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ABSTRACT

We present an image retrieval system driven by free-hand

sketched queries depicting shape. We introduce Gradient

Field HoG (GF-HOG) as a depiction invariant image de-

scriptor, encapsulating local spatial structure in the sketch

and facilitating efficient codebook based retrieval. We show

improved retrieval accuracy over 3 leading descriptors (Self

Similarity, SIFT, HoG) across two datasets (Flickr160, ETHZ

extended objects), and explain how GF-HOG can be com-

bined with RANSAC to localize sketched objects within

relevant images. We also demonstrate a prototype sketch

driven photo montage application based on our system.

Index Terms— Sketch based Image Retrieval, Bag-of-

visual-words, HoG, RANSAC.

1. INTRODUCTION

Digital image libraries are commonly indexed using content

keywords, yet many creative applications call for the retrieval

of imagery based on visual appearance. The task of querying

databases by visual example (QVE) has received consider-

able attention in recent years, with bag-of-visual-words ap-

proaches to QVE exhibiting leading performance in bench-

mark tasks (e.g. PASCAL) and scalability over many thou-

sands of images or video frames. However such systems re-

quire a photo-realistic query which, in many use cases, may

be unavailable to the user. This paper presents a codebook

based QVE system capable of both retrieving images using

free-hand sketched queries depicting object shape, and local-

izing the position of the sketched object within those images.

Bag-of-visual-words (BoW) techniques create a code-

book of visual words from discriminative features (descrip-

tors) local to points within database images. Both the images

and query are described using frequency histograms of visual

words present. To perform retrieval, the histogram of the

query is compared to those of the database. Descriptors must

therefore exhibit high repeatability across the query image

and relevant images in the database.

Although the scalability of BoW is attractive, adapting the

approach to sketch based retrieval is challenging. Sketched

objects do not share the rich photometric properties of their

image counter-parts, and object depictions often differ in

scale or location, and may be subject to non-linear shape de-

formations. Moreover, sketches are visual structures defined

by the spatial inter-relationships of a sparse set of strokes.

The BoW representation (a global histogram of locally sam-

pled descriptors) lacks information on the spatial distribution

of descriptors. This is appropriate for photos — where de-

scriptors capture rich information and spatial relationships

are less important — but not for sketches, where the converse

is true.

This paper introduces the Gradient Field HoG (GF-HOG)

descriptor; an adaptation of HoG that mitigates the lack of rel-

ative spatial information within BoW by capturing structure

from surrounding regions. We are inspired by work on image

completion (in-painting) capable of propagating image struc-

ture into voids, and use a similar “Poisson filling” approach

to improve the richness of information in the gradient field

prior to sampling with the HoG descriptor. This simple tech-

nique yields significant improvements in performance when

matching sketches to photos, compared to three leading de-

scriptors: Self-Similarity Descriptor (SSIM); SIFT; and HoG

(sec. 2.1). Furthermore we show how the descriptor can be

applied to localize sketched objects within the retrieved im-

ages (sec. 3), and demonstrate this functionality through a

sketch driven photo montage application (sec. 3.1).

1.1. Related Work

Sketch based Image Retrieval (SBIR) arguably began to gain

momentum in the mid-nineties with blob based retrieval sys-

tems, such as QBIC [1] and VisualSeek [2]. Queries com-

prise blobs of color or texture; spatial distribution is modelled

using wavelets [3], or dividing the image into a regular grid

and matching cells using local color or texture descriptors [1].

Grid approaches have also been used to locate photos using

sketched depiction of object shape (via EHD [4] or structure

tensor [5]). Descriptors from each cell are concatenated to

form a global image feature. However this offers limited in-

variance to changes in position, scale or orientation.

Contour descriptors have been used to match sketched

shapes to images. Edge segments are tokenized into a string

representation, encoding length, curvature, and relative spa-

tial relationships [6]. Edge orientation [7, 4] and angular par-

titioning [8] have also used to describe contours. Model fitting

approaches such as [9] deform the sketch to fit to edges of ob-

jects in the images, measuring similarity via the deformation

energy spent. Although these more expensive approaches of-

fer improved tolerance to depictive inaccuracy, they do not

scale well over large databases.



Shechtman and Irani proposed Self-similarity (SSIM) as

an image descriptor invariant to depictive style [10]. Re-

cently, Chatfield et al. [11] reported experiments using SSIM

in a BoW framework to retrieve images using photo-realistic

queries of shapes. In sec. 4 we evaluate SSIM, alongside SIFT

and HoG descriptors for the purpose of sketch based shape

retrieval and show our adapted GF-HOG descriptor outper-

forms these on both our own Flickr160 dataset1 and the ETHZ

extended object dataset (a subset of which is used in [11]).

2. GRADIENT FIELD DESCRIPTOR

Our system accepts monochrome free-hand sketched queries

depicting a shape, and returns images that contain similar

shapes. This requires a matching process robust to depictive

inaccuracy (e.g. in location, scale, or shape deformation) and

photometric variation. Our approach is to transform database

images into Canny edge maps, and capture local structure in

the map using a novel descriptor (subsec. 2.1). We recom-

mend setting an appropriate scale and hysteresis threshold for

the Canny operator by searching the parameter space for a

binary edge map in which a small, fixed percent of pixels are

classified edge. This simple heuristic extracts dominant edges

and discourages response at the scale of finer texture.

2.1. Gradient field

Shape and structure (both in the sketches and Canny maps)

are encoded in the relative location and spatial orientation of

edges. Constructing a BoW codebook using local descrip-

tors such as SSIM, SIFT, HoG results in poor retrieval per-

formance, as we later show (sec. 4.1). One explanation is the

difficulty of setting a globally appropriate window size for

these descriptors, which tend to either capture too little, or

integrate too much, of the local edge structure.

Our solution is to represent image structure using a dense

gradient field, interpolated from the sparse set of edge pix-

els. Given an edge map M(x, y) = {0, 1}, we compute

a sparse field from the gradient of edge pixels G[x, y] 7→

atan
(

δM
δx

/ δM
δy

)

,∀x,yM(x, y) = 1. We seek a dense field

GΩ over image coordinates Ω ∈ ℜ2 constrained such that

G(p) = G(p),∀p∈ΩM(p) = 1, and minimizes the energy:

argmin
G

∫ ∫

Ω

(▽G − G)
2

s.t. G|δΩ = G|δΩ. (1)

i.e. △G = 0 over Ω s.t. G|δΩ = G|δΩ for which a discrete so-

lution was presented in [12] solving Poisson’s equation with

Dirichlet boundary conditions. This can be approximated by

forming a set of linear equations for non-edge pixels, that are

fed into a sparse linear solver to obtain the complete field.

Common applications such as image completion (“Poisson

in-filling” [12]) approximate △G = 0 using a 3×3 Laplacian

window: 4G(x, y) = G(x − 1, y) + G(x + 1, y) + G(x, y −
1) + G(x, y + 1). However we obtained better results in our

1Available at: http://personal.ee.surrey.ac.uk/Personal/R.Hu/ICIP

Fig. 1. Sample images and query sketches. Corresponding vi-

sualizations of field G following processing of subsection 2.1.

retrieval application when approximating △G using a 5 × 5
window discretely sampling the Laplacian of Gaussian oper-

ator (leading to a smoother field):

△G(x, y) = −
1

πσ4

[

1 −
x2 + y2

2σ2

]

e−
x2+y2

2σ2 . (2)

Images and sketches are padded with an empty border of 15%
pixel area. For typical images of ∼ 200 × 100 the linear

system is solvable in ∼ 0.7s using TAUCS [13].

2.2. Multi-scale Histogram of Gradient

The Histogram of Gradient Orientation (HoG) descriptor [14]

is widely applied in object classification, and human (e.g.

pedestrian) detection. The descriptor is computed within a

window centered upon a point (either key-point of interest or

densely sampled). The window is divided into a regular n×n
grid, and a frequency histogram is constructed within each

grid cell according to the edge orientation of pixels within.

To enable histogram construction, the range of edge orien-

tations is quantized into q bins. The histogram counts are

concatenated to form a q-D vector for each cell, which are

again concatenated to form an qn2-D vector for the window.

In many implementations, several windows are sampled in a

non-overlapping w × w grid local to the key-point and again

concatenated to output the final descriptor.

Our system computes a HoG descriptor at G(x, y) for all

points where M(x, y) = 1. (i.e. pixels comprising sketched

strokes, or in the case of database images, Canny edges). To

cope with problems of scale change we detect HoG features

with n = {5, 10, 15} and fix w = 3, q = 9, yielding several

hundred Gradient Field HoG (GF-HOG) descriptors for a typ-

ical image. Although a multi-scale approach is also adopted

by Pyramid HoG (PHOG) [15] (photo queries), descriptors at

each scale are concatenated to form a feature whereas we add

GF-HOG at each scale (n) to the image descriptor set.

2.3. Sketch based retrieval using BoW

GF-HOG from all images are clustered to form a BoW code-

book via k-means (sec. 4 presents results for varying k). A

frequency histogram HI is constructed for each image. At



Fig. 2. Left: Localizing the query sketch within retrieved images. Right: Photo montage driven by our BoW retrieval system.

query time, a frequency histogram Hs is constructed from

the query sketch by quantizing GF-HOG from the sketch us-

ing the same codebook. Images are ranked according to his-

togram similarity d(HI , Hs). A common choice for d(.) is

an L2 norm; efficiently computable over an n member dataset

via kd-tree in O(log n). We have found histogram intersec-

tion to outperform L2 in average precision, though this im-

provement incurs increased complexity of O(n).

d(HS , HI) =

k
∑

i=1

k
∑

j=1

min(ωijH
S(i)HI(j)),

ωij = 1 − |HS(i) −HI(j)|. (3)

where H(i) indicates the ith bin of the histogram, H(i) the

normalized visual word corresponding to the ith bin.

3. OBJECT LOCALIZATION

For visualization of results, and for our photo montage pro-

totype (subsec. 3.1), it is desirable to compute the position

of the sketched shape within retrieved images. Given typical

perturbations of object shape within a sketch query, any local-

ization is expected to be approximate. Here, we demonstrate

the repeatability of GF-HOG between sketches and photos by

applying RANSAC to fit the sketched shape to the image via

a rigid transformation. We simplify by modelling the trans-

formation as a linear conformal affine transform (LCAT); i.e.

a uniform scale, a rotation and a translation. Two points of

correspondence are required to define an LCAT.

Given a sketch and a retrieved image, we first create pu-

tative correspondences between GF-HOG in the sketch and

the image via nearest-neighbor assignment using L2 norm. If

descriptor A in a sketch is assigned to B in the image, then

B must also be nearest to A for a valid match [16]. Given

putative correspondences PS
m 7→ PI

n = {pi=1...m, ps=1...n},

our iterative search runs as follows. We randomly sample two

pairs of correspondences, deducing the LCAT (T ). We then

compute the transfer error E(T ) using all correspondences:

E(T ) =
∑

{ps,pi}∈PS 7→PI

|ps − Tpi|
2 + |pi − T−1ps|

2 (4)

We iterate for up to 10,000 trials seeking to minimize E(T ).
Fig. 2 (left) visualizes typical localized results.

3.1. Sketch based photo montage

We have applied our retrieval and localization algorithms to

develop a prototype system for photo montage using sketched

queries (Fig. 2, right). The system is similar in spirit to Chen

et al.’s Sketch2Photo [17], except that we use sketched shape

to retrieve our images rather than running a keyword search.

Users sketch objects and select photos to insert into the com-

position from ranked results on the right. Upon selecting an

image, the position of the sketch shape is localized and the re-

gion of interest cropped and composited into the sketch. Un-

like Eitz et al.’s PhotoSketch [5] our GF-HOG enables match-

ing invariant to scale and position of sketched shapes.

4. EXPERIMENT

We evaluate our system over two datasets: (i) ‘Flickr160’ a

dataset of 160 creative commons images downloaded from

Flickr, comprising five shape categories contains 32 images

each. Our query set comprises 25 free-hand sketches; 5 for

each shape class (e.g. Fig. 1, right). (ii) ‘ETHZ Extended

Shape Classes’ [18] is a standard shape dataset with 383 im-

ages, comprising seven shape categories (apple logo, bottle,

giraffe, hat, mug, starfish, swan) containing around 50 im-

ages per category, the 7 sketch models published in the dataset

form our queries.

4.1. Comparative Evaluation of GF-HOG

For each dataset we perform BoW retrieval using the pro-

posed GF-HOG descriptor. We compare retrieval perfor-

mance with an otherwise identical system incorporating al-

ternative descriptors: the Self-Similarity (SSIM) [10, 11],

SIFT [16], and HoG [14] descriptor. In all cases descriptors

are computed over the edge map (for database images) and

sketched image as appropriate.

Here, SIFT is computed on a region of radius 16 pixels.

SSIM is computed using a 5 × 5 correlation window, over a



Fig. 3. Performance (MAP) of our system vs. codebook size,

comparing four descriptors over Flickr160 and ETHZ sets.

larger 40 × 40 neighborhood. The SSIM correlation surface

is partitioned into 36 log-polar bins (3 angles, 12 radial in-

tervals). HoG is computed with identical parameters to our

GF-HOG descriptor (subsec. 2.1), i.e. we compute over mul-

tiple window scales for fairness as this outperforms a single

scale classic HoG [14] in all our test cases. By computing

HoG over the edge image, and GF-HOG over gradient field,

we directly show the benefit of our gradient field over multi-

scale classic HoG (referred to here as EDGE-HOG).

Average Precision (AP) is computed for each query, and

averaged over the query set to produce Mean Average Preci-

sion (MAP) score. Fig. 4 presents these over a range of vocab-

ulary (codebook) size k. For Flickr160, the best performances

are: GF-HOG (54%, k = 1500); EDGE-HOG (42%, k =
1300); SIFT (41%, k = 1600); SSIM (42%, k = 1000).

For ETHZ, the best performances are: GF-HOG (38%, k =
1300); EDGE-HOG (32%, k = 1400); SIFT (21%, k = 100);

SSIM (21%, k = 200). The trends of Fig. 3 show significant

improvement using GF-HOG over contemporary descriptors

of ∼ 10% for Flickr160 and ∼ 5% for ETHZ. Examples of

localization are given in Fig. 2 (left).

5. CONCLUSION

We have shown that the proposed GF-HOG descriptor can be

effectively incorporated into a BoW system for sketch based

image retrieval. To the best of our knowledge BoW has not

been previously used to retrieving images using free-hand

sketched shapes. Furthermore, our descriptor out-performs

SSIM, SIFT and HoG descriptors for this task. We have also

demonstrated a prototype application for our retrieval tech-

nique (sec. 3.1). The success of the descriptor is dependent

on correct selection of scale during edge extraction, and use

of image salience measures may benefit this process. The

system could be enhanced by exploring colored sketches, or

incorporate more flexible models for object localization.
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