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Gradient Flow for the One-Dimensional

Mumford-Shah Functional

MASSIMO GOBBINO

Abstract. In order to introduce a notion of gradient flow for the one-dimensional
Mumford-Shah functional MS(u), we consider a family of regular func-
tionals, defined in spaces of piecewise constant functions, which converge in a
variational sense to MS(u).

Moreover, given an initial datum uo, with MS(uo)  +00, and a family }
of piecewise constant approximations of uo, we consider the evolution problems

We show that for large classes of initial data, the family (us (t) ) converges,
as 8 - 0+, to a certain u (t), which is the solution of the heat equation with
homogeneous Neumann boundary conditions in a suitable variable domain. On
the other hand, we show that, for some special uo, the family has infinitely
many limit points as 8 ~ 0+.

Mathematics Subject Classification (1991): 58D25 (primary), 34G20 (secon-
dary).

1. - Introduction

In last years many variational problems with free discontinuities have been
studied. The canonical examples are the minimum problems related to the so
called Mumford-Shah functional, defined by

where Q is an open subset of R’, u belongs to the space of special
functions with bounded variation (see Section 2), Vu is the approximate gradient

KEY WORDS: Mumford-Shah functional, r-convergence, SBV functions, evolution equations,
gradient flow.
Pervenuto alla Redazione il 5 maggio 1998.
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of u, Su is the set of essential discontinuity points of u, and H,n-1 is the (n -1 )-
dimensional Hausdorff measure.

This functional is the weak formulation in the space SBV(Q) of the func-
tional introduced by D. Mumford and J. Shah in [21] ] to approach image seg-
mentation problems.

On the other hand, a competition between bulk and surface energies had
already been considered seventy years before by Griffiths [19] to model fractures
in materials.

By the semicontinuity and compactness theorem in SB V proved by Ambro-
sio in [ 1 ], variational problems involving .~’ or more general functionals defined
in SB V can be solved using the direct methods of the calculus of variations.
Moreover, also the regularity of minimizers has long been studied after the

pioneering paper by E. De Giorgi, M. Carriero &#x26; A. Leaci [14]: the interested
reader can find appropriate references in the survey [3].

On the contrary, evolution problems with free discontinuities seem to be
a still unexplored research field, despite of the possible applications to fracture
dynamic. The prototype of these evolution problems is the gradient flow for
the Mumford-Shah functional.

A first difficulty is to establish what "gradient flow" means in this case,
since F(u) is neither regular nor convex, and therefore it is not possible to apply
standard theories, such as maximal monotone operators (cf. [8]). A possible
approach to a similar problem was considered by A. Chambolle and F. Doveri
in [12]. They studied a model of fracture propagation introduced by Ambrosio
and Braides in [4], based on the evolution by minimizing movements of the
two-dimensional Mumford-Shah energy, with a few additional assumptions on
the discontinuity set.

In this paper we pursue a different path. In the one-dimensional case, we

approximate T by means of regular functionals FE defined in Hilbert spaces of
piecewise constant functions, and then we define the gradient flow associated
to .~’ as the limit of the gradient flows associated to FE. We recall that ap-
proximations of the Mumford-Shah functional are well studied in mathematical
literature (cf. [5], [6], [7], [10], [11], [18]), mainly because of the possible
numerical applications.

To be more precise, our strategy is the following.
(1) For E &#x3E; 0 we define

for all u E which are constant on each interval [Z8, (z ~-1 )~ [, with z
integer. In Section 3 we prove some results of convergence of P, to i,

(up to multiplicative constants).
(2) Given an initial datum uo E L°°(R) n with  +00,

and a suitable family (uos) of piecewise constant approximations of u
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(cf. Section 4.1 for the details), we consider for all s &#x3E; 0 the evolution

problem

Since P, is regular, the standard theory of ODEs in Hilbert spaces provides
a unique solution uE(t) of (1.2), defined for all t &#x3E; 0.

(3) We show that there exist a sequence -~ 0+, and a continuous function
I such that

for all t &#x3E; 0 (Theorem 4.4).
(4) We show that for large classes of initial data, the whole family con-

verges to a limit u(t), which does not depend on (cf. Theorem 5.4).
This unique limit u is the only candidate to be the gradient flow for the
Mumford-Shah functional with initial datum uo.

Roughly speaking, u (t) can be obtained by evolving uo, out of its singular
set, according to the (rescaled) heat equation with homogeneous Neumann
boundary conditions, and restarting the evolution (with the new initial da-
tum) whenever a singularity "disappears" (see Section 5.1 for the details

of this construction).
Finally, we prove that the Mumford-Shah energy is decreasing along the
trajectory.

(5) We show that for some special choices of uo there is a continuum of

possible limit points in (1.3), depending on the sequence and on the

family (cf. Theorem 5.10). However, only one of these limit points
has the property that the function t -~ is non-increasing, and this
limit can be characterized as in the regular case (cf. Theorem 5.9).
We hope that similar techniques will provide a definition of gradient flow for

the Mumford-Shah functional also in the n-dimensional case. For example, using
the finite difference approximations introduced in [18], it is possible to repeat
word-by-word in any dimension the steps (1)-(3) described above; however a
precise characterization of the possible limits seems to be a challenging problem.

We hope also to approach in a similar way evolution problems (with free
discontinuities) involving second order time derivatives.

We finally remark the analogy between our construction and the approx-
imation of motion by mean curvature (which may be thought as the gradient
flow of the area functional) by the Allen-Cahn equation (which is the (rescaled)
gradient flow of an approximation of the area functional): the interested reader

is referred to [20].
This paper is organized as follows: in Section 2 we give notations and

preliminaries; in Section 3 we prove some convergence results for the family
of functionals IPl introduced in (1.1); in Section 4 we study the evolution
problems (1.2), then we prove (3) and some general properties of the possible
limits; in Section 5 we prove the results sketched in (4) and (5).
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2. - Preliminaries

In this section we fix notations and we recall basic definitions from the

theory of S B V functions and r-convergence.
For all a E R, the integer part of a is denoted by [a] = sup{z E Z : z s a}.

Given A, B c R, we write A C C B if the closure of A, denoted by A, is

compact and contained in B.
The Lebesgue measure and the 0-dimensional Hausdorff measure of a set

B C R are denoted by IBI I and respectively. We recall that 
coincides with the number of elements of B, sometimes denoted also by #B.
The characteristic function of a set B C R is denoted by xB . We use standard
notations for the Banach spaces and for the metrizable spaces 
whose metric is denoted by OR). 

All the functionals introduced in this paper,
loc

and also all the operations of lim, lim inf, lim sup, are intended with range in
the extended real line R = R U {+oo, -oo}.

Even if the functions we consider depend only on one space variable, we
use vector notations such as Vu, Au, for differential operators with respect to
this space variable.

2.1. - Special functions of bounded variation

For the general theory of functions with bounded variation we refer
to [17], [22]; here we just recall some definitions and some basic results for
the one-dimensional case.

Let S2 c R be an open set. We say that u is a function of bounded variation
in Q, and we write u E B V (S2), if u E L1(Q) and its distributional derivative
is a real-valued measure Du with finite total variation We say that
u E if u E B V (A) for every open set A c c Q.

If u E then for all x E R there exist

We denote by Su the discontinuity set of u, i.e.

It turns out that Su is a countable set. Moreover, u+ and u- have a
derivative (in the classical sense) for a.e. x E Q. These two derivatives coincide
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for a.e. x E Q, and their common value is called the approximate gradient of u,
which is denoted by Vu.

Now let us write Du = Da u + DS u, where Da u is absolutely continuous
with respect to the Lebesgue measure ,C 1, and DS u is singular with respect
to ,C 1. We call Da u the "absolutely continuous part" of Du. Moreover, we call
the restriction Diu of DS u to Su the "jump part" of Du, and the restriction
Dcu of Dsu to S2BSu the "Cantor part" of Du.

With these notations we have the following decomposition:

Moreover, it turns out that

where 8y (A) = 1 if y E A, and 8y (A) = 0 if y g A.
DEFINITION 2. l. Let S2 c R be an open set, and let U E BV (S2). We say

that u is a special function of bounded variation, and we write u E SB V (Q), if

We say that u E if u E SBV(A) for all

For all positive real numbers À, It, let us set

It turns out that  if and only if u has a finite set of

discontinuity points Su, and u E 
The following semicontinuity and compactness result may be simply de-

duced from the general theory of [2].

THEOREM 2.2. For all À &#x3E; 0, ~,c &#x3E; 0, the functional M SÀ,JL (u) defined in (2.1 )
is lower semicontinuous in L2 (R).

Moreover, if SB Víoc fl L 00 (R) is a sequence such that

then there exists a subsequence converging in some , I

Moreover
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and

2.2. - r-convergence

DEFINITION 2.3. Let X be a metric space, let { Fn } be a sequence of
functions defined in X with values in R, and let F : X --~ We say
that { Fn } r-converges to F, and we write

if the following two conditions are satisfied:
(i) for every x e X, and every sequence {xn } I converging to x we have that

(ii) for every x E X, there exists a sequence {xn I converging to x such that

The r-limit, when it exists, is unique, and stable under subsequences.
Finally, we say that a family f F, 1,,o of functions r-converges to F as £ - 0+,
if r-converges to F for every sequence - 0+.

The reader interested to variational properties of r-convergence is referred
to [13], [15].

2.3. - The heat equation

We recall some results about the heat equation that will be frequently used
in Section 5.

Let I = [a, b] be an interval, and let vo E H 1 (I). Then the problem

has a unique solution which depends continuously on vo (with respect to L2
convergence).

Moreover, for each y E [a, b], the function t -~ v (t, y) is continuous in

[0, ~-oo [, analytic in ]0, -+-oo [, and depends continuously (with its derivatives
of any order) on vo.

Furthermore, the following comparison result hold true: if u is a solu-

tion of the same PDE, with the same initial datum, and boundary conditions
ux (t, a) &#x3E; 0, 0 for all t &#x3E; 0, then u (t, x)  v (t, x) in [0, +oo[x/.

Completely analogous results hold true if I as a half line, up to replace
the lost boundary condition by u (t) E L°°, and L2 and respectively, by
L2 and 
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3. - Approximation results

In this section we approximate the one-dimensional Mumford-Shah func-
tional by a family of regular functionals which are finite only in suitable
spaces of piecewise constant functions. We prove both the r -convergence (The-
orem 3.10), and some higher order convergence results (Theorem 3.12, 3.13,
and 3.15) which will be crucial in Section 4-5.

3.1. - Definitions

In order to simplify many formulas we introduce some notations.

DEFINITION 3. l. For every p E R, and every function u : R, we set

The following properties of the operator DP are an easy consequence of
the above definition (the simple proofs are left to the interested reader).

PROPOSITION 3.2 (Properties of DP). For all p E R the following hold true.

(i) Linearity: given two real functions u, v : R, and two real numbers a, P,
we have that 

.

(ii) Chain-rule: given two real functions f, g : R we have that

(iii) Integration by parts: let S2 c ffi. be an open set, and let u, v E L2(Q). If either
u or v has compact support in Q, and I p is small enough, then we have that:

If S2 = R, equality (3.3) holds without restrictions on p, and on the support of
u and v.

(iv) Approximation of derivatives: for all 4) E C 0 we have that

as p - 0.

(v) Lipschitz continuity: for all p E [1, the operator u ~ Dp u is well

defined and Lipschitz continuous in L P (R) , 0



152

Properties (i)-(iv) show the analogy between the operator DP and the deriva-
tion operator.

For each s &#x3E; 0 we consider the function

and the space

so that each u E PC£ is constant in the interval [zE, (z + 1)8[ [ for all
Finally, we consider the functional

defined for every s &#x3E; 0, u E with values in R U 

PROPOSITION 3.3 (Properties of For all 8 &#x3E; 0 we have that:

(i) PC; is a closed vector subspace of L2(JR), hence it is a Hilbert space with
respect to the usual scalar product of L2(JR);

(ii) the restriction of Fe to real valued function of class C°°;
(iii) for every u E PCfI the gradient of Fe in u is given by

Lipschitz continuous function on 

PROOF. Statements (i) and (ii) follow immediately from the definitions
of PC~, DE, and 

In order to prove (iii), we use the standard relation between the differential
and the Gateaux derivative along a direction v e PC~ :

where the last inequality follows from (3.3). This proves (iii).
Therefore the function V Fe is the composition of the three maps

which are Lipschitz continuous. This proves (iv).
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For every E &#x3E; 0, we now write D’ as the sum of two operators, which
may be thought as the "absolutely continuous part" and the "jump part" of D~.

DEFINITION 3.4. For every 8 &#x3E; 0, and every function u : R - R, we set

and we define DS’+u in such a way that

Moreover we set

We remark that 3-1/48-1/2 is the maximum point of 
The following estimates are a crucial tool in many proofs.

PROPOSITION 3.5. Let P, be the functional introduced in (3.7), and let DE,+,
D£~ -, I,+ be as in Definition 3.4.

Then for all U E we have that

Moreover

for every open set Q C C R.

PROOF. Since arctan r &#x3E; 1 for r &#x3E; 3-1/2, we have that

which is equivalent to (3.9). Moreover, since arctan 1
we have that

which is equivalent to (3.10). Finally, by Holder’s inequality we have that

so that (3.11) follows from (3.9) and (3.10).
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3.2. - Some lemmata

We now prove three general lemmata.

LEMMA 3.6. Let {en } - 0+, let {gn { be a sequence such that gn EpC2 for all
n E N, and let Let us assume that

Then g E H 1 (R), and moreover

PROOF. By (3.12) we have that

STEP 1. By (3.13) there exist a sequence {nk } ~ 0+, and a function

h E L2(ffi.) such that

Now let ~ E CD (ffi.). By (3.3) we have that

so that, passing to the limit as k 2013~ 00, and using (3.4), (3.12), and (3.15), we
obtain

r r

Since 4$ is arbitrary, this proves that g E H (therefore g is continuous),
and h = Vg. Since this limit does not depend on the sequence {nk{, (3.14) is

proved.

STEP 2. We show that

for every n e N, and every I-
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To this end, let us set for simplicity h = = and let us
assume that h &#x3E; k. Then by Cauchy Schwarz inequality we have that

STEP 3. We show that pointwise converges to g.
To this end, let us fix xo E R, and 8 &#x3E; 0. By (3.16) we have that

hence

Taking the lim inf as n ---&#x3E; oo, and dividing by 03B4 we obtain

Passing to the limit as 3 ~ 0+, and exploiting the continuity of g, we
finally obtain that .

Since we can argue in the same way with the lim sup, pointwise convergence
is proved.

STEP 4. Uniform convergence follows in a standard way from pointwise
convergence and from (3.16). 0

LEMMA 3.7. Let L 2(R), and let g E L 2R) be such that

Then

where is the function defined in (3.5).
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PROOF. Since it is enough to prove (3.17) for every sequence
we can assume that

Now for all A &#x3E; 0 let us set

Since

it follows that hence

and therefore

Moreover, since then we have that

hence by (3.18)

Taking the limit as A ~ 0+, (3.17) is proved. 0

LEMMA 3.8. Let C f1 L°° (I~), and let gEL 2 (JR). Let us assume that

Then

where is the function defined in (3.5).
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PROOF. By assumption (3.20), thesis is equivalent to show that

To this end (looking at the explicit expression for it is enough to

prove that

Since it is enough to prove (3.23) for any sequence ~ 0+, thanks
to (3.20) we may assume that

Now let 7 GC R be a bounded interval, and let A &#x3E; 0. Let us set

Then we have that

hence

By (3.19) and (3.24) we have that

hence

Since A, and I, are arbitrary, (3.23) is proved.
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3.3. - r -convergence and compactness

We now study the convergence of the family 1,P, I to the Mumford-Shah
functional. The following approximation lemma will be crucial in the sequel.

LEMMA 3.9. Letuo E with MSI, 2 (u p)  +00.
’2

Then there exists a family L°’° (R) such that

PROOF.

STEP 1. Let us assume that uo has compact support. Modifying u on a
negligible set (if necessary), we can assume that u is left continuous. Let us set

It is clear that (uos) satisfies (ii) and (iii). Moreover, since u is left

continuous, (uos) pointwise converges to u, hence (i) follows from Lebesgue’s
theorem.

In order to prove (iv), let us write

where

and let us estimate separately the two summands. The first one can be trivially
estimated by

In order to estimate the second summand, we note that if x g As, then uo
is absolutely continuous in + 1)], hence, by Hölder’s inequality:
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Thus, since arctan(x)  x for all x &#x3E; 0:

By (3.25) and this last estimate, (iv) easily follows.

STEP 2. If u o has not compact support, then we set

It is clear that uon has compact support, , and

Moreover, and

hence

Since each uon may be approximated as in Step 1, by a diagonal argument
thesis is proved also in the general case. 0

We are now ready to show that MSI 2 is the r -limit of with respect
to the metric of 

THEOREM 3. lo. Let FE and the functionals defined in (3.7) and (2.1)
respectively

Then

where the r-limit is computed with respect to the usual metric of A
Moreover, if C L 00 (R) is any family such that

then lu, I is relatively compact in and every limit point belongs to 
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PROOF.

Liminf part. In [ 18~ it is proved that

whenever ~ u in Since convergence in implies conver-
gence in and 

lo loc

for all by (3.27) we have that

whenever

Limsup part. Follows in a standard way from Lemma 3.9, and from the
density of L°°(R) in 

Compactness. For every 8 &#x3E; 0, and every open set Q c c R, we have that
us E B V (S2), and

where for some , =

By (3.11), and assumption (3.26), it follows that

Therefore, by the standard compactness theorem for B V functions, there
exist a sequence - 0+, and u E such that

Up to subsequences we can assume that the convergence is pointwise a.e.;
thanks to the bound in the L°°-norm and Lebesgue’s theorem, this implies that
up to subsequences

Finally, by the "liminf part", it follows that hence
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3.4. - Convergence of gradients

Given a family lu,l ~ u, we now study the convergence of to Vu.
A first result is the following.

LEMMA 3.11. Let (us) C L I (R), and let u E L ’ (R). Let us assume that

Then i ) and

PROOF. By (3.11), and our assumptions, it follows that

for every open set S2 C C R. Therefore, by the compactness theorem for Radon
measures, there exist a sequence - 0+, and a Radon measure it such that

Now let ~ E Cj and let I cc R be a bounded open interval which
contains the support of (D. By (3.4) and (3.3) we have that

Since 4) is arbitrary, this proves that it = Du. By a standard argument, it

follows that also the whole family weakly * converges to Du. 0

The following theorem improves both Lemma 3.11, and the "liminf part" of
Theorem 3.19, showing that assumption (3.26) forces the separate convergence
of and ID’,+u,l, respectively, to D’u and Diu.
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THEOREM 3.12. Let I Let us assume that

Then U E and

Moreover for every y E Su, and every 8 &#x3E; 0 we have that

Finally

PROOF.

STEP 1. Let us prove (3.28). By (3.10) we have that

Therefore there exist a sequence ~ 0+, and a function
such that

If we prove that g = Vu, (3.28) will follow by a standard argument.
To this end, let us observe that by (3.9) we have that

hence, for each n E N, the set is the union of at most M intervals of

length Therefore, up to subsequences, there exists a finite set
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such that for all 6 &#x3E; 0

for n large enough. Without loss of generality, we can assume that
By (3.34) for n large enough we have that

Thanks to (3.33) the right hand side of (3.35) weakly converges to 
while by Lemma 3.11 the left hand side of (3.35) weakly * converges to

i.e. to This proves that g coincides with ou for a.e.

x E R(Fs. Since 8 is arbitrary and F is finite, it follows that g = Vu for a.e.
x E R, and therefore (3.28) is proved.

STEP 2. Since

(3.29) follows from (3.28) and Lemma 3.11

STEP 3. In order to prove (3.30) let us set

By (3.29) and (3.9) for all 6 &#x3E; 0 we have that

This proves (3.30).

STEP 4. By (3.28) we can apply Lemma 3.7 with gs = DS’-us, and g = Vu.
This proves (3.31).

STEP 5. Let us prove (3.32). To this end, let 6 &#x3E; 0 be such that

has exactly connected components (this is true for every 8 small

enough), and let y E Sue By (3.30) there exists ay &#x3E; 0 such that for 8

small enough
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Therefore for E small enough, I:(u£) f1 ]y - 8, y -~- 8[ contains at least one
interval Jy,, of length 8.

Therefore

Taking the limit as 8 - 0+, inequality (3.32) is proved. 0

The following result will be crucial in Subsection 3.5 and Subsection 4.4.

THEOREM 3.13. Let f u, I C and let U E Let us assume that

Then u E S B (R) and

PROOF. Since by (3.9) we have that

hence

for every (D E Co(R). By a density argument this proves that

Moreover, applying Lemma 3.8 with g£ = we have that

Since

thesis follows from (3.37) and (3.38).
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3.5. - Convergence of slopes

We now study the convergence of the family

DEFINITION 3.14. For all u E we set

where Au denotes the weak derivative of the approximate gradient Vu. We
recall that if Vu E then Vu(x) is well defined for all x E R.

THEOREM 3.15. Let C L°° (I~), and let U E L°° (R). Let us assume that

Then

PROOF. If

then thesis is trivial. We can therefore assume that there exists a sequence
~ 0+ such that

Now let us set

Since D-£n gn = -~ F~n (u£n ), by (3.40) and Theorem 3.13 we have that gn
satisfies the assumptions of Lemma 3.6 with g = 2 Vu. It follows that Vu E

H 1 (1I~), and

By (3.40) and (3.42), it follows that
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It remains to show that Vu (y) = 0 for all y E Su. To this end, let us
fix 8 &#x3E; 0. By (3.30) there exists a constant ay &#x3E; 0 such that

for n large enough, hence

Passing to the limit as n ~ oo, by (3.41) we have that

Since 3 is arbitrary, and ou is continuous, it follows that necessarily

REMARK 3.16. For the reader familiar with the notion of descending slope of
a function defined in a metric space (cf. [ 16]), we observe that if u E L (R), then

and I are the descending slopes in u, respectively,2

of the restrictions to L 2(R) of P, and It is also possible to prove that

Indeed, the "liminf part" is a straightforward consequence of Theorem 3.10
and Theorem 3.15, while the "limsup part" may be proved refining the con-
struction of Lemma 3.9.

4. - Convergence of approximate gradient flows

In this section we study the convergence of the gradient flows relative to
the functionals I introduced in Section 3.

In order to simplify the notations, we set

and we define on X the metric

where is any metric in
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4.1. - The approximate problem

In the sequel we assume that uo E X is a given function. Our aim is to
define the gradient flow relative to the Mumford-Shah functional, with uo as
initial datum.

To this end, we consider a family Z~(M) satisfying the following
conditions:

Existence of families with the above properties follows from Lemma 3.9 and
Theorem 3.10. Moreover, since we are always interested to limits as 8 ~ 0+,
we may assume, without loss of generality, that

Then we consider the evolution problems

Since V F£ is a Lipschitz continuous operator (cf. statement (iv) of Propo-
sition 3.3), the following result is a straightforward consequence of the standard
Cauchy-Lipschitz-Picard theorem for ODEs (cf. [9, Theorem VII.3]).

THEOREM 4.1. For every E &#x3E; 0, problem (4.2) has a unique solution u£ E
C ([0, PC£ ), which depends continuously on the initial datum. 0

In the sequel we sometimes denote by the unique solution
of (4.2).

4.2. - Basic estimates

PROPOSITION 4.2. For every E &#x3E; 0, let u, be the solution of (4.2).
Then the following hold true.

(i) F£ -Energy equality. For all 0  t1  t2 we have that

In particular, the function t - P, (u, (t)) is non-increasing for t &#x3E; 0.
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(ii) FE-Energy estimate. For all t &#x3E; 0 we have that

(iii) Maximum principle. For all t &#x3E; 0 we have that Us (t) E L 00 (R), and

(iv) Holder estimate. For all 0  ti  t2 we have that

PROOF. (i) Fe-Energy equality. It is enough to integrate in [tl , t2] the equality

(ii) P,-Energy estimate. Trivial consequence of (4.3).
(iii) Maximum principle. Let G : R be a function such that

Let K = and let us consider the function
defined by 

-

By (G1) and (G3), it follows that

and therefore 1/1c(t) is well defined. Moreover, by (3.3) and (3.2) we have that

where in the last inequality we exploited that Dp G’ (r) &#x3E; 0 for every p and

every r (by (G2)), and that the function r ~ is non-negative.
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Since by (G1) we have that ps(0) = 0, and 0 for t &#x3E; 0, then
necessarily = 0 for every t &#x3E; 0, hence K.

In an analogous way it is possible to prove that Ue (t) &#x3E; -K for every
t &#x3E; 0. This completes the proof of the maximum principle.
(iv) Holder estimate. By Hölder’s inequality and (4.3) we have that

4.3. - Passing to the limit

From now on we consider the space C°([0, +oo[; endowed with
the topology of uniform convergence on compact sets. For the convenience of
the reader, we recall the following compactness result, which is a particular
case of the standard Ascoli theorem (proof is omitted).

LEMMA 4.3. Let CO([O, Let us assume that

(i) for every t &#x3E; 0, the family [u, (t) I is relatively compact in 
(ii) there exists a constant M E ffi. such that

for every 8 &#x3E; 0, and every 0  t1  t2.

Then f uE} is relatively compact in CO([O, 
We are now ready to prove our main compactness result.

THEOREM 4.4. For every 8 &#x3E; 0, let Us be the solution of (4.2).
Then there exist a sequence ~ 0+, and a continuous function u :

- such that

PROOF. It is enough to show that lu,l satisfies the assumptions of Lemma 4.3.
By the energy estimate (4.4), the maximum principle (4.5), and (4.1), it

follows that

for all t &#x3E; 0. Therefore, by Theorem 3.10, assumption (i) of Lemma 4.3 is

satisfied.
On the other hand, assumption (ii) of Lemma 4.3, with

follows from the Holder estimate (4.6).
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The above theorem provides the candidates to be the gradient flow relative
to the Mumford-Shah functional with uo as initial datum, and justifies the

following notation.

DEFINITION 4.5. For every Uo E X we denote by the set
’2

of all possible limits in Theorem 4.4.
To be more precise, we say that a function u E Co([O, +oo[; 

belongs to uo) if there exist a sequence ---&#x3E; 0+, and a sequence
000

2

L (R) such that

4.4. - First properties of the limit

PROPOSITION 4.6. Let uo E X. Then every U E GF(MS1, i, uo) has the’2

following properties.

(ii) For all 0  t1  t2 we have that

(iii) For all t &#x3E; 0 we have that u (t) E X, and

(iv) The function u (as a function of (t, x)) is a distributional solution in
of the equation

where D(Vu) is the distributional derivative (with respect to the x-variable)
of the approximate gradient Vu.

(v) For a. e. t &#x3E; 0 we have E H 1 (R) (as a function of the x-variable),
and

PROOF. Let and be as in Definition 4.5, and let us set for

simplicity
(i) Trivial.
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(ii) Since the L -norm is lower semicontinuous with respect to conver-

gence, by (4.6) and (P4) we have that

(iii) By (4.4), (P4), and the r-convergence of f F~ }, we have that

In an analogous way, since the L°°-norm is lower semicontinuous with

respect to convergence, by (4.5) and (P2) it follows that

(iv) Let By (3.8) and (3.3) we have that

Passing to the limit, by (3.4) and (3.36) we obtain

This identity is equivalent to statement (iv).
(v) By Fatou’s lemma and (4.3) it follows that

Therefore

for a.e. t &#x3E; 0. By Theorem 3.15, statement (v) is proved.
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REMARK 4.7. In general there are infinitely many functions u (t) satisfying
conditions (i)-(v) of Proposition 4.6 with a given uo. The heuristic reason of
this non-uniqueness is that no information on the evolving discontinuity set Suet)
is provided by Proposition 4.6. The evolution of the discontinuity set will be
analyzed in Subsection 4.5.

We now prove a semicontinuity property of the map

PROPOSITION 4. 8. Let X, and let uo E X be such that

Moreover, let I for each
Then:

(i) [Un I is relatively compact in
(ii) every limit point of {un } belongs to

PROOF. By statements (ii) and (iii) of Proposition 4.6, the sequence {un }
satisfies the assumptions of Lemma 4.3. This proves (i).

In order to prove (ii) we can assume, up to subsequences, that

Let dy be any metric on -f-oo [; which induces the topology
of uniform convergence on compact sets. Then for each k E N, there exists

nk E N such that

Moreover, since by Definition 4.5 there exists

and such that

By these inequalities and (4.7) it follows that --&#x3E; 0+, and {voEk } satisfies

By Definition 4.5, this proves that 1
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Caution! The following very attractive properties are in general false for ele-
ments of (cf. the discussion in Section 5):

’2

o FALSE 1: the function t ---&#x3E; is non-increasing;
’2

o FALSE 2: for all t &#x3E; 0

0 FALSE 3: the function v(t) = u(T + t) belongs to for
I

all T &#x3E; 0. 
¿.

4.5. - Evolution of discontinuities

In order to study the evolving discontinuity set Suet), we now analyze the
map t ~ First of all, we examine the case t = 0, showing that
(Pl)-(P4) force the set to approximate Suo .

PROPOSITION 4.9. Let uo E X, and let be any family satisfying properties
(P 1 )-(P4) of Section 4.1. Let 8 &#x3E; 0 be such that

has exactly connected components (this is true for every 8 small enough).
Then for every E &#x3E; 0 small enough we have that:

(i) Is+(uos) is the union of exactly Ho (Suo) intervals of length 8;
(ii) each connected component of (Suo)8 contains exactly one of these intervals;
(iii) for every y E Suo, the sign of DS’+uos in the component of I,+ (uo,) contained

in ] y - 8, y -f- 8[ coincides with the sign of Djuo(lyl).
PROOF.

STEP 1. Let {En } ~ 0+ be any sequence. By (3.31 ), (3.32), (PI), and (P4),
we have that

hence

for every sequence
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STEP 2. Let y E Suo . Arguing as in Step 5 of the proof of Theorem 3.12,
we can prove that, for E &#x3E; 0 small enough, n ]y - 8, y + 8[ contains
at least one interval of length E, and

In order to prove (i) and (ii), it will be enough to show that

for all E small enough. To this end, let us assume by contradiction that there
exists a sequence ~ 0+, and that for each n E N there exists an interval In
of length 8n contained in

Since arctan r &#x3E; yr/6 for r &#x3E; 3-1~2, for all n we have that

hence by (4.9)

which contradicts (4.8).

STEP 3. By Theorem 3.12 the family of Radon measures
weakly * converges to Djuo. Therefore, since 
follows that

This proves (iii).

We now need an abstract lemma about ODEs.
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LEMMA 4.10. Let f : R be a Lipschitz continuous function, and let C, V,
be real numbers such that

function such that

Then for all T &#x3E; 0 we have that

PROOF. Since z(t) - C is a solution of the ODE

and y is a sub-solution of the same equation, by the standard comparison
theorems for ODEs, it follows that

Moreover, w(t) == -C is a solution of the ODE

and y is a super-solution of the same equation. Therefore

This completes the proof. 0

We can now show that t - I£ (u£ (t)) is a non-increasing map (with respect
to set inclusion).

PROPOSITION 4.11. Let 8 &#x3E; 0, and let u, be the solution of (4.2). Then

whenever 0  t1  t2.

PROOF. It is enough to show that for every T &#x3E; 0, and every x E R, we
have that

With an abuse of notation, let us set
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Then we have that

hence

Therefore (4.10) follows applying Lemma 4.10 with

We can now prove some properties of the map t 2013~ 

PROPOSITION 4.12. Let u E GF(MSI, 2 , uo) for some uo E x.2

Then we have that

(ii) the function t - is lower semicontinuous;
(iii) the set {t &#x3E; 0 : y E is an open subset of [0, -f-oo[ for every y E Suo.

PROOF. Let { en I and be as in Definition 4.5, and let us set for

simplicity u£n := G F(F£n’ uo,n). Let t &#x3E; 0, and let Q cc be any open
set. By Proposition 4.11 and Proposition 4.9 we have that, for all n large
enough,

hence

Since weakly * as Radon measures, it follows
that

This is equivalent to statement (i).
Statement (ii) follows from the continuity of u, and Theorem 2.2.
In order to prove statement (iii), we show that for all y E Suo the set

is closed. Indeed, let Cy be a sequence converging to a certain T. By the

continuity of u and Theorem 2.2, we have that ~ weakly *
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as Radon measures. Now let for some 8 &#x3E; 0. By
statement (i) and our definition of Cy, we have that ~ I
for all n, hence

This shows that T E Cy . * 0

Caution! It is in general false that SU(t2) c for all 0 (cf. the
discussion in Section 5).

5. - Characterizations

In this section we characterize the elements of GF(MSI 7r, uo) defined in
. 

’2

Section 4 as the solutions of the (rescaled) heat equation with homogeneous
Neumann boundary conditions in suitable variable domains.

5.1. - Definition of a semigroup

We introduce the notion of regular and super-regular initial data. Moreover
we introduce two functions

and, for every t &#x3E; 0, we define a map

To this end, we fix u o E X, and for all t &#x3E; 0 we define Ft (uo) according
to the following construction.
(Step 1) Let v : [0, -~-oo [ -~ be the solution of the rescaled heat

equation vt = 2 Ov in the open set with homogeneous Neumann
boundary conditions on Suo, and initial datum = uo.

Since Suo is a finite set, then for all t &#x3E; 0 we can consider v (t) as

a function defined for a.e. x In this sense it turns out that

(Step 2) For every y E Suo, let us consider the function I
defined by

It turns out (cf. Subsection 2.3) that J,,O,y is continuous in [0, 
analytic in ]0, +00[, and depends continuously on uo. Moreover,

0 for every y E 
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(Step 3) Let us set

Roughly speaking, T1 is "the first time in which a discontinuity of uo
disappears". By the discussion in (Step 2) it follows that T1 &#x3E; 0.

If T1  then = 0 for some y E In this case, we

say that T1 is regular if there exists exactly one y E Suo such that
= 0, and furthermore the function Juo, y changes its sign in

T1 (i.e. it is positive in a right neighborhood of Ti, and negative in a
left neighborhood of Ti, or viceversa).
We say that T1 is super-regular if in addition # 0.

(Step 4) We define

(Step 5) If T, = then the construction is complete. If T1  then we
reiterate the construction. This means that we consider the solution
w : of the equation wt = 2Aw in the

open set with homogeneous Neumann boundary conditions
on and initial datum w(Ti) = As in (Step 3) we define
T2 &#x3E; T1 as "the first time in which a discontinuity of v (T1) disappears",
and then we set

(Step 6) It is clear that after each reiteration the number of discontinuity points
of Ft (uo) strictly decreases. Since uo has only a finite number of

discontinuities, then the construction will be complete (i.e. we have
defined Ft (uo) for all t &#x3E; 0) after a finite number of reiterations.

(Step 7) We denote by the first reiteration time which is not regular
according to the definition given in (Step 3), with the convention that

- if all the reiteration times (if any) are regular. In a

similar way we define SReg(uo) as the first reiteration time which is
not super-regular.
We say that uo is regular (resp. super-regular) if Reg(uo) = +oo
(resp. SReg(uo) = 

5.2. - Properties of the semigroup

We state (without proof) some properties of { Ft that follow from the given
definitions, and from analogous properties of solutions of the heat equation with
homogeneous Neumann boundary conditions.
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PROPOSITION 5.1 (Properties of { Ft }). The family { Ft } satisfies the

(i) semigroup property: for all t &#x3E; 0, s &#x3E; 0 we have that

Moreover for all Uo E X the function t ~ Ft (uo) has the following properties.
(ii) All the properties of the elements uo) stated in Proposition 4.6.

2

(iii) Volume-energy equality: for all 0  t1  t2 we have that

where "A 
" 

denotes the distributional derivative of the approximate gradient.
(iv) Surface-energy monotonicity: the function t - is non-increasing.
(v) Mumford-Shah energy inequality: for all 0  t1  t2 we have that

(vi) Holder continuity: for all 0  ti  t2 we have that

and in particular

REMARK 5.2. If uo e L2(JR) nx, statements (v) and (vi) of Proposition 5.1
are equivalent to say that Ft (uo) is a maximal slope curve (in the sense of [16])
for the Mumford-Shah functional in 

With the following result we motivate the definition of the semigroup,
relating Ft (uo) with the elements of 

THEOREM 5.3. Let u e uo) for some uo e X, and let M &#x3E; 0. Let

us assume that

Then u (t) = Ft (uo), for all
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PROOF.

STEP 1. Let us set

Since by assumption we have that Suo for all t E [0, M], then from
statement (iii) of Proposition 4.12 it follows that T1 &#x3E; 0.

STEP 2. By (iv) and (v) of Proposition 4.6 it follows that, for t E [0, T1], the
function u (t ) is the solution in the open set of the equation u = 2 Au
with homogeneous Neumann boundary conditions on Suo, and initial datum

u (o) = UO.
This implies that Tl = min{ Tl , M{, where T1 is the first reiteration point

in the construction described in Subsection 5.1, and

STEP 3. If ii = M, thesis is proved. If it is not, let us set

Arguing as in Step 1 and Step 2, we can show that
and that 

-

Repeating this argument (if necessary), in a finite number of steps thesis
is proved. 0

5.3. - The regular case

The following result completely characterizes the elements of
before the first non regular reiteration time.

THEOREM 5.4. Let u p E X, and let Then

PROOF. Since u and Ft (uo) are continuous functions of time, it is enough to
show that

for all M  Reg(uo).
By Theorem 5.3, we have only to show that u satisfies assumption (5.12)

for all M  Reg(uo). To this end, since Suet) c Suo (statement (i) of Proposi-
tion 4.12), it is enough to show that
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is a connected set for every W E Suo .
Let us assume by contradiction that this is not the case. Then, among all

the points of Suo which do not satisfy this property, let y be the one which
minimizes the length of the connected component of Ay containing t = 0, and
let T be such a length (clearly T  Reg(uo)).

STEP 1. We have that

. Ay is an open subset of [0, (by statement (iii) of Proposition 4.12).

. T is the reiteration time in the construction of Ft(uo) where the discontinuity
in y disappears. Indeed, since Ay is an open set, by definition of T it follows
that [0, Ay, and T g Ay. Therefore y E Su(t) for every t E [0, T[, and
Y V Su(T). O

. u(t) = Ft (uo) for all t E [0, T] (we can apply Theorem 5.3 with M = T).
9 There exists T* &#x3E; T such that y E Su (T* ) .

STEP 2. Let us assume, without loss of generality, that &#x3E; 0. We
claim that

(since y E for t E [0, T[, we already know that (Vu(t)) (y) = 0 in the
interval [0, T[).

Let ~ 0+, and be as in Definition 4.5. Let us set for

simplicity and let 8 &#x3E; 0 be such that

has exactly connected components. Since y E and since

weakly * as Radon measures, it follows that,
for n large enough, the set

contains at least one interval of length
By Proposition 4.11 we have that

and in particular

By statement (ii) of Proposition 4.9 it turns out that Cn is the only com-
ponent of contained in ]y - 8, y + 8[. Since we have assumed that

&#x3E; 0, by statement (iii) of Proposition 4.9 it follows that, for n

large enough, is positive in Cn, hence, by continuity, is

positive in C, for all t E [0, T* ] .
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Therefore

Since

for a.e. t &#x3E; 0 (cf. the proof of statement (v) of Proposition 4.6), applying
Lemma 3.6 with up to subsequences
we have that

uniformly on compact sets (as functions of the x-variable) for a.e.
Therefore, passing to the limit in (5.14), we obtain that

for a.e. t &#x3E; 0. Since 6 is arbitrary, (5.13) is proved.

STEP 3. With the same assumptions of Step 2, i.e. &#x3E; 0, we claim
that

Indeed, with the same notations as in the proof of Step 2 we have that

where the last inequality follows since D£n’+u£n (t) is positive in Cn for all

STEP 4. Let us denote by S the last reiteration time before T (if T is the
first reiteration time, we set S = 0), and let us choose U E ] T , T,, ] in such

a way that = for all t E [T, U]. Let I be the connected

component of with y as infimum. Let v be the solution in [S, U [ x I
of,the equation vt - with homogeneous Neumann boundary conditions,
and initial datum v(S) = u(S)I¡.

By (5.13) and by (iv-v) of Proposition 4.6, in [S, U[x I the function u (as
a function of (t, x)) is a solution of the same equation, with the same initial
condition, but Neumann boundary condition equal to
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in y, and equal to zero in the supremum of I (if different from By the
comparison result recalled in Subsection 2.3, it follows that u  v in [S, U[xI,
hence

Arguing in an analogous way in the connected component of with y
as supremum, it is possible to prove that

Therefore by (5.15)

for all t E [S, U [. This is a contradiction, since by the regularity of uo the
function Ju ~s), y must change its sign in T. The proof is thus complete. 0

The above theorem shows that GF(M5B 2L, uo) consists of a single function,’2

namely Ft (uo), provided that uo is regular. Therefore Ft (uo) is the only can-
didate to be the gradient flow relative to the Mumford-Shah functional with a
regular initial datum uo.

EXAMPLE 5.5. Let uo E c X. Then uo is super-regular, and the
only element of is the solution u : [0,+oo[--* H1 (R) of the

’2

equation u = 2 Au with initial datum uo.

EXAMPLE 5.6. Let uo E X with Vuo n 0. Then uo is super-regular and the
only element of GF(M5’i zr,Mo) is the constant function u(t) - uo. In this

’2

case we say that uo is a stationary point for the Mumford-Shah functional. It

is easy to prove that uo E ~ is stationary if and only if Vuo = 0.

5.4. - The general case

If uo E X is not regular, it may happen that GF(MSI, 2 , uo) contains infinitely’2

many functions (cf. Theorem 5.10). However, we now show that Ft (uo) always
plays a special role among these functions.

Before we state the precise result, we need two lemmata about the semi-
group The first one may be considered as a lower semicontinuity property
of the function SReg.

LEMMA 5.7. Let X, and let Uo E X be such that
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Then we have that

PROOF. We argue by induction on k = 
If k = 0, then by (5.16) also = 0, hence uon is super-regular for

each n E N. Moreover (5.18) follows from the continuous dependence on the
initial datum for the solutions of the heat equation.
Now let us assume that thesis is proved for some k, and let = k + 1.

We distinguish two cases. 
’

CASE 1. Let us assume that SReg(uo) is the first reiteration time in the

construction of Ft(uo). Then for each M  sReg(uo) we have that (we use
the notations introduced in Subsection 5.1)

for every n large enough. This proves that SReg(uon) &#x3E; M for n large enough.
Moreover

n . 1"B .

Since M is arbitrary, (5.17) and (5.18) are proved in this case.

CASE 2. Let T  SReg(uon) be the first reiteration time in the construction
of Ft (uo), and let y E Suo be the only jump point which disappears in T.

Since T is super-regular we have that

Since we have that ~ in T ]; II~), and - 

in C°(]0, T]; R), it follows that, for n large enough, the first reiteration time in
the construction of Ft(uon) is a super-regular time Tn, y in which y disappears.
Moreover { Tn, y } ~ T, and

Since

and since both FT (uo) and FTn, y (uon ) have the same k discontinuity points,
by (5.19) and the inductive hypothesis we have that

This proves (5.17). Finally, (5.18) may be proved combining the convergence
in [0, T] (due to the continuous dependence on the initial datum for solutions of
the heat equation), and the convergence in [T, SReg(uo)[ (due to the inductive
hypothesis).

Therefore thesis is proved also in this second case. 0
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In the second lemma we show that any trajectory Ft (uo) may be approximated
by "asymptotically super-regular" trajectories.

LEMMA 5. 8. For all Uo E X there exists a sequence f uon } C X such that

PROOF. By a diagonal argument, it is enough to show that for each M &#x3E; 0,
and each uo E X, there exists a sequence satisfying (5.20) and

To this end, let us denote by B(uo, M) the set of reiteration times in the
construction of Ft(uo) that are not super-regular, and contained in [0, M].

If #B(uo, M) = 0, thesis is trivial. Arguing by induction on #B(uo, M), it
is enough to show that every uo with #B(uo, M) = k + I may be approximated
by a sequence satisfying (5.20), (5.23), and #B(uon, M) = k for n
large enough.

Therefore let us assume that #B(uo, M) = k + 1, and let us set

with the convention that S = 0 if B(uo, M) = {F}.
We distinguish two cases.

CASE 1. We assume that there exists exactly one jump point y E Suo which
disappears in T. In this case we can assume, without loss of generality, that

Setting this implies that

hence, since JUO’y is analytic in ]S, T], there exists 3 &#x3E; 0 such that

and

Now let us set
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It is clear that satisfies (5.20). We claim that fuo, I satisfies also (5.22),
and that

for every n large enough.
Indeed, since

for all t &#x3E; 0 such that &#x3E; 0, then by (5.24) we have that, for n

large enough, JUOn’Y vanishes for some Tn E ]T - 8, T [. By (5.25), Tn is a

super-regular point in the construction of Ft (uon ) . Moreover ~ T -, and

hence

Therefore (5.26) will be proved if we show that SReg(uon) &#x3E; M - T for n

large enough. To this end, by Lemma 5.7, it is enough to prove that

Since

(5.28) follows from (5.27) and the time continuity of Ft (uo). This completes
the proof of (5.26). Moreover (5.22) easily follows from (5.27), (5.28), and
Lemma 5.7

CASE 2. There exist at least two jump points which disappear in T. In this

case, let us assume by simplicity that there are only two such points y  z,

and that

As in Case 1 we have that

and there exists 3 &#x3E; 0 such that T - ~ &#x3E; S, and
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We claim that there exists a sequence (an) ~ 0+ such that the sequence
defined by

satisfies (5.20), (5.23), and (5.26) for n large enough.
Indeed, arguing as in Case 1, we have that vanishes for some ’ ’.

] T - 8, T[ [ which does not depend on an. Now we have that

hence

for all t E ] T - 8, T [ such that 0. Therefore, if we choose an =

an, with an small enough, then the function Juon,z vanishes for
some Tn,z T [ with  0. In such a way we have that

Arguing as in Case 1, it remains to show that

To this end, let us write

The third summand is infinitesimal by the time continuity of the map
the second one is infinitesimal since it is equal to

the first one is infinitesimal since by (5.11)

A similar construction works with an arbitrary number of points which dis-
appear in T. For example, if there are three such points y  z  w, then there

exist two sequences ~ 0+, {~8n } -~ 0+, such that

(the sign + of each perturbation depending on the sign of Djuo in the corre-
sponding jump point) has the required properties. D
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We are now ready to prove the special role of Ft (uo) among all the elements
of I

THEOREM 5.9. For all Uo E X we have that

PROOF OF (i). Let be a sequence as in Lemma 5.8, and for each
By Theorem 5.4 we have that

and therefore, by (5.21) and (5.22), it follows that

By the second statement of Proposition 4.8, this proves (i).
PROOF OF (ii).
STEP 1. We show that the function t ~ is right continuous.
Indeed, let T &#x3E; 0, and let itl ~ T+ be any sequence. By the monotonicity

of and Theorem 2.2, we have that

hence

Since the sequence {tn } is arbitrary, the right continuity of is proved.
STEP 2. We show that for ~every T &#x3E; 0 there exists 3 &#x3E; 0 such that

Indeed, by statement (iii) of Proposition 4.12, we have that It &#x3E; 0 : 
is an open set which contains T. Therefore (5.29) follows from the right

continuity of the integer valued function t ~ 

STEP 3. In order to complete the proof, it is enough to show that v satisfies
the assumption (5.12) of Theorem 5.3 for all M &#x3E; 0.

To this end, let us assume by contradiction that there exist 0  T1 ::S T2, and
y E S"o such that y E Sv(T2)’ but y g Sv(T¡). Let us set

By (5.29) it follows that y E Sv(TY), hence Ty &#x3E; TI. This contradicts the

minimality of Ty, since by statement (iii) of Proposition 4.12 we have that
ft &#x3E; 0 : y E Sv~t~} is an open set which contains Ty. 0
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5.5. - A pathological initial datum

We finally give an explicit example of an initial datum Uo E X such that
Ft (uo) is not the unique element of GF(MS1 1f, uo).’2

THEOREM 5.10. There exists uo 7r , uo) has the cardinality2

of continuum.

PROOF.

STEP 1. In order to define uo, let w : [0, +oo[x[0, 1] - R be the solution
of the problem

Let us consider the function 1/1 : [0, defined by

Then we have that *(0) = 0, and

Therefore there exist

Now let us set

It is clear that uo E X, and Suo = f 0, 1 }.

STEP 2. Let u(t) = Ft(uo), and let v : [0, +oo[ ~ L 00 (ffi.BSuo) be the solution
of vt = 2 A v with homogeneous Neumann boundary conditions on Suo, and
initial datum ~(0) = uo. We claim that in the construction of Ft (uo) there is

exactly one reiteration time, namely T*, and that this time is not regular.
Indeed, setting - (M) as in Subsection 5.1, we have that
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while by the maximum principle it follows that

Therefore T* is the first reiteration time in the construction of Ft (uo), and T*
is not regular. By the maximum principle it follows also that T* is the only
reiteration time.

STEP 3. We claim that there exists a sequence ~ 0+ such that, setting

and

we have that

and, in particular,
Indeed, let us set

Then , and

In particular

Moreover, for each n e N, we have that

In an analogous way, if we set
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then, for n large enough, we have that

Moreover, for each n large enough, we have that

and

as k - oo, where

Therefore our claim follows with a diagonal argument.

STEP 4. Since v(t) for t &#x3E; T*, then there exist T &#x3E; T*, and I C C R
such that 

- -

Let us assume, without loss of generality, that the left hand side is less than
the right hand side. Then we claim that for all k such that

there exists such that

Indeed, by (5.30) we have that

for n large enough. Therefore, since the solution of (4.2) depends continuously
on the initial datum, there exists an E n , n such that, setting

we have that
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Arguing as in Subsection 4.3, up to subsequences we can assume that (wn ) -~
w in C°([0, hence W E uo). Passing to the limitlo 2

in (5.32), we prove that w satisfies (5.31). This completes the proof of the
theorem. 0
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