A. Blake, Poisson image editing, in Proc. SIGGRAPH 2003,
ACM SIGGRAPH (2003), pp. 313–318.

12. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes

in C: The Art of Scientific Computing (Pearson Education, 1992).
13. E. Reinhard, M. Stark, P. Shirley and J. Ferwerda, Photographic tone reproduction

for images, in Proc. SIGGRAPH 2002, ACM SIGGRAPH (2002), pp. 267–276.
14. S. M. Smith and J. M. Brady, SUSAN — a new approach to low level image processing,

Int. J. Comput. Vis. 23(1) (1997) 45–78.
15. D. Socolinsky and L. Wolff, A new visualization paradigm for multispectral imagery

and data fusion, in Proc. IEEE CVPR (1999), pp. 319–324.
16. K. Toyama, J. Krumm, B. Brumitt and B. Meyers, Wallflower: principles and practice

of background maintenance, in Proc. ICCV (1999), pp. 255–261.
17. Y. Weiss, Deriving intrinsic images from image sequences, in Proc. ICCV 2 (2001),

pp. 68–75.

Adrian Ilie is a Ph.D.
candidate at the Uni-
versity of North Car-
olina at Chapel Hill.
He received his M.S.
degree in computer sci-
ence from UNC and
his B.S. in economic
informatics from the
Academy of Economic

Studies in Bucharest, Romania.
His research interests span a range of

topics in computer vision and computer
graphics including camera network design for
video surveillance, photometric calibration,

and immersive display technologies.

Ramesh Raskar joined

MERL as a Research
Scientist in 2000 after
his doctoral research
at University of North
Carolina at Chapel Hill,
where he developed a
framework for projec-
tor based displays. His
work spans a range

of topics in computer vision and graph-
ics including projective geometry, non-
photorealistic rendering and intelligent user
interfaces. He has developed algorithms for
image projection on planar, non-planar and
quadric curved surfaces that simplify con-
straints on conventional displays and has pro-
posed Shader Lamps, a new approach for
projector-based augmented reality.



Gradient Domain Context Enhancement for Fixed Cameras 549

Jingyi Yu is a Ph.D.
candidate at Massachu-
setts Institute of Tech-
nology. He received his
M.S. degree in elec-
trical engineering and
computer science from
MIT and his B.S. in
computer science and
applied mathematics

from the California Institute of Technology.
His research interests span a range of top-

ics in computer graphics and computer vision
including image-based modeling and ren-
dering, video surveillance, non-conventional
optics and camera design, and graphics
hardware.




