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Abstract

In this paper we derive globa->° and piecewis€-¢ estimates for solutions
to divergence form elliptic equations with piecewisaltter continuous coefficients.
The novelty of these estimates is that, even though they depend on the shape and
on the size of the surfaces of discontinuity of the coefficients, they are independent
of the distance between these surfaces.

1. Introduction

The purpose of this paper is to establish gradient estimates for solutions to a class
of divergence form elliptic equations with discontinuous coefficients. Our work is
stimulated by the study of composite media with closely spaced interfacial bound-
aries. A composite medium would for this purpose be represented by a bounded
domainD, divided into a finite number of subdomains. The physical characteristics
of the medium are smooth (e.g., constant) in each subdomain, but they have discon-
tinuities across the surfaces separating the subdomains. A simple, two dimensional
example, which very well illustrates the main feature of our estimates, would have
the domainD ¢ R? model the cross-section of a fiber-reinforced composite. Al
the subdomains except one are simply connected and represent the cross-sections
of the fibers (typically these will be disks or ellipsoids, depending on whether the
cross-section is perpendicular to a particular fiber or not); the remaining subdomain
represent the matrix surrounding the fibers. We suppose the shear modulus of the
fibers is a constant (& ag < 00), different from the constant shear modulus of
the matrix & 1, say). Using a standard model of anti-plane shear we then get the
equation

di(a(x)0;u) =0 inD,
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with appropriate (e.g., Dirichlet) boundary conditionsaid. The functionu rep-
resents the out of plane elastic displacement, and the coeffidients given by

a(x) =ap forx inside the subdomains representing the fibers
a(x)=1 elsewhereim.

The mostimportant quantities from an engineering point of view are the stresses,
in this case represented by the gradient.ok question of particular interest — and
indeed the question with which Ivo Babuska initially piqued our interest in this
problem area — is the question of whether the stresses remain uniformly bounded,
even when fibers touch or nearly touch. It has been shown in various papers that
whenag is 0 or co the stresses generally become unbounded as fibers get close
[4], [9]. For finite and strictly positive, it has been shown in [3] that the stresses
remain bounded for circular touching fibers of comparable radii. This special result
was achieved using a dius transformation and maximum principles. To the best
of our knowledge it has until now not been established any generality whether
the stresses remain bounded or “blow up”, when fibers touch or nearly touch, and
0 < ag < oo. In this paper we formulate and establish a general result concerning
the structure of solutions to a large class of divergence form elliptic equations with
discontinuous coefficients, which in particular may be applied to give a definitive
answer to the above question. Our result establishes a uniform bouvid;dhis
bound depends omy and on the size and shape of the fibers (more specifically
on theC1* modulus of the total boundary of all the subdomains). The bound is
independent of the fiber locations and thus it is in particular independent of the
distance between the fibers (which may even vanish).

We now proceed to state the main results of this paper. To do so we need to
make our notation and assumptions more preciseDLbe a bounded domain in
R” with aC1® boundary, O< « < 1, and letD,,, 1 < m < L, be a finite number
of disjoint subdomains ab, each with a1 boundary. Furthermore suppose that
D = UL_ D,. Giveni € D, let B,(x) denote the ball of radius, centered at
Xx. We resetr to be the origin of our coordinate system. We suppose there exist
r > 0 and an appropriate rotation of our fixed coordinate system, such that the set
(ugpla Dm) N B, (x) consists of the graphs of a finite numbex®@f* functions (of
n — 1 variables). Let(x, r) denote the number of these functions, anklét, r)
denote the maximum of the®’* norms. The number

K = sup inf {K(i,r) +10G,r) + }}
xeD r>0 r

is referred to as th€ 1 modulus of the total boundary sef _,3D,,. One imme-
diately sees that the total number of subdomainss bounded by a constant that
depends oifC, n andD.

To consider a simple, butimportant example, suppose all but one of the domains
D,, are convex (and’?). Then, given anyt in D, there exists: > 0 such that
(UL _,8D,,) N B (%) consists of the graphs of at most two functions. The*
modulus of the total boundary s@ﬁlzlaDm is bounded by a constant that only
depends on the dimension,and the maximal curvature of the surfaéd,;, but
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is independent of their mutual distances. It is clear #idecomes unbounded as
the diameter of one (or more) of the domaibg approaches 0.

Let A™ e C*(D,,) (0 < n < 1) be a symmetric, positive definite matrix-
valued function, and define

Ax)=A"(x), xeDy, 1<m<L. (1)
Let0 < A < A < oo denote ellipticity constants associated withi.e.,
rA< A < A. (2)

Similarly, letg™ e C*(D,,, R"), and define

gx)=g™(x), x€ Dy, 1<m<L. (3)
Finally, suppose
h e L°(D), (4)
and
¢ € CHH(ID). (5)

The first of our results concerr@-?’ interior estimates. In brief, this result
asserts that the restriction of the solutioto each subdomaip,, may be extended
(to D, = {x € D |dist(x,dD) > ¢} ) as acl® function, with a norm that is
independent of the distances between the subdomain interfaces.

Theorem 1.1.Let A, g, andh satisfy(1)«(4). Suppose’ satisfies at the same time
0 <o £ pande < m and supose > 0. There exists a constardt

depending only oD, n, «, o', €, A, A, ”A(m)”ca’(ﬁm) and theC1* modulus of
UL_,dD,,, such thatift € H1(D) is a solution to

0i(A;joju) = h + 9; gi, in D,

then

max (D <C 0 Ry oo max (m) o ,
ax lullcre B, D,y = <||M|IL ) +hllL (D)+1§m§L g™ Nl ew B,

whereD, = {x € D |dist(x, D) > &}.

We have a similar result concernig-®" boundary estimates.
Theorem 1.2.Let A, g, h, and g satisfy(1)}5). Suppose:’ satisfies at the same
time0 < o’ £ pwanda’ < m and suppose > 0. There exists a constant
C depending only om, o, o', r, X, A, ||A(’”)||C(,/(5m) and theC* modulus of
UL_.9D,,, such that if, for somé& € 9D, u € HX(D N By, (X)) is a solution to

m=1
0;(A;joju) = h+ 9;gi, in DN By (X),
u=o, onaD N By (%),
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then

! N - < [o.¢] Y / -
1g2na§XL ”””Cl,oc (DmNBr (X)) = C(”””L (DNBo (%)) T+ ||<P||C1.a (9DNBo, (%))

- (m) _
+ 121l L= (DnBy (7)) + ax g "C"/(DmﬂBZr(x))>'

We note that in the past two theorems the ndjurii .~ on the right-hand side can

be replaced by the norifu||; 2, simply by evoking the local. > estimates of De
Giorgi and Nash. Combining the above interior and boundary estimates with the
maximum principle (see for instance [8] Theorem 8.16) we arrive at the following
Cc1¥ global estimate. In brief, this estimate asserts that the restriction of the solution
u to each subdomaim,, can be extended as@-* function, with a norm that is
bounded independently of the distances between the subdomain interfaces.

Corollary 1.3. Let A, g, h, and ¢ satisfy(1)+5) and suppos® < o’ < 1 and
at the same time/’ < @+m There exists a constarf depending only on

D,n,a,d, A, A, ||A(m)||ca,(5m) and theCc'* modulus ofu_,3D,,, such that
if u € HL(D) is a solution to

0; (A;joju) =h+9gi, in D,
u = (p’ OnaD,
then

’ < ’ 00 (m) !
lgnang ||u||cl,oc D) = C(Hgoncl,a @D) + ”h”L (D) + lgjnang ”g ”Cot (Dm)>'

Through our assumptions abodiD,,, 1 < m < L, we have excluded the
possibility that the surfaces of discontinuity touch. This is not essential and, by
means of a limiting argument, our theorems easily carry over to “touching” surfaces
as well. We briefly comment on this at the beginning of Section 4.

Wheng belongs toC” (32) instead ofC1-#(3$2), we may establish boundary
and globalC? estimates for solutions. Such estimates do not automatically follow
from the De Giorgi-Nash estimates, which giveltér regularity fosomeHdlder
exponent depending on the ellipticity constahtand A. It is essential for these
estimates that the boundariép,, be 1%, and that the coefficient4™ be C*.

We refer the reader to Section 7 for the exact statement of these results.

At this point our results are limited to scalar equations, even though numerical
evidence suggests that similar bounds hold for certain elliptic system, e.g., the
equations of elasticity [2]. There are several other interesting open problems, such
as for instance, (a): Does the constahin our estimates really have to depend
onl(x, r), the local number of curves of discontinuity? (currently it does, through
the C1® modulusk) or (b): How doe< depend on the ellipticity constartsand
‘A? But the most interesting open question is probably, (c): Do similar estimates
hold for higher order norms of the solution, assuming of course all the data are
appropriately smooth?
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Concerning question (a) we feel the answer most likely is that the constant
C is independent of(x, r). Among other things we base this on the fact that the
constants in two important steps of the proof (Proposition 2.1 and Proposition 3.2)
arel-independent. Concerning question (b), the results in [4] and [9], mentioned
earlier, imply thatC has to “blow up” as the ellipticity constants degenerate. We
feel there is some hope that a refinement of the analysis presented here may give
some more specific information about the behaviout of

We indirectly address question (c) in a very special two-dimensional situation
(and withg = h = 0) in Section 8. There we show, by the use of quite explicit
expansion formulas, that the solution corresponding to two touching circular inho-
mogeneities (with constant material parametet, 8y < oo) is indeedC* on the
closure of each of the (three) subdomains. This in itself does not prove th@tthe
norms of the solutions will remain bounded independently of the distance between
two nearly touching circular inhomogeneities — but (foxOag < o0) we feel it
does give some indication that this may very well be true.

We now describe our methods of proof. In order to do so clearly and briefly,
we restrict attention to Theorem 1.1 in the case- 0 andg = 0. Let A(, A)
denote the set of measurable, symmetric, positive definite matrix functions
satisfying

A< A < A.

We define a scaling invariant subclass4if., A), denoted4(x, A), as follows. Let
L1, ---, L; be anyl parallel hyperplanes iR" which divideR" into [ + 1 regions,
denoted aRy, - -- , Rj41. Let Z_(l)_, oo AT pe anyl + 1 symmetric, positive
definite constant matrices id(A, A) and define

7T 5 (m)
Ajj(x) = A",

x€R,, 1<m<I1+1
The subclassi(, A) consists of all such matrix functions.

The classical Schauder estimates, Cordes-Nirenberg estimate#,%shdsti-
mates can be viewed as perturbation theories from the corresponding estimates for
solutions to the Laplace equation. The approach here is to treat our equations as
perturbations to the following basic equations

3 (A;;(x)d)v =0, (6)

with A € A%, A).

To establish Theorem 1.1 inthe cdse- 0 andg = 0, we thus first study elliptic
regularity estimates for solutions to (6), the main point being that the hyperplanes
in the definition ofA(x, A) are allowed to get arbitrarily close to each other, while
we still obtain estimates that are uniform i € A(x, A). In Proposition 2.1
we establish, with the help of the Cacciopolli inequality and the De Giorgi-Nash
estimates, (interior) estimates for all derivatives of the solution each region
R,,. More precisely, with2 = (-1, 1), we show that for any positive integky
anye > 0, anyA € A(%, A), and any solutiom to (6)

max V|| k7 < Cl|lv LX) 7
1<m<iil l ”C"(Rmﬂ(l—e)ﬂ) S Clvfl () ( )
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The constan€ depends only on, ¢, k, , andA.

Starting from (7) we use perturbation methods, inspired by the work of Caffarelli
(see [6] and [5]) to show that for amy> n, 0 < @ < 1, there exists some positive
numbereo, depending only om, ¢, @, » and A, such that ifA € A(x, A) and
A € AL, A) satisfy

) . 1/q
sup r— (][ |A(x) — A(X)Iq> < o, ®)
rQ

O<r<1

andu € H1() is a solution to
3(A;j(x)3)u=0 inQ,

with
lullpo@) <1,
then there existp(x), a continuous, piecewise linear solution to

3i(Aij(0)Ip(x) =0 inzQ,
whose coefficients are bounded in absolute valu€ bgnd that satisfies
ux) — p) < Clx*™¥, x e zQ.

The constan€ depends only on, g, @, A, andA.

We then show that, under the hypotheses of Theorem 1.1, the condition (8)
may be verified at every poitin D, through a harmless translation and dilata-
tion, and by appropriate selectionf € A(x, A). The L™ interior estimates for
the gradient of solutions to the equatigiA;;0;4) = 0 follow immediately. The
Holder interior estimates for the gradient require some further work, since at dif-
ferent pointst € , the orientation of the hyperplanes associated with the matrices
A: (x) differ by a rotation, determined by the geometryl®f, and sincepx (x) is
only piecewise linear given a fixed set of planes. To deal with these local changes
in orientation, and to obtain élder estimates for the gradientsin,, we need to
study the relations to gradients in sellg, with indices; # m.

The organization of the paper is as follows. In Section 2 we give a proof of a
generalized version of the estimate (7); we refer to this as our basic proposition since
itlies at the foundation of our later perturbation arguments. In Section 3 we establish
our main perturbation result; based on the assumption (8), the scaling invariance
of our equation and the scaling invariance of the cldés, A), this result permits
us to construct the required piecewise linear approximation. Instead of proceeding
immediately to a proof of Theorem 1.1, we give in Sectoa proof of a simplified
version. This simplified version is of interest in itself, but more importantly its proof
clearlyillustrates the main arguments necessary for the verification of (8), and it also
clearly illustrates how the existence pimay be used to derive a uniform gradient
estimate. In Section 5 we introduce the additional ingredients that are required for
a full proof of Theorem 1.1. Section 6 is devoted to an outline of the proof of the
boundary estimates, i.e., Theorem 1.2. In Section 7 we present the result on global
Holder regularity, briefly mentioned earlier. In Section 8 we address an aspect
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of the high order regularity question (c) formulated earlier. We establisid'the
piecewise smoothness of solutions corresponding to a two-dimensional medium
with touching circular inhomogeneities. There is an appendix to this paper, which
is devoted to a proof of the piecewise smoothness of solutions to a problem with a
single, smooth interface and natural transmission boundary conditions. This fairly
classical result is needed in order to establish our basic proposition. We provide a
proof, suggested by L. Nirenberg, for the convenience of the reader (to make the
paper more self-contained).

2. Basic proposition

Let @ denote the:-dimensional cube
Q={x=(x1-,x) x| <1},
and suppose the constanis 0 < m < [ + 1, satisfy
—l=co<c1<---<cqy1=1
We define “strips”£2,,, as follows:

Qn={x€Q|cm <xn <cm}, 1<m<sI1+1.
Let {Z(m)}ﬁj:ll = {(Zl%"))}f;r 1, be a set of symmetric, positive definite matrices,
with0 <% < 2™ < A < o0, and define the matrix functioA(x) by

Aij(x) =Zg~n),

xX€Q, 1<msI+1
The functionA is in A(x, A). Similarly, let {E(m)}fj:ll be a set ofi-vectors, and
define

) =G", xeQ, 1<m<i+1

—7(m) 141
}+

Finally supposd¢H "}, ", is a set of constants, and define

Hx)=H™, xeQ, 1<m<I+1

The following proposition plays a fundamental role in our proofs of Theorem
1.1 and Theorem 1.2.

Proposition 2.1 Basic Propositioy Let A, G and H be as above. Supposés a
non-negative integer and suppase- 0. There exists a constait = C(e, k, n,
X, A), such that ifv € H1(Q) is a solution to

3 (A;j(x)dv=H+&G; inQ, (9)
then

_ < . H 00 G 00 .
lggEXHl Il kg, na—ee) = C (Ivlize@) + IHllze@) + [1GlliLe@) - (10)
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Remark 2.1.Itis not difficult to see that we only need to establish Proposition 2.1
for somes = £(k,n, A, A) > 0, the reason being that for agye (1 — ¢)Q2, we
may apply Proposition 2.1 withto the functionv(x) = v(x + &x).

Remark 2.2. The fact thaw is in C¥($2,, N Q) follows from Theorem 9.1 in the
appendix. The aim here is to verify the estimate (10) with a consiah@t only
depends om, k, n, A and A, but not oncy, ..., ¢; orl.

Proposition 2.1 is arelatively simple consequence of the following four lemmas.

Lemma 2.2. Suppose the hypotheses are as in Proposition 2.1Di;eb|enote
any derivative of order less than or equalikavith respect to the — 1 variables
x' = (x1,---,x,-1). Given anyv € H(Q) satisfying(9) the functionD* v
remains inH(Q). If the order of D, is strictly positive thenD,v satisfies the
homogeneous version @), i.e.,

% (A;j (03D ) =0 inQ,
and there exists a consta@t= C (¢, k, n, A, A) such that
ID5 vl Lo a—e)0) < € (Ivllze@) + IHzo@) + 1G L= (g)) -

Proof. In view of (9) it follows from the Cacciopolli inequality (see, for example,
[7]) that

138Vl 21— /202) < C (I0lleo@) + IH Io@) + 1GllLx@), 1= B <n—1,

with C = C(e, n, A, A). From Theorem 9.1 in the appendix we have that €
HY((1—-¢/2)Q). We easily see that

3;(A;;(x)9;)(0pv) =0 in(1—¢/2)Q

forany 1< B8 < n — 1. Applying the local De Giorgi-Nash estimates (see, for
example, [8]) tadgv, we now get

9pvliLea-e)2) = CllapvllLza—s 20
< C (vl + IHlzo@ + IGlleo@), 1Sp<n—1

We have thus established Lemma 2.2 in the éasel. The general case follows
easily by induction sincégv, 1 < g < n— 1, satisfies the the same type of equation
asv, only with homogeneous data and withreplaced by1 — ¢)Q2. O

We introduce the notation
™ =g, .
The functionv™ is in C*®(Q,, N Q) forany 1< m < [ + 1. In view of (9) (and

the regularity result in the appendix) we have

ZA(m) (m) (m) ZA(m 1) (m 1) Eim_l)
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on{x, = cu_1} N, forany 2< m <[ + 1. In other words, the function

n
ZZ,-,,aiv — E,,
i=1

is globally continuous ir2. The following first order differential operators are
relevant

X0 — Z A™8 i Q.

Lemma 2.3.Suppose the hypotheses are as in Proposition 2.1. There exists a con-
stantC = C(n, &, A, A), such that ifv € H1(Q) is a solution to(9) then

XM XMy ()] £C (vl + IHllze@ + 1Glew)
xX€eERnNA—2e)Q

foranyl<m <[+ 1

Proof. A simple calculation yields

(m)

X (X M) = A8 (A (x0)d) 0™

(m)—(m) (m) (m)
+ Z <Aan Aﬁn Ann aff ) 0 ﬂv
1<a,85n—1

—=(m)

Sinced; (A;; (x)3;)v™ = "™ 1+ 5 G, (= H™) in Q,, the lemma follows

from the above identity and Lemma 2 20

The vector fieldsx™ = (s, ..., A"") (that give rise to the differential

operators of the same name) have the foIIowmg properties

XMy i0 e<ix™ <16 vism<iil 11
W:C>7 ¢S | = 1/c, =m=>[l+1 (11)
wheree, = (0, --- , 0, 1) andé is some constant depending only bnA, andn.

Because of (11), there exist two positive constdnts % andég, depending only
onn, A, andA, such that for every € £0%2, the integral curve of the vector fields
(X}, starting fromz, intersectsy, = +E before Ieaving%sz. Here and in the
following, an integral curvey (¢) of the vector fieldd X ™} means a continuous
solution to

y'@©)=X"™  whenevey () € Qn, 1<m <1+1.

In fact,y (1) is piecewise linear sinck ™ is a constant vector field if2,,. Without
loss of generality, we may assume thak = c;, and E = ¢;;4+1 for some 0<
lo < I1+1 < 1+1 (if necessary, we simply add these two constants to the original
set{co, - -+ , c141})-
We will make use of the following elementary fact.
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Lemma 2.4.Let f be a function ori0, 1] with Lipschitz first derivative. Then for
some universal constagt,

IF lLe0.1) < CU fllLe) + 11 IlLe0.1)-

Lemma 2.5.Suppose the hypotheses are as in Proposition 2.1, ani leé as
introduced above. There exists a constant C(n, A, A) such that, ifv € H1(Q)
is a solution to(9), then

[0nvll Lo zo) < € (vl + 1H lo@) + Gl L)) -

Proof. Let y denote any integral curve of the vector fielgg”} that passes
throughgo2. We know thaty intersectsy, = +F before Ieaving%Q. Letro <11

be such thay (1p), = —E andy (1), = E (andy (¢) € %Q forig < ¢t < 1) ltis
clearthat C < 11 — o < C for some constant depending only om, » andA.

We define
w(t) = (szaw - 6n> (y (1))

i=1

Due to the global continuity of ", A;,9;v—G, the functiorw is clearly Lipschitz
on the intervalr, 11]. It is in fact infinitely often differentiable, except at a finite
number of points. The first derivative ef equals(X ™ X™v™) (y(r)) when

y (¢) lies inQ,,. Due to Lemma 2.3 we now have

lw'll Lo,y < C (Il + 1H @) + Gl L)) -
We also define
f@ =vy@) and g(t) =Gy @)).

The function f is clearly Lipschitz on the intervdko, #1] (and infinitely often
differentiable, except at a finite humber of points). The funcigois uniformly
bounded with

lglzowo.m = 1G] ).- (12)

The three functions, g andw are related byf’ = w + g . Setf(t) = f(t) —
Jio ()7, thenf’ = w and

I oo o) = 1w o) < € (Il + 1 H (@) + Gl @) -
(13)

It follows from Lemma 2.4, together with (12) and (13), that

lwllzewo.m) = I Lo < C (0o + I1H Lo + 1GliLe@) -
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Due to the definition ofv (and the lower bound faA,,,,)
18 v (¥ (DL (10,10)

S C | lwllzs ) + Z 19gv(y (D ILeo.1) + 1Gn (Y (DL tour) | »
p<n—1

and sincey is an arbitrary integral curve passing throudgk, it now follows, using
Lemma 2.2, that

1821l L o) = C (Ilvllzoee) + I1H @) + [Gllze() -
This completes the proof of Lemma 2.50

We are now ready for

Proof of Proposition 2.1.Due to Remark 2.1, we only need to establish Proposition
2.1 for some = &(k, n, A, A). Because of Lemma 2.2, we can apply Lemma 2.5
to D’;,“v (any derivative in the variables, . .. , x,—1 of degrees k + 1) to obtain

1D, vll Lo @, nere) < C (I0lle@) + IH Iz @) + [Gllze) .

(14)
l1=m<=si+1,

with C = C(e, k, n, X, A) andéy = &1(n, X, A). Applying D¥, to the equation for
v on each,,, and using Lemma 2.2 and (14), we get

1D%,02 vll 1 (@, nee) < C (0l + IHIzx@) + 1GllLe) .

(15)
1=m<Si+1

Applying D’;,ax,l to the equation fov on eachR?,,, and using Lemma 2.2 and (14)
and (15) (with k replaced by + 1) we similarly get

1D583 vll L @,niie) =€ (Wl@ + 1H>@) + 1Gl=@)
1<m<sI1+1.
By induction we obtain a proof of Proposition 2.1 wigh=¢1. 0O

Itis not primarily Proposition 2.1 that we use later in this paper. Rather we use
a corollary concerning the approximation oy piecewise polynomials. Since
our aim is to estimate gradients alone, it suffices to consider approximation by
piecewise linear functions. We introduce the following notation

my = minfm: Q, N 1Q # @) = min{m: — 1 < ¢y},

m* = maxm: Q, N 3Q # ¥} = maxim: cu_1 < 3}.
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Corollary 2.6. LetA, G andH be as in Proposition 2.1, and lete H1(2) denote
a solution to
3 (A;j(x)3)v=H+9(G;) inQ,
with
vllzoo@) + I1H Loy + 1G o) < 1.
There exists a consta@t= C(n, , A) and a continuous, piecewise linear function

px)=a"™ +b"™ .x, xeQu,1<m<I1+1,

satisfying
3 (Aij(x)9)p(x) = 9;(G;) inQ, (16)
such that
() = p) S ClxP, xe %9 (17)
and
@™+ 16" S C, my Sm S m*. (18)

Proof. A continuous, piecewise linear functiop(x), is a solution to (16) if and
only if

—(m)

nn

pim — ppmpm=1 o (0’ [G(’") _E;m_l)]> for all m,

whereM ™ is then x n matrix given by

M = Sap. 1<a,B<n-—1,
Mg)—o 1fa<n-1,
M = [A(’” VoA™) 1<a<n-1,

—(m)

nn

and

—(m=1)
M(m) Ann
nn T Z(m)

We also know that™ := v|g, andv™~Y satisfy the same matching conditions
atx, =cpm—1

vU<'">(x/,cm_1):MW)W('"1>(x/,cm_1)+<d —[ G,"- fo"”]) V'
nn

(19)
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Without loss of generality, suppose
Cmo—1 = 0 < ¢y

By Taylor’'s expansion and Proposition 2.1,

_ 1
v (x) = v (0) 4 Vo™ (0)x + O(1x]?) x € Qg N EQ’ (20)

with |0 (|x|?)| < C(n, », N)|x|2. Define
amo) — v(mo)(o)7 pmo) — VU(’"O)(O), (21)

and define all the remaining ™}, {6} by the following relations

_ 1 —m —=m-1
pm — ppmpm=1 o <0/’ o [Gn’” — Gn’” 1], (22)
nn
a™ + b (O, 1) = a” D + "D (O, cpyr). (23)

As previously,p denotes the continuous, piecewise linear funcgpon) = a™ +
b™ .x,x € Q,,. The functionp clearly satisfies (16), since the matching conditions
are satisfied by construction. Far = mg the estimate (18) follows immediately
from (21) and Proposition 2.1. We now verify this same estimatefox m < m*.
The verification fom, < m < mgproceedsinthe same way, butis leftto the reader.

We know thatM ™ = [N =IN =D whereN ™ is then x n matrix given
by

N =64, 1<a,p<n—1,

ap
Nm =0, 1<a<n-1,
and o
N =45, 1< j<n.

nj
The identities (19) and (22) together with Proposition 2.1 imply

[b(’") — Vo™ (0, Cm—l)]
= [N~ 1N0=D [b(’”_l) —vob, cmfz)] + O(cm—1— cm—2)
providedmg + 1 < m < m*. By iteration it follows that
[b(’") — vo™ (0, Cm—l)]
— [NM]~1p0mo+D) [b(m0+l) — vyt (@ cmo)] + O(Cm_1—cmy)  (24)

providedmg < m < m*. Here|O(cm—1— cmg)| £ C(cm—1— cmg) With a constant
C(n, A, A) that is independent df We also have

pmo+l _ Vv(moJrl)(o” Cmg) = M(m0+1)[b(m0) _ VU(mO)(O/, cmo)] = O(Cmp),
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and in combination with (24) this leads to
b — o™, )| £ Cny hy A1, mo <m < m*. (25)

The desired uniform estimate for thé&€™, mg < m < m*, follows immediately.
By iterated use of the identity
a™ + b (0, cn) = a™ Y + 5™ (0, cu_1) + Olem — cm-1),
it similarly follows that
la™ + b (0, c)| S C mo <m < m*.

Since theb™ andc,, are bounded this gives the desired uniform estimate for the
a™ mo < m < m*. This completes our verification of (18), and we now turn to
the estimate (17). We only verify this estimate foe 2,, N %Q mo < m < m*,

The verification is entirely similar for € Q,, H%Q,m* < m < mg (and itis trivial
forx € Qe N %Q). We writex = (x’, x,,), and (since we supposg, N %Q # ()
we a priori know that O< ¢;,q < cpp—1 S x, < min{%, cm}. Due to (20),

V(X' Cmg) = P, Emg)| = Clleme)® + 1517 < Clx|2. (26)
By Taylor’'s expansion and Proposition 2.1,

v(x', xn) — v(x', Cmg)
m—1
=00 ) — v @ -+ ) VW ) =0 o]
j=mo+1
m—1
=00 (D) —em-) + Y 9V (& i) — 1) + O(Ix[P).
Jj=mo+1
Here we have used the fact "’} 1 (cj—c;-1)? < [X7 0 1 (cj—¢j-1)1? =
(cm—1 — Cmp)?. By the definition ofp(x),

m—1
P& ) = PO emg) = B (on —cm-) + Y b (¢ — ¢j-1).
Jj=mo+1

From the exact same analysis that led to (25), we also get
bV = Vo (', c;p) £ Cn, &, A | 4+ ¢j1), mo<jSm*. (27)

By subtraction of the above identities fotx’, x,) — v(x’, cmo) @and p(x’, x,,) —
p(x', cmg), @ small rearrangement, and subsequent use of the estimates (26) and
(27), it follows that

', x) — p( x| £ Cn, L, M)x|?. O
Remark 2.3.We note that the constagtin this corollary is independent éf this
is why the estimates (17) and (18) are only valid foe %Q andm, < m < m*.

If we dropped the insistence on independenck thfen the estimates (17) and (18)
would trivially be satisfied fox € Q and 1< m < 1.
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3. A perturbation result

Let @2 denote the:-dimensional cubé—1, 1), and let the “strips’2,,, be as
introduced in the previous section. The two sets of positive definite matrix functions
A(x, A) and A(x, A) are also as introduced earlier. In the introduction we briefly
explained how Theorem 1.1 and Theorem 1.2 will be derived from Proposition 2.1
(or rather from Corollary 2.6) by a perturbation analysis. In this context we shall
need a fairly basic lemma, which we state and prove below.

Lemma 3.1.Supposed € A(%, A) andA € A(x, A). SUPPOSE = (g1. -+ . gn)

€ L1(Q), h € LY2(Q) for someg > n, and suppos& = (G4, --- , G,) and H

are constant on each of the strigs,. Letu € H1(2) be a solution to
0;i(Ajjoju) =h+9; g in Q,

with
lullpo@ < 1.

There exist positive constants< 1 andC (depending only og, n, » andA) such

that if
. 1/q
<][ |A—A|‘1dx> <e¢
Q

for somes > 0, then we may find a functiane H?! with
3 (A;j(x)3jv) = H+ 9;(Gy) in 39,
and

||u_v||LOO(%Q)
< C([1+ 1[Gl + 1HllLo@le” +11g—GllLaqy + h—H|lparzq)) -

Proof. Since
0i(Aij(x)0ju) = h+ 9;gi(x) InQ,

it follows from interior De Giorgi-Nash estimates ([8], Theorem 8.24) that there
existy’(n, g, A, A) in the range O< y'(n,q, A, A) < 1 andC(n, g, A, A) such
that

flael < C(llullze@) + 1G]l Lo

cr'Go
+ [Hllzo) + Ig = Gllza + Ih — Hll parzq)
SC(A+ Gl + 1Hll)
+ g = Gliza + I1h — Hl parzq))
=C(K(G,H)+k(g.h, G, H)). (28)
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Here we have, for later convenience, introduced the notation
K(G,H) =1+ |G~ + | H L=,
k(g.h,G, H) =g — GllLa + Ik — H| ar(q)-
Let v denote the solution to
3 (A;j(x)dv) = H+9(G;) in3Q,
v=u ond3Q).
By L estimates (see [8], Theorem 8.16)
< _ _
”v”Loo(%Q) = ”u”Lw(a(%Q)) + C(”G”LOO(%Q) + ”H”Loo(%g))
< CK(G, H).

It now follows from the global De Giorgi-Nash estimates ([8], Theorem 8.29) that,
for somey andy’ suchthatO< y < y/,

ol g < C<||u||cy/(3m + 110l o3y + G 30 + ||H||Lw(3m>

< C(K(G,H) +k(g, h,G, H)).
(29)

Based on this estimate and (28) we immediately get
e = vll oo oy 3—ypy = CK(G. H) + k(. h. G, H))s" . (30)

A slightly more involved argument, utilizing in particular Proposition 2.1, gives
that

VUl (3o S C(K (G, H) + k(g h, G, H))s" . (31)

This latter argument goes as follows. For any fixed (% — 5)Q define

v(x +s5x) —v(Xx)

x| = 1.
sY

wx) =
It follows from the estimate (29) thai(x)| < C(K (G, H) + k(g, h, G, H)) for
all |x| £ 1. We also have that
3y (Aij (X + sx)dgw) = 57V HX 4 5x) + 57778, G; (X +5x)  for x| £ 1,
and so from Proposition 2.1 we conclude that
IVw(0)| < C(K (G, H) +k(g.h, G, H)),

or

Vo) < C(K(G, H) +k(g,h, G, H))s" 1,
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exactly as desired. A simple calculation gives

3 (Aij ()3 (u —v)) =h — H 4 9;(gi — Gi) — 3; ((Aij(x) — Ajj (x)djv),
X € %Q,

and from this and the estimates (30) and (31) it follows, using Theorem 8.16 in [8]
again, that

S flu—

= vl oo (3 -5y Vll oo a3 sy

+ C(Hg = Gllgaz-nay T 1h = Hll o3 _se)
+ |l (Aij(x) - Zij(x)) ajv”LlI((gs)Q))
< C(U«ﬁ, G) +k(g, h, G, H)Is” +k(g.h,G, H)
+elK(H,G) + kg, .G L),
We note thatC depends o, n, » andA, but is independent of & s < 1/4. We
now picks equal to mirfe, 1/4} to get
llu — vlle(%Q) < C(K(H,G)e" +k(g.h.G. H)).

This completes the proof of the lemmar

For any O< s and any 1< p < oo we introduce the norm

1/p
IAllysr ;= sup ri™* (][ |h|1’> i
0<r<1 rQ

For convenience we slightly redefine the indiegsandm*
my = min{m: Q, N %Q # @} =min{m: — % < cml,
m* =max{m: Q, N ;1182 # @} =max{m: ¢,_1 < %}.
We are now ready to establish our main perturbation result.

Proposition 3.2.Supposed € A(x, A) andA € A(x, A), relative to the hyper-
planest, = ¢,,,0 < m < I+1.Supposg = (g1, --- , gn) € LI(Q), h € L1%(Q)
for someg > n, and suppos& = (G, --- , G,) and H are constant on each of
the strips$2,,. Let0 < @ < 1, and letu € H1(€2) denote a solution to

0; (Ajj(x)dju) = h + 9,8 in Q
with

lullp=@) < 1.
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There exist constan < o < ‘—11, €0 > 0, andC > 0 (depending om, ¢, &, and
the ellipticity constants., A) such that if

A — Allyiraq < €0, (32)
lg — Gllyrtaq + |h — Hllyaqz < g0, and |[|Gllre@) + 1H o) < 1,

then we may find a sequence of continuous, piecewise linear fungtiois=
12 ...,

pr(x) = a,im) +b,(cm) X, X € Qu, my Sm < m*,
with
™| + b < C,
0™ = a™y| < CLE*HYE + minfle-al, lenl} o 17,

‘b]((m) _ b]({ni)l‘ § C(O_k—l)al’

( -1 1 =m —=(m=1)
bkm) = M(m)bl(cm )+ <0/’ W[G" -G, ])

nn

for my, < m < m*, and such that

1+a
flu — Pk||L00(ng) < (Uk) . (Px)

The limit p(x) = limy_  pi(x) exists forx e ;1152. It is a continuous, piecewise
linear function with coefficients that are uniformly boundedby (-) furthermore
satisfies

3 (A;j(x)3))p = 3:(Gy) in 3,

and Lig 1
lu(x) — p(x)| < Clx|*, x € 78. (33)

Remark 3.1. From the uniform boundedness of the coefficientp Of) it follows
immediately thatp(x) — p(0)| < C|x|. The estimate (33) thus implies

lu(x) —u(0)| = lu(x) — p(x)| + |p(x) = p(O)| + [p(0) — u(0)| = Clx|.
Proof of Proposition 3.2.The existence of the piecewise linear functiopg, is
established by induction. We first prove the existencemfwaith the required prop-
erties. From the first and second inequalities in the hypothesis (32) it immediately
follows that||A — Al|Le@) < Ceoand|lg — Gllra) + |h — H”Lq/Z(Q) < Cep.
Therefore, according to Lemma 3.1, there exists a funatienH !, satisfying

3 (A;j(x)3v) = H+9(Gy) in3Q,

and with

v
”u - UHLOO(%Q) § CEO.
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According to the last estimate we also have
<
||v||LOO(%Q) s C,

and thus, inview of Corollary 2.6 (witf2 replaced b)?z: Q) there exists a continuous,
piecewise linear function

p1(x) = aim) +b§m> X, X € Qum, mg Em < m*,
with
™|+ ] <
pim = MpmY | (@, ﬁ c™ — Gy, (34)
nn

n

and such that
lv(x) — p1)| < Clx%,  x € 1Q.

HereM ™ is the same matrix as earlier. By a combination of the estimates-far
andv — p; we get

u(x) = p10)| < Csf + Clx?, x € 3. (35)
Now selectr < 3 sufficiently small, so that

CGZ — Co,l*()to,l‘l’a

IIA
NI
Q
N
+
=3

it then follows from (35) that
lu(x) — p1(0)| £ Cef + 307%, xeoQ.

Selectsg sufficiently small thatey < 301+%, and altogether we have

e
lu — pillLe@e) < o't

which is exactly the estimatgP;).

Suppose we have established the existencei0f.. , px with the required
properties; to complete the induction proof we must now construct an appropriate
Pi+1. It follows from the induction hypotheses that

max _ {la™|, "} £ C. (36)

1<i<k, meySm<m*
Consider the function

u(o*x) — pr(o*x)

W) = (O-k)l+& ’

x € Q.

According to the induction hypotheses this function satisfies

Wi < 1
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and

h(o*x) | dilgie*n] 1
(O-k)&fl (ak)‘i ( k)l+
= hp(x) + 3 gk.i (x),

3 (Aij (k)3 W) =

=0 (Aij (0 x)0; pr(0*x))

with hy andgg ; given by

h(okx)
hi(x) = W’
and
1 m m -
8100 = g (81050 14y 00 ~ Ayt o) ~G) inoka,

A simple calculation, using the two first inequalities of the hypothesis (32), gives
that

< Cg¢, and
L1(R)

[Aij (0% — A;j (0% )]

[

||gk||Lq(SZ) + |lhe — ﬁk”Lq/Z(Q) é Ceo,

where

— ﬁ(akx)

k= W.
From Lemma 3.1 we now infer the existence of a solution to
3 (Aij(0*x)8;2) = Hy  in3Q,
with the property that
IW = Zll e (1) = Ceg-

According to the last estimate we also have

“Z”Loc(%g) § C,

and thus, in view of Corollary 2.6, there exists a continuous, piecewise linear func-
tion p

px)=a"™ +b"™ . x, xe ok, me <m < m*,
with
pm = pmpm=1)
a™ 4 pm . 0,0 —ke 1) = am=D 4 pm=D) (0.0 ke D, (37)
and such that

1Z(x) — p(0)| £ Clxl?, x € 1Q.



Elliptic Equations with Discontinuous Coefficients 111

The functionp is initially (according to Corollary 2.6) only defined on thaRg,
for whiche =%, N %Q £ (. We extendp to all ,,,, m, < m < m*, by means of
the identities (37). Since ¥ ,,, N A-llsz # ¢ Corollary 2.6 asserts that

ja™?| + p"9| < C., (38)

even though it does not provide similatiindependent bounds for all, < m <
m*. By a combination of the estimates faf — Z andZ — p we get

W) — p(x)| £ Cel +Clx|%, x € 1.
With our choice ob andeg we conclude (by repetition of an earlier argument) that
W) - p)| £, xeoQ,
and thus,
lu(c*x) = pr(c*x) — @HHp0)| £ (@*HM, xeoQ.

It follows immediately thap1(y) := pr(y) + (6¥)1H p(y/o*) satisfies the
estimate( P,+1). We shall only verify the estimates concerning the coefficients of
pr+1 for mg £ m < m*. The verification form, < m < mg proceeds similarly,
but is left to the reader. Singe, 1 (as well asp,) satisfieso; (A;;(x)9;) px+1 =
3;(G;) in 2, we have

(m) (m) (m—1) (m—1)

bia—b" =M (m)[bky—nt—l — b (39)
= ... = [NOWPINmO BT pTO) g < m < m

From (38) and the definition g1 we conclude that

B8 = 5| = (@M p"| < C o)

This estimate, in combination with (39), leads to

b — b1 S C(0N, mo < m < m*,
with C = C(n, ¢, @, A, A). To establish the bounds concerning the1’s we first
inserty = 0 into the definition ofpy,.1. This yields

(mo) (mo) __

k14
apq —ap = (") g mo),

and so, by means of (38), we get

|a]£’_"’l_%) _ a£m0)| g C(O'k)l+6t.
Using the alread i i —p™ inui -

g the already established estimatelfor, — b, and the continuity opy+1
pi (@tx, = cp_1)

alth —al” + by = b)Y - (O cn1)

-1 -1 -1 -1 5
= a7V —a" V4 BTV =B (0, en2)+ O (M) (Cm-1—Cm—2),
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formo + 1 < m £ m*. By iteration of this identity we get
aty = + B = 5" - (O en-p)
1 1 1 1 i
= a5 —a" D L BV ") (0, emg) + O ((65)% (em—1—Cmo)),
for mg < m < m*. Since

gmoth _ (mo+d) + (b(mo+1) _ b}({fﬂo+l)) - (0, Cmg)

k+1 k k+1
= ayy =" + BT — 5" - (0 o)

= 0((M)M 4 () %¢py),
it now follows that
jas — al™ + B — b)Y - (0. en-p)| € CLENE + ep1(0h),

for mo < m < m*. After insertion of the bound fab”; — ;" we get

lag" — ™| < CLEHM + cpu_1(6©)®1. mo <m < m*.

This concludes the verification of the estimates concerning the coefficiepis pf
The induction proof of the existence of the sequepgep,, ... is complete.

Using the estimates for the coefficientspgf(x) it is now (by summation of a
telescoping sum) easy to see thel) = lim;_ » pi(x) exists forx € %Q, and
that it satisfies the same differential equation asis. From the estimates for
the coefficients fopy it also follows that

1Pk = Pllwrg) < C@HH,

and thus, by combination withPy),
l = pllpoorgy = Ca™)H

This latter estimate immediately implies (33)a

4. A weakened version of Theorem 1.1.

We return to the same notation as that used in the statement of the main theorems
in the introduction to this paper. Let us make a few simplifying assumptions.

(A) Suppose all but one of the domairn3,,, are convex. We refer to these as
the inhomogeneities. In the context of the two-dimensional example we discussed
in the introduction these represent the “fiber cross sections”.

(B) Suppose the coefficient matriA, is constant in each of the domaibs,,
1<m < L,andsupposé =g =0.

At the same time we restrict our goal to establishing a uniform estimate for the
gradient ofu. The resulting weakened theorem reads as follows.



Elliptic Equations with Discontinuous Coefficients 113

Fig. 1. The local situation. The bold vertical line represent the points of the form
(0, x,), for which the origin is the closest point on the curnfes’, x,): x, = f+(x),
x| < 1)

Theorem 4.1.Let the assumptions be as in Theorem 1.1, with the additi¢A)of
and(B) above. There exists a constantdepending only oD, n, «, &, A, A, and
the C1* modulus ofJ%_,3D,,, such thatifu € H(D) is a solution to

0; (A;joju) = 0, inD,

then
IVullop,y = CllullLe(py,

whereD, = {x € D | dist(x,dD) > &}.

Since theL > estimate, referred to earlier (Theorem 8.16 in [8]) already verifies
that ||ull @) < llullLepe) the estimate in Theorem 4.1 immediately establishes
an interior uniform bound for the gradient @fin terms of the boundary data.

The geometric assumption, (A), guarantees that giverxanyD, there exists
a cubic neighborhood + (—c, ¢)" such that this neighborhood overlaps with at
most three of the domaing,,. The essential feature is thatthe size of this cube,
depends om, n and theC* modulus oful _ 8D, but is independent of. We
may suppose the cube+ (—c, ¢)" overlaps with exactly three of the domains
(if not, we may simply create fictitious domain(s) without any discontinuity in
the coefficient). We may also suppose thatas a (Euclidean distance) nearest
point onUa D,, which is a distance strictly smaller thari2 from x (if not we
simply decrease and create fictitous domains). This nearest point is denpted
We may translate the origin of our coordinate systemamd rotate the coordinate
system so that the'th axis is normal to tha® D,, on whichy lies. Considering
the cubeQ = (—d, d)" with d = ¢/2./n we now obtain the situation depicted
in Fig. 1. O intersects three of the domai,, we refer to the corresponding
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intersections a®_, Do and D.,.. There exist twaC-¢ functions f_ and f, with
—d < (X)) < fi(x)) £d,x" € [—d,d]" "1, suchthaD_, DgandD, are given
by

D_={(x',x;) € (=d,d)": —d <x, < f-(x")},
Do ={(x',xp) € (=d,d)": f_(x) < xn < fH-(X)},
Dy ={(x',xp) € (=d,d)": fr(x') < x, <dJ}.

The origin lies on the graph of one of the functiofis. We suppose it lies on the
graph off_, i.e.,
f-@)=0.

Then'th axis is normal taJad D,, at the origin, i.e.,
V' f_(0) =0.

Since the origin is the (Euclidean distance) closest poiftda Ua D,,, and since
then’th axis is normal tdJa D,, at the origin,x has the formk = (0, x,,). The fact
that the boundary betwedby and D, is also the graph of a function follows by
decreasingl = c¢/2./n, if necessary (exactly how much of a decrease is needed
depends om and theC1* modulus ofuL_,3D,,, but is independent of). We
could have allowed thaf_ < f. (as opposed to the strict inequalify < f4)
because if this were the case, we simply replggeby f. + §, and since the
estimates we obtain are independent afe may then subsequently pass to the
limit § = 0.

We denote the constant coefficient matrices correspondifig-taDo and D
by A, A© and A respectively, and we introduce the notation

A(+) X € D+,
Ax)=4{A0 x € Do,
A(i) X € D+.

For simplicity of notation we from now on assume thlat= 1. In order to prove
Theorem 4.1 it clearly suffices to prove the following proposition.

Proposition 4.2.Let A(x), x € Q@ = (—1, 1)" be the coefficient defined above for
somefy € CL¥(1x'] £1),0 < « < 1, and letu € HYX(Q) N L>®(Q) denote a
solution to

3,-(A,~j(x)8ju) =0 inQ.

There exists a constant C (dependingomw, || fi || c1e(—1.1;2-1) @nd the ellipticity
constants., A) such that

IVu ()| = Cllullzoe (@)

for any pointx which has the fornt = (0, x,,) and for which the origin is the
closest point on the curveéx’, x,): x, = f+(x), |x'| £ 1}.
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The proof of Proposition 4.2 is based on Proposition 3.2 and a simple rescaling
argument. To formulate the rescaling lemma we need some additional notation.
Corresponding to the matrix-valued functidrwe introduce, for anyy < 1,

Ap(x) = A(rox), xeQ=(-101", (40)
We also introduce the matrix-valued functiEmO(x), x e Q= (101"
A x| < 1, raler(O) <x, <1,
Ap@) =1 A9 W<l gt 0 <x < rgtf100), (42)
A x| <1, ~1 < xy < 1o f4(0).
The functionA,, is in A(%, A) (relative to the hyperplanes, = 4 £1.(0)).

Lemma 4.3.Let A,, and A,, be defined by40) and (41), and supposg >

n.
Given anyeg > 0, there exists a positive constagtdepending om, ¢, o, a, A, A
and | fullc1e—1.1p-1y, SUch that

_ g p
<][ [Aro(x) — Arg(x) |4 dx) Segor@de, VO<r <1
rQ

Proof. Sincefy € Ct2(|x’| £ 1), we have

fe() = f2(0) + V2 (0)x" + O(x' M), (42)
where| O (|x/|1)| < C|x' |} for someC depending only onth€1-% norm of £.¢.
We also know thaif—_ (x) < fy(x'), for |x’| £ 1, f—(0) = 0, andV f_(0") = 0,

SO
fr@) + VO Z —Cl|Me, Y=L

For convenience we now introduce the notatboa- f,(0'). It follows from the
last inequality that

IV f4(0)] £ CLfL(0)]a = Caait, (43)

For 0 < r < 1, a simple calculation gives

o 1/q . 1/q
<][ Q|Aro(x) — A0 dX> = <][ SzIA(X) — Ay (x/ro)|? dX>

withs = ror € (0, rp). Itis easy to see that there exists a constant,0, depending
only on theC* norm of £, so that

[CIWANC =2
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forall |x’| £ 1. Forr < ¢8/rg (s < ¢8) we therefore estimate

_ 1/q 1/q
(][ |A(x) — Aro(x/r0)|? dx) =C (S”/ | f- ()] dx’)
Q2 |x"|<s

1/q
Cc (s_”f x|t dx’)
|x’|<s

< cs*1 < Crg/qr"‘/q.

A

On the other hand, far 2> ¢§/rg, we get, using (42) and (43), that

- 1/q
( ][ IAG) = Tox/ro)l dx)

1/q
C(S_"/l/ (1 f+(x") = f1(O)] + If—(x/)l)dx/>

Yaq
C(s—"/ @] + || dx’>
|x’|<s

_a o @hs —%
g C(5 (a+1)gq + S‘I) é Crod q r (a+1)q .

A

[IA

A combination of the estimates above yields

1/q e,
(f 4t ~Toeotax) < cry .
rQ

We now simply choosey, so thatCry"* " = e, and the lemma follows. O

Proof of Proposition 4.2.Let gg be as in Proposition 3.2 and letbe as in Lemma
4.3 (corresponding to this). The coefficient matriced,, andA,, are as defined
in (40) and in (41). Definev(x) = u(rox)/llullL>(@), x € . The functionw €
H(Q) satisfies

9 ((Arpijojw) =0 inQ,
and
lwlr=@ = 1.

To prove thatVu(x)| < Cllu| = (g) for all x which have the formt = (0, x,,) and

for which the origin is the closest points on the curyes, x,,): x, = fa(x')} it
clearly suffices to consider onf¥| < ro/6. If |X|coc = ro/6, then we are clearly a
fixed distance away from the discontinuities in the coefficient, and classical elliptic
interior estimates immediately give thatu(x)| < Cllu| L=q). We also note that

a bound forVw (x) immediately leads to a bound f®u (rgx). In order to complete

the proof of Proposition 4.2 it thus suffices to prove that

IVw@|SC, *egQ (44)
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for any ¥ € © which has the fornrk = (0, x,) and for which the origin is the
closest points on the curvgéx’, x,): x, = ro_lfi(rox/)}. By a combination of
Proposition 3.2 (Remark 3.1) and Lemma 4.3 we obtain the estimate

lwx) —w(0)] < Clx|, xeiQ. (45)

For x = 0 the estimate (44) follows immediately from (45). Bot4 0, consider
the function 1
w(x + 51x]y) —w(0)

X1

w(y) = . I EL

Sincei + 3|%|y € < it follows from (45) that
lwI=C, [y|= L

Sincex + %|)?|y never touches the graphsngflfi (rox’), due to the form of, w
satisfies a constant coefficient equation. Therefore, using classical elliptic estimates
we have

[Vw(X)| = 2|Vw(0)| £ C.

Proposition 4.2 is thus establisheda

5. Interior estimates

We now proceed to prove the full version of Theorem 1.1. For this purpose we
first consider a (local) problem when the cue= (-1, 1)" is divided intol + 1
subdomains by C1* curves. Let O< o < 1, and letfy, - - - , f; bel functions in
cle(lx’| £ 1) satisfying

—1< failx) < p(x) << fix') <1 forallx’ e [-1, l]”fl. (46)

We suppose
fino-1(0) £ 0 < fo(@), and|(0, fino-1(0))]2 = 1521 mgl (X", fn(X))]2.
(47)
Except wheny,,,—1(0") = 0 this implies
v/fmo—l(o,) = O/- (48)

If fmo—1(0") = O we suppose the coordinate system has been oriented so that (48)
holds. These functions divid@ into ! + 1 regions

Dy = 1{x € Qfn-1(x)) <xp < fu(x)}, 1Sm<1+1,

where we have adopted the notatifin= —1, f;+1 = 1. In an appropriate sense

one may think ofD,, asD,, N Q. Let A™ e C¥(D,), 1 < m <1+ 1, be
symmetric, positive definite matrix-valued functions, and define

Ax) =A™ (x), xe€Dp, 1<m<I+1
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Letg™ = (g™, ..., ") be inC(D,,), and define
gx)=¢g"(x), x€Dy, 1<m<I+1
We introduce the + 1 “strips”
Q= {x € Q| fu-1(0) < x, < fu(0)},
and define the piecewise constant (matrix-valued) function

A, fine1(0)), x € Ry, m > mo,
Z(x) = A(mo)(o)’ X e Qmw
AW, [u(0)), x € Q. m < mo.

Usingg<’"_), 1< m <1+ 1we similarly define a piecewise constant vector-valued
functionG. Sincef,, € Ct¥(|x’| £ 1), we have

Fnx") = fn (@) + V £, (Q)x" + O (x|, (49)

where|O(lx'|1)| < C|x’|¥+* for someC depending only on the€ 1% norm of
fm- We also know thaf,,, (x) > f,—1(x’) for |x’| £ 1. It follows that

IV fn (@) = V fin—1 (@) £ C(fin (@) = fn-1(0))7H1. (50)

By a “telescoping summation” argument we now, in view of (46), (47) and (48),
conclude that

IV fn(0)] < C| fn (0|7 (51)

The constan€ now depends ohand theC-* norm of f,,.

From the definition of the “strip’2,, one would expect that, generically, a
significant fraction ofD,,, locally, falls inside<2,,. The following lemma makes
this statement more precise by estimating the smallnesB,pin sQ) \ Q,,, for
O<s<1.

Lemma 5.1.There exists a constant, depending ot and theC1-* norm of f,,
1< m £, such that

s (D NS\ Q| < Csat1, 1<m<[1+1
Proof. Due to the identity D, N s2) \ Ry = Ujzm Dy N s N Q;, it suffices to
prove that

1D NsQN Q| < Csa1,  j #£m. (52)
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If the setD,, N sQ N Q; = #, there is nothing to prove. We thus assume it is
nonempty. It is quite easy to see that

|Dp N s2N Q|
min{ [ ot 1n @) = fu @)L [y gt 1f-a) = f-2(@)l
for j > m,
<cC
min{ [ oot LG = SO Sy ot | fnma @) = S (@1}
for j < m.

(53)
In order to estimate the right-hand side of this inequality it is convenient to introduce
the index set
Iy = {k | (x', fi(x")) € s for somex'}.
From (49) it follows that
|fi(@) = Cs Vikel. (54)

In combination with (49) and (51) this leads to

s / | fe(x") — fi(@)]dx’
x'e(—s,s)r—1

scs [ (1A @) F )+ 1x'17) (55)
x'e(—s,s)n1

< C(satl +s5%) < Csatl  Vkel,.
It is also easy to see that
k > mo, ﬁkﬂsQ#VJ::'mo,-n Jk—1el,
k<mo, DiNsQ#B=k, - ,mg—1€I.

At this point we divide our proof into three different cases.

Case 1.m > mg. SinceD,, N sQ # @, it follows from the first statement of
(56) thatm — 1 is in I;. A combination of (53) and (55) (with = m — 1) gives
the estimate (52) foj < m. On the other hand, fof > m > mg, the fact that
sQ N Q; # ¢ immediately implies that0', f;_1(0)) € sQ. We therefore have
Jj — 1 € I; and the estimate (52) again follows from a combination of (53) and (55)
(withk = j — 1).

Case 2.m < mo. SinceD,, N5 = {9, it follows from the second statement of
(56) thatm is in I,. A combination of (53) and (55) (witkh = m) gives the estimate
(52) for j > m. On the other hand, fof < m < myg, the fact thak2 N Q; # @
immediately implies that0’, f;(0)) € s. We therefore havg < I; and the
estimate (52) again follows from a combination of (53) and (55) (With ;).

Case 3. m = mo. Here we conclude fromQ N Q; # ¢ that

(56)

mo e l; for j > mo,
mo—1el; for j <my.
As before, the estimate follows from a combination of (53) and (55).
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Using the previous lemma, we may now quite easily establish the equivalent of

Lemma 4.3.

Lemma5.2.Suppose; > n and0 < o' < min{u, m} . Let A and A be

as introduced at the beginning of this section, andAgt and A,, be defined by
App(x) = A(rox), Ayp(x) = A(rox). Given anyeg > 0 there exists a positive
constantro, depending om, q, 1, g0, @, &', A, A, Ma¥<,y<; || finll crer—1.17-1)s

andmaxg<,,,<;1 [IA™ lew By SO that

_ 1/q ,
(][ | Arg(x) — Am(x)w) Seor?, VO0<r<L
rQ2

Proof. For 0 < r < 1, a change of variable gives

o 1/q _ 1/q
( ][ Ay (6) = Ay (D)1 dx) _ ( ][ AG) — AN dx) (57)
rQ sQ

with s = ror € (0, rg). Due to the definition oft, D,,, and<,,, and due to Lemma
51

- 1/q
<][ [A(x) — A(x)|? dx)
sQ

=[s™" f [AM (x) — A(x)|9 dx
( ; Dm Ns N2y,
1/q
457" Z/ AT (x) — A(x)|? dx
o (D N\

1/q
< s*"Z/~ A (x) — A(x)|? dx + Cs@a,
o DN QR

(58)

The first term in the right-hand side of (58) requires a slightly different estima-

tion, depending on whether < mq, m = mg orm > mo.
Form < mg,

(s” / A (x) — A(x)|? dx>
Dy Ns QN2

1/q
= <s" / JAT (x) — A™(Q', f,,(0))]7 dx)
D, NsQN2,

1/q

! l/q !/
<c (s—" / [ = (O, fun(@)[ dx) < cs.
DN
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Form = mg,

s /~
DmoﬂsQﬁQmo

= s—l’l/
DingNs QN
Form > mg,

1/q
(s" / A (x) — A(x)|? dx>
Dy Ns N2y,

1/q
_ <s” / AT (x) — AT, fu_1(0)]7 dx)
DN,

1/q
A" (x) — A(x)|4 dx)

/

1/q
|AM0) (x) — AmO) ()4 dx) = Cs”.

meo

/

, 1/q
=C (S"f Ix = (0, fn—1(0))* 7 dX> < Cs”.
Dy NsQ2N2p
In either case we therefore from (58) conclude that

vy 1/(] ’ o
<][ |A(x) = A dX) < C(s¥ + 5@ i)
sQ

/ ’ !’
SCs* =Crgr”.

(59)

We now simply choosey, so thatCrg/ = &0, and the lemma follows. O
We may combine Proposition 3.2 with Lemma 5.2 to establish the following
proposition.

Proposition 5.3. Let A € A(X, A), A € A(x, A). Leth € L>®(Q), and letg
and G be as defined at the beginning of this section. For any n, and any
0 < o < min{u, m} there exist constants andrq such that, ifu € H1(Q)
is a solution to

0; (A,'jaju) =h+0;gi in Q, (60)
with

o0 | max |lg™] ., — <1, 61
Iz + Ml +, max 18" o g, S (61)
then one may find a continuous, piecewise linear functigrwhose coefficients
are bounded in absolute value By and which satisfies

3 (Aijdjp(x)) = 8;G;, inro. (62)
and )
u(x) — po)] < Clx ¥, x € roQ,
The constant€” and ro depend om, o/, &, g, A, A, the number, max<,,<;+1

A andmaxg<,,<; |l finll e _1.1p-1-

c¥ (D)’
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Proof. We considenmw (x) = u(rox), that solves the equation
0i ((Arg)ijdjw) = rgh(ro-) + rodigi(ro-) i Q.
By selectingr as small as prescribed in Lemma 5.2, we obtain the estimate
1Ary — Argllyrsarg < €0,
exactly as required by the crucial hypothesis (32) in Proposition 3.2. Applying
Lemma 5.2 to the functiong andG we may selecty sufficiently small that
lg(ro) = Gro)llyasaa < 0.

By selectingg sufficiently small we thus get

g1 (ro) lye a2 + rollg(ro) — G(ro) [l y1ear.q
< rglihllLe(e) + roeo < eo.
We also have

rollGro)ll=@) =ro, max g™y g =1
We remind the reader that the ellipticity bounds foy, and A,, are the same as
those forA and A. We also note that any estimates obtaineduiowill translate
into similar estimates fag except for a fixed constant dependingrgn

Since the hypotheses are satisfied we may now apply Proposition 3.2 (with
H = 0)tou. Thisleads to the existence of a continuous, piecewise linear polynomial
g, whose coefficients are bounded in absolute valu€ pgnd which satisfies

3; (A;j (rox)d;q(x)) = rod; G (rox),  in 3Q.

and /
lw(x) —q)| = Clx[*,  x €39,
The constant C depends ona’,a, g, A, A, the numberl, max<,<;.1
1A By ANd Max<< [ finll ¢, 10-3)- The functionp(x) = q(x/ro)

satisfies all the requirements from the statement of this proposition %ﬁ@ds
renamedq). O

Proof of Theorem 1.1.Using the same arguments as those leading to Theorem 4.1
we conclude from Proposition 5.3 that

o0 < o0 o0 (m) ! N
IVullLe,) = C(”“”L ) + IAllL=D) + gnaéXL g™ Ml ca (Dm)>~
Here we note that (the number of curves) that appears in our local estimates is

bounded by a constant that depends orcth& modulus ofuﬁl:la D,,. To complete
the proof of Theorem 1.1 we only need to establish

IVu(x) — Vu(0)] £ Clx|¥  Vx € Dy,
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whereu is as in Proposition 5.3. Naturally, we only need to establish this estimate
for |x| < r1 for some small1, which depends on the same parameters as the
constaniC in Theorem 1.1. In the following we repeatedly use the smallness of
(i.e.,r1) without explicit mention. For any € Dmo \ {0}, if fio(0') > 80|x|, set

x = (0,10/x|) (andm = mg — 1), otherwise lein = mg be the smallest index

for which f,,11(0) — £,(0) > 80|x| and sett = (0, f;,(0") + 10/x|). Clearly,
101x| < x| £ 100! + 1)|x]|. We will first show that

IVu(®) — Vp@)| < Cla|”, (63)
wherep is the piecewise linear function from Proposition 5.3. This in turn implies
IVu(x) — T ... 7m0t Dy, 0) < Clx |, (64)

whereTWp = MDp + (0, #[52’) — E,(lj_l)]), and M) is the transmission
matrix corresponding to the horizontal hyperplane= fj_1(0). Forj > mo+
1, TV is determined by the values of/) (0, f;_1(0)), AV=D(0, f;_2(0)),
g0, f-1(0)), gD, f;_2(0)), while T+ is determined by the values
of ATOtD (O, £,4(0)), AT (0)), g0, f,,0(0))), andg ™ (0).

From the definition ok andm, and the smallness ¢f| it follows immediately
that the neighborhood

D =% +4(—|x|. |x)" = (0, [%]) + 4(—|x]. [x])".
lies insideD,, 11 (and<2,,1). Define the function

u(x +4lxly) — p(x + 4ix|y)

v = @xiH

s y € Q.

In view of Proposition 5.3w(y) satisfies
[l = C.
At the same time, sinc@+ 4|x|y € Dys1 N i1,
8 (AT (& + 41x1y)8)) D (y) = h(y) + 0:8: ().

where . /
h(y) = (4x)Y"" h(x + 4x]y),

and
g = @xD gV @ + 4xly) — "V, fu(O))]
— @xD) LAY 4 Alxly) — ATV (O £0(00)10; p(E + Alxly).

The functionsg™+D and A™+D are Hilder continuous (with exponept > ')
so it is easy to see that

Al S C, lgiller) < C.
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Since|| A (X +4)x|-)lcr(e) < C, we can now apply Schauder theory to obtain
2
V()| =C, ye 59- (65)
Insertion ofy = 0 yields

x| |Vu(x) — Vp®) £ C,

which immediately implies (63).

Now letz be on either the graph ¢f,,, or f,—1, S0 thatiz — x| is the minimal
(Euclidean) distance of € [),,,0 \ {0} to the union of the graphs ¢ff;}. We may
without loss of generality assume thalies on the graph of},,—1. Let L be the
line passing throughwhich is normal to this graph. Clearlye L. Letz/) denote
the intersection of. with the graph off; formo—1 < j < m+ 1. Itis not difficult
to see that (due to the smallnesg.x

120 — (@, £;))] < 4x], mo < j <m, (66)
and
|Z(m+1) _ Z(m)| 2 40|x| (67)

Herem is as defined before, and we have used the fact that the(@aitft,,—1(0))
is the projection of the origin onto the graph of the functjg—_1. A slight change
of our earlier argument shows that (wh@n= mg) we can findz on the segment
determined by ™ andz™+D with |z — z™| = 10/x| such that

IVuz) — TOD . Tt gy (x)) < Clx|, (68)

where forj > mo+ 1, T describes the transition at the hyperplane orthogonal to
L and passing througt/—2; T(), j > mg + 1, is determined from the values of
AD (1Y), AUD(5772), gD (z771), U=D(zi~2), while T™o+D is determined
from the values ofg 0+ (z(mo)) - A(mo) (x)  o(mo+1) (7 (mo)y andg(™mo)(x). When

m = mo — 1 a slight change of our previous argument yields a pgimtith

|z — x| = 10jx| such that (68) holds (in this cag&”+D ... T+ — 1) Due to
(66) and the ldlder continuity ofAY) andg/), we have

|T(j) _ f(j)| < Clx|™.
So,
V@) — T . 70 Dy () < Clx|”. (69)
It is easy to see that we may suppose
|x —z] < 2|x].
We may now insery = (z — x)/4|x| into the estimate (65) to obtain

IVu(@) — Vp@)| £ Clx|.
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Sincex andz both lie in€,,+1 we haveVp(z) = Vp(x) = T+D ... p0mot+D
Vu(0), and so the above estimate becomes

IVu@) — 7D . rmotD gy, 0) < C|x|”. (70)

In terms of the matrice®/ ™, introduced in the proof of Corollary 2.6, a combi-
nation of (69), and (70) immediately yields

|(N+D) =L m0) [y7(x) — Vu(0)] |
= T 7oty () — D 7oty )
< Clx|*,

which leads to ,
IVu(x) — Vu(0)| < Clx|*.

This completes the proof of Theorem 1.10

6. Boundary estimates

Theorem 1.2 is established using a string of lemmas similar to those used in the
proof of Theorem 1.1. We start with the local estimates, in which case the domain
Q is replaced by

t=(-1,1" 1% (01,

and a boundary condition is imposed on the sige= 0. The following notation is
quite similar to that used in earlier sections. Let

O=co<c1<--<qy1=1,
and define
Qu={xeQ  |cm1<xp<cm}, 1ZmZI+4+1

Let (A"} = (A"

trices, with 0 < 1 < A" < A < oo, and define a matrix-valued function
A(x) = (A;j(x)) by

)}z+1 be/ 4+ 1 symmetric, positive definite (constant) ma-

(rn)

Al](-x) ,j s

xe€Qu, 1Sm<Ii+1,.

By a slight extension of our previous notatiane A(x, A). Let{H(m)}“rl bel +1
constants and 1¢iG" )5+ be! + 1 vectors inR". We define the function&l (x)
andG(x) by

)

A", Gx)=G"., xeQu 1<m<Ii+1

H(x)=H
Finally we require that the boundary valye,satisfies
p e CH(X £ D).

The following is an analogue of Proposition 2.1.
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Proposition 6.1.LetA, G andH be as above and letd be avecibe (do, d1, . . . ,
dn—1). SUPPOSE is a non-negative integer and suppase- 0. There exists a
constantC = C(e, k, n, A, A), such thatift € H1(Q1) is a solution to

3 (Aij(x)3))v = H + 8;G; inQT, (71)
v=do+ Z dgxg on{lx’| <1, x, =0},
1<psn—1
then
l§rn?gl):-1 ||U||Ck(§mﬂ(l—5)9+)

< C(Ivlizeeery + 1H oo+ + 1Gll Loy + 1d]) .

Proof. Whend = 0, the estimate follows from application of the same technique
as used for the proof of Proposition 2.1. Whiet 0, the matching condition (22),
with G = 0, and the continuity condition (23) determine a unique continuous,
piecewise linear function

) a™ 4 pm inQ,, mz21,
plx) = i
do+ Y 1<p<p_1dpxp, N Q1,

which satisfies
3 (Aij(x)9)p(x) =0 inQ".

The coefficients op are bounded by'|d|. Applying thed = 0 case ta — p(x),
we complete the proof. O

Proposition 6.1 leads to an approximation result analogous to Corollary 2.6.

Corollary 6.2. Let A, G, H andd be as in Proposition 6.1, and lete H1(Q1)
denote a solution to

3 (Aij(x)dj)v = H + 8;(G)) in Q*,
v=do+ Z dgxg on{lx'| <1, x, =0},
1spsn-1

with
Il ooty + 1H oo @ty + 1G]l ooy + 1d] < 1.
There exists a consta@t= C(n, x, A) and a continuous, piecewise linear function

px)=a™ +b"™ .x, xeQ, 1<m<i+1,
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satisfying
3 (A;j ()3 p(x) = 3;(G;) inQF,
p('.0)=do+ Y dpxp.
1<p<n-1
such that
2 1 +
[v() = pW)I = Clxl%, x € 507,
and

@™+ ™S C. 1S m = m*,

Proof. The proof is very similar to that of Corollary 2.6. Only, instead of (21), we
set

a
a® =0 =do. bP = V(0 = (@1, ... . dy-1. 7 (O)).
Xn
and define the rest of thé”™, 5™ using (22) and (23). O
The analogue of the first perturbation lemma (Lemma 3.1) reads

Lemma 6.3.Supposed € A(x, A). Supposg = (g1,---,gn) € L1(QT) and
h e L1/2(Q%) for someg > n. Letu € H1(Q1) be a solution to

3(Aijdju) =h+dg inQt,
with
u=¢ on{lx'| <1, x, =0}
and
lullpoo@+y < 1.

There exist positive constants< 1andC (depending only og, n, 2 andA) such

that if
. 1/q
<][ |A—A|qu> <e¢
Qt

for somes > 0, then we may find a functiane H* with
3 (A;;(x)3v) = H + 8;(Gy) in 3QT,

v=00)+ Y dpeQ)xs on{lx'| <3/4 x, =0}, (72)
1<p<n—1



128 YAN YAN L1 & MICHAEL VOGELIUS

and with
llu = vl o1 0+)
= C( [1+1IGlI @ty + [[Hl L@+ + l0(@)] 4+ [V'@(@)]]
+ 118 = Gllpa+) + 1k — Hll a2+ + o — ¢(0)

- > 8ﬁ§0(o/)xﬁ||L°°(|x’<l)>~

1=p=n-1

Proof. The proof is very similar to that of Lemma 3.1. Of course, in place of
Proposition 2.1 we use Proposition 6.1. We just point out how to defisiace the
rest of the changes are fairly obvious. edenote the solution of

3 (Aij(x)djv) = H + 8;(G,) in §Q+’
v=00)+ Y dpp@)xp on{lx'| <3/4, x, =0},

1Spsn-1
and

3
v=u ona(ZQ+)ﬁ{xn>0}. O

We (re)introduce the norm

1/p
Ihllysr == sup r'* (][ |h|p> ,
O<r<1 rQt

The previous lemma in combination with Corollary 6.2 leads to the following
perturbation result.

Proposition 6.4.Supposed € A(x, A) andA € A(x, A), relative to the hyper-
planesx, = ¢,, 0 = m = 14 1. Supposes = (g1,---,gn) € LI(Q"), h €

L1/2(Q) for someg > n, and suppos& = (G1, --- , G,) and H are constant
on each of the strip®,,. Let0 < & < 1and letu ¢ H1(Q*1) denote a solution to

3 (A;j(x)dju) =h+d;g inQt,
u=q on{|x'| <1, x, =0},

with

lullpoo@+y = 1.
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There exist constants in the ranfe< o < ‘—11, €0 > 0,andC > 0 (depending on
n, g, &, and the ellipticity constants, A) such that if

A — Allyraq < eo,
llg — Gllyrraq + |h — Hllyaarz + llp — (0)

- Z 3ﬂ<ﬂ(0/)xﬁ||c1‘&(|x/\<l)§80,
1spsn-1

and
||6||L°°(Q) + ||ﬁ||L°°(Q) + llellcragy i<y <1,

then we may find a sequence of continuous, piecewise linear fungtiois=
12 ...,
pe) =a™ +b" x, x€Qu. 1<m<m",

with

P 0 =@+ Y 9pp(0)xp

1=p=n-1
and with
™| + b < C,
0™ = a™}| < CL DM 4 1 (0* ),

b = "] < C* b,

-1 1 —m =m-1
b =M™p" Y + (0, =IG,"” - G," D,
Ann
for 1 < m < m*, such that
k 1+a
e = pellioran < (4) P

The limitp(x) = limg_ o pr(x) exists forx € ‘_119+_ It is a continuous, piecewise
linear function with coefficients that are uniformly bounded®yFurthermore
p(-) satisfies
_ — .1
0i(Aij(x)9))p = 9;(G;) In ZQ ,

P, 0 =90+ D pp0)xs,
1spsn-1

and

_ 1
lu(x) — px)l £ Clx|*™®,  xe Zsz*.
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Proof. The proof is a simple maodification of that of Proposition 3.2, with Lemma
6.3 substituted for Lemma 3.1.0

Before we state the boundary version of Proposition 5.3 we need some additional
notation. Letfy, - - - , f; bel functions inC12(|x’| £ 1), satisfying

0< filx) < fo(x’) < -+ < fi(x") forallx’ e [—-1,1]" L. (73)
These functions divid&™ into ! + 1 regions
Dp={x€V| fu1(x) <xp < fu(xh}, 1<m<1+1,

where we have used the conventin= 0, fi+1 = 1.

Let A" e C*(Dy), 1< m < 1+ 1, be symmetric, positive definite matrix-
valued functions, and let (x) € A(), A) denote the matrix-valued function

Ax)=A"(x), xeDpn, 1<m<I+1 (74)

Let g™ ¢ C“(D_m, R™), and letg denote the function
g)=¢g"x), xe€Du,1<m<i+1. (75)
Supposé: is in L2 (Q1). We introduce a particular set of “strips”
Qn ={x € V| fn-1(0) <xy < fu(0)},
and introduce the specific matrix-valued functiére A(x, A)
Ax) =AM, fu_1(0)), x€Qn, 1<m<I+1,
as well as the specific vector-valued function
G =g" O, fu-10), x€Qu 1Sm=SIi+1

Proposition 6.5.Let A € A(x, A), A € A(x, A), h, g and G be as defined just
above. For any; > n, and any0 < o’ < min{u, M} there exist constants

andrg such that ifu € H1(Q1) is a solution to
0;(A;joju) =h+0; g in QT
u=q on{lx’| <1, x, =0},
with
[oe] o] (m) - / <
lullLoo() + 12l Loo() + léf;\gﬁlllg Ilca/(Dm) + el cre o<1y = 1,

then one may find a continuous, piecewise linear functigrwhose coefficients
are bounded in absolute value By and which satisfies

3 (Aij0;p(x)) = ;G; inroR",
and /
u(x) = p()l < Clx*, x e roQ™.
The constant€” and ro depend om, o/, &, g, A, A, the number, max<,,</+1

A andmaxg<,,<; |l finll e _1.1p-1-

c¥ (D)’
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Proof. Based on the already stated local result the proof is a simple modification
of that of Proposition 5.3. O

Proof of Theorem 1.2.We can locally make &1 diffeomorphism to flatten the
boundary without changing the form of the equation. We may suppose that the
domainD locally coincides with the halfspaag > 0. We can now apply the exact
same technigue as that used to prove Theorem 1.1, only this time we use Proposition
6.5 in place of Proposition 5.3.0

7. Holder estimates

In this section we examine the regularity properties of solutions, when the
boundary data are only known to beoldér continuous, and and g are only
known to be bounded. That is to say, instead of (3) and(5) we suppose

heL®(DD), g=1(g1, 8 € L¥(D), (76)
and, for some G< v < 1,
@ € C'(3D). (77)
The following theorems are analogous to Theorem 1.1 and Theorem 1.2.

Theorem 7.1.Let A satisfy(1), and leth andg satisfy(76). There exists a constant
C depending only oD, n, , i, v, &, &, A, [A“™ ] . 5, , and theC™* modulus
of UL _,3D,,, such thatifx € H1(D) is a solution to
0;i(Ajjoju) =h+ ;g in D,
then
lullevip,y < C (llulleopy + Il o) + lglliLem)) -
whereD, = {x € D | dist(x, dD) > ¢}.
Theorem 7.2.LetA satisfy(1), leth, g andy satisfy(76)and(77), and suppose >
0. There exists a consta@tdepending only o®, n, «, i1, v, 7, A, A, IIA(’”)||C,L(5m)
and theC1* modulus ofU% _, 3 D,,, such that if, for som& € D, u € HY(D N
B>, (X)) is a solution to
0;(A;joju) =h+0; g in D N By (x),
u=g ondD N By (¥),

then

lullcv B,y =C (Il oo DBy, )y + @l cv @By (7

+1All oo (DnBay &) + 181l L (DNBy ) ) -
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The following globalC" estimate is a consequence of Theorem 7.1, Theorem
7.2, and the maximum priciple.

Corollary 7.3. Let A satisfy(1), and leth, g and ¢ satisfy(76) and (77). There
exists a constant depending only o, n, @, 11, v, &, A, [|A" | 5, , @nd the

C* modulus of L _,3D,,, such thatifu € H1(D) is a solution to

9i(Ajjoju) =h +9;g; inD,
u=gq onabD,

then

lull vy < C (leller@py + IhllLem) + lIglLem)) -
(D)

Remark 7.1.1n view of the De Giorgi-Nash estimates, the teffar|| . png,, (x))
in the estimate of Theorem 7.2 can be replacedidy, 2 pnp,, 7)) -

In the following we use the same notation as in the last section. We assume

g, h e L¥(Q"), and (78)
peC’(x'| <. (79)

The proofs of Theorem 7.1 and Theorem 7.2 are quite similar to the proofs we have
already provided. Since the proof of Theorem 7.1 is comparatively the easiest, we
shall here only concern ourselves with the proof of Theorem 7.2. In order to prove
this theorem we need to establish

Proposition 7.4.Let A satisfy(74), and letg, h andy satisfy(78)and(79). Suppose
g > nande > 0. There exists a constag, such that iz ¢ H1(Q1) is a solution
to

3(Aijdju) =h+dg InQT,
u=q on{lx'| <1, x, =0},

then
lull coa—eyary S € (lullwo@ry + I@llcrqe<n) + Iallyr-1a2 + ligllyva) -
The constan€ depends only o®, n, ¢, g, 11, v, A, A, the numbet, max<,,</+1

IAY | e,y ANAM@X << 1| fonll s (=1, 2711

The proof of Proposition 7.4 follows the same lines as the proof of Theorem 1.1.
It is in fact somewhat simpler, and we shall therefore only state some relevant
lemmas and sketch the proof. First we need a lemma whose proof is similar to that
of Lemma 6.3.
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Lemma 7.5.Supposet € Ak, A), A € A(., N), g = (g1, , gn) € LI(QT),
andh € L9/2(Q%) for someg > n. Letu € H1(Q) be a solution to
0;(A;joju) =h+ 0;g; in QT

with
u=¢ on{x'| <1, x, =0},

and
lull Loty = 1.

There exist positive constants< 1 andC (depending o, n, A and A) such that

whenever
- 1/q
<][ |A — A1 dx) <e
Qt

for somes > 0, then we may find a functiane H* with
3; (A;;(x)djv) = 0 in 2Q+,
v=¢(0) on{lx'| <3, x, =0},

and with

lu — v”Loo(;zLQJr) < C<[1+ |<P((y)|] e’

+ gl za@+) + 1Al L2ty + llo — ‘p(o/)||L°°(|x’<l))-

Next we need a proposition similar to Proposition 6.4.

Proposition 7.6.Supposet € A(x, A) andA € A(x, A), relative to the hyper-
planesx, = ¢, 0 < m < I+ 1. Suppose = (g1,---,gx) € L1(QT), and
h € L1/2(QT) for someg > n. Letu € H1(Q1) denote a solution to

3 (A;j(x)0ju) =h+d;g inQt,
u=gq on{|x/| <1, x, =0},
with
lull @y = 1.

There exist constants in the ranfe< o < ‘—11, go > 0, andC > 0 (depending on
n,q, i, v, and the ellipticity constants, A) such that if

A — Allyrs < eo,
ligllyva + Allyv-142 + llp — (@)l cv(x1<1) S €0,
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and

lellcv(ai<y =1,
then we have
I = u©ll i < (0F) (W)
Consequently,

lu(x) —u(Q)] = Clx|”, xe€Q.

Proof. The proof of this proposition is similar to that of Proposition 6.4. We also
proceed by induction. The choicesomfindsg will be made in the process. We first
prove that the estimateP;) holds fork = 1. Using Lemma 7.5, we establish the
existence of a function that solves

3 (A;()3v) =0 in3QT,

with
v=u(0) on{x, =0},

and for which
lu — U||LOO(%Q+) < C(Sg + 2g0) < C86~
According to this last estimate we also have
||v”LDC(%Q+) g C9
and thus in view of Proposition 6.1
lv(x) —u(Q)| £ Clx|, xeQ".

Selects so that

Co < %a”,
and then selecty so that
Cey < %o",
to obtain(Py).
Now we suppose€Py), ... , (Pr) hold and proceed to verifgP;1). Consider

u(o®x) — u(0)

, xeQt.
(ok)v

Wx) =

This function satisfies
[Wllgeo@ty = 1,

and

3 (Aij ()W) = B (x) + 8,8 (x),
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with

and

A simple calculation, using the hypothesis, gives

k
WO ey + 18% e < Ceo,

and
. 1/q
( f |Al~,,'(a"x)—A,;,'<o"x>|‘1> < Ceo.
Q+

SinceW (0) = 0 and|W (x’, 0) — W(0)| = [(c )" |p(c*x") — (0| < &0, we
now infer from Lemma 7.5 the existence of a solution to

3 (A;;(0c*x)9;2) =0 in3QT,

and
Z(x',0) =0,

and with the property that
y
W — Z||L00(%Q+) § CSO.
According to the last estimate we also have
||Z||LOC(%Q+) § C,
and thus, in view of Proposition 6.1,
1Z@)| £ Clx|  xezQb.

It follows that
IW()| < Cel +Clx|], xe Q.

Now, select even smaller andeg in the same fashion as before, so as to obtain
W) <o", xeoQT.

This implies
lu — u©) |l o orirgry < (*F)",

which is exactly(P)i4+1. O
The derivation of Proposition 7.4 from Proposition 7.6 and the derivation of

Theorem 7.2 from Proposition 7.4 are very similar to the derivations in earlier
sections. We leave the details to the reader.
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Fig. 2. Two touching disks.

8. An example of two touching disks

Consider the two-dimensional geometric situation illustrated in Fig. 2: the do-
main  is now given byQ = {x: |x|] < Ro} (Ro > 2), and it contains exactly
two circular inclusions of radius 1, centered(@t+1). In this section we usg: |
to denote the Euclidean norm of an elemenRify as well as the modulus of a
complex number. We consider the boundary value prollgntx)o;u) = 0in £,

u = g on the boundary. The coefficieatis given by:

a(x) =1 forx outside the two inclusions
a(x) =ag for x inside the two inclusions

with 0 < ag < .
The solutionu is clearly infinitely often differentiable inside the open set
({x: |x = (O, D] = 1}U{x: |x — (0, —1)| = 1}); we shall show that any derivative
of u is furthermore uniformly bounded inside this set (provided we stay away from
the boundary of2). To be precise

Proposition 8.1.SupposeRy is sufficiently large. Leg be in HY2(32), and let
u € H1(Q) denote the solution to

Oi(ax)o;u) =0 INnQ, u=g onoK.
Then

ueC®(KNfx:x—=@O D Z1N{x: [x—(0,-1=1}),
ueC®(fx:x =01 <1)), andueC™®({x: |x— (0, -1 <1},

for any compact sek C .
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Remark 8.1. The above regularity statement abatdlso asserts that the limiting
value of any derivativ®®™u (x), asx approacheg, 0) from withinthe sefx : |x—

O, > L nNn{x: |x—(0,—-1) > 1}, exists (is finite) and is the same whether
approaches the origin through the left cusp or through the right cuspuzfor 0

this limiting value is of course in general different from the limiting value we obtain
asx approaches the origin through the upper disk (or through the lower disk). By
an extension of our proof of Proposition 8.1 it is possible to see that the restriction
of u to any of the three closed sets may indeed be extended &sfanction to an
open neighborhood (or for that matter to all@f — but these three extensions do
not coincide.

Remark 8.2. Let u, denote the corresponding solution when the the two circular
inclusions are centered @, +(1+ ¢)). The fact that: (= ug) is as smooth as one
could possibly hope for, does not automatically imply that all derivatives aire
uniformly bounded, independent ofin each of the three sets: |x — (0, (1 +

&N S 1ltandKN{x : [x—(0,1+¢) =21 N{x:|x—(0,-1-2s)] = 1}.
When ‘ap = o0” (i.e., when the boundary conditian, =const is imposed on the
boundary of each of the two inclusions, such reasoning is indeed wrong. We do
feel, however, that for &< ag < oo (as is the case here) the smoothness exhibited
by ug makes it quite likely that the, have piecewise defined, uniformly bounded
derivatives of any order (away frofif2). If anything, the smoothness exhibited by
ug certainly makes it much more difficult to construct examples contradicting this
type of behavior.

It suffices to prove Proposition 8.1 for solutions that are even with respect to the
x2 axis. A standard duality argument transforms this into a proof of the same fact
for solutions that are odd with respect to teaxis. By decomposing any solution
into a sum of its even and odd parts the proposition now follows in general.

In order to verify Proposition 8.1 for solutions that are even with respect to the
X2 axis, it is essential to construct a whole family of solutions to

di(a(x)d;u) =0 IinQ.
Let—1 < & < 1 denote the ratia = %=1, Leto(-) be analytic in€ \ (0, 0), and

suppose has the two additional prgggties
P(@) = ¢ (0), (80)
B(@) = CBRI 3 <|Ret], (81)

for some 0< B < || L. Letg, () = %(fb({) —¢(=¢)) ande.(¢) = %(¢(§) +
¢(—¢)) denote the odd and the even pargofespectively. We now define

R W 1
Dy(L) = a0+1]§)a ¢o(k —¢), Ret < -1,

Dy(0) = ¢o(0) + Y _a*[pok + ) — gk — )], —3 <Rel < 3. (82)
k=1

2 1
Do(¢) = —ao+1,§,“ ¢o(k+¢), 3 <Ree,
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as well as

2 1
<I>e<;)—a0+1];0( ).k —¢), Re¢ < -1,

Do) = ¢e(0) + I _(—a) [Pk + 1) + ¢k — )], —3 <Rel < 3. (83)
k=1

2 1
.(0) = . 1/;( ek +¢), % <Reg,

and

D) = 3(Po(2) + Pe(2)).
We use the notationfor the imaginary unit.

Proposition 8.2.The functions:, (x1, x2) = Re®,(i/z), u.(x1, x2) =Re®,(i/z),
andu(x1, x2)=Re®(i/z) (with z = x1 + ix2) satisfy

di(a(x)djuo) = 9;(a(x)djue) = di(a(x)dju) = 0.

All of these functions are even with respect to thexis. The function, is odd
with respect to the; axis, the function, is even with respect to thg axis. The
fuctionu is related tou, andu, by u(xy, x2) = %(uo(xl, x2) + up(x1, x2)).

Proof. The symmetry properties af, andu, are obvious, and so is the alternate
representation fag. We shall verify that:,, solves the equatiod) (a(x)d;u,) = 0,
the verification foru, is similar (and it then follows immediately thatis also a
solution). The conformal mapping — ¢ = i/z maps the (extended) complex
plane with the two unit circles centered-at onto the (extended) complex plane

with the two vertical lines Re = —% and Re; = 1. The upper circle is mapped
to Res = % its interior is mapped tc% < Reg¢, the lower circle is mapped to
Re; = —3, and its interior is mapped to Re< —3. To verify thatu, solves

the equatiord; (a(x)d;u,) = O it thus suffices to verify that Ré,(¢) solves the
equation

Iy (A(11) 0y, RED,) + 0y, (A(11)0y, Red,) =0,

with A given by A(n1) = ag for 3 < [nl, andA(n) = 1 for |n1| < 3, and
¢ =m+inz.

Since Reb, is harmonic in each of the three strips< —3, —3 < 51 < 3 and
% < 1, itsuffices to verify that Reé,, and the conormal derivativé(n1)d,, Re®,

are continuous across the lings= —% andny = % Because of the relationship
between the real and the imaginary parts of an analytic function (they are harmonic
conjugates) these continuity conditions may be verified by checking that

Red, and A(n1)d,, Imd, are continuous across the lings= i%.
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We may verify the second of these properties by checking that
A(n1) Im @, is continuous across the lings = i%.

We present the calculations associated with the continuity properties across the line
N1 = % the continuity properties across the line= —% follow by symmetry.

In order to verify that Reb,, is continuous (across the ling = %) it follows
from the definition (82) that we must verify

$o(0) + B0 (D) + Y & [Po(k + 0) + Go(k +0) — (po(k — £) + Potk — )]

k=1

_ k T L) 1
‘ao+1,§,“ [fo(k +¢) + @k + )] at Re; =1, (84)

or equivalently

o)+ 90@) + Y ok + ) + ok + )]

k=1

—a ) ook = ) + gk — O]

k=1

2 & _
=72 bk + ) + bk + D] atRer =3. (85)
k=0

ao

For Re; = 3 we havek — ¢ = k — 1+ ¢ andk — ¢ = k — 1+ ¢, and therefore
the left-hand side in the identity (85) equals

A=) ) [Bok +0) + pok + O;

k=0

this immediately verifies the identity (84), since-lu = ;2.

To verify that A(n1) Im @, is continuous across the ling = % we must
ascertain that

$0(0) = B @) + Y o ok + &) — Bolk + ) — (Bok — ¢) — ok — 0))]

k=1
= 20 S gk 0 - B & T D] atRer =} (86)
ao+1k=0 ’

(remember thatt (n1) = ag for 3 < n1 = Re¢, andA(ny) = 1for—3 < 5y =
Re¢ < %). The above identity is equivalent to
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$o(O) =0+ _ & (o k+0)—dok+ D)1~ Y o* o (k—2) = o (k—0)]

k=1 k=1
. 2a90
- ap+ 1

Z ok + ) — pok +0)] at Rec = 3. (87)

Sincek —¢ =k—1+c¢andk —¢ =k —1+¢ forRe; = % we conclude that
the left-hand side in the identity (87) equals

A+) ) aFigolh + 1) — pok + D)1
k=0

this immediately verifies the identity (86), sincetle = O

a0+1

We now apply Proposition 8.2 and the definitions preceeding it to the functions
o) = Ry’ (1/2)7, j =0,1,2,..., whereRyg is the radius of the disk. We
may apply Proposition 8.2 since thegé) satisfy the requirements (80) and (81),
the latter with = 1 < |a|~L. We thus create afamllw, 2o of solutions to our

elliptic boundary value problem of the form (x1, x2) = R0 ReW;(z) with

Wi(2) 2 ik Y g+l <D
i(2) = — —— af — : <1},
A ap+ 1= (kz—1)/ oK

7/ 7/

‘ _ L. = k _
i@ =0+ ) G~ G )

in{z: |z+1i] > 1and|z —i| > 1},

Wi(z) = > ot = in{z:lz—il<1
i) a0+ 14" Uz +iy niesle—il =1

for j odd, and

2 & i , _
W (2) :%—HZ(_O‘)]{# in{z: |z+i| <1},

1)/

zJ J
— (_1)//2,i K[ “
Vi(z) =(=D7*z +kEl( o) [ Ty (kz—i)f]

in{z: |z+1i] > 1and|z —i| > 1},

2 k j . .
Wj(2) = +1Z(— )m in{z: ]z =i < 1,

for j even It requires some calculation, but it is absolutely straightforward, to
obtain the following estimates concerning the functidnsgz), for [z| < 1.
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Proposition 8.3.Given any intege® < m there exists a constaqdi,,, independent
of j, so that the function¥/; satisfy

d\"

in each of the three regions

S Cu(j +m)",

{z: ]zl €1, |z 41121, |z—i] 21},
{z: 1zl =1, |lz+i1 =1}, and{z:|z] £1, |z—i] = 1}.

As a direct consequence of these estimates we get the following result.

Proposition 8.4.Given any multi-indexn there exist a constar@@y,, independent
of j and Ry, so that the functions; satisfy

|D™uj(x1, x2)| < CmRy? (j + Imp!™,
in each of the three regions
{(x1, x2) 1 [(x1, x2)| £ 1, [(x1,x2) — (0, =1)| 2 1, |(x1,x2) — (0, 1| = 1},
{(x1, x2) 1 |(x1, x2)| =1, |(x1,x2) — (0, =D =1}, and
{(x1, x2): [(x1, x2)| =1, |(x1,x2) — (0, D] < 1}.

Let L2, ({x: |x| = Ro}) denote the set of real valuddf functions that are

even with respect to the, axis. We use a similar notation for the Sobolev spaces
H*, 0 < 5. We note that.2,, ({x: |x| = Ro}) = |x| = Ro}. From the
formulae fory; andy; it follows immediately that

uo=1-a)/(1+a) = 1/ao,
uzj = (—1)/ c0s 26 + O(Ry*) onadQ = {x: x| =Ro}, 1<
uzjs1 = (=17 sin2j + 16 + O(R;Z ™) 0ndQ = {x: [x| = Ro}, 0 j.

HY,, ({x:

It is therefore not very surprising that we can prove the following density result.

Proposition 8.5.Given any0 < s there exists a constarf; < oo, so that
span ujlix: |x|=ro) } IS dense inf; , providedRg > C;.

svm

Proof. Giveng € me({x: Ix| = Ro}), let {y;} denote the coefficients of the
Fourier expansion

1
g =+ Z y2j(—1) cos 26 + Z y2j+1(=1) sin(2j + 1)6.
j=1 Jj=0

We then have

- 1
( ) Z g°do = 218Nz imro
— R07T {x: [x|=Ro) Rom S =R
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Now definePg € Lfym({x: |x| = Ro}) by Pg = Z;’io Vj”j|{x: |x|=Ro}-
Due to the definition of tha; we have, forlx| = Ro > 2,

Cp e meN i Nk [ a
g—Pg=—Re) yRy' ) (x) [(kwi)ﬁ(kz—i)f]’

j=1 k=1

(+ and— for j odd,— and+ for j even). A simple calculation then gives

74
g — PgllLa(x: (xj=rop = (Z lo| )Z|VJ|R0 ( G+ o L2 xi=rop

k=1

2
i e |x|=Ro}>>

(il )iw o' e Rj) V27 Ro

A

1/2

> 1
<c sz T Ro>2 (88)

IA
| o

NIH;,

||g||L2({x |x|=Ro})

= Sllgll gy xi=ropy  (for Ro sufficiently large.

A similar calculation for thed™ norm ¢n = 1, integer) yields

lg — Pgllamx: mfRo})

; .
(Z |Ol|k> ZZ lvj IRy ( ax|| <i) L--”LZ({X; Ix|=Ro})
1<k dz ) (kz+1)/ 0

=0 j=1
d\' 2
+max|| | — ) ——— e
na l <dz) Y l2((a: xl—Ro})>

o0 m oo RJ
<cC k —J [ 0
= (Z o )Z&X; 1¥i1Ro” (i + 1 =777V Ro (89)
" 1 o 1/2
<cC lyil2j% (Ro > 2)
a ; Ré\/ﬁo =1 &

A

c & 3\
Ro ; I (8—,> 8l L2((x: x|=Rop

—lgllamx: x1=rop  (fOr Ro sufficiently large.

[IA
NI~
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Exactly how largeRg has to be taken depends on the consénivhich depends
onm. The two estimates (88) and (89) , incidentally, also prove Hyat H”  if

sym

g € H{},,, 0= m. By interpolation we now immediately conclude that

lg = Pglls(ix: 1xi=rop = 3111l s (tx: 1x)=rop  for Ro sufficiently large (90)
Exactly how largeRrg has to be depends enbut not ong. Now letrg = g, and
define the sequence

g1= Pro ri=ro—g1
g2 =Pr1 r2=r1—82

gk =Pri1 rp=rr-1— g

In other words
k

gk = Pry_1, rg=g-— ng’ andry = (I — P)kg.
j=1

From the estimate (90) we get

k
17l brs e xi=rob < (3) 1N Ao (x: 1x1=Ro) (91)
for R sufficiently large. Equivalently

k
Hg Yy
j=1

1\k
< (3) lglascix: 1xi=Rop-
H*({x: |x|=Ro})

Since all theg; are elements dpan u; (.. |x|=r,) } (the closure refers to the*
topology) and since the latter forms a closed vectorspace, we have completed the
proof of the proposition. O

By a slight extension of the proof of the previous proposition we may prove the
following, more detailed result.

Proposition 8.6.Supposd < s and suppos&y > Cs. Any functiong € Hgym
({x: |x] = Ro}) may then be obtained as= lim;_, » A, with
oo
hi = Z:Bj(k)”j“x: Ix|=Ro} € SPAN uj{x: |x|=Ro} }»
j=0

and
00 . 1/2
(Z 18712 + 1)28) < Cligllus
j=0

The limits and sums of functions all refer to ti# topology. The constar@
depends om and Rg, but is independent gf andk.
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Proof. Letr; be as in the previous proof, and decompose it in terms of its Fourier
Series

r= yo + Z ys? (—1)7 cos 26 + Z Varia(—1) sin2j + 1)6.
j=0
Then
00 1/2
(Z v 126+ 1>2Y) < Cllrtl st 1x1=Rob -
j=0
and thus according to (91)

oo , 1/2 1 1
(Z|y,-“|2<j+1>ZS> §C(§> gl 5 (x: 1xl=Rop-

Jj=0

1
Also let g;41 = Pr; = Zj.io yj()uj
functionsh; = Zle giconverget@ in H*({x: |x| = Ro}), and they are elements
of sparf ujl(x. |x|=ro) }, With the representation

Zﬂ( Ujlix: [x|=Ro}> /3() Z Y

j=0

{x: |x|=Ro}» @S In the previous proof. The

We now calculate

oo 172 k-1 oo 1/2 k-1
(Z|ﬁ;")|2(j+1)zf) < (Zw}% (]+1)2S> <c Z( )ugum
Jj=0 I

=0 =0

so that

00 1/2
k .
(Z 1812 + 1>2S) < 2C |8l s tx: 1x=Rop+

j=0
as desired. O

We are now ready for

Proof of Proposition 8.1.We may without loss of generality suppose tlais
smooth ond2 = {x: |x| = Ro}. If not, simply choosek;, and Ro, with 2 <
Ry < Ro, sufficiently large and so thad C {x: [x| = Rg}. By elliptic regularity
Ul(x: x|=Rp) is now smooth and we may proceed with replaced byRr;,. Let /i

be as guaranteed by Proposition 8.6 with some fixeds, i.e.,

o
, k
hi — g in H({x: |x| = Ro}) andhy = Zﬁj( "Ujli: ei=Ro)
j=0
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with
N 1/2
Y IBPRPGHDF | L Cliglas
j=0
It is not hard to see that
44l < CG+1
az | =Y

in each of the three subdomaifis |z +i| £ 1}, {z: |z — i| £ 1}, and{z: |z] <
Ro, |z +i| 21, |z —i| 2 1}, with the constan€ depending orRg. Therefore

lujll ey = CG+ D),

and consequently the infinite sums

o0
s k
U, = E ﬂ]( )I/lj
j=0

are convergent i 1($2), with

o
10kl ey £ C Y1816 +D

j=0
-~ Y2 4 1/2
<c Y 187176 +p* >+ 12
j=0 j=0

The trace ofU; on 9 = {x: x| = Ro} is equal tohg. From the construction of
theuw; it now follows thatUy is the solution to

9:(a(x)9;Ux) =0 inQ, with U, = h; onoQ.

Sinceh, — g in HY2(992) we have thaty — u in H1(Q). By selectingh (k)
sufficiently large we may obtain finite sums

N (k)
k
Ue=_ 8w,
j=0
so thatUy — u in H1(Q). TheseU; still satisfy
3 (a(x)0;Up) =0 inQ.
From elliptic regularity theory we furthermore know that

DU (x) - D™u(x) (92)
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at any point inside2, not on either of the two circlelsc: |x — (0, £1)| = 1}, and
for any multi-indexm. From Proposition 8.4 we have that

ID™u;j(x)] £ CmRy” (j + [mp)™
in each of the three regions

{(-xlvxz): |(.X1,.x2)| g 17 |(-x17-x2) - (07 _1)| > 1! |(X1,)C2) - (O, 1)' > 1}9
{(x1, x2) 1 [(x1, x2)| = 1, [(x1,x2) — (0, =1)| <1}, and
{(-xl’ x2): |(xlv x2)| g 17 |(xlv x2) - (0’ 1)' < 1}1

and thus
N (k)
DU S Y 1B 11D uj(x)]
j=0
N (k)
k —j, .
< Cm Y 1BV IR (G + mp™
j=0
-~ 2 4 ) 1/2
k —2j,.
<Cm | Y181 Y R (G A+ Iy
j=0 j=0
< Cy for any multi-indexm, (93)

in each of the above three regions. From (92) and (93) it now follows immediately
thatu has the desired smoothness propertieg£pr< 1. In particular, from the
formulae for thes;, we know that any of the derivativeB,"u;, has the same limit

at the origin, whether we approach through the left cusp or through the right cusp.
Since Uy is a finite linear combination af;’s, all its derivatives have the same
“continuity property”. The boundedness M+ Uy, e; = (1,0), & = (0, 1),
expressed in (93), now implies

IDMUk(x) = D"Uk(y)| < Cmlx — yl,

even wherx andy lie in different cusps. Using the convergence statement (92) we
conclude that

ID™u(x) = DMu(y)| = Cmlx — yl,

even wherx andy lie in different cusps. This verifies the “continuity property” of
D™Mu(x) referred to in Remark 8.1.

Forx € K, but outsidgx| < 1, the desired smoothnesswofollows immedi-
ately from classical elliptic regularity resultso
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9. Appendix: An auxiliary regularity result

In this appendix we present a proof of a known result concerning the piecewise
smoothness of solutions to divergence form second order elliptic equations with
piecewise smooth coefficients. The idea of the proof, the use of areflection to reduce

the problem to arelliptic systemwith complementing boundary conditignsas
suggested to us by L. Nirenberg.

Let By denote the unit ball oR", n = 1, Bf” = {x = (x1,---,xn) | x €

Bi,x, >0}, By ={x = (x1,---,xn) | x € B1, x, <0}. Suppose

(AS‘L)) € C°°(B_1i) are symmetric, positive definite matrix functions (94)

b® ¢ H a® e c®(BF), 1<i<n, (95)
and
) ¢® e e, 1<i<n (96)
We defined;; (x) = A (x), bi(x) = b (x), c(x) = ¢/ (x), d(x) = dP(x),
h(x) = h® (x), andg; (x) = ¢ (x) for x € B.
Theorem 9.1.Assumd94), (95), and (96). If u € H1(B1) denotes a solution to
0 (Ajj (x)0ju + bi (x)u) + c; (x)dju +d(x)u = h(x) + 9;gi(x) in By, (97)
andu®(x) = u(x) forx e B_li thenu™ e C=(BF) for every0 < r < 1.

Proof. A piecewise smooth solutian of (97) satisfies the matching conditions

ut =u", A;;Gilﬁ' ~|—qu+ - g,j' =A;,du” +b,u” —g,; atx,=0.

Forx = (x', x,,) € Bi, define

’2+(x/a Xp) = M_(-x/v —Xn),

A A (x, —x i,j<n, Ori=j=n,
T AT A
—Al.j(x,—x,,) i<n,j=n, Orj<n,i=n,
bf()=b; (', —xp), i<n, bi(x)=—b, (' —xy),
) = (¢, —xn), i<n, &F@)=—c, (X, —xn),
g =g (X', —xy), i<n, gr(x)=-—g; &, —x,),
and
dt(x) =d= (', —xp), ht(x) =h"(, —x).
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Thenii™ satisfies
% (Ajj(x)ajﬁ + b at) + et )dat +dt(xoat

=it (x)+ 88" (x) inB]. (98)

The matching conditions take the form
ut —at =0, Alout + Al datT +bfut +bfat —gf —gf =0

atx, = 0. (99)
So(ut, i™) satisfies a strongly elliptic system in divergence forniBih, (97) and
(98), with boundary conditions, (99). We will verify that the boundary conditions
(99) arecomplementing boundary conditiofe the elliptic system (seAGmoN,
DoucLis & NIRENBERG [1]). The desired piecewise smoothness then follows from

classical elliptic theory (see for instance [1] and [10]).
Consider now the elliptic system

A§f>(x)aiju<k> + 50 @ou® + &0 u® = i ® ) inBf, k=12,

(100)
together with the boundary conditions
2 2
u® —u@ =0 Y APou® +> e®u® =§ onx, =0 (101)
k=1 k=1

where(Ax‘)), El?k), ¢®  h® andy are smooth functions oB_f, and(/igf) (x))is

a symmetric, positive definite matrix fér= 1, 2, andx € Bf .

Our proof of Theorem 9.1 is complete if we verify that the boundary conditions
(101) are complementing boundary conditions for the elliptic system (100). Let
& = (&§,7) where¢’ = (&1,---,&,_1) # 0 denotes a real vector, whilg = 7
runs in the field of complex numbers. Define

iDmge 0
(z{j<x,s))=( %S )

0 AP ES
and
L(x, &) = detl);(x, £)) = [A[} (OEEAL ()],

The matrix(L/" (x, £)), consisting of the (transposed) cofactors(kpjf(x, £)), is
given by

A AP ()&t 0

jm — ij 5] . .

(LM (x, &) ( 0 A;})(X)Eigj

Define also

1 -1
(Bnj(x,8)) = (A?l)(x)g,» A‘Z)(x)éi) '
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The product of the matrixBy; (x, £)) and the matrix(L/" (x, &)), denoted
(Dpm(x, §)), has the form

AD ()i —AP )& )

(Dam(x, ) = [ : ) )
([AE?(x)&][Aﬁ?(x)sisj] (A2 (&AL (nEE]

We viewﬁg) (x)&;&; as a polynomial irr and factorize it as
AP gt = AD @I — 1 (x0T — 77 (. £,

whererlJr (&) denotes the root oig) (x)&;&; = O with positive imaginary part, and
7; (£') denotes its complex conjugate. Similarly, we write

AP gg = AR )lt — o (n, E)]lr — 73 (x. 6.

Introduce
Mt (x, € 1) =t — 1 [T — 75 D],

andregard/ " (x, £, v) and the elements of the matii®,, (x, £)) as polynomials
in . Then, to verify that the boundary conditions are complementing, we only need
to verify that, for fixedx (on the boundary) the rows of the mat(i®;,, (x, £)) are
linearly independent moduld/*(x, £, 7). In the following we drop the explicit
reference to the fixed boundary point= (x’, 0), to simplify our notation.

For any fixed nonzero real vectgh, let C1(¢§’) andC2(¢') be complex numbers
such that

2
Y Ci(E) D (&) =0 (Mod MF (€', 7)), m=12 (102)
h=1

We want to show thaf'1(§) = C2(¢') = 0. It follows from (102) that, for some
complex numberg1(¢') andua (&)
CLEVATEE + CaEA GNAD 8]
=Co(ENAD AR (v — pa MY 7)
— C1ENAT & + CoENAR &AL 8]
=CoENADAD (v — po)MT(E 7).
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If C1(¢") andC2(&’) are not both zero, then the determinant of the coefficient matrix
is identically zero, as a polynomial in That is

2 2
[Z AE?&} L&) — ANAD Y (1 — polAY & 1M T ¢ 1) = 0,
k=1

k=1

and from this we deduce
2 2
[Z Aﬁﬁ)&} t—1)E—1) =) AL —wE - -5 =0
k=1 k=1

Itis easy to see from the above that
m@E) =t  anduaE’) =r1; .

Therefore,

2

S ADE — AR - H1=0.
k=1

For t = 0, the imaginary part of the left-hand side of this identity is clearly
positive — a contradiction. We have verified that the boundary conditions are indeed
complementing. O

Note added after acceptance.It has been brought to our attention that a result very sim-
ilar to Proposition 2.1 was established earlierMy Currot, D. KINDERLEHRER & G.V.
CAFFARELLI. The reference is “Smoothness of linear laminafgsh. Rational Mech. Anal.

96 (1986), pp. 81-96”", and the particular result is Theorem 2. We note that the proof pre-
sented in that paper applies to elliptic systems, but is completely different from our proof of
Proposition 2.1.
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