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Abstract

In this paper we derive globalW1,∞ and piecewiseC1,α estimates for solutions
to divergence form elliptic equations with piecewise H¨older continuous coefficients.
The novelty of these estimates is that, even though they depend on the shape and
on the size of the surfaces of discontinuity of the coefficients, they are independent
of the distance between these surfaces.

1. Introduction

The purpose of this paper is to establish gradient estimates for solutions to a class
of divergence form elliptic equations with discontinuous coefficients. Our work is
stimulated by the study of composite media with closely spaced interfacial bound-
aries. A composite medium would for this purpose be represented by a bounded
domainD, divided into a finite number of subdomains. The physical characteristics
of the medium are smooth (e.g., constant) in each subdomain, but they have discon-
tinuities across the surfaces separating the subdomains. A simple, two dimensional
example, which very well illustrates the main feature of our estimates, would have
the domainD ⊂ R

2 model the cross-section of a fiber-reinforced composite. All
the subdomains except one are simply connected and represent the cross-sections
of the fibers (typically these will be disks or ellipsoids, depending on whether the
cross-section is perpendicular to a particular fiber or not); the remaining subdomain
represent the matrix surrounding the fibers. We suppose the shear modulus of the
fibers is a constant (0< a0 < ∞), different from the constant shear modulus of
the matrix (= 1, say). Using a standard model of anti-plane shear we then get the
equation

∂i(a(x)∂iu) = 0 inD,
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with appropriate (e.g., Dirichlet) boundary conditions on∂D. The functionu rep-
resents the out of plane elastic displacement, and the coefficienta(x) is given by

a(x) = a0 for x inside the subdomains representing the fibers,

a(x) = 1 elsewhere inD.

The most important quantities from an engineering point of view are the stresses,
in this case represented by the gradient ofu. A question of particular interest – and
indeed the question with which Ivo Babuska initially piqued our interest in this
problem area – is the question of whether the stresses remain uniformly bounded,
even when fibers touch or nearly touch. It has been shown in various papers that
whena0 is 0 or ∞ the stresses generally become unbounded as fibers get close
[4], [9]. For finite and strictly positivea0, it has been shown in [3] that the stresses
remain bounded for circular touching fibers of comparable radii. This special result
was achieved using a M¨obius transformation and maximum principles. To the best
of our knowledge it has until now not been established any generality whether
the stresses remain bounded or “blow up”, when fibers touch or nearly touch, and
0< a0 < ∞. In this paper we formulate and establish a general result concerning
the structure of solutions to a large class of divergence form elliptic equations with
discontinuous coefficients, which in particular may be applied to give a definitive
answer to the above question. Our result establishes a uniform bound on∇u; this
bound depends ona0 and on the size and shape of the fibers (more specifically
on theC1,α modulus of the total boundary of all the subdomains). The bound is
independent of the fiber locations and thus it is in particular independent of the
distance between the fibers (which may even vanish).

We now proceed to state the main results of this paper. To do so we need to
make our notation and assumptions more precise. LetD be a bounded domain in
R
n with aC1,α boundary, 0< α < 1, and letDm, 1 5 m 5 L, be a finite number

of disjoint subdomains ofD, each with aC1,α boundary. Furthermore suppose that
D = ∪Lm=1Dm. Given x̄ ∈ D, let Br(x̄) denote the ball of radiusr, centered at
x̄. We resetx̄ to be the origin of our coordinate system. We suppose there exist
r > 0 and an appropriate rotation of our fixed coordinate system, such that the set(∪Lm=1∂Dm

)∩Br(x̄) consists of the graphs of a finite number ofC1,α functions (of
n− 1 variables). Letl(x̄, r) denote the number of these functions, and letK(x̄, r)

denote the maximum of theirC1,α norms. The number

K = sup
x̄∈D̄

inf
r>0

{
K(x̄, r)+ l(x̄, r)+ 1

r

}
is referred to as theC1,α modulus of the total boundary set∪Lm=1∂Dm. One imme-
diately sees that the total number of subdomains,L, is bounded by a constant that
depends onK, n andD.

To consider a simple, but important example, suppose all but one of the domains
Dm are convex (andC2). Then, given anȳx in D, there existsr > 0 such that(∪Lm=1∂Dm

) ∩ Br(x̄) consists of the graphs of at most two functions. TheC1,α

modulus of the total boundary set∪Lm=1∂Dm is bounded by a constant that only
depends on the dimension,n, and the maximal curvature of the surfaces∂Dm, but
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is independent of their mutual distances. It is clear thatK becomes unbounded as
the diameter of one (or more) of the domainsDm approaches 0.

Let A(m) ∈ Cµ(Dm) (0 < µ < 1) be a symmetric, positive definite matrix-
valued function, and define

A(x) = A(m)(x), x ∈ Dm, 1 5 m 5 L. (1)

Let 0< λ̄ < 3̄ < ∞ denote ellipticity constants associated withA, i.e.,

λ̄ 5 A(x) 5 3̄. (2)

Similarly, letg(m) ∈ Cµ(Dm,Rn), and define

g(x) = g(m)(x), x ∈ Dm, 1 5 m 5 L. (3)

Finally, suppose

h ∈ L∞(D), (4)

and

ϕ ∈ C1,µ(∂D). (5)

The first of our results concernsC1,α′
interior estimates. In brief, this result

asserts that the restriction of the solutionu to each subdomainDm may be extended
(to Dε = {x ∈ D | dist(x, ∂D) > ε} ) as aC1,α′

function, with a norm that is
independent of the distances between the subdomain interfaces.

Theorem 1.1.LetA, g, andh satisfy(1)–(4). Supposeα′ satisfies at the same time
0 < α′ 5 µ and α′ < α

(α+1)n , and suposeε > 0. There exists a constantC

depending only onD, n, α, α′, ε, λ̄, 3̄, ‖A(m)‖
Cα

′
(Dm)

and theC1,α modulus of

∪Lm=1∂Dm, such that ifu ∈ H 1(D) is a solution to

∂i(Aij ∂ju) = h+ ∂igi, in D,

then

max
15m5L

‖u‖
C1,α′

(Dm∩Dε) 5 C

(
‖u‖L∞(D)+‖h‖L∞(D)+ max

15m5L
‖g(m)‖

Cα
′
(Dm)

)
,

whereDε = {x ∈ D | dist(x, ∂D) > ε}.
We have a similar result concerningC1,α′

boundary estimates.

Theorem 1.2.LetA, g, h, andϕ satisfy(1)–(5). Supposeα′ satisfies at the same
time 0 < α′ 5 µ andα′ < α

(α+1)n , and supposer > 0. There exists a constant

C depending only onn, α, α′, r, λ̄, 3̄, ‖A(m)‖
Cα

′
(Dm)

and theC1,α modulus of

∪Lm=1∂Dm, such that if, for somēx ∈ ∂D, u ∈ H 1(D ∩ B2r (x̄)) is a solution to

∂i(Aij ∂ju) = h+ ∂igi, in D ∩ B2r (x̄),

u = ϕ, on ∂D ∩ B2r (x̄),
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then

max
15m5L

‖u‖
C1,α′

(Dm∩Br(x̄)) 5 C

(
‖u‖L∞(D∩B2r (x̄)) + ‖ϕ‖

C1,α′
(∂D∩B2r (x̄))

+ ‖h‖L∞(D∩B2r (x̄)) + max
15m5L

‖g(m)‖
Cα

′
(Dm∩B2r (x̄))

)
.

We note that in the past two theorems the norm‖u‖L∞ on the right-hand side can
be replaced by the norm‖u‖L2, simply by evoking the localL∞ estimates of De
Giorgi and Nash. Combining the above interior and boundary estimates with the
maximum principle (see for instance [8] Theorem 8.16) we arrive at the following
C1,α′

global estimate. In brief, this estimate asserts that the restriction of the solution
u to each subdomainDm can be extended as aC1,α′

function, with a norm that is
bounded independently of the distances between the subdomain interfaces.

Corollary 1.3. LetA, g, h, andϕ satisfy(1)–(5) and suppose0 < α′ 5 µ and
at the same timeα′ < α

(α+1)n . There exists a constantC depending only on

D, n, α, α′, λ̄, 3̄, ‖A(m)‖
Cα

′
(Dm)

and theC1,α modulus of∪Lm=1∂Dm, such that

if u ∈ H 1(D) is a solution to

∂i(Aij ∂ju) = h+ ∂igi, in D,

u = ϕ, on ∂D,
then

max
15m5L

‖u‖
C1,α′

(Dm)
5 C

(
‖ϕ‖

C1,α′
(∂D)

+ ‖h‖L∞(D) + max
15m5L

‖g(m)‖
Cα

′
(Dm)

)
.

Through our assumptions about∂Dm, 1 5 m 5 L, we have excluded the
possibility that the surfaces of discontinuity touch. This is not essential and, by
means of a limiting argument, our theorems easily carry over to “touching” surfaces
as well. We briefly comment on this at the beginning of Section 4.

Whenϕ belongs toCν(∂�) instead ofC1,µ(∂�), we may establish boundary
and globalCν estimates for solutions. Such estimates do not automatically follow
from the De Giorgi-Nash estimates, which give H¨older regularity forsomeHölder
exponent depending on the ellipticity constantsλ̄ and3̄. It is essential for these
estimates that the boundaries∂Dm beC1,α, and that the coefficientsA(m) beCµ.
We refer the reader to Section 7 for the exact statement of these results.

At this point our results are limited to scalar equations, even though numerical
evidence suggests that similar bounds hold for certain elliptic system, e.g., the
equations of elasticity [2]. There are several other interesting open problems, such
as for instance, (a): Does the constantC in our estimates really have to depend
on l(x, r), the local number of curves of discontinuity? (currently it does, through
theC1,α modulusK) or (b): How doesC depend on the ellipticity constantsλ and
3? But the most interesting open question is probably, (c): Do similar estimates
hold for higher order norms of the solution, assuming of course all the data are
appropriately smooth?
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Concerning question (a) we feel the answer most likely is that the constant
C is independent ofl(x, r). Among other things we base this on the fact that the
constants in two important steps of the proof (Proposition 2.1 and Proposition 3.2)
arel-independent. Concerning question (b), the results in [4] and [9], mentioned
earlier, imply thatC has to “blow up” as the ellipticity constants degenerate. We
feel there is some hope that a refinement of the analysis presented here may give
some more specific information about the behaviour ofC.

We indirectly address question (c) in a very special two-dimensional situation
(and withg = h = 0) in Section 8. There we show, by the use of quite explicit
expansion formulas, that the solution corresponding to two touching circular inho-
mogeneities (with constant material parameter, 0< a0 < ∞) is indeedC∞ on the
closure of each of the (three) subdomains. This in itself does not prove that theC∞
norms of the solutions will remain bounded independently of the distance between
two nearly touching circular inhomogeneities – but (for 0< a0 < ∞) we feel it
does give some indication that this may very well be true.

We now describe our methods of proof. In order to do so clearly and briefly,
we restrict attention to Theorem 1.1 in the caseh = 0 andg = 0. Let A(λ̄, 3̄)
denote the set of measurable, symmetric, positive definite matrix functionsA(x)

satisfying
λ̄ 5 A(x) 5 3̄.

We define a scaling invariant subclass ofA(λ̄, 3̄), denotedA(λ̄, 3̄), as follows. Let
L1, · · · , Ll be anyl parallel hyperplanes inRn which divideR

n into l+ 1 regions,

denoted asR1, · · · , Rl+1. LetA
(1)
, · · · , A(l+1)

be anyl + 1 symmetric, positive
definite constant matrices inA(λ̄, 3̄) and define

Aij (x) = A
(m)

ij , x ∈ Rm, 1 5 m 5 l + 1.

The subclassA(λ̄, 3̄) consists of all such matrix functionsA.
The classical Schauder estimates, Cordes-Nirenberg estimates, andW2,p esti-

mates can be viewed as perturbation theories from the corresponding estimates for
solutions to the Laplace equation. The approach here is to treat our equations as
perturbations to the following basic equations

∂i(Aij (x)∂j )v = 0, (6)

with A ∈ A(λ̄, 3̄).
To establish Theorem 1.1 in the caseh = 0 andg = 0, we thus first study elliptic

regularity estimates for solutions to (6), the main point being that the hyperplanes
in the definition ofA(λ̄, 3̄) are allowed to get arbitrarily close to each other, while
we still obtain estimates that are uniform inA ∈ A(λ̄, 3̄). In Proposition 2.1
we establish, with the help of the Cacciopolli inequality and the De Giorgi-Nash
estimates, (interior) estimates for all derivatives of the solutionv in each region
Rm. More precisely, with� = (−1,1)n, we show that for any positive integerk,
anyε > 0, anyA ∈ A(λ̄, 3̄), and any solutionv to (6)

max
15m5l+1

‖v‖Ck(Rm∩(1−ε)�) 5 C‖v‖L∞(�). (7)
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The constantC depends only onn, ε, k, λ̄, and3̄.
Starting from (7) we use perturbation methods, inspired by the work of Caffarelli

(see [6] and [5]) to show that for anyq > n, 0< ᾱ < 1, there exists some positive
numberε0, depending only onn, q, ᾱ, λ̄ and 3̄, such that ifA ∈ A(λ̄, 3̄) and
A ∈ A(λ̄, 3̄) satisfy

sup
0<r<1

r−ᾱ
(∫

−
r�

|A(x)− A(x)|q
)1/q

5 ε0, (8)

andu ∈ H 1(�) is a solution to

∂i(Aij (x)∂j )u = 0 in�,

with
‖u‖L∞(�) 5 1,

then there existsp(x), a continuous, piecewise linear solution to

∂i(Aij (x)∂j )p(x) = 0 in 1
4�,

whose coefficients are bounded in absolute value byC, and that satisfies

|u(x)− p(x)| 5 C|x|1+ᾱ, x ∈ 1
4�.

The constantC depends only onn, q, ᾱ, λ̄, and3̄.
We then show that, under the hypotheses of Theorem 1.1, the condition (8)

may be verified at every point̄x in D, through a harmless translation and dilata-
tion, and by appropriate selection ofAx̄ ∈ A(λ̄, 3̄). TheL∞ interior estimates for
the gradient of solutions to the equation∂i(Aij ∂ju) = 0 follow immediately. The
Hölder interior estimates for the gradient require some further work, since at dif-
ferent points̄x ∈ �, the orientation of the hyperplanes associated with the matrices
Ax̄(x) differ by a rotation, determined by the geometry ofDm, and sincepx̄(x) is
only piecewise linear given a fixed set of planes. To deal with these local changes
in orientation, and to obtain H¨older estimates for the gradients inDm, we need to
study the relations to gradients in sets,Dj , with indicesj 6= m.

The organization of the paper is as follows. In Section 2 we give a proof of a
generalized version of the estimate (7); we refer to this as our basic proposition since
it lies at the foundation of our later perturbation arguments. In Section 3 we establish
our main perturbation result; based on the assumption (8), the scaling invariance
of our equation and the scaling invariance of the classA(λ̄, 3̄), this result permits
us to construct the required piecewise linear approximation. Instead of proceeding
immediately to a proof of Theorem 1.1, we give in Section 4 a proof of a simplified
version. This simplified version is of interest in itself, but more importantly its proof
clearly illustrates the main arguments necessary for the verification of (8), and it also
clearly illustrates how the existence ofp may be used to derive a uniform gradient
estimate. In Section 5 we introduce the additional ingredients that are required for
a full proof of Theorem 1.1. Section 6 is devoted to an outline of the proof of the
boundary estimates, i.e., Theorem 1.2. In Section 7 we present the result on global
Hölder regularity, briefly mentioned earlier. In Section 8 we address an aspect
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of the high order regularity question (c) formulated earlier. We establish theC∞
piecewise smoothness of solutions corresponding to a two-dimensional medium
with touching circular inhomogeneities. There is an appendix to this paper, which
is devoted to a proof of the piecewise smoothness of solutions to a problem with a
single, smooth interface and natural transmission boundary conditions. This fairly
classical result is needed in order to establish our basic proposition. We provide a
proof, suggested by L. Nirenberg, for the convenience of the reader (to make the
paper more self-contained).

2. Basic proposition

Let� denote then-dimensional cube

� = {x = (x1, · · · , xn) : |xi | < 1},
and suppose the constantscm, 0 5 m 5 l + 1, satisfy

−1 ≡ c0 < c1 < · · · < cl+1 ≡ 1.

We define “strips”,�m, as follows:

�m = {x ∈ � | cm−1 < xn < cm}, 1 5 m 5 l + 1.

Let {A(m)}l+1
m=1 = {(A(m)ij )}l+1

m=1 be a set of symmetric, positive definite matrices,

with 0< λ < A
(m)

< 3 < ∞, and define the matrix functionA(x) by

Aij (x) = A
(m)

ij , x ∈ �m, 1 5 m 5 l + 1.

The functionA is in A(λ̄, 3̄). Similarly, let {G(m)}l+1
m=1 be a set ofn-vectors, and

define
G(x) = G

(m)
, x ∈ �m, 1 5 m 5 l + 1.

Finally suppose{H(m)}l+1
m=1 is a set of constants, and define

H(x) = H
(m)
, x ∈ �m, 1 5 m 5 l + 1.

The following proposition plays a fundamental role in our proofs of Theorem
1.1 and Theorem 1.2.

Proposition 2.1 (Basic Proposition). LetA,G andH be as above. Supposek is a
non-negative integer and supposeε > 0. There exists a constantC = C(ε, k, n,
λ̄, 3̄), such that ifv ∈ H 1(�) is a solution to

∂i(Aij (x)∂j )v = H + ∂iGi in �, (9)

then

max
15m5l+1

‖v‖Ck(�m∩(1−ε)�) 5 C
(‖v‖L∞(�) + ‖H‖L∞(�) + ‖G‖L∞(�)

)
. (10)
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Remark 2.1. It is not difficult to see that we only need to establish Proposition 2.1
for someε̄ = ε̄(k, n, λ̄, 3̄) > 0, the reason being that for anyx̄ ∈ (1 − ε)�, we
may apply Proposition 2.1 with̄ε to the functionv̄(x) = v(x̄ + εx).

Remark 2.2.The fact thatv is in Ck(�m ∩ �) follows from Theorem 9.1 in the
appendix. The aim here is to verify the estimate (10) with a constantC that only
depends onε, k, n, λ̄ and3̄, but not onc1, . . . , cl or l.

Proposition 2.1 is a relatively simple consequence of the following four lemmas.

Lemma 2.2. Suppose the hypotheses are as in Proposition 2.1. LetDk
x′ denote

any derivative of order less than or equal tok with respect to then − 1 variables
x′ = (x1, · · · , xn−1). Given anyv ∈ H 1(�) satisfying(9) the functionDk

x′v
remains inH 1(�). If the order ofDk

x′ is strictly positive thenDk
x′v satisfies the

homogeneous version of(9), i.e.,

∂i(Aij (x)∂j )(D
k
x′v) = 0 in �,

and there exists a constantC = C(ε, k, n, λ̄, 3̄) such that

‖Dkx′v‖L∞((1−ε)�) 5 C
(‖v‖L∞(�) + ‖H‖L∞(�) + ‖G‖L∞(�)

)
.

Proof. In view of (9) it follows from the Cacciopolli inequality (see, for example,
[7]) that

‖∂βv‖L2((1−ε/2)�) 5 C
(‖v‖L∞(�) + ‖H‖L∞(�) + ‖G‖L∞(�)

)
, 1 5 β 5 n−1,

with C = C(ε, n, λ̄, 3̄). From Theorem 9.1 in the appendix we have that∂βv ∈
H 1((1 − ε/2)�). We easily see that

∂i(Aij (x)∂j )(∂βv) = 0 in (1 − ε/2)�

for any 1 5 β 5 n − 1. Applying the local De Giorgi-Nash estimates (see, for
example, [8]) to∂βv, we now get

‖∂βv‖L∞((1−ε)�) 5 C‖∂βv‖L2((1−ε/2)�)
5 C

(‖v‖L∞(�) + ‖H‖L∞(�) + ‖G‖L∞(�)
)
, 1 5 β 5 n− 1.

We have thus established Lemma 2.2 in the casek = 1. The general case follows
easily by induction since∂βv, 1 5 β 5 n−1, satisfies the the same type of equation
asv, only with homogeneous data and with� replaced by(1 − ε)�. ut

We introduce the notation

v(m) = v|�m.
The functionv(m) is in C∞(�m ∩ �) for any 15 m 5 l + 1. In view of (9) (and
the regularity result in the appendix) we have

n∑
i=1

A
(m)

in ∂iv
(m) −G

(m)

n =
n∑
i=1

A
(m−1)
in ∂iv

(m−1) −G
(m−1)
n
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on {xn = cm−1} ∩�, for any 25 m 5 l + 1. In other words, the function

n∑
i=1

Ain∂iv −Gn

is globally continuous in�. The following first order differential operators are
relevant

X(m) =
n∑
i=1

A
(m)

in ∂i in �m.

Lemma 2.3.Suppose the hypotheses are as in Proposition 2.1. There exists a con-
stantC = C(n, ε, λ̄, 3̄), such that ifv ∈ H 1(�) is a solution to(9) then

|X(m)X(m)v(m)(x)| 5C
(‖v‖L∞(�) + ‖H‖L∞(�) + ‖G‖L∞(�)

)
,

x ∈ �m ∩ (1 − ε)�

for any1 5 m 5 l + 1.

Proof. A simple calculation yields

X(m)(X(m)v(m)) =A(m)nn ∂i(Aij (x)∂j )v
(m)

+
∑

15α,β5n−1

(
A
(m)

αn A
(m)

βn − A
(m)

nn A
(m)

αβ

)
∂αβv

(m).

Since∂i(Aij (x)∂j )v(m) = H
(m) + ∂iG

(m)

i (= H
(m)
) in �m, the lemma follows

from the above identity and Lemma 2.2.ut

The vector fieldsX(m) = (A
(m)

1n , . . . , A
(m)

nn ) (that give rise to the differential
operators of the same name) have the following properties

X(m) · en
|X(m)| = ĉ > 0, ĉ 5 |X(m)| 5 1/ĉ, ∀ 1 5 m 5 l + 1, (11)

whereen = (0, · · · ,0,1) andĉ is some constant depending only onλ̄, 3̄, andn.
Because of (11), there exist two positive constantsE < 1

2 andε̂0, depending only
onn, λ̄, and3̄, such that for everŷx ∈ ε̂0�, the integral curve of the vector fields
{X(m)}, starting fromx̂, intersectsxn = ±E before leaving1

2�. Here and in the
following, an integral curveγ (t) of the vector fields{X(m)} means a continuous
solution to

γ ′(t) = X(m) wheneverγ (t) ∈ �m, 1 5 m 5 l + 1.

In fact,γ (t) is piecewise linear sinceX(m) is a constant vector field in�m. Without
loss of generality, we may assume that−E = cl0 andE = cl1+1 for some 05
l0 < l1 + 1 5 l+ 1 (if necessary, we simply add these two constants to the original
set{c0, · · · , cl+1}).

We will make use of the following elementary fact.
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Lemma 2.4.Let f̃ be a function on[0,1] with Lipschitz first derivative. Then for
some universal constantC,

‖f̃ ′‖L∞(0,1) 5 C(‖f̃ ‖L∞(0,1) + ‖f̃ ′′‖L∞(0,1)).

Lemma 2.5.Suppose the hypotheses are as in Proposition 2.1, and letε̂0 be as
introduced above. There exists a constantC = C(n, λ̄, 3̄) such that, ifv ∈ H 1(�)

is a solution to(9), then

‖∂nv‖L∞(ε̂0�) 5 C
(‖v‖L∞(�) + ‖H‖L∞(�) + ‖G‖L∞(�)

)
.

Proof. Let γ denote any integral curve of the vector fields{X(m)} that passes
throughε̂0�. We know thatγ intersectsxn = ±E before leaving1

2�. Let t0 < t1

be such thatγ (t0)n = −E andγ (t1)n = E (andγ (t) ∈ 1
2� for t0 5 t 5 t1). It is

clear that 1/C 5 t1 − t0 5 C for some constantC depending only onn, λ̄ and3̄.
We define

w(t) =
(

n∑
i=1

Ain∂iv −Gn

)
(γ (t)).

Due to the global continuity of
∑n
i=1Ain∂iv−Gn the functionw is clearly Lipschitz

on the interval[t0, t1]. It is in fact infinitely often differentiable, except at a finite
number of points. The first derivative ofw equals

(
X(m)X(m)v(m)

)
(γ (t)) when

γ (t) lies in�m. Due to Lemma 2.3 we now have

‖w′‖L∞(t0,t1) 5 C
(‖v‖L∞(�) + ‖H‖L∞(�) + ‖G‖L∞(�)

)
.

We also define

f (t) = v(γ (t)) and g(t) = Gn(γ (t)).

The functionf is clearly Lipschitz on the interval[t0, t1] (and infinitely often
differentiable, except at a finite number of points). The functiong is uniformly
bounded with

‖g‖L∞(t0,t1) 5 ‖G‖L∞(�). (12)

The three functionsf, g andw are related byf ′ = w + g . Setf̃ (t) = f (t) −∫ t
t0
g(τ)dτ , thenf̃ ′ = w and

‖f̃ ′′‖L∞(t0,t1) = ‖w′‖L∞(t0,t1) 5 C
(‖v‖L∞(�) + ‖H‖L∞(�) + ‖G‖L∞(�)

)
.

(13)

It follows from Lemma 2.4, together with (12) and (13), that

‖w‖L∞(t0,t1) = ‖f̃ ′‖L∞(t0,t1) 5 C
(‖v‖L∞(�) + ‖H‖L∞(�) + ‖G‖L∞(�)

)
.
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Due to the definition ofw (and the lower bound forAnn)

‖∂nv(γ (·))‖L∞(t0,t1)

5 C

‖w‖L∞(t0,t1) +
∑
β5n−1

‖∂βv(γ (·))‖L∞(t0,t1) + ‖Gn(γ (·))‖L∞(t0,t1)

 ,
and sinceγ is an arbitrary integral curve passing throughε̂0�, it now follows, using
Lemma 2.2, that

‖∂nv‖L∞(ε̂0�) 5 C
(‖v‖L∞(�) + ‖H‖L∞(�) + ‖G‖L∞(�)

)
.

This completes the proof of Lemma 2.5.ut
We are now ready for

Proof of Proposition 2.1.Due to Remark 2.1, we only need to establish Proposition
2.1 for somēε = ε̄(k, n, λ̄, 3̄). Because of Lemma 2.2, we can apply Lemma 2.5
toDk+1

x′ v (any derivative in the variablesx1, . . . , xn−1 of degree5 k+1) to obtain

‖Dk+1
x′ ∂xnv‖L∞(�m∩ε̂1�) 5C

(‖v‖L∞(�) + ‖H‖L∞(�) + ‖G‖L∞(�)
)
,

1 5 m 5 l + 1,
(14)

with C = C(ε, k, n, λ̄, 3̄) andε̂1 = ε̂1(n, λ,3). ApplyingDk
x′ to the equation for

v on each�m, and using Lemma 2.2 and (14), we get

‖Dkx′∂2
xn
v‖L∞(�m∩ε̂1�) 5C

(‖v‖L∞(�) + ‖H‖L∞(�) + ‖G‖L∞(�)
)
,

1 5 m 5 l + 1.
(15)

ApplyingDk
x′∂xn to the equation forv on each�m, and using Lemma 2.2 and (14)

and (15) (with k replaced byk + 1) we similarly get

‖Dkx′∂3
xn
v‖L∞(�m∩ε̂1�) 5C

(‖v‖L∞(�) + ‖H‖L∞(�) + ‖G‖L∞(�)
)
,

1 5 m 5 l + 1.

By induction we obtain a proof of Proposition 2.1 withε̄ = ε̂1. ut
It is not primarily Proposition 2.1 that we use later in this paper. Rather we use

a corollary concerning the approximation ofv by piecewise polynomials. Since
our aim is to estimate gradients alone, it suffices to consider approximation by
piecewise linear functions. We introduce the following notation

m∗ = min{m : �m ∩ 1
2� 6= ∅} = min{m : − 1

2 < cm},
m∗ = max{m : �m ∩ 1

2� 6= ∅} = max{m : cm−1 <
1
2}.
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Corollary 2.6. LetA,G andH be as in Proposition 2.1, and letv ∈ H 1(�) denote
a solution to

∂i(Aij (x)∂j )v = H + ∂i(Gi) in �,

with

‖v‖L∞(�) + ‖H‖L∞(�) + ‖G‖L∞(�) 5 1.

There exists a constantC = C(n, λ̄, 3̄) and a continuous, piecewise linear function

p(x) = a(m) + b(m) · x, x ∈ �m,1 5 m 5 l + 1,

satisfying

∂i(Aij (x)∂j )p(x) = ∂i(Gi) in �, (16)

such that

|v(x)− p(x)| 5 C|x|2, x ∈ 1

2
�, (17)

and

|a(m)| + |b(m)| 5 C, m∗ 5 m 5 m∗. (18)

Proof. A continuous, piecewise linear function,p(x), is a solution to (16) if and
only if

b(m) = M(m)b(m−1) +
(

0′, 1

A
(m)

nn

[G(m)n −G
(m−1)
n ]

)
for all m,

whereM(m) is then× n matrix given by

M
(m)
αβ = δαβ, 1 5 α, β 5 n− 1,

M(m)
αn = 0, 1 5 α 5 n− 1,

M(m)
nα = 1

A
(m)

nn

[A(m−1)
αn − A

(m)

αn ], 1 5 α 5 n− 1,

and

M(m)
nn = A

(m−1)
nn

A
(m)

nn

.

We also know thatv(m) := v|�m andv(m−1) satisfy the same matching conditions
atxn = cm−1

∇v(m)(x′, cm−1) = M(m)∇v(m−1)(x′, cm−1)+
(

0′, 1

A
(m)

nn

[G(m)n −G(m−1)
n ]

)
∀ x′.

(19)
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Without loss of generality, suppose

cm0−1 5 0< cm0.

By Taylor’s expansion and Proposition 2.1,

v(m0)(x) = v(m0)(0)+ ∇v(m0)(0)x +O(|x|2) x ∈ �m0 ∩ 1

2
�, (20)

with |O(|x|2)| 5 C(n, λ,3)|x|2. Define

a(m0) = v(m0)(0), b(m0) = ∇v(m0)(0), (21)

and define all the remaining{a(m)}, {b(m)} by the following relations

b(m) = M(m)b(m−1) +
(

0′, 1

A
(m)

nn

[G(m)n −G
(m−1)
n ]

)
, (22)

a(m) + b(m) · (0′, cm−1) = a(m−1) + b(m−1) · (0′, cm−1). (23)

As previously,p denotes the continuous, piecewise linear functionp(x) = a(m) +
b(m) ·x,x ∈ �m. The functionp clearly satisfies (16), since the matching conditions
are satisfied by construction. Form = m0 the estimate (18) follows immediately
from (21) and Proposition 2.1. We now verify this same estimate form0 < m 5 m∗.
The verification form∗ 5 m < m0 proceeds in the same way, but is left to the reader.

We know thatM(m) = [N(m)]−1N(m−1), whereN(m) is then× nmatrix given
by

N
(m)
αβ = δαβ, 1 5 α, β 5 n− 1,

N(m)
αn = 0, 1 5 α 5 n− 1,

and
N
(m)
nj = A

(m)

jn , 1 5 j 5 n.

The identities (19) and (22) together with Proposition 2.1 imply[
b(m) − ∇v(m)(0′, cm−1)

]
= [N(m)]−1N(m−1)

[
b(m−1) − ∇v(m−1)(0′, cm−2)

]
+O(cm−1 − cm−2)

providedm0 + 1< m 5 m∗. By iteration it follows that[
b(m) − ∇v(m)(0′, cm−1)

]
= [N(m)]−1N(m0+1)

[
b(m0+1) − ∇v(m0+1)(0′, cm0)

]
+O(cm−1 − cm0) (24)

providedm0 < m 5 m∗. Here|O(cm−1 − cm0)| 5 C(cm−1 − cm0) with a constant
C(n, λ̄, 3̄) that is independent ofl. We also have

b(m0+1) − ∇v(m0+1)(0′, cm0) = M(m0+1)[b(m0) − ∇v(m0)(0′, cm0)] = O(cm0),
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and in combination with (24) this leads to∣∣∣∣b(m) − ∇v(m)(0′, cm−1)

∣∣∣∣ 5 C(n, λ̄, 3̄)cm−1, m0 < m 5 m∗. (25)

The desired uniform estimate for theb(m), m0 < m 5 m∗, follows immediately.
By iterated use of the identity

a(m) + b(m) · (0′, cm) = a(m−1) + b(m−1) · (0′, cm−1)+O(cm − cm−1),

it similarly follows that

|a(m) + b(m) · (0′, cm)| 5 C m0 < m < m∗.
Since theb(m) andcm are bounded this gives the desired uniform estimate for the
a(m), m0 < m 5 m∗. This completes our verification of (18), and we now turn to
the estimate (17). We only verify this estimate forx ∈ �m ∩ 1

2�, m0 < m 5 m∗.
The verification is entirely similar forx ∈ �m∩ 1

2�,m∗ 5 m < m0 (and it is trivial
for x ∈ �m0 ∩ 1

2�). We writex = (x′, xn), and (since we suppose�m ∩ 1
2� 6= ∅)

wea priori know that 0< cm0 5 cm−1 5 xn 5 min{1
2, cm}. Due to (20),

|v(x′, cm0)− p(x′, cm0)| 5 C((cm0)
2 + |x′|2) 5 C|x|2. (26)

By Taylor’s expansion and Proposition 2.1,

v(x′, xn)− v(x′, cm0)

= v(m)(x′, xn)− v(m)(x′, cm−1)+
m−1∑

j=m0+1

[v(j)(x′, cj )− v(j)(x′, cj−1)]

= ∂nv(m)(x′, cm−1)(xn − cm−1)+
m−1∑

j=m0+1

∂nv
(j)(x′, cj−1)(cj − cj−1)+O(|x|2).

Here we have used the fact that
∑m−1
j=m0+1(cj −cj−1)

2 5 [∑m−1
j=m0+1(cj −cj−1)]2 =

(cm−1 − cm0)
2. By the definition ofp(x),

p(x′, xn)− p(x′, cm0) = b(m)n (xn − cm−1)+
m−1∑

j=m0+1

b
(j)
n (cj − cj−1).

From the exact same analysis that led to (25), we also get

|b(j) − ∇v(j)(x′, cj−1)| 5 C(n, λ̄, 3̄)(|x′| + cj−1), m0 < j 5 m∗. (27)

By subtraction of the above identities forv(x′, xn) − v(x′, cm0) andp(x′, xn) −
p(x′, cm0), a small rearrangement, and subsequent use of the estimates (26) and
(27), it follows that

|v(x′, xn)− p(x′, xn)| 5 C(n, λ,3)|x|2. ut
Remark 2.3.We note that the constantC in this corollary is independent ofl; this
is why the estimates (17) and (18) are only valid forx ∈ 1

2� andm∗ 5 m 5 m∗.
If we dropped the insistence on independence ofl, then the estimates (17) and (18)
would trivially be satisfied forx ∈ � and 15 m 5 l.
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3. A perturbation result

Let � denote then-dimensional cube(−1,1)n, and let the “strips”�m be as
introduced in the previous section. The two sets of positive definite matrix functions
A(λ̄, 3̄) andA(λ̄, 3̄) are also as introduced earlier. In the introduction we briefly
explained how Theorem 1.1 and Theorem 1.2 will be derived from Proposition 2.1
(or rather from Corollary 2.6) by a perturbation analysis. In this context we shall
need a fairly basic lemma, which we state and prove below.

Lemma 3.1.SupposeA ∈ A(λ̄, 3̄) andA ∈ A(λ̄, 3̄). Supposeg = (g1, · · · , gn)
∈ Lq(�), h ∈ Lq/2(�) for someq > n, and supposeG = (G1, · · · ,Gn) andH
are constant on each of the strips�m. Letu ∈ H 1(�) be a solution to

∂i(Aij ∂ju) = h+ ∂igi in �,

with ‖u‖L∞(�) 5 1.

There exist positive constantsγ 5 1 andC (depending only onq, n, λ̄ and3̄) such
that if (∫

−
�

|A− A|q dx
)1/q

5 ε

for someε > 0, then we may find a functionv ∈ H 1 with

∂i(Aij (x)∂j v) = H + ∂i(Gi) in 3
4�,

and

‖u−v‖L∞( 1
2�)

5 C
([1 + ||G||L∞(�) + ||H ||L∞(�)]εγ + ||g−G||Lq(�) + ||h−H ||Lq/2(�)

)
.

Proof. Since

∂i(Aij (x)∂ju) = h+ ∂igi(x) in �,

it follows from interior De Giorgi-Nash estimates ([8], Theorem 8.24) that there
existγ ′(n, q, λ̄, 3̄) in the range 0< γ ′(n, q, λ̄, 3̄) < 1 andC(n, q, λ̄, 3̄) such
that

‖u‖
Cγ

′
( 3

4�)
5C

(‖u‖L∞(�) + ‖G‖L∞(�)

+ ‖H‖L∞(�) + ‖g −G‖Lq(�) + ‖h−H‖Lq/2(�)
)

5C
(
1 + ‖G‖L∞(�) + ‖H‖L∞(�)

+ ‖g −G‖Lq(�) + ‖h−H‖Lq/2(�)
)

=C(K(G,H)+ k(g, h,G,H)
)
. (28)
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Here we have, for later convenience, introduced the notation

K(G,H) = 1 + ‖G‖L∞(�) + ‖H‖L∞(�),

k(g, h,G,H) = ‖g −G‖Lq(�) + ‖h−H‖Lq/2(�).
Let v denote the solution to

∂i(Aij (x)∂j v) = H + ∂i(Gi) in 3
4�,

v = u on ∂(3
4�).

By L∞ estimates (see [8], Theorem 8.16)

‖v‖L∞( 3
4�)

5 ‖u‖L∞(∂( 3
4�))

+ C
(‖G‖L∞( 3

4�)
+ ‖H‖L∞( 3

4�)

)
5 CK(G,H).

It now follows from the global De Giorgi-Nash estimates ([8], Theorem 8.29) that,
for someγ andγ ′ such that 0< γ 5 γ ′,

‖v‖
Cγ ( 3

4�)
5 C

(
‖u‖

Cγ
′
( 3

4�)
+ ‖v‖L∞( 3

4�)
+ ‖G‖L∞( 3

4�)
+ ‖H‖L∞( 3

4�)

)
5 C(K(G,H)+ k(g, h,G,H)).

(29)

Based on this estimate and (28) we immediately get

‖u− v‖L∞(∂[( 3
4−s)�]) 5 C(K(G,H)+ k(g, h,G,H))sγ . (30)

A slightly more involved argument, utilizing in particular Proposition 2.1, gives
that

‖∇v‖L∞(( 3
4−s)�) 5 C(K(G,H)+ k(g, h,G,H))sγ−1. (31)

This latter argument goes as follows. For any fixedx ∈ (3
4 − s)� define

w(x) = v(x + sx)− v(x)

sγ
, |x| 5 1.

It follows from the estimate (29) that|w(x)| 5 C(K(G,H)+ k(g, h,G,H)) for
all |x| 5 1. We also have that

∂xi (Aij (x + sx)∂xj w) = s2−γH(x + sx)+ s1−γ ∂xiGi(x + sx) for |x| 5 1,

and so from Proposition 2.1 we conclude that

|∇w(0)| 5 C(K(G,H)+ k(g, h,G,H)),

or

|∇v(x)| 5 C(K(G,H)+ k(g, h,G,H))sγ−1,
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exactly as desired. A simple calculation gives

∂i(Aij (x)∂j (u− v)) =h−H + ∂i(gi −Gi)− ∂i((Aij (x)− Aij (x))∂j v),

x ∈ 3
4�,

and from this and the estimates (30) and (31) it follows, using Theorem 8.16 in [8]
again, that

‖u− v‖L∞(( 3
4−s)�) 5 ‖u− v‖L∞(∂[( 3

4−s)�])

+ C

(
‖g −G‖Lq(( 3

4−s)�) + ‖h−H‖Lq/2(( 3
4−s)�)

+ ‖ (Aij (x)− Aij (x)
)
∂j v‖Lq(( 3

4−s)�)
)

5C
(

[K(H,G)+ k(g, h,G,H)]sγ + k(g, h,G,H)

+ ε[K(H,G)+ k(g, h,G,H)]sγ−1
)
.

We note thatC depends onq, n, λ and3, but is independent of 0< s 5 1/4. We
now picks equal to min{ε,1/4} to get

‖u− v‖L∞( 1
2�)

5 C
(
K(H,G)εγ + k(g, h,G,H)

)
.

This completes the proof of the lemma.ut
For any 0< s and any 1< p < ∞ we introduce the norm

‖h‖Y s,p := sup
0<r51

r1−s
(∫

−
r�

|h|p
)1/p

.

For convenience we slightly redefine the indicesm∗ andm∗

m∗ = min{m : �m ∩ 1
4� 6= ∅} = min{m : − 1

4 < cm},
m∗ = max{m : �m ∩ 1

4� 6= ∅} = max{m : cm−1 <
1
4}.

We are now ready to establish our main perturbation result.

Proposition 3.2.SupposeA ∈ A(λ̄, 3̄) andA ∈ A(λ̄, 3̄), relative to the hyper-
planesxn = cm,0 5 m 5 l+1.Supposeg = (g1, · · · , gn) ∈ Lq(�), h ∈ Lq/2(�)
for someq > n, and supposeG = (G1, · · · ,Gn) andH are constant on each of
the strips�m. Let0< ᾱ < 1, and letu ∈ H 1(�) denote a solution to

∂i(Aij (x)∂ju) = h+ ∂igi in �

with

‖u‖L∞(�) 5 1.
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There exist constants0 < σ < 1
4, ε0 > 0, andC > 0 (depending onn, q, ᾱ, and

the ellipticity constants̄λ, 3̄) such that if

‖A− A‖Y 1+ᾱ,q 5 ε0, (32)

‖g −G‖Y 1+ᾱ,q + ‖h−H‖Y ᾱ,q/2 5 ε0, and ‖G‖L∞(�) + ‖H‖L∞(�) 5 1,

then we may find a sequence of continuous, piecewise linear functionspk, k =
1,2, . . . ,

pk(x) = a
(m)
k + b

(m)
k · x, x ∈ �m, m∗ 5 m 5 m∗,

with

|a(m)1 | + |b(m)1 | 5 C,∣∣∣a(m)k − a
(m)
k−1

∣∣∣ 5 C[(σ k−1)1+ᾱ + min{|cm−1|, |cm|}(σ k−1)ᾱ],∣∣∣b(m)k − b
(m)
k−1

∣∣∣ 5 C(σk−1)ᾱ,

b
(m)
k = M(m)b

(m−1)
k +

(
0′, 1

A
(m)
nn

[
G
(m)

n −G
(m−1)
n

])
,

for m∗ 5 m 5 m∗, and such that

‖u− pk‖L∞(σ k�) 5
(
σk
)1+ᾱ

. (Pk)

The limitp(x) = limk→∞ pk(x) exists forx ∈ 1
4�. It is a continuous, piecewise

linear function with coefficients that are uniformly bounded byC.p(·) furthermore
satisfies

∂i(Aij (x)∂j )p = ∂i(Gi) in 1
4�,

and
|u(x)− p(x)| 5 C|x|1+ᾱ, x ∈ 1

4�. (33)

Remark 3.1.From the uniform boundedness of the coefficients ofp(x) it follows
immediately that|p(x)− p(0)| 5 C|x|. The estimate (33) thus implies

|u(x)− u(0)| 5 |u(x)− p(x)| + |p(x)− p(0)| + |p(0)− u(0)| 5 C|x|.
Proof of Proposition 3.2.The existence of the piecewise linear functions,pk, is
established by induction. We first prove the existence of ap1 with the required prop-
erties. From the first and second inequalities in the hypothesis (32) it immediately
follows that‖A − A‖Lq(�) 5 Cε0 and‖g −G‖Lq(�) + ‖h − H‖Lq/2(�) 5 Cε0.
Therefore, according to Lemma 3.1, there exists a functionv ∈ H 1, satisfying

∂i(Aij (x)∂j v) = H + ∂i(Gi) in 3
4�,

and with

‖u− v‖L∞( 1
2�)

5 Cε
γ
0 .
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According to the last estimate we also have

‖v‖L∞( 1
2�)

5 C,

and thus, in view of Corollary 2.6 (with� replaced by12�) there exists a continuous,
piecewise linear function

p1(x) = a
(m)
1 + b

(m)
1 · x, x ∈ �m, m∗ 5 m 5 m∗,

with

|a(m)1 | + |b(m)1 | 5 C,

b
(m)
1 = M(m)b

(m−1)
1 + (0′, 1

A
(m)
nn

[G(m)n −G
(m−1)
n ]), (34)

and such that
|v(x)− p1(x)| 5 C|x|2, x ∈ 1

4�.

HereM(m) is the same matrix as earlier. By a combination of the estimates foru−v
andv − p1 we get

|u(x)− p1(x)| 5 Cε
γ
0 + C|x|2, x ∈ 1

4�. (35)

Now selectσ < 1
4 sufficiently small, so that

Cσ 2 = Cσ 1−ᾱσ 1+ᾱ 5 1
2σ

1+ᾱ,

it then follows from (35) that

|u(x)− p1(x)| 5 Cε
γ
0 + 1

2σ
1+ᾱ, x ∈ σ�.

Selectε0 sufficiently small thatCεγ0 <
1
2σ

1+ᾱ, and altogether we have

‖u− p1‖L∞(σ�) 5 σ 1+ᾱ,

which is exactly the estimate(P1).
Suppose we have established the existence ofp1, . . . , pk with the required

properties; to complete the induction proof we must now construct an appropriate
pk+1. It follows from the induction hypotheses that

max
15i5k, m∗5m5m∗{|a

(m)
i |, |b(m)i |} 5 C. (36)

Consider the function

W(x) = u(σ kx)− pk(σ
kx)

(σ k)1+ᾱ , x ∈ �.

According to the induction hypotheses this function satisfies

‖W‖L∞(�) 5 1,
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and

∂i(Aij (σ
kx)∂jW) = h(σ kx)

(σ k)ᾱ−1 + ∂i[gi(σ kx)]
(σ k)ᾱ

− 1

(σ k)1+ᾱ ∂i(Aij (σ
kx)∂jpk(σ

kx))

= hk(x)+ ∂igk,i(x),

with hk andgk,i given by

hk(x) = h(σ kx)

(σ k)ᾱ−1 ,

and

gk,i(x) = 1

(σ k)ᾱ

(
gi(σ

kx)− [Aij (σ kx)− Aij (σ
kx)]b(m)k,j −G

(m)

i

)
in σ−k�m.

A simple calculation, using the two first inequalities of the hypothesis (32), gives
that ∥∥∥∥ 1

(σ k)ᾱ
[Aij (σ k·)− Aij (σ

k·)]
∥∥∥∥
Lq(�)

5 Cε0, and

‖gk‖Lq(�) + ‖hk −Hk‖Lq/2(�) 5 Cε0,

where

Hk = H(σkx)

(σ k)ᾱ−1 .

From Lemma 3.1 we now infer the existence of a solution to

∂i(Aij (σ
kx)∂jZ) = Hk in 3

4�,

with the property that

‖W − Z‖L∞( 1
2�)

5 Cε
γ
0 .

According to the last estimate we also have

‖Z‖L∞( 1
2�)

5 C,

and thus, in view of Corollary 2.6, there exists a continuous, piecewise linear func-
tion p

p(x) = a(m) + b(m) · x, x ∈ σ−k�m, m∗ 5 m 5 m∗,

with

b(m) = M(m)b(m−1),

a(m) + b(m) · (0′, σ−kcm−1) = a(m−1) + b(m−1) · (0′, σ−kcm−1),
(37)

and such that

|Z(x)− p(x)| 5 C|x|2, x ∈ 1
4�.
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The functionp is initially (according to Corollary 2.6) only defined on those�m
for whichσ−k�m ∩ 1

4� 6= ∅. We extendp to all�m,m∗ 5 m 5 m∗, by means of
the identities (37). Sinceσ−k�m0 ∩ 1

4� 6= ∅ Corollary 2.6 asserts that

|a(m0)| + |b(m0)| 5 C, (38)

even though it does not provide similarlyl-independent bounds for allm∗ 5 m 5
m∗. By a combination of the estimates forW − Z andZ − p we get

|W(x)− p(x)| 5 Cε
γ
0 + C|x|2, x ∈ 1

4�.

With our choice ofσ andε0 we conclude (by repetition of an earlier argument) that

|W(x)− p(x)| 5 σ 1+ᾱ, x ∈ σ�,
and thus,

|u(σ kx)− pk(σ
kx)− (σ k)1+ᾱp(x)| 5 (σ k+1)1+ᾱ, x ∈ σ�.

It follows immediately thatpk+1(y) := pk(y)+ (σ k)1+ᾱp(y/σ k) satisfies the
estimate(Pk+1). We shall only verify the estimates concerning the coefficients of
pk+1 for m0 5 m 5 m∗. The verification form∗ 5 m < m0 proceeds similarly,
but is left to the reader. Sincepk+1 (as well aspk) satisfies∂i(Aij (x)∂j )pk+1 =
∂i(Gi) in 1

4�, we have

b
(m)
k+1 − b

(m)
k = M(m)[b(m−1)

k+1 − b
(m−1)
k ]

= . . . = [N(m)]−1N(m0)[b(m0)
k+1 − b

(m0)
k ] m0 5 m 5 m∗.

(39)

From (38) and the definition ofpk+1 we conclude that

|b(m0)
k+1 − b

(m0)
k | = (σ k)ᾱ|b(m0)| 5 C(σk)ᾱ.

This estimate, in combination with (39), leads to

|b(m)k+1 − b
(m)
k | 5 C(σk)ᾱ, m0 5 m 5 m∗,

with C = C(n, q, ᾱ, λ̄, 3̄). To establish the bounds concerning theak+1’s we first
inserty = 0 into the definition ofpk+1. This yields

a
(m0)
k+1 − a

(m0)
k = (σ k)1+ᾱa(m0),

and so, by means of (38), we get

|a(m0)
k+1 − a

(m0)
k | 5 C(σk)1+ᾱ .

Using the already established estimate forb
(m)
k+1−b(m)k and the continuity ofpk+1−

pk (atxn = cm−1)

a
(m)
k+1 − a

(m)
k + (b

(m)
k+1 − b

(m)
k ) · (0′, cm−1)

= a
(m−1)
k+1 −a(m−1)

k +(b(m−1)
k+1 −b(m−1)

k )·(0′, cm−2)+O((σ k)ᾱ(cm−1−cm−2),
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for m0 + 1< m 5 m∗. By iteration of this identity we get

a
(m)
k+1 − a

(m)
k + (b

(m)
k+1 − b

(m)
k ) · (0′, cm−1)

= a
(m0+1)
k+1 −a(m0+1)

k +(b(m0+1)
k+1 −b(m0+1)

k )·(0′, cm0)+O((σ k)ᾱ(cm−1−cm0)),

for m0 < m 5 m∗. Since

a
(m0+1)
k+1 − a

(m0+1)
k + (b

(m0+1)
k+1 − b

(m0+1)
k ) · (0′, cm0)

= a
(m0)
k+1 − a

(m0)
k + (b

(m0)
k+1 − b

(m0)
k ) · (0′, cm0)

= O((σ k)1+ᾱ + (σ k)ᾱcm0),

it now follows that

|a(m)k+1 − a
(m)
k + (b

(m)
k+1 − b

(m)
k ) · (0′, cm−1)| 5 C[(σ k)1+ᾱ + cm−1(σ

k)ᾱ],

for m0 < m 5 m∗. After insertion of the bound forb(m)k+1 − b
(m)
k we get

|a(m)k+1 − a
(m)
k | 5 C[(σ k)1+ᾱ + cm−1(σ

k)ᾱ], m0 < m 5 m∗.

This concludes the verification of the estimates concerning the coefficients ofpk+1.
The induction proof of the existence of the sequencep1, p2, . . . is complete.

Using the estimates for the coefficients ofpk(x) it is now (by summation of a
telescoping sum) easy to see thatp(x) = limk→∞ pk(x) exists forx ∈ 1

4�, and
that it satisfies the same differential equation as thepk ’s. From the estimates for
the coefficients forpk it also follows that

‖pk − p‖L∞(σ k�) 5 C(σk)1+ᾱ,

and thus, by combination with(Pk),

‖u− p‖L∞(σ k�) 5 C(σk)1+ᾱ .

This latter estimate immediately implies (33).ut

4. A weakened version of Theorem 1.1.

We return to the same notation as that used in the statement of the main theorems
in the introduction to this paper. Let us make a few simplifying assumptions.

(A) Suppose all but one of the domains,Dm, are convex. We refer to these as
the inhomogeneities. In the context of the two-dimensional example we discussed
in the introduction these represent the “fiber cross sections”.

(B) Suppose the coefficient matrix,A, is constant in each of the domainsDm,
1 5 m 5 L, and supposeh = g = 0.

At the same time we restrict our goal to establishing a uniform estimate for the
gradient ofu. The resulting weakened theorem reads as follows.
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D

D0

D-

+

f+

f-

Fig. 1. The local situation. The bold vertical line represent the points of the formx̄ =
(0′, xn), for which the origin is the closest point on the curves{(x′, xn) : xn = f±(x′),
|x′| 5 1}.

Theorem 4.1.Let the assumptions be as in Theorem 1.1, with the addition of(A)
and (B) above. There exists a constantC depending only onD, n, α, ε, λ̄, 3̄, and
theC1,α modulus of∪Lm=1∂Dm, such that ifu ∈ H 1(D) is a solution to

∂i(Aij ∂ju) = 0, in D,

then
‖∇u‖L∞(Dε) 5 C‖u‖L∞(D),

whereDε = {x ∈ D | dist (x, ∂D) > ε}.
Since theL∞ estimate, referred to earlier (Theorem 8.16 in [8]) already verifies

that‖u‖L∞(�) 5 ‖u‖L∞(∂�) the estimate in Theorem 4.1 immediately establishes
an interior uniform bound for the gradient ofu in terms of the boundary data.

The geometric assumption, (A), guarantees that given anyx̄ ∈ Dε there exists
a cubic neighborhood̄x + (−c, c)n such that this neighborhood overlaps with at
most three of the domainsDm. The essential feature is thatc, the size of this cube,
depends onε, n and theC1,α modulus of∪Lm=1∂Dm, but is independent of̄x. We
may suppose the cubēx + (−c, c)n overlaps with exactly three of the domains
(if not, we may simply create fictitious domain(s) without any discontinuity in
the coefficient). We may also suppose thatx̄ has a (Euclidean distance) nearest
point on∪∂Dm which is a distance strictly smaller thanc/2 from x̄ (if not we
simply decreasec and create fictitous domains). This nearest point is denotedȳ.
We may translate the origin of our coordinate system toȳ and rotate the coordinate
system so that then’th axis is normal to that∂Dm on which ȳ lies. Considering
the cubeQ = (−d, d)n with d = c/2

√
n we now obtain the situation depicted

in Fig. 1.Q intersects three of the domainsDm, we refer to the corresponding
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intersections asD−, D0 andD+. There exist twoC1,α functionsf− andf+ with
−d 5 f−(x′) < f+(x′) 5 d, x′ ∈ [−d, d]n−1, such thatD−,D0 andD+ are given
by

D− = {(x′, xn) ∈ (−d, d)n : − d < xn < f−(x′)},
D0 = {(x′, xn) ∈ (−d, d)n : f−(x′) < xn < f+(x′)},
D+ = {(x′, xn) ∈ (−d, d)n : f+(x′) < xn < d}.

The origin lies on the graph of one of the functionsf±. We suppose it lies on the
graph off−, i.e.,

f−(0′) = 0.

Then’th axis is normal to∪∂Dm at the origin, i.e.,

∇′f−(0′) = 0.

Since the origin is the (Euclidean distance) closest point tox̄ on∪∂Dm, and since
then’th axis is normal to∪∂Dm at the origin,x̄ has the form̄x = (0′, xn). The fact
that the boundary betweenD0 andD+ is also the graph of a function follows by
decreasingd = c/2

√
n, if necessary (exactly how much of a decrease is needed

depends onn and theC1,α modulus of∪Lm=1∂Dm, but is independent of̄x). We
could have allowed thatf− 5 f+ (as opposed to the strict inequalityf− < f+)
because if this were the case, we simply replacef+ by f+ + δ, and since the
estimates we obtain are independent ofδ we may then subsequently pass to the
limit δ = 0.

We denote the constant coefficient matrices corresponding toD−,D0 andD+
byA(−), A(0) andA(+) respectively, and we introduce the notation

A(x) =


A(+) x ∈ D+,
A(0) x ∈ D0,

A(−) x ∈ D+.

For simplicity of notation we from now on assume thatd = 1. In order to prove
Theorem 4.1 it clearly suffices to prove the following proposition.

Proposition 4.2.LetA(x), x ∈ � = (−1,1)n be the coefficient defined above for
somef± ∈ C1,α(|x′| 5 1), 0 < α < 1, and letu ∈ H 1(�) ∩ L∞(�) denote a
solution to

∂i(Aij (x)∂ju) = 0 in �.

There exists a constant C (depending onn, α, ‖f±‖C1,α([−1,1]n−1) and the ellipticity
constants̄λ, 3̄) such that

|∇u(x̄)| 5 C‖u‖L∞(�)

for any pointx̄ which has the form̄x = (0′, xn) and for which the origin is the
closest point on the curves{(x′, xn) : xn = f±(x′), |x′| 5 1}.
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The proof of Proposition 4.2 is based on Proposition 3.2 and a simple rescaling
argument. To formulate the rescaling lemma we need some additional notation.
Corresponding to the matrix-valued functionA we introduce, for anyr0 5 1,

Ar0(x) = A(r0x), x ∈ � = (−1,1)n, (40)

We also introduce the matrix-valued functionAr0(x), x ∈ � = (−1,1)n,

Ar0(x) =


A(+) |x′| < 1, r−1

0 f+(0) < xn < 1,

A(0) |x′| < 1, r−1
0 f−(0) < xn < r−1

0 f+(0),
A(−) |x′| < 1, −1< xn < r−1

0 f+(0).
(41)

The functionAr0 is in A(λ̄, 3̄) (relative to the hyperplanesxn = r−1
0 f±(0)).

Lemma 4.3.Let Ar0 andAr0 be defined by(40) and (41), and supposeq > n.
Given anyε0 > 0, there exists a positive constantr0 depending onn, q, ε0, α, λ,3

and‖f±‖C1,α([−1,1]n−1), such that(∫
−
r�

|Ar0(x)− Ar0(x)|q dx
)1/q

5 ε0r
α

(α+1)q , ∀ 0< r 5 1.

Proof. Sincef± ∈ C1,α(|x′| 5 1), we have

f±(x′) = f±(0′)+ ∇f±(0′)x′ +O(|x′|1+α), (42)

where|O(|x′|1+α)| 5 C|x′|1+α for someC depending only on theC1,α norm off±.
We also know thatf−(x′) < f+(x′), for |x′| 5 1, f−(0′) = 0, and∇f−(0′) = 0,
so

f+(0′)+ ∇f+(0′)x′ = −C|x′|1+α, |x′| 5 1.

For convenience we now introduce the notationδ = f+(0′). It follows from the
last inequality that

|∇f+(0′)| 5 C[f+(0′)] α
α+1 = Cδ

α
α+1 . (43)

For 0< r 5 1, a simple calculation gives(∫
−
r�

|Ar0(x)− Ar0(x)|q dx
)1/q

=
(∫

−
s�

|A(x)− Ar0(x/r0)|q dx
)1/q

with s = r0r ∈ (0, r0). It is easy to see that there exists a constant,ĉ > 0, depending
only on theC1 norm off+ so that

|(x′, f+(x′))| = ĉδ
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for all |x′| 5 1. Forr < ĉδ/r0 (s < ĉδ) we therefore estimate(∫
−
s�

|A(x)− Ar0(x/r0)|q dx
)1/q

5 C

(
s−n

∫
|x′|<s

|f−(x′)| dx′
)1/q

5 C

(
s−n

∫
|x′|<s

|x′|1+α dx′
)1/q

5 Csα/q 5 Cr
α/q
0 rα/q .

On the other hand, forr = ĉδ/r0, we get, using (42) and (43), that(∫
−
s�

|A(x)− Ar0(x/r0)|q dx
)1/q

5 C

(
s−n

∫
|x′|<s

(|f+(x′)− f+(0′)| + |f−(x′)|) dx′
)1/q

5 C

(
s−n

∫
|x′|<s

(δ
α
α+1 |x′| + |x′|1+α) dx′

)1/q

5 C(δ
α

(α+1)q + s
α
q ) 5 Cr

α
(α+1)q
0 r

α
(α+1)q .

A combination of the estimates above yields(∫
−
r�

|Ar0(x)− Ar0(x)|q dx
)1/q

5 Cr
α

(α+1)q
0 r

α
(α+1)q .

We now simply chooser0, so thatCr
α

(α+1)q
0 = ε0, and the lemma follows. ut

Proof of Proposition 4.2.Let ε0 be as in Proposition 3.2 and letr0 be as in Lemma
4.3 (corresponding to thisε0). The coefficient matricesAr0 andAr0 are as defined
in (40) and in (41). Definew(x) = u(r0x)/‖u‖L∞(�), x ∈ �. The functionw ∈
H 1(�) satisfies

∂i((Ar0)ij ∂jw) = 0 in�,

and

‖w‖L∞(�) 5 1.

To prove that|∇u(x̄)| 5 C‖u‖L∞(�) for all x̄ which have the form̄x = (0, xn) and
for which the origin is the closest points on the curves{(x′, xn) : xn = f±(x′)} it
clearly suffices to consider only|x̄|∞ < r0/6. If |x̄|∞ = r0/6, then we are clearly a
fixed distance away from the discontinuities in the coefficient, and classical elliptic
interior estimates immediately give that|∇u(x̄)| 5 C‖u‖L∞(�). We also note that
a bound for∇w(x) immediately leads to a bound for∇u(r0x). In order to complete
the proof of Proposition 4.2 it thus suffices to prove that

|∇w(x̃)| 5 C, x̃ ∈ 1
6� (44)
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for any x̃ ∈ � which has the form̃x = (0′, xn) and for which the origin is the
closest points on the curves{(x′, xn) : xn = r−1

0 f±(r0x′)}. By a combination of
Proposition 3.2 (Remark 3.1) and Lemma 4.3 we obtain the estimate

|w(x)− w(0)| 5 C|x|, x ∈ 1
4�. (45)

For x̃ = 0 the estimate (44) follows immediately from (45). Forx̃ 6= 0, consider
the function

ŵ(y) = w(x̃ + 1
2|x̃|y)− w(0)

|x̃| , |y| 5 1.

Sincex̃ + 1
2|x̃|y ∈ 1

4� it follows from (45) that

|ŵ(y)| 5 C, |y| 5 1.

Sincex̃ + 1
2|x̃|y never touches the graphs ofr−1

0 f±(r0x′), due to the form of̃x, ŵ
satisfies a constant coefficient equation. Therefore, using classical elliptic estimates
we have

|∇w(x̃)| = 2|∇ŵ(0)| 5 C.

Proposition 4.2 is thus established.ut

5. Interior estimates

We now proceed to prove the full version of Theorem 1.1. For this purpose we
first consider a (local) problem when the cube� = (−1,1)n is divided intol + 1
subdomains byl C1,α curves. Let 0< α < 1, and letf1, · · · , fl be l functions in
C1,α(|x′| 5 1) satisfying

−1< f1(x
′) < f2(x

′) < · · · < fl(x
′) < 1 for all x′ ∈ [−1,1]n−1. (46)

We suppose

fm0−1(0
′) 5 0< fm0(0

′), and|(0′, fm0−1(0
′))|2 = min

15m5l
min
|x′|51

|(x′, fm(x′)|2.
(47)

Except whenfm0−1(0′) = 0 this implies

∇′fm0−1(0
′) = 0′. (48)

If fm0−1(0′) = 0 we suppose the coordinate system has been oriented so that (48)
holds. These functions divide� into l + 1 regions

D̃m := {x ∈ �|fm−1(x
′) < xn < fm(x

′)}, 1 5 m 5 l + 1,

where we have adopted the notationf0 ≡ −1, fl+1 ≡ 1. In an appropriate sense

one may think ofD̃m asDm ∩ �. Let A(m) ∈ Cµ(D̃m), 1 5 m 5 l + 1, be
symmetric, positive definite matrix-valued functions, and define

A(x) = A(m)(x), x ∈ D̃m, 1 5 m 5 l + 1.
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Let g(m) = (g
(m)
1 , . . . , g

(m)
n ) be inCµ(D̃m), and define

g(x) = g(m)(x), x ∈ D̃m, 1 5 m 5 l + 1.

We introduce thel + 1 “strips”

�m = {x ∈ � | fm−1(0
′) < xn < fm(0

′)},

and define the piecewise constant (matrix-valued) function

A(x) =


A(m)(0′, fm−1(0

′)), x ∈ �m, m > m0,

A(m0)(0), x ∈ �m0,

A(m)(0′, fm(0′)), x ∈ �m, m < m0.

Usingg(m), 1 5 m 5 l+ 1 we similarly define a piecewise constant vector-valued
functionG. Sincefm ∈ C1,α(|x′| 5 1), we have

fm(x
′) = fm(0

′)+ ∇fm(0′)x′ +O(|x′|1+α), (49)

where|O(|x′|1+α)| 5 C|x′|1+α for someC depending only on theC1,α norm of
fm. We also know thatfm(x′) > fm−1(x

′) for |x′| 5 1. It follows that

|∇fm(0′)− ∇fm−1(0
′)| 5 C(fm(0

′)− fm−1(0
′))

α
α+1 . (50)

By a “telescoping summation” argument we now, in view of (46), (47) and (48),
conclude that

|∇fm(0′)| 5 C|fm(0′)| α
α+1 . (51)

The constantC now depends onl and theC1,α norm offm.
From the definition of the “strip”�m one would expect that, generically, a

significant fraction ofD̃m, locally, falls inside�m. The following lemma makes
this statement more precise by estimating the smallness of(D̃m ∩ s�) \ �m, for
0< s 5 1.

Lemma 5.1.There exists a constantC, depending onl and theC1,α norm offm,
1 5 m 5 l, such that

s−n|(D̃m ∩ s�) \�m| 5 Cs
α
α+1 , 1 5 m 5 l + 1.

Proof. Due to the identity(D̃m ∩ s�) \�m = ∪j 6=mD̃m ∩ s� ∩�j , it suffices to
prove that

|D̃m ∩ s� ∩�j | 5 Cs
α
α+1 , j 6= m. (52)
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If the setD̃m ∩ s� ∩ �j = ∅, there is nothing to prove. We thus assume it is
nonempty. It is quite easy to see that

|D̃m ∩ s� ∩�j |

5 C


min

{∫
(−s,s)n−1 |fm(x′)− fm(0′)|, ∫

(−s,s)n−1 |fj−1(x
′)− fj−1(0′)|

}
for j > m,

min
{∫
(−s,s)n−1 |fj (x′)− fj (0′)|, ∫

(−s,s)n−1 |fm−1(x
′)− fm−1(0′)|

}
for j < m.

(53)

In order to estimate the right-hand side of this inequality it is convenient to introduce
the index set

Is = {k | (x′, fk(x′)) ∈ s� for somex′}.
From (49) it follows that

|fk(0′)| 5 Cs ∀ k ∈ Is . (54)

In combination with (49) and (51) this leads to

s−n
∫
x′∈(−s,s)n−1

|fk(x′)− fk(0
′)|dx′

5 Cs−n
∫
x′∈(−s,s)n−1

(
|fk(0′)| α

α+1 |x′| + |x′|1+α) dx′

5 C(s
α
α+1 + sα) 5 Cs

α
α+1 ∀ k ∈ Is .

(55)

It is also easy to see that

k > m0, D̃k ∩ s� 6= ∅⇒ m0, · · · , k − 1 ∈ Is,
k < m0, D̃k ∩ s� 6= ∅ ⇒ k, · · · ,m0 − 1 ∈ Is .

(56)

At this point we divide our proof into three different cases.

Case 1.m > m0. SinceD̃m ∩ s� 6= ∅, it follows from the first statement of
(56) thatm − 1 is in Is . A combination of (53) and (55) (withk = m − 1) gives
the estimate (52) forj < m. On the other hand, forj > m > m0, the fact that
s� ∩ �j 6= ∅ immediately implies that(0′, fj−1(0′)) ∈ s�. We therefore have
j −1 ∈ Is and the estimate (52) again follows from a combination of (53) and (55)
(with k = j − 1).

Case 2.m < m0. SinceD̃m ∩ s� 6= ∅, it follows from the second statement of
(56) thatm is in Is . A combination of (53) and (55) (withk = m) gives the estimate
(52) for j > m. On the other hand, forj < m < m0, the fact thats� ∩ �j 6= ∅
immediately implies that(0′, fj (0′)) ∈ s�. We therefore havej ∈ Is and the
estimate (52) again follows from a combination of (53) and (55) (withk = j ).

Case 3.m = m0. Here we conclude froms� ∩�j 6= ∅ that

m0 ∈ Is for j > m0,

m0 − 1 ∈ Is for j < m0.

As before, the estimate follows from a combination of (53) and (55).ut
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Using the previous lemma, we may now quite easily establish the equivalent of
Lemma 4.3.

Lemma 5.2.Supposeq > n and 0 < α′ 5 min{µ, α
(α+1)q } . Let A andA be

as introduced at the beginning of this section, and letAr0 andAr0 be defined by
Ar0(x) = A(r0x), Ar0(x) = A(r0x). Given anyε0 > 0 there exists a positive
constantr0, depending onn, q, l, ε0, α, α′, λ̄, 3̄, max15m5l ‖fm‖C1,α([−1,1]n−1),

andmax15m5l+1 ‖A(m)‖
Cα

′
(D̃m)

, so that

(∫
−
r�

|Ar0(x)− Ar0(x)|q
)1/q

5 ε0r
α′
, ∀ 0< r 5 1.

Proof. For 0< r 5 1, a change of variable gives(∫
−
r�

|Ar0(x)− Ar0(x)|q dx
)1/q

=
(∫

−
s�

|A(x)− A(x)|q dx
)1/q

(57)

with s = r0r ∈ (0, r0). Due to the definition ofA, D̃m, and�m, and due to Lemma
5.1(∫

−
s�

|A(x)− A(x)|q dx
)1/q

=
(
s−n

∑
m

∫
D̃m∩s�∩�m

|A(m)(x)− A(x)|q dx

+ s−n
∑
m

∫
(D̃m∩s�)\�m

|A(m)(x)− A(x)|q dx
)1/q

5
(
s−n

∑
m

∫
D̃m∩s�∩�m

|A(m)(x)− A(x)|q dx
)1/q

+ Cs
α

(α+1)q .

(58)

The first term in the right-hand side of (58) requires a slightly different estima-
tion, depending on whetherm < m0,m = m0 orm > m0.
Form < m0,(

s−n
∫
D̃m∩s�∩�m

|A(m)(x)− A(x)|q dx
)1/q

=
(
s−n

∫
D̃m∩s�∩�m

|A(m)(x)− A(m)(0′, fm(0′))|q dx
)1/q

5 C

(
s−n

∫
D̃m∩s�∩�m

|x − (0′, fm(0′))|α′q dx

)1/q

5 Csα
′
.
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Form = m0,(
s−n

∫
D̃m0∩s�∩�m0

|A(m)(x)− A(x)|q dx
)1/q

=
(
s−n

∫
D̃m0∩s�∩�m0

|A(m0)(x)− A(m0)(0)|q dx
)1/q

5 Csα
′
.

Form > m0,(
s−n

∫
D̃m∩s�∩�m

|A(m)(x)− A(x)|q dx
)1/q

=
(
s−n

∫
D̃m∩s�∩�m

|A(m)(x)− A(m)(0′, fm−1(0
′))|q dx

)1/q

5 C

(
s−n

∫
D̃m∩s�∩�m

|x − (0′, fm−1(0
′))|α′q dx

)1/q

5 Csα
′
.

In either case we therefore from (58) conclude that(∫
−
s�

|A(x)− A(x)|q dx
)1/q

5 C(sα
′ + s

α
(α+1)q )

5 Csα
′ = Crα

′
0 r

α′
.

(59)

We now simply chooser0, so thatCrα
′

0 = ε0, and the lemma follows. ut
We may combine Proposition 3.2 with Lemma 5.2 to establish the following

proposition.

Proposition 5.3. Let A ∈ A(λ̄, 3̄), A ∈ A(λ̄, 3̄). Let h ∈ L∞(�), and letg
andG be as defined at the beginning of this section. For anyq > n, and any
0 < α′ 5 min{µ, α

(α+1)q } there exist constantsC andr0 such that, ifu ∈ H 1(�)

is a solution to

∂i(Aij ∂ju) = h+ ∂igi in �, (60)

with

‖u‖L∞(�) + ‖h‖L∞(�) + max
15m5l+1

‖g(m)‖
Cα

′
(D̃m)

5 1, (61)

then one may find a continuous, piecewise linear function,p, whose coefficients
are bounded in absolute value byC, and which satisfies

∂i(Aij ∂jp(x)) = ∂iGi, in r0�. (62)

and
|u(x)− p(x)| 5 C|x|1+α′

, x ∈ r0�,
The constantsC and r0 depend onn, α′, α, q, λ̄, 3̄, the numberl, max15m5l+1

‖A(m)‖
Cα

′
(D̃m)

, andmax15m5l ‖fm‖C1,α([−1,1]n−1).
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Proof. We considerw(x) = u(r0x), that solves the equation

∂i((Ar0)ij ∂jw) = r2
0h(r0·)+ r0∂igi(r0·) in �.

By selectingr0 as small as prescribed in Lemma 5.2, we obtain the estimate

‖Ar0 − Ar0‖Y 1+α′,q 5 ε0,

exactly as required by the crucial hypothesis (32) in Proposition 3.2. Applying
Lemma 5.2 to the functionsg andG we may selectr0 sufficiently small that

‖g(r0·)−G(r0·)‖Y 1+α′,q 5 1
2ε0.

By selectingr0 sufficiently small we thus get

r2
0‖h(r0·)‖Yα′,q/2 + r0‖g(r0·)−G(r0·)‖Y 1+α′,q

5 r2
0‖h‖L∞(�) + r0

1
2ε0 5 ε0.

We also have

r0‖G(r0·)‖L∞(�) 5 r0 max
15m5l+1

‖g(m)‖
Cα

′
(D̃m)

5 1.

We remind the reader that the ellipticity bounds forAr0 andAr0 are the same as
those forA andA. We also note that any estimates obtained forw will translate
into similar estimates foru except for a fixed constant depending onr0.

Since the hypotheses are satisfied we may now apply Proposition 3.2 (with
H = 0) tou.This leads to the existence of a continuous, piecewise linear polynomial
q, whose coefficients are bounded in absolute value byC, and which satisfies

∂i(Aij (r0x)∂j q(x)) = r0∂iGi(r0x), in 1
4�.

and
|w(x)− q(x)| 5 C|x|1+α′

, x ∈ 1
4�,

The constant C depends onn, α′, α, q, λ̄, 3̄, the numberl, max15m5l+1

‖A(m)‖
Cα

′
(D̃m)

, and max15m5l ‖fm‖C1,α([−1,1]n−1). The functionp(x) = q(x/r0)

satisfies all the requirements from the statement of this proposition (after1
4r0 is

renamedr0). ut
Proof of Theorem 1.1.Using the same arguments as those leading to Theorem 4.1
we conclude from Proposition 5.3 that

‖∇u‖L∞(Dε) 5 C

(
‖u‖L∞(D) + ‖h‖L∞(D) + max

15m5L
‖g(m)‖

Cα
′
(Dm)

)
.

Here we note thatl (the number of curves) that appears in our local estimates is
bounded by a constant that depends on theC1,α modulus of∪Lm=1∂Dm. To complete
the proof of Theorem 1.1 we only need to establish

|∇u(x)− ∇u(0)| 5 C|x|α′ ∀ x ∈ D̃m0,
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whereu is as in Proposition 5.3. Naturally, we only need to establish this estimate
for |x| < r1 for some smallr1, which depends on the same parameters as the
constantC in Theorem 1.1. In the following we repeatedly use the smallness ofx

(i.e., r1) without explicit mention. For anyx ∈ D̃m0 \ {0}, if fm0(0
′) > 80|x|, set

x̄ = (0′,10|x|) (andm = m0 − 1), otherwise letm = m0 be the smallest index
for which fm+1(0′) − fm(0′) > 80|x| and setx̄ = (0′, fm(0′) + 10|x|). Clearly,
10|x| 5 |x̄| 5 100(l + 1)|x|. We will first show that

|∇u(x̄)− ∇p(x̄)| 5 C|x|α′
, (63)

wherep is the piecewise linear function from Proposition 5.3. This in turn implies

|∇u(x̄)− T (m+1) · · · T (m0+1)∇u(0)| 5 C|x|α′
, (64)

whereT (j)b = M(j)b + (0, 1

A
(j)
nn

[G(j)n − G
(j−1)
n ]), andM(j) is the transmission

matrix corresponding to the horizontal hyperplanexn = fj−1(0′). For j > m0 +
1, T (j) is determined by the values ofA(j)(0′, fj−1(0′)), A(j−1)(0′, fj−2(0′)),
g(j)(0′, fj−1(0′)), g(j−1)(0′, fj−2(0′)), whileT (m0+1) is determined by the values
of A(m0+1)(0′, fm0(0

′)), A(m0)(0)), g(m0+1)(0′, fm0(0
′)), andg(m0)(0).

From the definition of̄x andm, and the smallness of|x| it follows immediately
that the neighborhood

D̂ = x̄ + 4(−|x|, |x|)n = (0′, |x̄|)+ 4(−|x|, |x|)n,
lies insideD̃m+1 (and�m+1). Define the function

ŵ(y) = u(x̄ + 4|x|y)− p(x̄ + 4|x|y)
(4|x|)1+α′ , y ∈ �.

In view of Proposition 5.3,̂w(y) satisfies

‖ŵ‖L∞(�) 5 C.

At the same time, sincēx + 4|x|y ∈ D̃m+1 ∩�m+1,

∂i(A
(m+1)
ij (x̄ + 4|x|y)∂j )ŵ(y) = ĥ(y)+ ∂i ĝi(y),

where
ĥ(y) = (4|x|)1−α′

h(x̄ + 4|x|y),
and

ĝi (y) = (4|x|)−α′ [g(m+1)
i (x̄ + 4|x|y)− g

(m+1)
i (0′, fm(0′))]

− (4|x|)−1−α′ [A(m+1)
ij (x̄ + 4|x|y)− A

(m+1)
ij (0′, fm(0′))]∂jp(x̄ + 4|x|y).

The functionsg(m+1) andA(m+1) are Hölder continuous (with exponentµ = α′)
so it is easy to see that

‖ĥ‖L∞(�) 5 C, ‖ĝi‖Cµ(�) 5 C.
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Since‖A(m+1)(x̄+4|x|·)‖Cµ(�) 5 C, we can now apply Schauder theory to obtain

|∇ŵ(y)| 5 C, y ∈ 2

3
�. (65)

Insertion ofy = 0 yields

|x|−α′ |∇u(x̄)− ∇p(x̄)| 5 C,

which immediately implies (63).
Now letz be on either the graph offm0 orfm0−1, so that|z−x|2 is the minimal

(Euclidean) distance ofx ∈ D̃m0 \ {0} to the union of the graphs of{fj }. We may
without loss of generality assume thatz lies on the graph offm0−1. Let L be the
line passing throughzwhich is normal to this graph. Clearlyx ∈ L. Letz(j) denote
the intersection ofLwith the graph offj form0 −1 5 j 5 m+1. It is not difficult
to see that (due to the smallness of|x|)

|z(j) − (0′, fj (0′))| 5 4|x|, m0 5 j 5 m, (66)

and

|z(m+1) − z(m)| = 40|x|. (67)

Herem is as defined before, and we have used the fact that the point(0′, fm0−1(0′))
is the projection of the origin onto the graph of the functionfm0−1. A slight change
of our earlier argument shows that (whenm = m0) we can findz̄ on the segment
determined byz(m) andz(m+1) with |z̄− z(m)| = 10|x| such that

|∇u(z̄)− T̃ (m+1) · · · T̃ (m0+1)∇u(x)| 5 C|x|α′
, (68)

where forj = m0 +1, T̃ (j) describes the transition at the hyperplane orthogonal to
L and passing throughz(j−1); T̃ (j), j > m0 + 1, is determined from the values of
A(j)(zj−1), A(j−1)(zj−2), g(j)(zj−1), g(j−1)(zj−2), while T̃ (m0+1) is determined
from the values ofA(m0+1)(z(m0)), A(m0)(x), g(m0+1)(z(m0)), andg(m0)(x). When
m = m0 − 1 a slight change of our previous argument yields a pointz̄ with
|z̄− x| = 10|x| such that (68) holds (in this casẽT (m+1) · · · T̃ (m0+1) = I ). Due to
(66) and the H¨older continuity ofA(j) andg(j), we have

|T (j) − T̃ (j)| 5 C|x|µ.
So,

|∇u(z̄)− T (m+1) · · · T (m0+1)∇u(x)| 5 C|x|α′
. (69)

It is easy to see that we may suppose

|x̄ − z̄| 5 2|x|.
We may now inserty = (z̄− x̄)/4|x| into the estimate (65) to obtain

|∇u(z̄)− ∇p(z̄)| 5 C|x|α′
.
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Sincex̄ and z̄ both lie in�m+1 we have∇p(z̄) = ∇p(x̄) = T (m+1) · · · T (m0+1)

∇u(0), and so the above estimate becomes

|∇u(z̄)− T (m+1) · · · T (m0+1)∇u(0)| 5 C|x|α′
. (70)

In terms of the matricesN(m), introduced in the proof of Corollary 2.6, a combi-
nation of (69), and (70) immediately yields

|(N(m+1))−1N(m0) [∇u(x)− ∇u(0)] |
= |T (m+1) · · · T (m0+1)∇u(x)− T (m+1) · · · T (m0+1)∇u(0)|
5 C|x|α′

,

which leads to
|∇u(x)− ∇u(0)| 5 C|x|α′

.

This completes the proof of Theorem 1.1.ut

6. Boundary estimates

Theorem 1.2 is established using a string of lemmas similar to those used in the
proof of Theorem 1.1. We start with the local estimates, in which case the domain
� is replaced by

�+ = (−1,1)n−1 × (0,1),

and a boundary condition is imposed on the sidexn = 0. The following notation is
quite similar to that used in earlier sections. Let

0 ≡ c0 < c1 < · · · < cl+1 ≡ 1,

and define

�m = {x ∈ �+ | cm−1 < xn < cm}, 1 5 m 5 l + 1.

Let {A(m)}l+1
1 = {(A(m)ij )}l+1

1 be l + 1 symmetric, positive definite (constant) ma-

trices, with 0 < λ̄ 5 A
(m) 5 3̄ < ∞, and define a matrix-valued function

A(x) = (Aij (x)) by

Aij (x) = A
(m)

ij , x ∈ �m, 1 5 m 5 l + 1, .

By a slight extension of our previous notationA ∈ A(λ̄, 3̄). Let {H(m)}l+1
1 bel+1

constants and let{G(m)}l+1
1 be l + 1 vectors inRn. We define the functionsH(x)

andG(x) by

H(x) = H
(m)
, G(x) = G

(m)
, x ∈ �m, 1 5 m 5 l + 1.

Finally we require that the boundary value,ϕ, satisfies

ϕ ∈ C1,α(|x′| 5 1).

The following is an analogue of Proposition 2.1.
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Proposition 6.1.LetA,GandH be as above and let d be a vectord = (d0, d1, . . . ,

dn−1). Supposek is a non-negative integer and supposeε > 0. There exists a
constantC = C(ε, k, n, λ̄, 3̄), such that ifv ∈ H 1(�+) is a solution to

∂i(Aij (x)∂j )v = H + ∂iGi in �+, (71)

v = d0 +
∑

15β5n−1

dβxβ on {|x′| < 1, xn = 0},

then

max
15m5l+1

‖v‖Ck(�m∩(1−ε)�+)

5 C
(‖v‖L∞(�+) + ‖H‖L∞(�+) + ‖G‖L∞(�+) + |d|) .

Proof. Whend = 0, the estimate follows from application of the same technique
as used for the proof of Proposition 2.1. Whend 6= 0, the matching condition (22),
with G = 0, and the continuity condition (23) determine a unique continuous,
piecewise linear function

p̂(x) =
{
a(m) + b(m) · x, in �m, m = 1,

d0 +∑
15β5n−1 dβxβ, in �1,

which satisfies
∂i(Aij (x)∂j )p̂(x) = 0 in�+.

The coefficients of̂p are bounded byC|d|. Applying thed = 0 case tov − p̂(x),
we complete the proof. ut

Proposition 6.1 leads to an approximation result analogous to Corollary 2.6.

Corollary 6.2. LetA, G, H andd be as in Proposition 6.1, and letv ∈ H 1(�+)
denote a solution to

∂i(Aij (x)∂j )v = H + ∂i(Gi) in �+,

v = d0 +
∑

15β5n−1

dβxβ on {|x′| < 1, xn = 0},

with

‖v‖L∞(�+) + ‖H‖L∞(�+) + ‖G‖L∞(�+) + |d| 5 1.

There exists a constantC = C(n, λ̄, 3̄) and a continuous, piecewise linear function

p(x) = a(m) + b(m) · x, x ∈ �m, 1 5 m 5 l + 1,
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satisfying

∂i(Aij (x)∂j )p(x) = ∂i(Gi) in �+,

p(x′,0) = d0 +
∑

15β5n−1

dβxβ,

such that

|v(x)− p(x)| 5 C|x|2, x ∈ 1

2
�+,

and

|a(m)| + |b(m)| 5 C, 1 5 m 5 m∗.

Proof. The proof is very similar to that of Corollary 2.6. Only, instead of (21), we
set

a(1) = v(0) = d0, b(1) = ∇v(0) = (d1, . . . , dn−1,
∂v

∂xn
(0)),

and define the rest of thea(m), b(m) using (22) and (23). ut
The analogue of the first perturbation lemma (Lemma 3.1) reads

Lemma 6.3.SupposeA ∈ A(λ̄, 3̄). Supposeg = (g1, · · · , gn) ∈ Lq(�+) and
h ∈ Lq/2(�+) for someq > n. Letu ∈ H 1(�+) be a solution to

∂i(Aij ∂ju) = h+ ∂igi in �+,

with

u = ϕ on {|x′| < 1, xn = 0},
and

‖u‖L∞(�+) 5 1.

There exist positive constantsγ 5 1 andC (depending only onq, n, λ̄ and3̄) such
that if (∫

−
�+

|A− A|q dx
)1/q

5 ε

for someε > 0, then we may find a functionv ∈ H 1 with

∂i(Aij (x)∂j v) = H + ∂i(Gi) in 3
4�

+,

v = ϕ(0′)+
∑

15β5n−1

∂βϕ(0
′)xβ on {|x′| < 3/4, xn = 0}, (72)
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and with

‖u− v‖L∞( 1
2�

+)

5C
( [

1 + ||G||L∞(�+) + ||H ||L∞(�+) + |ϕ(0′)| + |∇′ϕ(0′)|] εγ
+ ||g −G||Lq(�+) + ||h−H ||Lq/2(�+) + ‖ϕ − ϕ(0′)

−
∑

15β5n−1

∂βϕ(0
′)xβ‖L∞(|x′|<1)

)
.

Proof. The proof is very similar to that of Lemma 3.1. Of course, in place of
Proposition 2.1 we use Proposition 6.1. We just point out how to definev, since the
rest of the changes are fairly obvious. Letv denote the solution of

∂i(Aij (x)∂j v) = H + ∂i(Gi) in
3

4
�+,

v = ϕ(0′)+
∑

15β5n−1

∂βϕ(0
′)xβ on {|x′| < 3/4, xn = 0},

and

v = u on ∂(
3

4
�+) ∩ {xn > 0}. ut

We (re)introduce the norm

‖h‖Y s,p := sup
0<r<1

r1−s
(∫

−
r�+

|h|p
)1/p

,

The previous lemma in combination with Corollary 6.2 leads to the following
perturbation result.

Proposition 6.4.SupposeA ∈ A(λ̄, 3̄) andA ∈ A(λ̄, 3̄), relative to the hyper-
planesxn = cm, 0 5 m 5 l + 1. Supposeg = (g1, · · · , gn) ∈ Lq(�+), h ∈
Lq/2(�+) for someq > n, and supposeG = (G1, · · · ,Gn) andH are constant
on each of the strips�m. Let0< ᾱ < 1 and letu ∈ H 1(�+) denote a solution to

∂i(Aij (x)∂ju) = h+ ∂igi in �+,
u = ϕ on {|x′| < 1, xn = 0},

with

‖u‖L∞(�+) 5 1.
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There exist constants in the range0 < σ < 1
4, ε0 > 0, andC > 0 (depending on

n, q, ᾱ, and the ellipticity constants̄λ, 3̄) such that if

‖A− A‖Y 1+ᾱ,q 5 ε0,

‖g −G‖Y 1+ᾱ,q + ‖h−H‖Y ᾱ,q/2 + ‖ϕ − ϕ(0′)

−
∑

15β5n−1

∂βϕ(0
′)xβ‖C1,ᾱ (|x′|<1) 5 ε0,

and

‖G‖L∞(�) + ‖H‖L∞(�) + ‖ϕ‖C1,ᾱ (|x′|51) 5 1,

then we may find a sequence of continuous, piecewise linear functionspk, k =
1,2, . . . ,

pk(x) = a
(m)
k + b

(m)
k · x, x ∈ �m, 1 5 m 5 m∗,

with

pk(x
′,0) = ϕ(0′)+

∑
15β5n−1

∂βϕ(0
′)xβ

and with

|a(m)1 | + |b(m)1 | 5 C,∣∣∣a(m)k − a
(m)
k−1

∣∣∣ 5 C[(σ k−1)1+ᾱ + cm−1(σ
k−1)ᾱ],∣∣∣b(m)k − b

(m)
k−1

∣∣∣ 5 C(σk−1)ᾱ,

b
(m)
k = M(m)b

(m−1)
k + (0′, 1

A
(m)

nn

[G(m)n −G
(m−1)
n ]),

for 1 5 m 5 m∗, such that

‖u− pk‖L∞(σ k�+) 5
(
σk
)1+ᾱ

. (Pk)

The limitp(x) = limk→∞ pk(x) exists forx ∈ 1
4�

+. It is a continuous, piecewise
linear function with coefficients that are uniformly bounded byC. Furthermore
p(·) satisfies

∂i(Aij (x)∂j )p = ∂i(Gi) in
1

4
�+,

p(x′,0) = ϕ(0′)+
∑

15β5n−1

∂βϕ(0
′)xβ,

and

|u(x)− p(x)| 5 C|x|1+ᾱ, x ∈ 1

4
�+.
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Proof. The proof is a simple modification of that of Proposition 3.2, with Lemma
6.3 substituted for Lemma 3.1.ut

Before we state the boundary version of Proposition 5.3 we need some additional
notation. Letf1, · · · , fl bel functions inC1,α(|x′| 5 1), satisfying

0< f1(x
′) < f2(x

′) < · · · < fl(x
′) for all x′ ∈ [−1,1]n−1. (73)

These functions divide�+ into l + 1 regions

D̃m = {x ∈ V | fm−1(x
′) < xn < fm(x

′)}, 1 5 m 5 l + 1,

where we have used the conventionf0 ≡ 0, fl+1 ≡ 1.

Let A(m) ∈ Cµ(D̃m), 1 5 m 5 l + 1, be symmetric, positive definite matrix-
valued functions, and letA(x) ∈ A(λ̄, 3̄) denote the matrix-valued function

A(x) = A(m)(x), x ∈ D̃m, 1 5 m 5 l + 1. (74)

Let g(m) ∈ Cµ(D̃m,Rn), and letg denote the function

g(x) = g(m)(x), x ∈ D̃m,1 5 m 5 l + 1. (75)

Supposeh is inL∞(�+). We introduce a particular set of “strips”

�m = {x ∈ V | fm−1(0
′) < xn < fm(0

′)},
and introduce the specific matrix-valued functionA ∈ A(λ̄, 3̄)

A(x) = A(m)(0′, fm−1(0
′)), x ∈ �m, 1 5 m 5 l + 1,

as well as the specific vector-valued function

G(x) = g(m)(0′, fm−1(0
′)), x ∈ �m, 1 5 m 5 l + 1.

Proposition 6.5.LetA ∈ A(λ̄, 3̄), A ∈ A(λ̄, 3̄), h, g andG be as defined just
above. For anyq > n, and any0 < α′ 5 min{µ, α

(α+1)q } there exist constantsC

andr0 such that ifu ∈ H 1(�+) is a solution to

∂i(Aij ∂ju) = h+ ∂igi in �+,
u = ϕ on {|x′| < 1, xn = 0},

with

‖u‖L∞(�) + ‖h‖L∞(�) + max
15m5l+1

‖g(m)‖
Cα

′
(D̃m)

+ ‖ϕ‖
C1,α′

(|x′|51) 5 1,

then one may find a continuous, piecewise linear function,p, whose coefficients
are bounded in absolute value byC, and which satisfies

∂i(Aij ∂jp(x)) = ∂iGi in r0�
+,

and
|u(x)− p(x)| 5 C|x|1+α′

, x ∈ r0�+.
The constantsC and r0 depend onn, α′, α, q, λ̄, 3̄, the numberl, max15m5l+1

‖A(m)‖
Cα

′
(D̃m)

, andmax15m5l ‖fm‖C1,α([−1,1]n−1).
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Proof. Based on the already stated local result the proof is a simple modification
of that of Proposition 5.3. ut
Proof of Theorem 1.2.We can locally make aC1,α diffeomorphism to flatten the
boundary without changing the form of the equation. We may suppose that the
domainD locally coincides with the halfspacexn > 0. We can now apply the exact
same technique as that used to prove Theorem 1.1, only this time we use Proposition
6.5 in place of Proposition 5.3.ut

7. Hölder estimates

In this section we examine the regularity properties of solutions, when the
boundary data are only known to be H¨older continuous, andh and g are only
known to be bounded. That is to say, instead of (3) and(5) we suppose

h ∈ L∞(D), g = (g1, · · · , gn) ∈ L∞(D), (76)

and, for some 0< ν < 1,

ϕ ∈ Cν(∂D). (77)

The following theorems are analogous to Theorem 1.1 and Theorem 1.2.

Theorem 7.1.LetA satisfy(1), and leth andg satisfy(76). There exists a constant
C depending only onD, n, α, µ, ν, ε, λ̄, 3̄, ‖A(m)‖Cµ(Dm) and theC1,α modulus

of ∪Lm=1∂Dm, such that ifu ∈ H 1(D) is a solution to

∂i(Aij ∂ju) = h+ ∂igi in D,

then
‖u‖Cν(Dε) 5 C

(‖u‖L∞(D) + ‖h‖L∞(D) + ‖g‖L∞(D)
)
,

whereDε = {x ∈ D | dist (x, ∂D) > ε}.
Theorem 7.2.LetA satisfy(1), leth,g andϕ satisfy(76)and(77), and supposer >
0. There exists a constantC depending only onD, n, α, µ, ν, r, λ̄, 3̄,‖A(m)‖Cµ(Dm)
and theC1,α modulus of∪Lm=1∂Dm, such that if, for somēx ∈ ∂D, u ∈ H 1(D ∩
B2r (x̄)) is a solution to

∂i(Aij ∂ju) = h+ ∂igi in D ∩ B2r (x̄),

u = ϕ on ∂D ∩ B2r (x̄),

then

‖u‖Cν(D∩Br(x̄)) 5C
(‖u‖L∞(D∩B2r (x̄)) + ‖ϕ‖Cν(∂D∩B2r (x̄))

+‖h‖L∞(D∩B2r (x̄)) + ‖g‖L∞(D∩B2r (x̄))

)
.
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The following globalCν estimate is a consequence of Theorem 7.1, Theorem
7.2, and the maximum priciple.

Corollary 7.3. LetA satisfy(1), and leth, g andϕ satisfy(76) and (77). There
exists a constantC depending only onD, n, α, µ, ν, λ̄, 3̄, ‖A(m)‖Cµ(Dm) and the

C1,α modulus of∪Lm=1∂Dm, such that ifu ∈ H 1(D) is a solution to

∂i(Aij ∂ju) = h+ ∂igi in D,

u = ϕ on ∂D,

then

‖u‖Cν(D) 5 C
(‖ϕ‖Cν(∂D) + ‖h‖L∞(D) + ‖g‖L∞(D)

)
.

Remark 7.1. In view of the De Giorgi-Nash estimates, the term‖u‖L∞(D∩B2r (x̄))

in the estimate of Theorem 7.2 can be replaced by‖u‖L2(D∩B2r (x̄))
.

In the following we use the same notation as in the last section. We assume

g, h ∈ L∞(�+), and (78)

ϕ ∈ Cν(|x′| < 1). (79)

The proofs of Theorem 7.1 and Theorem 7.2 are quite similar to the proofs we have
already provided. Since the proof of Theorem 7.1 is comparatively the easiest, we
shall here only concern ourselves with the proof of Theorem 7.2. In order to prove
this theorem we need to establish

Proposition 7.4.LetA satisfy(74), and letg,handϕ satisfy(78)and(79). Suppose
q > n andε > 0. There exists a constantC, such that ifu ∈ H 1(�+) is a solution
to

∂i(Aij ∂ju) = h+ ∂igi in �+,
u = ϕ on {|x′| < 1, xn = 0},

then

‖u‖
Cν((1−ε)�+) 5 C

(‖u‖L∞(�+) + ‖ϕ‖Cν(|x′|<1) + ‖h‖Y ν−1,q/2 + ‖g‖Y ν,q
)
.

The constantC depends only onD, n, ε, q, µ, ν, λ̄, 3̄, the numberl, max15m5l+1

‖A(m)‖Cµ(�m), andmax15m5l ‖fm‖C1,α((−1,1)n−1).

The proof of Proposition 7.4 follows the same lines as the proof of Theorem 1.1.
It is in fact somewhat simpler, and we shall therefore only state some relevant
lemmas and sketch the proof. First we need a lemma whose proof is similar to that
of Lemma 6.3.
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Lemma 7.5.SupposeA ∈ A(λ,3), Ā ∈ Ā(λ,3), g = (g1, · · · , gn) ∈ Lq(�+),
andh ∈ Lq/2(�+) for someq > n. Letu ∈ H 1(�+) be a solution to

∂i(Aij ∂ju) = h+ ∂igi in �+,

with
u = ϕ on {|x′| < 1, xn = 0},

and

‖u‖L∞(�+) 5 1.

There exist positive constantsγ 5 1 andC (depending onq, n, λ̄ and3̄) such that
whenever (∫

−
�+

|A− A|q dx
)1/q

5 ε

for someε > 0, then we may find a functionv ∈ H 1 with

∂i(Aij (x)∂j v) = 0 in 3
4�

+,
v = ϕ(0′) on {|x′| < 3

4, xn = 0},
and with

‖u− v‖L∞( 1
2�

+) 5C
( [

1 + |ϕ(0′)|] εγ
+ ||g||Lq(�+) + ||h||Lq/2(�+) + ‖ϕ − ϕ(0′)‖L∞(|x′|<1)

)
.

Next we need a proposition similar to Proposition 6.4.

Proposition 7.6.SupposeA ∈ A(λ̄, 3̄) andA ∈ A(λ̄, 3̄), relative to the hyper-
planesxn = cm, 0 5 m 5 l + 1. Supposeg = (g1, · · · , gn) ∈ Lq(�+), and
h ∈ Lq/2(�+) for someq > n. Letu ∈ H 1(�+) denote a solution to

∂i(Aij (x)∂ju) = h+ ∂igi in �+,
u = ϕ on {|x′| < 1, xn = 0},

with

‖u‖L∞(�+) 5 1.

There exist constants in the range0 < σ < 1
4, ε0 > 0, andC > 0 (depending on

n, q, µ, ν, and the ellipticity constants̄λ, 3̄) such that if

‖A− A‖Y 1,q 5 ε0,

‖g‖Y ν,q + ‖h‖Y ν−1,q/2 + ‖ϕ − ϕ(0′)‖Cν(|x′|<1) 5 ε0,
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and

‖ϕ‖Cν(|x′|<1) 5 1,

then we have

‖u− u(0)‖L∞(σ k�+) 5
(
σk
)ν
. (Pk)

Consequently,
|u(x)− u(0)| 5 C|x|ν, x ∈ �.

Proof. The proof of this proposition is similar to that of Proposition 6.4. We also
proceed by induction. The choices ofσ andε0 will be made in the process. We first
prove that the estimate(Pk) holds fork = 1. Using Lemma 7.5, we establish the
existence of a functionv that solves

∂i(Aij (x)∂j v) = 0 in 3
4�

+,

with
v = u(0) on {xn = 0},

and for which

‖u− v‖L∞( 1
2�

+) 5 C(ε
γ
0 + 2ε0) 5 Cε

γ
0 .

According to this last estimate we also have

‖v‖L∞( 1
2�

+) 5 C,

and thus in view of Proposition 6.1

|v(x)− u(0)| 5 C|x|, x ∈ �+.

Selectσ so that
Cσ 5 1

2σ
ν,

and then selectε0 so that
Cε

γ
0 5 1

2σ
ν,

to obtain(P1).
Now we suppose(P1), . . . , (Pk) hold and proceed to verify(Pk+1). Consider

W(x) = u(σ kx)− u(0)

(σ k)ν
, x ∈ �+.

This function satisfies
‖W‖L∞(�+) 5 1,

and

∂i(Aij (σ
kx)∂jW) = h(k)(x)+ ∂ig

(k)
i (x),
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with

h(k)(x) = h(σ kx)

(σ k)ν−2 ,

and

g
(k)
i (x) = gi(σ

kx)

(σ k)ν−1 .

A simple calculation, using the hypothesis, gives

‖h(k)‖Lq/2(�+) + ‖g(k)i ‖Lq(�+) 5 Cε0,

and (∫
�+

|Aij (σ kx)− Aij (σ
kx)|q

)1/q

5 Cε0.

SinceW(0) = 0 and|W(x′,0) − W(0)| = |(σ−k)ν |ϕ(σ kx′) − ϕ(0′)| 5 ε0, we
now infer from Lemma 7.5 the existence of a solution to

∂i(Aij (σ
kx)∂jZ) = 0 in 3

4�
+,

and
Z(x′,0) = 0,

and with the property that

‖W − Z‖L∞( 1
2�

+) 5 Cε
γ
0 .

According to the last estimate we also have

‖Z‖L∞( 1
2�

+) 5 C,

and thus, in view of Proposition 6.1,

|Z(x)| 5 C|x| x ∈ 1
4�

+.

It follows that
|W(x)| 5 Cε

γ
0 + C|x|, x ∈ 1

4�
+.

Now, select even smallerσ andε0 in the same fashion as before, so as to obtain

|W(x)| 5 σν, x ∈ σ�+.

This implies
‖u− u(0)‖L∞(σ k+1�+) 5

(
σk+1)ν,

which is exactly(P )k+1. ut
The derivation of Proposition 7.4 from Proposition 7.6 and the derivation of

Theorem 7.2 from Proposition 7.4 are very similar to the derivations in earlier
sections. We leave the details to the reader.
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Fig. 2. Two touching disks.

8. An example of two touching disks

Consider the two-dimensional geometric situation illustrated in Fig. 2: the do-
main� is now given by� = {x : |x| < R0} (R0 > 2), and it contains exactly
two circular inclusions of radius 1, centered at(0,±1). In this section we use| · |
to denote the Euclidean norm of an element inR

2, as well as the modulus of a
complex number. We consider the boundary value problem∂i(a(x)∂iu) = 0 in�,
u = g on the boundary. The coefficienta is given by:

a(x) = 1 for x outside the two inclusions,

a(x) = a0 for x inside the two inclusions,

with 0< a0 < ∞.
The solutionu is clearly infinitely often differentiable inside the open set� \

({x : |x − (0,1)| = 1}∪{x : |x − (0,−1)| = 1}); we shall show that any derivative
of u is furthermore uniformly bounded inside this set (provided we stay away from
the boundary of�). To be precise

Proposition 8.1.SupposeR0 is sufficiently large. Letg be inH 1/2(∂�), and let
u ∈ H 1(�) denote the solution to

∂i(a(x)∂iu) = 0 in �, u = g on ∂�.

Then

u ∈ C∞ (
K ∩ {x : |x − (0,1)| = 1} ∩ {x : |x − (0,−1)| = 1}) ,

u ∈ C∞ ({x : |x − (0,1)| 5 1}) , andu ∈ C∞ ({x : |x − (0,−1)| 5 1}) ,
for any compact setK ⊂ �.
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Remark 8.1.The above regularity statement aboutu also asserts that the limiting
value of any derivativeDmu(x), asx approaches(0,0) from within the set{x : |x−
(0,1)| > 1} ∩ {x : |x − (0,−1)| > 1}, exists (is finite) and is the same whetherx

approaches the origin through the left cusp or through the right cusp. Form2 > 0
this limiting value is of course in general different from the limiting value we obtain
asx approaches the origin through the upper disk (or through the lower disk). By
an extension of our proof of Proposition 8.1 it is possible to see that the restriction
of u to any of the three closed sets may indeed be extended as aC∞ function to an
open neighborhood (or for that matter to all of�) – but these three extensions do
not coincide.

Remark 8.2.Let uε denote the corresponding solution when the the two circular
inclusions are centered at(0,±(1+ ε)). The fact thatu (= u0) is as smooth as one
could possibly hope for, does not automatically imply that all derivatives ofuε are
uniformly bounded, independent ofε, in each of the three sets{x : |x − (0,±(1 +
ε))| 5 1} andK ∩ {x : |x − (0,1 + ε)| = 1} ∩ {x : |x − (0,−1 − ε)| = 1}.
When “a0 = ∞” (i.e., when the boundary conditionuε =const is imposed on the
boundary of each of the two inclusions, such reasoning is indeed wrong. We do
feel, however, that for 0< a0 < ∞ (as is the case here) the smoothness exhibited
by u0 makes it quite likely that theuε have piecewise defined, uniformly bounded
derivatives of any order (away from∂�). If anything, the smoothness exhibited by
u0 certainly makes it much more difficult to construct examples contradicting this
type of behavior.

It suffices to prove Proposition 8.1 for solutions that are even with respect to the
x2 axis. A standard duality argument transforms this into a proof of the same fact
for solutions that are odd with respect to thex2 axis. By decomposing any solution
into a sum of its even and odd parts the proposition now follows in general.

In order to verify Proposition 8.1 for solutions that are even with respect to the
x2 axis, it is essential to construct a whole family of solutions to

∂i(a(x)∂iu) = 0 in�.

Let −1< α < 1 denote the ratioα = a0−1
a0+1. Letφ(·) be analytic inCI \ (0,0), and

supposeφ has the two additional properties

φ(ζ ) = φ(ζ ), (80)

|φ(ζ )| 5 Cβ | Reζ |, 1
2 < | Reζ |, (81)

for some 0< β < |α|−1. Let φo(ζ ) = 1
2(φ(ζ )− φ(−ζ )) andφe(ζ ) = 1

2(φ(ζ )+
φ(−ζ )) denote the odd and the even part ofφ, respectively. We now define

8o(ζ ) = − 2

a0 + 1

∞∑
k=0

αkφo(k − ζ ), Reζ < −1
2,

8o(ζ ) = φo(ζ )+
∞∑
k=1

αk[φo(k + ζ )− φo(k − ζ )], −1
2 < Reζ < 1

2,

8o(ζ ) = 2

a0 + 1

∞∑
k=0

αkφo(k + ζ ), 1
2 < Reζ,

(82)
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as well as

8e(ζ ) = 2

a0 + 1

∞∑
k=0

(−α)kφe(k − ζ ), Reζ < −1
2,

8e(ζ ) = φe(ζ )+
∞∑
k=1

(−α)k[φe(k + ζ )+ φe(k − ζ )], −1
2 < Reζ < 1

2,

8e(ζ ) = 2

a0 + 1

∞∑
k=0

(−α)kφe(k + ζ ), 1
2 < Reζ,

(83)

and

8(ζ) = 1
2(8o(ζ )+8e(ζ )).

We use the notationi for the imaginary unit.

Proposition 8.2.The functionsuo(x1, x2)= Re8o(i/z), ue(x1, x2)= Re8e(i/z),
andu(x1, x2)=Re8(i/z) (with z = x1 + ix2) satisfy

∂i(a(x)∂iuo) = ∂i(a(x)∂iue) = ∂i(a(x)∂iu) = 0.

All of these functions are even with respect to thex2 axis. The functionuo is odd
with respect to thex1 axis, the functionue is even with respect to thex1 axis. The
fuctionu is related touo andue byu(x1, x2) = 1

2(uo(x1, x2)+ ue(x1, x2)).

Proof. The symmetry properties ofuo andue are obvious, and so is the alternate
representation foru. We shall verify thatuo solves the equation∂i(a(x)∂iuo) = 0,
the verification forue is similar (and it then follows immediately thatu is also a
solution). The conformal mappingz → ζ = i/z maps the (extended) complex
plane with the two unit circles centered at±i onto the (extended) complex plane
with the two vertical lines Reζ = −1

2 and Reζ = 1
2. The upper circle is mapped

to Reζ = 1
2, its interior is mapped to12 < Reζ , the lower circle is mapped to

Reζ = −1
2, and its interior is mapped to Reζ < −1

2. To verify thatuo solves
the equation∂i(a(x)∂iuo) = 0 it thus suffices to verify that Re8o(ζ ) solves the
equation

∂η1(A(η1)∂η1 Re8o)+ ∂η2(A(η1)∂η2 Re8o) = 0,

with A given byA(η1) = a0 for 1
2 < |η1|, andA(η1) = 1 for |η1| < 1

2, and
ζ = η1 + iη2.

Since Re8o is harmonic in each of the three stripsη1 < −1
2,−1

2 < η1 <
1
2 and

1
2 < η1, it suffices to verify that Re8o, and the conormal derivativeA(η1)∂η1 Re8o
are continuous across the linesη1 = −1

2 andη1 = 1
2. Because of the relationship

between the real and the imaginary parts of an analytic function (they are harmonic
conjugates) these continuity conditions may be verified by checking that

Re8o and A(η1)∂η2 Im8o are continuous across the linesη1 = ±1
2.
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We may verify the second of these properties by checking that

A(η1) Im8o is continuous across the linesη1 = ±1
2.

We present the calculations associated with the continuity properties across the line
η1 = 1

2, the continuity properties across the lineη1 = −1
2 follow by symmetry.

In order to verify that Re8o is continuous (across the lineη1 = 1
2) it follows

from the definition (82) that we must verify

φo(ζ )+ φo(ζ )+
∞∑
k=1

αk[φo(k + ζ )+ φo(k + ζ )− (φo(k − ζ )+ φo(k − ζ ))]

= 2

a0 + 1

∞∑
k=0

αk[φo(k + ζ )+ φo(k + ζ )] at Reζ = 1
2, (84)

or equivalently

φo(ζ )+ φo(ζ )+
∞∑
k=1

αk[φo(k + ζ )+ φo(k + ζ )]

− α

∞∑
k=1

αk−1(φo(k − ζ )+ φo(k − ζ ))]

= 2

a0 + 1

∞∑
k=0

αk[φo(k + ζ )+ φo(k + ζ )] at Reζ = 1
2. (85)

For Reζ = 1
2 we havek − ζ = k − 1 + ζ andk − ζ = k − 1 + ζ , and therefore

the left-hand side in the identity (85) equals

(1 − α)

∞∑
k=0

αk[φo(k + ζ )+ φo(k + ζ )];

this immediately verifies the identity (84), since 1− α = 2
a0+1.

To verify thatA(η1) Im8o is continuous across the lineη1 = 1
2 we must

ascertain that

φo(ζ )− φo(ζ )+
∞∑
k=1

αk[φo(k + ζ )− φo(k + ζ )− (φo(k − ζ )− φo(k − ζ ))]

= 2a0

a0 + 1

∞∑
k=0

αk[φo(k + ζ )− φo(k + ζ )] at Reζ = 1
2, (86)

(remember thatA(η1) = a0 for 1
2 < η1 = Reζ , andA(η1) = 1 for −1

2 < η1 =
Reζ < 1

2). The above identity is equivalent to
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φo(ζ )−φo(ζ )+
∞∑
k=1

αk[φo(k+ζ )−φo(k+ζ )]−α
∞∑
k=1

αk−1[φo(k−ζ )−φo(k−ζ )]

= 2a0

a0 + 1

∞∑
k=0

αk[φo(k + ζ )− φo(k + ζ )] at Reζ = 1
2. (87)

Sincek − ζ = k − 1 + ζ andk − ζ = k − 1 + ζ for Reζ = 1
2, we conclude that

the left-hand side in the identity (87) equals

(1 + α)

∞∑
k=0

αk[φo(k + ζ )− φo(k + ζ )];

this immediately verifies the identity (86), since 1+ α = 2a0
a0+1. ut

We now apply Proposition 8.2 and the definitions preceeding it to the functions
φ(j)(ζ ) = R

−j
0 (1/ζ )j , j = 0,1,2, . . . , whereR0 is the radius of the disk�. We

may apply Proposition 8.2 since theseφ(j) satisfy the requirements (80) and (81),
the latter withβ = 1 < |α|−1. We thus create a family{uj }∞j=0 of solutions to our

elliptic boundary value problem of the formuj (x1, x2) = R
−j
0 Re9j(z) with

9j(z) = − 2

a0 + 1

∞∑
k=0

αk
zj

(kz− i)j
in {z : |z+ i| < 1},

9j (z) = (−1)
j+1

2 izj +
∞∑
k=1

αk[ zj

(kz+ i)j
− zj

(kz− i)j
]

in {z : |z+ i| > 1 and|z− i| > 1},

9j (z) = 2

a0 + 1

∞∑
k=0

αk
zj

(kz+ i)j
in {z : |z− i| < 1},

for j odd, and

9j(z) = 2

a0 + 1

∞∑
k=0

(−α)k zj

(kz− i)j
in {z : |z+ i| < 1},

9j (z) = (−1)j/2zj +
∞∑
k=1

(−α)k[ zj

(kz+ i)j
+ zj

(kz− i)j
]

in {z : |z+ i| > 1 and|z− i| > 1},

9j (z) = 2

a0 + 1

∞∑
k=0

(−α)k zj

(kz+ i)j
in {z : |z− i| < 1},

for j even. It requires some calculation, but it is absolutely straightforward, to
obtain the following estimates concerning the functions9j(z), for |z| 5 1.
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Proposition 8.3.Given any integer0 5 m there exists a constantCm, independent
of j , so that the functions9j satisfy∣∣∣∣( ddz

)m
9j (z)

∣∣∣∣ 5 Cm(j +m)m,

in each of the three regions

{z : |z| 5 1, |z+ i| = 1, |z− i| = 1},
{z : |z| 5 1, |z+ i| 5 1}, and{z : |z| 5 1, |z− i| 5 1}.

As a direct consequence of these estimates we get the following result.

Proposition 8.4.Given any multi-indexm there exist a constantCm, independent
of j andR0, so that the functionsuj satisfy∣∣Dmuj (x1, x2)

∣∣ 5 CmR
−j
0 (j + |m|)|m|,

in each of the three regions

{(x1, x2) : |(x1, x2)| 5 1, |(x1, x2)− (0,−1)| = 1, |(x1, x2)− (0,1)| = 1},
{(x1, x2) : |(x1, x2)| 5 1, |(x1, x2)− (0,−1)| 5 1}, and

{(x1, x2) : |(x1, x2)| 5 1, |(x1, x2)− (0,1)| 5 1}.

Let L2
sym({x : |x| = R0}) denote the set of real valuedL2 functions that are

even with respect to thex2 axis. We use a similar notation for the Sobolev spaces
Hs , 0 5 s. We note thatL2

sym({x : |x| = R0}) = H 0
sym({x : |x| = R0}. From the

formulae foruj and9j it follows immediately that

u0 = (1 − α)/(1 + α) = 1/a0,

u2j = (−1)j cos 2jθ +O(R
−2j
0 ) on ∂� = {x : |x| = R0}, 1 5 j

u2j+1 = (−1)j sin(2j + 1)θ +O(R
−2j−1
0 ) on ∂� = {x : |x| = R0}, 0 5 j.

It is therefore not very surprising that we can prove the following density result.

Proposition 8.5.Given any0 5 s there exists a constantCs < ∞, so that
span{ uj |{x : |x|=R0} } is dense inHs

sym, providedR0 > Cs .

Proof. Given g ∈ L2
sym({x : |x| = R0}), let {γj } denote the coefficients of the

Fourier expansion

g = γ0
1

a0
+

∞∑
j=1

γ2j (−1)j cos 2jθ +
∞∑
j=0

γ2j+1(−1)j sin(2j + 1)θ.

We then have

2

(
γ0

a0

)2

+
∞∑
j=1

γ 2
j = 1

R0π

∫
{x : |x|=R0}

g2 dσ = 1

R0π
‖g‖2

L2({x : |x|=R0}).
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Now definePg ∈ L2
sym({x : |x| = R0}) by Pg = ∑∞

j=0 γjuj |{x : |x|=R0}.
Due to the definition of theuj we have, for|x| = R0 > 2,

g − Pg = − Re
∞∑
j=1

γjR
−j
0

∞∑
k=1

(±α)k
[

zj

(kz+ i)j
∓ zj

(kz− i)j

]
,

(+ and− for j odd,− and+ for j even). A simple calculation then gives

‖g − Pg‖L2({x : |x|=R0}) 5
( ∞∑
k=1

|α|k
) ∞∑
j=1

|γj |R−j
0

(
‖ zj

(z+ i)j
‖L2({x : |x|=R0})

+ ‖ zj

(z− i)j
‖L2({x : |x|=R0})

)
5
( ∞∑
k=1

|α|k
) ∞∑
j=1

|γj |R−j
0

2Rj0
(R0 − 1)j

√
2πR0

5C

 ∞∑
j=1

|γj |2
1/2

1√
R0

(R0 > 2) (88)

5 C

R0
‖g‖L2({x : |x|=R0})

5 1

2
‖g‖L2({x : |x|=R0}) (for R0 sufficiently large).

A similar calculation for theHm norm (m = 1, integer) yields

‖g − Pg‖Hm({x : |x|=R0})

5 C

( ∞∑
k=1

|α|k
)

m∑
l=0

∞∑
j=1

|γj |R−j
0

(
max
15k

‖
(
d

dz

)l
zj

(kz+ i)j
‖L2({x : |x|=R0})

+ max
15k

‖
(
d

dz

)l
zj

(kz− i)j
‖L2({x : |x|=R0})

)
5 C

( ∞∑
k=1

|α|k
)

m∑
l=0

∞∑
j=1

|γj |R−j
0 (j + l)l

R
j
0

(R0 − 1)j+l
√
R0 (89)

5 C

m∑
l=0

1

Rl0

√
R0

 ∞∑
j=1

|γj |2j2l

1/2

(R0 > 2)

5 C

R0

m∑
l=0

‖
(
∂

∂τ

)l
g‖L2({x : |x|=R0})

5 1

2
‖g‖Hm({x : |x|=R0}) (for R0 sufficiently large).
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Exactly how largeR0 has to be taken depends on the constantC, which depends
onm. The two estimates (88) and (89) , incidentally, also prove thatPg ∈ Hm

sym if
g ∈ Hm

sym, 0 5 m. By interpolation we now immediately conclude that

‖g − Pg‖Hs({x : |x|=R0}) 5 1
2‖g‖Hs({x : |x|=R0}) for R0 sufficiently large. (90)

Exactly how largeR0 has to be depends ons, but not ong. Now let r0 = g, and
define the sequence

g1 = Pr0 r1 = r0 − g1

g2 = Pr1 r2 = r1 − g2

· · · · · ·
gk = Prk−1 rk = rk−1 − gk

· · · · · ·
In other words

gk = Prk−1, rk = g −
k∑

j=1

gj , andrk = (I − P)kg.

From the estimate (90) we get

‖rk‖Hs({x : |x|=R0}) 5
(1

2

)k ‖g‖Hs({x : |x|=R0}), (91)

for R0 sufficiently large. Equivalently∥∥∥∥g −
k∑

j=1

gj

∥∥∥∥
Hs({x : |x|=R0})

5
(1

2

)k ‖g‖Hs({x : |x|=R0}).

Since all thegj are elements ofspan{ uj |{x : |x|=R0} } (the closure refers to theHs

topology) and since the latter forms a closed vectorspace, we have completed the
proof of the proposition. ut

By a slight extension of the proof of the previous proposition we may prove the
following, more detailed result.

Proposition 8.6.Suppose0 5 s and supposeR0 > Cs . Any functiong ∈ Hs
sym

({x : |x| = R0}) may then be obtained asg = limk→∞ hk, with

hk =
∞∑
j=0

β
(k)
j uj |{x : |x|=R0} ∈ span{ uj |{x : |x|=R0} },

and ( ∞∑
j=0

|β(k)j |2(j + 1)2s
)1/2

5 C‖g‖Hs .

The limits and sums of functions all refer to theHs topology. The constantC
depends ons andR0, but is independent ofg andk.
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Proof. Let rl be as in the previous proof, and decompose it in terms of its Fourier
Series

rl = γ
(l)
0

1

a0
+

∞∑
j=1

γ
(l)
2j (−1)j cos 2jθ +

∞∑
j=0

γ
(l)
2j+1(−1)j sin(2j + 1)θ.

Then ( ∞∑
j=0

|γ (l)j |2(j + 1)2s
)1/2

5 C‖rl‖Hs({x : |x|=R0}),

and thus according to (91)( ∞∑
j=0

|γ (l)j |2(j + 1)2s
)1/2

5 C

(
1

2

)l
‖g‖Hs({x : |x|=R0}).

Also let gl+1 = Prl = ∑∞
j=0 γ

(l)
j uj |{x : |x|=R0}, as in the previous proof. The

functionshk = ∑k
l=1 gl converge tog inHs({x : |x| = R0}), and they are elements

of span{ uj |{x : |x|=R0} }, with the representation

hk =
∞∑
j=0

β
(k)
j uj |{x : |x|=R0}, β

(k)
j =

k−1∑
l=0

γ
(l)
j .

We now calculate( ∞∑
j=0

|β(k)j |2(j + 1)2s
)1/2

5
k−1∑
l=0

( ∞∑
j=0

|γ (l)j |2(j + 1)2s
)1/2

5 C

k−1∑
l=0

(
1

2

)l
‖g‖Hs ,

so that ( ∞∑
j=0

|β(k)j |2(j + 1)2s
)1/2

5 2C‖g‖Hs({x : |x|=R0}),

as desired. ut
We are now ready for

Proof of Proposition 8.1.We may without loss of generality suppose thatg is
smooth on∂� = {x : |x| = R0}. If not, simply chooseR′

0 andR0, with 2 <

R′
0 < R0, sufficiently large and so thatK ⊂ {x : |x| = R′

0}. By elliptic regularity
u|{x : |x|=R′

0} is now smooth and we may proceed withR0 replaced byR′
0. Let hk

be as guaranteed by Proposition 8.6 with some fixeds > 3
2, i.e.,

hk → g in Hs({x : |x| = R0}) andhk =
∞∑
j=0

β
(k)
j uj |{x : |x|=R0}
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with  ∞∑
j=0

|β(k)j |2(j + 1)2s

1/2

5 C‖g‖Hs .

It is not hard to see that ∣∣∣∣ ddz9j
∣∣∣∣ 5 C(j + 1)

in each of the three subdomains{z : |z + i| 5 1}, {z : |z − i| 5 1}, and{z : |z| 5
R0, |z+ i| = 1, |z− i| = 1}, with the constantC depending onR0. Therefore

‖uj‖H1(�) 5 C(j + 1),

and consequently the infinite sums

Ũk =
∞∑
j=0

β
(k)
j uj

are convergent inH 1(�), with

‖Ũk‖H1(�) 5 C

∞∑
j=0

|β(k)j |(j + 1)

5 C

 ∞∑
j=0

|β(k)j |2(j + 1)2s

1/2 ∞∑
j=0

(j + 1)2(1−s)
1/2

.

The trace ofŨk on ∂� = {x : |x| = R0} is equal tohk. From the construction of
theuj it now follows thatŨk is the solution to

∂i(a(x)∂iŨk) = 0 in�, with Ũk = hk on ∂�.

Sincehk → g in H 1/2(∂�) we have thatŨk → u in H 1(�). By selectingN(k)
sufficiently large we may obtain finite sums

Uk =
N(k)∑
j=0

β
(k)
j uj ,

so thatUk → u in H 1(�). TheseUk still satisfy

∂i(a(x)∂iUk) = 0 in�.

From elliptic regularity theory we furthermore know that

DmUk(x) → Dmu(x) (92)
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at any point inside�, not on either of the two circles{x : |x − (0,±1)| = 1}, and
for any multi-indexm. From Proposition 8.4 we have that

|Dmuj (x)| 5 CmR
−j
0 (j + |m|)|m|

in each of the three regions

{(x1, x2) : |(x1, x2)| 5 1, |(x1, x2)− (0,−1)| > 1, |(x1, x2)− (0,1)| > 1},
{(x1, x2) : |(x1, x2)| 5 1, |(x1, x2)− (0,−1)| < 1}, and

{(x1, x2) : |(x1, x2)| 5 1, |(x1, x2)− (0,1)| < 1},

and thus

|DmUk(x)| 5
N(k)∑
j=0

|β(k)j ||Dmuj (x)|

5 Cm

N(k)∑
j=0

|β(k)j |R−j
0 (j + |m|)|m|

5 Cm

 ∞∑
j=0

|β(k)j |2
1/2 ∞∑

j=0

R
−2j
0 (j + |m|)2|m|

1/2

5 Cm for any multi-indexm, (93)

in each of the above three regions. From (92) and (93) it now follows immediately
thatu has the desired smoothness properties for|x| 5 1. In particular, from the
formulae for theuj , we know that any of the derivatives,Dmuj , has the same limit
at the origin, whether we approach through the left cusp or through the right cusp.
SinceUk is a finite linear combination ofuj ’s, all its derivatives have the same
“continuity property”. The boundedness ofDm+ei Uk, e1 = (1,0), e2 = (0,1),
expressed in (93), now implies

|DmUk(x)−DmUk(y)| 5 Cm|x − y|,

even whenx andy lie in different cusps. Using the convergence statement (92) we
conclude that

|Dmu(x)−Dmu(y)| 5 Cm|x − y|,

even whenx andy lie in different cusps. This verifies the “continuity property” of
Dmu(x) referred to in Remark 8.1.

For x ∈ K, but outside|x| 5 1, the desired smoothness ofu follows immedi-
ately from classical elliptic regularity results.ut
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9. Appendix: An auxiliary regularity result

In this appendix we present a proof of a known result concerning the piecewise
smoothness of solutions to divergence form second order elliptic equations with
piecewise smooth coefficients. The idea of the proof, the use of a reflection to reduce
the problem to anelliptic systemwith complementing boundary conditions, was
suggested to us by L. Nirenberg.

Let B1 denote the unit ball ofRn, n = 1, B+
1 = {x = (x1, · · · , xn) | x ∈

B1, xn > 0}, B−
1 = {x = (x1, · · · , xn) | x ∈ B1, xn < 0}. Suppose

(A
(±)
ij ) ∈ C∞(B±

1 ) are symmetric, positive definite matrix functions, (94)

b
(±)
i , c

(±)
i , d(±) ∈ C∞(B±

1 ), 1 5 i 5 n, (95)

and

h(±), g(±)i ∈ C∞(B±
1 ), 1 5 i 5 n. (96)

We defineAij (x) = A
(±)
ij (x), bi(x) = b

(±)
i (x), c(x) = c

(±)
i (x), d(x) = d(±)(x),

h(x) = h(±)(x), andgi(x) = g
(±)
i (x) for x ∈ B±

1 .

Theorem 9.1.Assume(94), (95), and (96). If u ∈ H 1(B1) denotes a solution to

∂i(Aij (x)∂ju+ bi(x)u)+ ci(x)∂iu+ d(x)u = h(x)+ ∂igi(x) in B1, (97)

andu±(x) = u(x) for x ∈ B±
1 , thenu± ∈ C∞(B±

r ) for every0< r < 1.

Proof. A piecewise smooth solutionu of (97) satisfies the matching conditions

u+ = u−, A+
in∂iu

+ + b+
n u

+ − g+
n = A−

in∂iu
− + b−

n u
− − g−

n atxn = 0.

Forx = (x′, xn) ∈ B+
1 , define

û+(x′, xn) = u−(x′,−xn),

Â+
ij (x) =

{
A−
ij (x

′,−xn) i, j < n, or i = j = n,

−A−
ij (x

′,−xn) i < n, j = n, or j < n, i = n,

b̂+
i (x) = b−

i (x
′,−xn), i < n, b̂+

n (x) = −b−
n (x

′,−xn),
ĉ+i (x) = c−i (x

′,−xn), i < n, ĉ+n (x) = −c−n (x′,−xn),
ĝ+
i (x) = g−

i (x
′,−xn), i < n, ĝ+

n (x) = −g−
n (x

′,−xn),
and

d̂+(x) = d−(x′,−xn), ĥ+(x) = h−(x′,−xn).
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Thenû+ satisfies

∂i(Â
+
ij (x)∂j û

+ + b̂+
i (x)û

+)+ ĉ+i (x)∂i û
+ + d̂+(x)û+

= ĥ+(x)+ ∂i ĝ
+
i (x) in B+

1 . (98)

The matching conditions take the form

u+ − û+ = 0, A+
in∂iu

+ + Â+
in∂i û

+ + b+
n u

+ + b̂+
n û

+ − g+
n − ĝ+

n = 0

atxn = 0. (99)

So(u+, û+) satisfies a strongly elliptic system in divergence form inB+
1 , (97) and

(98), with boundary conditions, (99). We will verify that the boundary conditions
(99) arecomplementing boundary conditionsfor the elliptic system (seeAgmon,
Douglis & Nirenberg [1]). The desired piecewise smoothness then follows from
classical elliptic theory (see for instance [1] and [10]).

Consider now the elliptic system

Ã
(k)
ij (x)∂ij u

(k) + b̃
(k)
i (x)∂iu

(k) + c̃(k)(x)u(k) = h̃(k)(x) in B+
1 , k = 1,2,

(100)

together with the boundary conditions

u(1) − u(2) = 0,
2∑
k=1

Ã
(k)
in ∂iu

(k) +
2∑
k=1

ẽ(k)u(k) = ψ̃ onxn = 0, (101)

where(Ã(k)ij ), b̃
(k)
i , c̃(k), h̃(k), andψ̃ are smooth functions onB+

1 , and(Ã(k)ij (x)) is

a symmetric, positive definite matrix fork = 1,2, andx ∈ B+
1 .

Our proof of Theorem 9.1 is complete if we verify that the boundary conditions
(101) are complementing boundary conditions for the elliptic system (100). Let
ξ = (ξ ′, τ ) whereξ ′ = (ξ1, · · · , ξn−1) 6= 0 denotes a real vector, whileξn ≡ τ

runs in the field of complex numbers. Define

(l′ij (x, ξ)) =
(
Ã
(1)
ij (x)ξiξj 0

0 Ã
(2)
ij (x)ξiξj

)
,

and
L(x, ξ) = det(l′ij (x, ξ)) = [A(1)ij (x)ξiξj ][A(2)ij (x)ξiξj ].

The matrix(Ljm(x, ξ)), consisting of the (transposed) cofactors of(l′ij (x, ξ)), is
given by

(Ljm(x, ξ)) =
(
Ã
(2)
ij (x)ξiξj 0

0 Ã
(1)
ij (x)ξiξj

)
.

Define also

(Bhj (x, ξ)) =
(

1 −1
Ã
(1)
in (x)ξi Ã

(2)
in (x)ξi

)
.
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The product of the matrix(Bhj (x, ξ)) and the matrix(Ljm(x, ξ)), denoted
(Dhm(x, ξ)), has the form

(Dhm(x, ξ)) =
 Ã

(2)
ij (x)ξiξj −Ã(1)ij (x)ξiξj

[Ã(1)in (x)ξi][Ã(2)ij (x)ξiξj ] [Ã(2)in (x)ξi][Ã(1)ij (x)ξiξj ]

 .
We viewÃ(1)ij (x)ξiξj as a polynomial inτ and factorize it as

Ã
(1)
ij (x)ξiξj = Ã(1)nn (x)[τ − τ+

1 (x, ξ
′)][τ − τ−

1 (x, ξ
′)],

whereτ+
1 (ξ

′) denotes the root of̃A(1)ij (x)ξiξj = 0 with positive imaginary part, and

τ−
1 (ξ

′) denotes its complex conjugate. Similarly, we write

Ã
(2)
ij (x)ξiξj = Ã(2)nn (x)[τ − τ+

2 (x, ξ
′)][τ − τ−

2 (x, ξ
′)].

Introduce

M+(x, ξ ′, τ ) = [τ − τ+
1 (ξ

′)][τ − τ+
2 (ξ

′)],
and regardM+(x, ξ ′, τ )and the elements of the matrix(Dhm(x, ξ))as polynomials
in τ . Then, to verify that the boundary conditions are complementing, we only need
to verify that, for fixedx (on the boundary) the rows of the matrix(Dhm(x, ξ)) are
linearly independent moduloM+(x, ξ ′, τ ). In the following we drop the explicit
reference to the fixed boundary point,x = (x′,0), to simplify our notation.

For any fixed nonzero real vectorξ ′, letC1(ξ
′) andC2(ξ

′) be complex numbers
such that

2∑
h=1

Ch(ξ
′)Dhm(ξ) ≡ 0 (mod M+(ξ ′, τ )), m = 1,2. (102)

We want to show thatC1(ξ
′) = C2(ξ

′) = 0. It follows from (102) that, for some
complex numbersµ1(ξ

′) andµ2(ξ
′)

C1(ξ
′)Ã(2)ij ξiξj + C2(ξ

′)[Ã(1)in ξi][Ã(2)ij ξiξj ]
=C2(ξ

′)Ã(1)nn Ã(2)nn (τ − µ1(ξ
′))M+(ξ ′, τ )

− C1(ξ
′)Ã(1)ij ξiξj + C2(ξ

′)[Ã(2)in ξi][Ã(1)ij ξiξj ]
=C2(ξ

′)Ã(1)nn Ã(2)nn (τ − µ2(ξ
′))M+(ξ ′, τ ).
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If C1(ξ
′) andC2(ξ

′) are not both zero, then the determinant of the coefficient matrix
is identically zero, as a polynomial inτ . That is[

2∑
k=1

Ã
(k)
in ξi

]
L(ξ)− Ã(1)nn Ã

(2)
nn

2∑
k=1

(τ − µk)[Ã(k)ij ξiξj ]M+(ξ ′, τ ) ≡ 0,

and from this we deduce[
2∑
k=1

Ã
(k)
in ξi

]
(τ − τ−

1 )(τ − τ−
2 )−

2∑
k=1

Ã(k)nn (τ − µk)(τ − τ−
k )(τ − τ+

k ) ≡ 0.

It is easy to see from the above that

µ1(ξ
′) = τ−

2 andµ2(ξ
′) = τ−

1 .

Therefore,
2∑
k=1

[Ã(k)in ξi − Ã(k)nn (τ − τ+
k )] ≡ 0.

For τ = 0, the imaginary part of the left-hand side of this identity is clearly
positive – a contradiction. We have verified that the boundary conditions are indeed
complementing. ut

Note added after acceptance.It has been brought to our attention that a result very sim-
ilar to Proposition 2.1 was established earlier byM. Chipot, D. Kinderlehrer & G.V.
Caffarelli. The reference is “Smoothness of linear laminates,Arch. Rational Mech. Anal.
96 (1986), pp. 81–96”, and the particular result is Theorem 2. We note that the proof pre-
sented in that paper applies to elliptic systems, but is completely different from our proof of
Proposition 2.1.
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