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Abstract—In this paper, a gradient-free distributed algorithm
is introduced to solve a set constrained optimization problem
under a directed communication network. Specifically, at each
time-step, the agents locally compute a so-called pseudo-gradient
to guide the updates of the decision variables, which can be
applied in the fields where the gradient information is unknown,
not available or non-existent. A surplus-based method is adopted
to remove the doubly stochastic requirement on the weighting
matrix, which enables the implementation of the algorithm in
graphs having no associated doubly stochastic weighting matrix.
For the convergence results, the proposed algorithm is able to ob-
tain the exact convergence to the optimal value with any positive,
non-summable and non-increasing step-sizes. Furthermore, when
the step-size is also square-summable, the proposed algorithm
is guaranteed to achieve the exact convergence to an optimal
solution. In addition to the standard convergence analysis, the
convergence rate of the proposed algorithm is also investigated.
Finally, the effectiveness of the proposed algorithm is verified
through numerical simulations.

Index Terms—Distributed optimization, gradient-free methods,
multi-agent systems, directed graphs.

I. INTRODUCTION

In recent years, with the prevalence of multi-agent systems,
there has been a growing interest in solving the optimization
problem in a distributed scheme. The advantage of doing so
is that agents access local information and communicate with
the neighbors only, making it suitable for the applications
with large data size, huge computation and complex network
structure, such as parameter estimation and detection [1],
[2], source localization in sensor networks [3], [4], utility
maximization [5], resource allocation [6], [7], and multi-
robot coordination [8]–[11]. Distributed optimization of a
sum of cost functions have been extensively studied over
decades, such as the work in [12]–[21]. A common under-
lying assumption in all these methods is that the derivative
term of the local cost functions and the constraints can be
directly accessed. However, there are many applications in the
fields of bio-chemistry, aircraft design, hydro-dynamics, earth
sciences, etc., where the relation between the variables and
the objective functions are unknown, the gradient information
is not available for usage, or the derivative is not possible
to determine [22], these methods are no longer applicable.
Hence, researchers start to draw attention to the gradient-free
optimization.

Gradient-free optimization schemes can be traced back to
the age of developing optimization theory, such as the work
in [23]. Recent studies on this topic have been reported in
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[24]–[31]. Shamir et al. in [24] investigated the performance
of stochastic gradient descent method for non-smooth opti-
mization problems. An averaging scheme was proposed to
attain the minimax-optimal rates. On the other hand, Nesterov
et al. in [25] provided an explicit way of computing the
stochastic gradient information known as gradient-free oracle
and investigated the convergence property for both convex and
non-convex problems. This idea was extended to minimize a
sum of non-smooth but Lipschitz continuous functions in [26]–
[28], where the Gaussian smoothing technique was introduced
to obtain the gradient-free oracle to replace the derivative in
the standard subgradient methods. The same technique was
applied to the algorithms in [29] and [30], [31], where the
doubly stochastic requirement on the weighting matrix was
removed by adopting a push-sum method [32] and a surplus-
based method [33], respectively. It should be noted that these
derivative-free methods are based on the Gaussian smoothing
technique, where the introduced smoothing parameter imposes
an additional penalty term along the iteration. Thus, only an
inexact convergence to a neighborhood of the optimal value
can be achieved. To achieve the exact convergence, Duchi et
al. in [34] introduced a two point gradient estimation techique,
and proved the exact convergence of the function value to the
optimal value by choosing appropriate smoothing parameter
sequences. This technique was extended to the distributed
scenario in [35], [36] where an exact convergence of the
function value to the optimal value was obtained.

In this paper, we aim to investigate gradient-free distributed
optimization algorithms with exact convergence. Motivated
by our work in [36], a distributed projected pseudo-gradient
descent method is proposed to achieve an exact convergence
with possibly a larger class of the step-sizes. The convergence
properties of the proposed algorithm are carefully studied with
different settings of the step-size. The main contributions of
this work are summarized as follows.

1) Most gradient-free optimization algorithms, e.g., [25]–
[31] are based on Gaussian smoothing techniques, and
hence can only achieve approximate convergence results.
In terms of the exact convergence results, the work in
[35] proved an exact convergence of the function value
to the optimal value for a step-size of αk = 1√

k
(k

is the iteration index), and our work in [36] proved
the same convergence result for a non-summable and
square-summable step-size. In this work, we introduce
an optimal averaging scheme locally to trace a weighted
average of the decision variable along the iteration.
This averaging scheme is straightforward in terms of
the implementation, and is able to obtain the exact
convergence of the function value to the optimal value
with any positive, non-increasing and non-summable
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step-sizes, hence increasing the range of the step-size
selection.

2) The convergence of the agent’s function value does
not imply that its decision variable also converges. The
square-summable step-size condition is a typical setting
in subgradient descent algorithms, e.g., [12]–[15], [32],
[36]–[41] to establish the exact convergence of the
agent’s decision variable to an optimal solution. In this
work, we show that this result also holds in distributed
gradient-free algorithms. The proposed distributed pro-
jected pseudo-gradient descent method is guaranteed to
achieve the exact convergence of the agent’s decision
variable to an optimal solution when the step-size also
satisfies square-summable condition, which recovers the
same convergence results in the literature.

3) The convergence rate has been widely studied in
gradient-based distributed optimization literature, but
received little attention in gradient-free distributed op-
timization literature. The only relevant works are [29],
[31] and [27], where [29], [31] proved a rate of O( ln t√

t
)

for a diminishing step-size, and [27] showed a rate
of O( 1√

t
) for a constant step-size if the number of

iterations t is known in advance. However, these rates
were obtained for the algorithms with approximate con-
vergence. In this work, the convergence rate of the
proposed algorithm is studied, and we obtain the same
convergence rate results as in [27], [29], [31] for the
two settings of the step-size, but with exact convergence
results.

The rest of the paper is organized as follows. The problem
is defined in Section II. Section III introduces the proposed
algorithm. The detailed convergence analysis is conducted
in Section IV, where some auxiliary lemmas are introduced,
followed by the main results of the paper. The numerical simu-
lations are presented in Section V to illustrate the performance
of the algorithm. Section VI concludes the paper.

II. PROBLEM FORMULATION

For a directed graph G = {V, E}, V = {1, 2, . . . , N} is
the set of agents, and E ⊂ V × V is the set of ordered pairs,
(i, j), i, j ∈ V , where agent i is able to send information
to agent j. We denote the set of agent i’s in-neighbors by
N in
i = {j ∈ V|(j, i) ∈ E} and out-neighbors by N out

i =
{j ∈ V|(i, j) ∈ E}. Specifically, we allow both N in

i and N out
i

to contain agent i itself, and N in
i 6= N out

i in general. The
objective of the multi-agent system is to cooperatively solve
the following set constrained optimization problem:

min f(x) =

N∑
i=1

fi(x), x ∈ X , (1)

where X ⊆ Rn is a convex and closed set, and fi is a local cost
function of agent i and x = [x1, . . . , xn]> is a global decision
vector. The explicit expression of the local cost function fi
is unknown, but the measurements can be made by agent i
only. Denote the (non-empty) solution set to (1) by X ?, i.e.,
X ? = arg minx∈X f(x).

Throughout this paper, we suppose the following assump-
tions hold:

Assumption 1: The directed graph is strongly connected.
Assumption 2: Each local cost function fi is convex, but not

necessarily differentiable. For ∀x ∈ X , the subgradient ∂fi(x)
exists and is bounded, i.e., there exists a positive constant D̂
such that ‖∂fi(x)‖ ≤ D̂, ∀x ∈ X .

III. ALGORITHM

In this section, we will develop the distributed projected
pseudo-gradient descent method for the optimization problem
defined in (1) as follows.

At time-step k, each agent j broadcasts its state information
xjk with a weighted auxiliary variable [Ac]ijy

j
k to all of the

nodes i in its out-neighborhood. Then, for each agent i, on
receiving the information xjk, and [Ac]ijy

j
k from all of the

nodes j in its in-neighborhood, it updates its variables xik+1

and yik+1
1. Finally, each agent i adopts an optimal averaging

scheme to trace the average of xi`, ` = 0, 1, . . . , k+1 weighted
by the step-size sequence, defined by x̂ik+1. The updating law
is given as follows.

xik+1 = PX
[ N∑
j=1

[Ar]ijx
j
k + εyik − αkgi(xik)

]
, (2a)

yik+1 = xik −
N∑
j=1

[Ar]ijx
j
k +

N∑
j=1

[Ac]ijy
j
k − εy

i
k, (2b)

x̂ik+1 = x̂ik +
αk+1∑k+1
`=0 α`

(xik+1 − x̂ik), (2c)

where Ar, Ac are the row stochastic and column stochas-
tic weighting matrices, respectively, i.e., Ar1n = 1n, and
1>nAc = 1>n . αk > 0 is a non-increasing step-size. ε is
a small positive number. The auxiliary variable yik is used
to offset the shift caused by the unbalanced (non-doubly
stochastic) weighting matrices (Ar, Ac), known as “surplus”.
The parameter ε is to specify the amount of surplus during the
update (see [33] for the details). gi(xik) is a pseudo-gradient
motivated from [34], given as

gi(xik) =
1

β2,k
[fi(x

i
k + β1,kξ

i
1,k + β2,kξ

i
2,k)

− fi(xik + β1,kξ
i
1,k)]ξi2,k, (3)

β1,k, β2,k are two positive non-increasing sequences with their
ratio defined as

β̃k = β2,k/β1,k. (4)

ξi1,k and ξi2,k ∈ Rn are two random variables satisfying the
following assumption:

Assumption 3: (Assumption F in [34]) The random variables
ξi1,k and ξi2,k ∈ Rn are generated by any one of the following:
(a) both ξi1,k and ξi2,k are standard normal in Rn with identity
covariance; (b) both ξi1,k and ξi2,k are uniform on the `2-ball
of radius

√
n+ 2; (c) the distribution of ξi1,k is uniform on

1The update process does not require each agent to know the state
information from its out-neighbors. but we assume agent i knows the number
of its in-neighbors and out-neighbors to design the weights in Ar and Ac.



the `2-ball of radius
√
n+ 2 and the distribution of ξi2,k is

uniform on the `2-ball of radius
√
n.

Similar to the gradient-free oracle in [25], at each time k,
the pseudo-gradient operator (3) estimates the gradient in a
random direction ξi2,k with a parameter β2,k, but the function
difference is taken at a perturbed point xik + β1,kξ

i
1,k instead

of xik, where the amount of perturbation is determined by the
parameter β1,k and the random variable ξi1,k. As compared
to the gradient-free oracle where the function difference is
evaluated at xik which may not be differentiable for non-
smooth problems, the extra perturbation step in pseudo-
gradient operator allows the function difference to be evaluated
at a point which is less likely to be non-smooth. In fact, we can
define a smoothed function of fi(x) based on the convolution
of this perturbation, given by [34],

fi,β1,k
(x) = E[f(x + β1,kξ

i
1,k)]

=

∫
Rn

fi(x + β1,kξ
i
1,k)dµ(ξi1,k),

with the random variable ξi1,k ∈ Rn having density µ with
respect to Lebesgue measure. β1,k is a positive non-increasing
sequence.

In fact, algorithms (2a) and (2b) can be written into an
equivalent form

zik+1 =

2N∑
j=1

[A]ijz
j
k + gik, (5)

where gik, i ∈ {1, . . . , 2N} is an augmented pseudo-gradient
defined by gik = xik+1 −

∑N
j=1[Ar]ijx

j
k − εyik for i ∈

{1, . . . , N}, gik = 0n for i ∈ {N + 1, . . . , 2N}; matrix
A ∈ R2N×2N is an augmented weighting matrix defined by
A = [ Ar εI

I−Ar Ac−εI ]; and decision variable zik, i ∈ {1, . . . , 2N}
is defined by zik = xik for i ∈ {1, . . . , N}, zik = yi−Nk for
i ∈ {N + 1, . . . , 2N}.

IV. CONVERGENCE ANALYSIS

In this section, the detailed convergence analysis of our
proposed algorithm is provided. We first introduce some
auxiliary lemmas in Subsection IV-A, followed by the main
results in Subsection IV-B.

A. Auxiliary Lemmas

In this part, we introduce some auxiliary results, which will
be helpful in the analysis of the main theorems. We denote
the σ-field generated by the entire history of the random
variables from step 0 to k − 1 by Fk, i.e., Fk = {(xi0, i ∈
V); (ξi1,s, ξ

i
2,s, i ∈ V); 0 ≤ s ≤ k− 1} with F0 = {xi0, i ∈ V}.

The following lemma summarizes some properties of func-
tion fi,β1,k

(x) and the pseudo-gradient gi(xik).
Lemma 1: (see [34]) Suppose Assumptions 2 and 3 hold.

Then, for each i ∈ V , the following properties of the function
fi,β1,k

(x) are satisfied:
1) fi,β1,k

(x) is convex and differentiable, and it satisfies

fi(x) ≤ fi,β1,k
(x) ≤ fi(x) + β1,kD̂

√
n+ 2,

2) the pseudo-gradient gi(xik) satisfies

E[gi(xik)|Fk] = ∇fi,β1,k
(xik) + β̃kD̂v,

3) there is a universal constant Q such that

E[‖gi(xik)‖|Fk] ≤
√
E[‖gi(xik)‖2|Fk] ≤ QTk,

where β1,k and β̃k are defined in (4), v ∈ Rn is a vector sat-

isfying ‖v‖ ≤ n
√

3n/2, and Tk = D̂

√
n
[
n

√
β̃k + 1 + lnn

]
.

If β̃k is bounded, then Tk is bounded. In this case, we denote
the upper bound of QTk by K1.

Following the results in [33], [37], we have the following
lemma on the convergence of the augmented weighting matrix
A in (5).

Lemma 2: Suppose Assumption 1 holds. Let ε be the
constant in the augmented weighting matrix A in (5) such that
ε ∈ (0, ε̄) with ε̄ = ( 1−|λ3|

20+8N )N , where λ3 is the third largest
eigenvalue of matrix A with ε = 0. Then ∀i, j ∈ {1, . . . , 2N},
the entries [Ak]ij converge to their limits as k → ∞ at a
geometric rate, i.e.,∥∥∥∥∥Ak −

[
1N1T

N

N
1N1T

N

N
0N×N 0N×N

]∥∥∥∥∥
∞

≤ Γγk, k ≥ 1,

where Γ > 0 and

γ = max{|λ3|+ (20 + 8N)ε
1
N , |λ2(ε)|} ∈ (0, 1)

are some constants, and λ2(ε) is the eigenvalue of the weight-
ing matrix A corresponding to the second largest eigenvalue
λ2 of matrix A with ε = 0.
Proof. The first part of the result follows directly from the
proof of Lemma 1 in [37], where constant γ is determined
by the magnitude of the second largest eigenvalue of matrix
A. Next we aim to characterize the second largest eigenvalue
of matrix A. To do so, we denote A by A(ε) to represent
the dependency of A on parameter ε. Then, matrix A(ε)
can be viewed as matrix A(0) with some perturbations on
ε, where matrix A(0) is matrix A(ε) by setting ε = 0.
Denote the eigenvalues of matrix A(0) by λ1, λ2,...,λ2N with
|λ1| ≥ · · · ≥ |λ2N |. From the proof of Theorem 4 in [33],
it holds that 1 = λ1 = λ2 > |λ3| ≥ · · · ≥ |λ2N |. After
perturbation, we denote by λi(ε) the eigenvalues of matrix
A(ε) corresponding to λi, i = {1, . . . , N}. It should be
noted that the eigenvalues of the perturbed matrix A(ε) do
not necesssarily satisfy |λ1(ε)| ≥ · · · ≥ |λ2N (ε)| given that
|λ1| ≥ · · · ≥ |λ2N |. From Lemmas 10 and 11 in [33], when
ε ∈ (0, ε̄), we have the following inequality characterizing the
distance between the corresponding eigenvalues λi(ε) and λi,
i = {1, . . . , N}

|λi(ε)− λi| < 4(4 + 2N + ε)ε
1
N < (20 + 8N)ε

1
N ,

which gives |λi(ε)| < |λi| + (20 + 8N)ε
1
N . Hence, for

i = {3, . . . , N}, the above inequality yields |λi(ε)| < |λ3| +
(20 + 8N)ε

1
N < 1 since |λ3| ≥ · · · ≥ |λ2N | and ε ∈ (0, ε̄).

Moreover, from the proof of Theorem 4 and Lemma 12 in
[33], when ε ∈ (0, ε̄), we have λ1(ε) = 1 and |λ2(ε)| < 1.
Hence γ can be selected as max{|λ3|+(20+8N)ε

1
N , |λ2(ε)|},

which completes the proof. �



Remark 1: The work in [42] has proposed solutions on
the design of the weighting matrix to guarantee the fastest
averaging speed when the weighting matrix is symmetric and
doubly-stochastic. For the weighting matrix A in this work,
Lemma 2 shows that the averaging speed depends on constant
γ. From the proof of Lemma 2, we can infer the effects of
parameter ε, the communication topology, and the number of
agents N on constant γ. For the effect of parameter ε, noting
that |λ2(ε)| = 1 when ε = 0 and |λ3|+(20+8N)ε

1
N = 1 when

ε = ε̄, hence γ is dominant by |λ2(ε)| when ε is small, and
then dominant by |λ3|+ (20 + 8N)ε

1
N when ε is large. That

implies there is an optimal value of ε such that γ is minimized
(when |λ2(ε)| = |λ3| + (20 + 8N)ε

1
N ). For the effect of the

communication topology, suppose ε is set at the optimal value,
then a graph with a smaller |λ3| leads to a smaller γ. For the
effect of the number of agents N , since |λ3|+ (20 + 8N)ε

1
N

is smaller for a smaller N , hence γ is smaller for a smaller
number of agents.

Define z̄k = 1
N

∑2N
i=1 z

i
k = 1

N

∑N
i=1 x

i
k + 1

N

∑N
i=1 y

i
k,

which is an average of xik +yik over all agents at time-step k;
and

ẑk =

∑k
`=0 α`z̄`∑k
`=0 α`

, (6)

which is an average of z̄ weighted by the step-size sequence α`
over time duration k. Then, we can quantify the bounds of the
terms xik− z̄k and yik−0n as shown in the following lemma.
For easy representation, we denote the aggregated norm of the
augmented pseudo-gradient

∑N
j=1 ‖g

j
k‖ by Gk in the rest of

the paper.
Lemma 3: Suppose Assumptions 1, 2 and 3 hold. Let ε

be the constant such that ε ∈ (0, ε̄), where ε̄ is defined
in Lemma 2. Let {xik}k≥0 and {yik}k≥0 be the sequences
generated by (2a) and (2b), respectively. Then, it holds that
for k ≥ 1

1) ‖xik − z̄k‖ ≤ 2NςΓγk + Γ

k−1∑
r=1

γk−rGr−1 + Gk−1;

2) ‖yik‖ ≤ 2NςΓγk + Γ

k−1∑
r=1

γk−rGr−1,

where ς = max{‖xi0‖, ‖yi0‖, i ∈ V}, Γ and γ are the constants
defined in Lemma 2.
Proof. For k ≥ 1, we have

zik =

2N∑
j=1

[Ak]ijz
j
0 +

k−1∑
r=1

2N∑
j=1

[Ak−r]ijg
j
r−1 + gik−1. (7)

by applying (5) recursively. Then we can obtain that

z̄k =
1

N

2N∑
j=1

zj0 +
1

N

k−1∑
r=1

2N∑
j=1

gjr−1 +
1

N

2N∑
j=1

gjk−1, (8)

where we used column stochastic property of A.
For part (1), subtracting (8) from (7) and taking the norm,

we have that for 1 ≤ i ≤ N and k ≥ 1,

‖zik − z̄k‖ ≤
2N∑
j=1

∣∣∣∣[Ak]ij −
1

N

∣∣∣∣ς +

k−1∑
r=1

N∑
j=1

∣∣∣∣[Ak−r]ij

− 1

N

∣∣∣∣‖gjr−1‖+
N − 1

N
‖gik−1‖+

1

N

∑
j 6=i

‖gjk−1‖. (9)

Noting that N−1
N ‖g

i
k−1‖ + 1

N

∑
j 6=i ‖g

j
k−1‖ ≤ Gk−1, and

applying the property of [Ak]ij from Lemma 2 to (9), we
complete the proof of part (1).

For part (2), taking the norm in (7) for N+1 ≤ i ≤ 2N and
k > 1, and applying the property of [Ak]ij from Lemma 2,
we complete the proof of part (2). �

It can be seen from Lemma 3 that the bound for the
consensus terms is a function of the aggregated norm of the
augmented pseudo-gradient term Gk. Hence, in the following
lemma, we provide some properties on this term Gk.

Lemma 4: Suppose Assumptions 1, 2 and 3 hold. Let ε be
the constant such that 0 < ε < min(ε̄, 1−γ

2
√

3NΓγ
), where ε̄, Γ

and γ are the constants defined in Lemma 2. Let β̃k defined
in (4) be bounded. Then, for any K ≥ 1, the aggregated norm
of the augmented pseudo-gradient term Gk satisfies that

1)
K∑
k=1

αkE[Gk] ≤ Φ1

K∑
k=1

α2
k + Ψ1,

2)
K∑
k=1

E[G2
k] ≤ Φ2

K∑
k=1

α2
k + Ψ2,

3)
K∑
k=1

N∑
i=1

αkE[‖gi(xik)‖Gk] ≤ Φ3

K∑
k=1

α2
k + Ψ3,

where Φ1, Ψ1, Φ2, Ψ2, Φ3 and Ψ3 are positive bounded
constants, and αk > 0 is a non-increasing step-size.
Proof. See Appendix A. �

In addition, we will frequently utilize the Stolz-Cesaro
Theorem [43] to facilitate the analysis, which is quoted below
for completeness.

Lemma 5: (Stolz-Cesaro Theorem) If {bk}k≥1 is a sequence
of positive real numbers, such that

∑∞
k=1 bk = ∞, then for

any sequence {ak}k≥1 one has the inequality:

lim inf
k→∞

ak
bk
≤ lim inf

k→∞

a1 + a2 + · · ·+ ak
b1 + b2 + · · ·+ bk

≤ lim sup
k→∞

a1 + a2 + · · ·+ ak
b1 + b2 + · · ·+ bk

≤ lim sup
k→∞

ak
bk
.

In particular, if the sequence {ak/bk}k≥1 has a limit, then

lim
k→∞

a1 + a2 + · · ·+ ak
b1 + b2 + · · ·+ bk

= lim
k→∞

ak
bk
.

With the above lemmas, we are able to establish a one-
step iteration and a consensus result under only non-summable
step-size condition.

Proposition 1: Suppose Assumptions 1, 2 and 3 hold. Let
{xik}k≥0, {yik}k≥0 and {x̂ik}k≥0 be the sequences generated
by (2) with a non-increasing step-size sequence {αk}k≥0

satisfying
∞∑
k=0

αk =∞, lim
k→∞

αk = α∞.

Let ε be the constant such that 0 < ε < min(ε̄, 1−γ
2
√

3NΓγ
),

where ε̄, Γ and γ are the constants defined in Lemma 2. Let
β̃k defined in (4) be bounded. Then



(1) x̂ik holds that

E[‖x̂ik − ẑk‖] ≤
∑k
`=0 α

2
`∑k

`=0 α`

[
NςΓ + Φ1

(
1 +

Γγ

1− γ

)]
+

1∑k
`=0 α`

[
B0 +

NςΓγ2

1− γ2
+ Ψ1

(
1 +

Γγ

1− γ

)]
,

where B0 = maxi α0‖xi0− z̄0‖, Φ1 > 0,Ψ1 > 0 are constants
defined in Lemma 4, and ẑk is defined in (6).

(2) for any z? ∈ X ?, the following relation holds

E[‖z̄k+1 − z?‖2|Fk] ≤ ‖z̄k − z?‖2

− 2αk
N

(f(z̄k)− f?) + Zk,

where

Zk = 2αkβ1,kD̂
√
n+ 2 + 4Nς(3K1 + β̄K2)Γγkαk

+ 2K2

(
2N(2N + ε)ςΓγ

1− γ
+ max

i∈V
‖xi0 − z?‖+B1

)
αkβ̃k

+ 2K2

(
(2N + ε)Γγ

1− γ
+ 2N

)
αkβ̃k

k−1∑
r=1

Gr−1

+
2K2

N
αkβ̃k

k−1∑
r=0

αr

N∑
i=1

‖gi(xir)‖

+ 2(3K1 + β̄K2)Γαk

k∑
r=1

γk−r+1Gr−1

+ 2(2K1 + β̄K2)αkGk−1 + 4ςΓγk+1E[Gk|Fk]

+
2Γ

N

k∑
r=1

γk−r+1E[Gk|Fk]Gr−1

+
4αk
N

N∑
i=1

E[‖gi(xik)‖Gk|Fk] +
5

N
E[G2

k|Fk],

B1 = maxi∈V ε‖yi0‖+ 2
∑N
i=1 ‖xi0 − z̄0‖, and β̄ is the upper

bound of β̃k.
Proof. For part (1), by the definitions of x̂ik and ẑk, we know
that ‖x̂ik− ẑk‖ ≤

∑k
`=0 α`‖xi

`−z̄`‖∑k
`=0 α`

. Taking the total expectation
and applying Lemma 3-1), we obtain that for k ≥ 1

E[‖x̂ik − ẑk‖] ≤
B0 +

∑k
`=1 α`E[‖xi` − z̄`‖]∑k

`=0 α`

≤ 1∑k
`=0 α`

(
B0 + 2NςΓ

k∑
`=1

γ`α`

+ Γ

k∑
`=1

α`

`−1∑
r=1

γ`−rE[Gr−1] +

k∑
`=1

α`E[G`−1]

)
,

where B0 = maxi α0‖xi0 − z̄0‖ is bounded. Since αk is non-
increasing, it follows from Lemma 4 that

k∑
`=1

α`γ
` ≤ 1

2

k∑
`=1

α2
` +

γ2

2(1− γ2)
,

Γ

k∑
`=1

α`

`−1∑
r=1

γ`−rE[Gr−1] ≤ Γ

k∑
`=1

`−1∑
r=1

γ`−rαr−1E[Gr−1]

≤ Γγ

1− γ

k∑
`=1

α`E[G`] ≤
Φ1Γγ

1− γ

k∑
`=1

α2
` +

Ψ1Γγ

1− γ
,

k∑
`=1

α`E[G`−1] ≤
k∑
`=0

α`E[G`] ≤ Φ1

k∑
`=0

α2
` + Ψ1. (10)

Substituting (10) to the preceding relation completes the proof
of part (1).

For part (2), considering (5), and the fact that A is column-
stochastic, we have z̄k+1 = z̄k + 1

N

∑N
i=1 g

i
k. Then, for any

z? ∈ X ?, it follows that

‖z̄k+1 − z?‖2 ≤ ‖z̄k − z?‖2 +
G2
k

N2
+

2

N

N∑
i=1

〈gik, z̄k − z?〉

= ‖z̄k − z?‖2 +
G2
k

N2
(11a)

+
2

N

N∑
i=1

(gik + αkg
i(xik)), z̄k − z?〉 (11b)

− 2αk
N

N∑
i=1

〈gi(xik), z̄k − z?〉. (11c)

For the second term in (11a), we have that E[
G2

k

N2 |Fk] ≤
1
NE[G2

k|Fk].
For term (11b), it can be expanded as

N∑
i=1

〈gik + αkg
i(xik), z̄k − z?〉

=

N∑
i=1

〈gik + αkg
i(xik), z̄k − z̄k+1〉 (12a)

+

N∑
i=1

〈gik + αkg
i(xik), z̄k+1 − xik+1〉 (12b)

+

N∑
i=1

〈gik + αkg
i(xik),xik+1 − z?〉. (12c)

For (12a), we have
N∑
i=1

E[〈gik + αkg
i(xik), z̄k − z̄k+1〉|Fk]

≤ 1

N
E[G2

k|Fk] +
αk
N

N∑
i=1

E[‖gi(xik)‖Gk|Fk]

≤ E[G2
k|Fk] + αk

N∑
i=1

E[‖gi(xik)‖Gk|Fk]. (13)

For (12b), we have
∑N
i=1〈gik + αkg

i(xik), z̄k+1 −
xik+1〉 ≤ (Gk + αk

∑N
i=1 ‖gi(xik)‖)(2NςΓγk+1 +

Γ
∑k
r=1 γ

k−r+1Gr−1 + Gk), where Lemma 3-(1) was
substituted. Hence, we obtain

N∑
i=1

E[〈gik + αkg
i(xik), z̄k+1 − xik+1〉|Fk]

≤ 2N2ςK1Γγk+1αk + 2NςΓγk+1E[Gk|Fk]

+NK1Γαk

k∑
r=1

γk−r+1Gr−1



+ Γ

k∑
r=1

γk−r+1E[Gk|Fk]Gr−1

+ αk

N∑
i=1

E[‖gi(xik)‖Gk|Fk] + E[G2
k|Fk]. (14)

For (12c), it follows from [13, Lemma 1-(a)] that

〈gik + αkg
i(xik),xik+1 − z?〉 ≤ 0. (15)

Thus, taking the conditional expectation on Fk in (12) and
substituting (13), (14) and (15), we obtain

N∑
i=1

E[〈gik + αkg
i(xik), z̄k − z?〉|Fk]

≤ 2N2ςK1Γγk+1αk + 2NςΓγk+1E[Gk|Fk]

+NK1Γαk

k∑
r=1

γk−r+1Gr−1

+ Γ

k∑
r=1

γk−r+1E[Gk|Fk]Gr−1

+ 2αk

N∑
i=1

E[‖gi(xik)‖Gk|Fk] + 2E[G2
k|Fk]. (16)

For (11c), from Lemma 1-(2),
∑N
i=1 E[〈gi(xik), z̄k −

z?〉|Fk] =
∑N
i=1〈∇fi,β1,k

(xik) + β̃kD̂v, z̄k − z?〉. Denote
D̂‖v‖ by K2, we have

〈∇fi,β1,k
(xik) + β̃kD̂v, z̄k − z?〉

= 〈∇fi,β1,k
(xik) + β̃kD̂v, z̄k − xik〉

+ 〈∇fi,β1,k
(xik) + β̃kD̂v,xik − z?〉

≥ −‖∇fi,β1,k
(xik)‖‖xik − z̄k‖ − β̃kK2‖xik − z̄k‖

+ fi,β1,k
(xik)− fi,β1,k

(z?)− β̃kK2‖xik − z?‖
≥ fi,β1,k

(z̄k)− fi,β1,k
(z?)− β̃kK2‖xik − z?‖

− (2K1 + β̃kK2)‖xik − z̄k‖
≥ fi(z̄k)− fi(z?)− β1,kD̂

√
n+ 2− β̃kK2‖xik

− z?‖ − (2K1 + β̃kK2)‖xik − z̄k‖. (17)

Considering the term ‖xik − z?‖, it follows that ‖xik − z?‖ ≤∑N
j=1[Ar]ij‖xjk−1 − z?‖ + ε‖yik−1‖ + αk−1‖gi(xik−1)‖ ≤∑N
j=1[Ar]ij‖xik−1 − z?‖ + ε‖yik−1‖ + αk−1‖gi(xik−1)‖ +∑N
j=1[Ar]ij‖xik−1 − xjk−1‖ ≤ ‖xik−1 − z?‖ + ε‖yik−1‖ +

αk−1‖gi(xik−1)‖+ 2
∑N
i=1 ‖xik−1 − z̄k−1‖.

Applying the above relation recursively yields ‖xik −
z?‖ ≤ ‖xi0 − z?‖ + ε

∑k−1
τ=0 ‖yiτ‖ +

∑k−1
τ=0 ατ‖gi(xiτ )‖ +

2
∑k−1
τ=0

∑N
i=1 ‖xiτ − z̄τ‖.

Thus, substituting the above result to (17) gives
〈∇fi,β1,k

(xik) + β̃kD̂v, z̄k − z?〉 ≥ fi(z̄k) − fi(z
?) −

β̃kK2(‖xi0 − z?‖ + ε
∑k−1
τ=0 ‖yiτ‖ +

∑k−1
τ=0 ατ‖gi(xiτ )‖ +

2
∑k−1
τ=0

∑N
i=1 ‖xiτ − z̄τ‖) − (2K1 + β̃kK2)‖xik − z̄k‖ −

β1,kD̂
√
n+ 2. Applying Lemma 3 and noting that β̃k is

bounded (where its upper bound is denoted by β̄), we obtain
that

2αk
N

N∑
i=1

E[〈gi(xik), z̄k − z?〉|Fk] ≥ 2αk
N

(f(z̄k)− f?)

− 2αkβ1,kD̂
√
n+ 2− 2K2

(
2N(2N + ε)ςΓγ

1− γ

+ max
i∈V
‖xi0 − z?‖+B1

)
αkβ̃k

− 2K2

(
(2N + ε)Γγ

1− γ
+ 2N

)
αkβ̃k

k−1∑
r=1

Gr−1

− 2K2

N
αkβ̃k

k−1∑
r=0

αr

N∑
i=1

‖gi(xir)‖

− 4Nς(2K1 + β̄K2)Γγkαk − 2(2K1 + β̄K2)αkGk−1

− 2(2K1 + β̄K2)Γαk

k−1∑
r=1

γk−rGr−1, (18)

where B1 = maxi∈V ε‖yi0‖+ 2
∑N
i=1 ‖xi0 − z̄0‖.

Taking the conditional expectation on Fk in (11), and
substituting (16) and (18) gives the result of part (2). �

B. Main Results

In this subsection, we present the main convergence results
of our proposed algorithm, including convergence under non-
summable and square-summable step-size condition (Theo-
rem 1), convergence under non-summable step-size condition
only (Theorem 2), and the convergence rate analysis (Corol-
lary 1).

Our first result demonstrates the standard convergence
results under non-summable and square-summable step-size
condition.

Theorem 1: Suppose Assumptions 1, 2 and 3 hold. Let
{x̂ik}k≥0 be the sequence generated by (2) with a non-
increasing step-size sequence {αk}k≥0 satisfying

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞.

Let ε be the constant such that 0 < ε < min(ε̄, 1−γ
2
√

3NΓγ
),

where Γ and γ are some constants, and ε̄ = ( 1−|λ3|
20+8N )N with

λ3 being the third largest eigenvalue of the weighting matrix
A in (5) by setting ε = 0. Let β1,k and β̃k defined in (4) satisfy∑∞
k=0 β1,kαk <∞ and

∑∞
k=0 β̃k <∞. Then, for ∀i ∈ V , we

have {x̂ik}k≥0 converges a.s. to an optimizer x? ∈ X ?2.
Proof. we proceed to the proof by showing (A) the conver-
gence of x̂ik to xik, (B) the convergence of xik to z̄k, and (C) the
convergence of z̄k to an optimizer x? ∈ X ? under appropriate
conditions.

(A) Convergence of x̂ik to xik:
Suppose {xik}k≥0 converges a.s. to some point x̃, i.e.,

P(limk→∞ xik = x̃) = 1. By definition of x̂ik =
∑k

`=0 α`x
i
`∑k

`=0 α`
in

(2c), it follows from Lemma 5 with ak = αkx
i
k and bk = αk

that P(limk→∞ x̂ik = limk→∞ xik = x̃) = 1. Hence, we obtain
{x̂ik}k≥0 converges a.s. to the same point x̃.

(B) Convergence of xik to z̄k:

2In this paper, ‘a.s.’ is meant for ‘almost surely’. For a sequence of
random vectors {ak}k≥0, we say that ak converges to a almost surely, if
P(limk→∞ ak = a) = 1, i.e, the probability of limk→∞ ak = a is 1.



Squaring both sides of Lemma 3-(1), taking the total expec-
tation, and summing over from k = 1 to infinity, we obtain
∞∑
k=1

E[‖xik − z̄k‖2] ≤ 12N2ς2Γ2γ2

1− γ2
+

(
3Ψ2Γ2γ2

(1− γ)2
+ 3Ψ2

)
+

(
3Φ2Γ2γ2

(1− γ)2
+ 3Φ2

) ∞∑
k=0

α2
k,

where (
∑k−1
r=1 γ

k−rGr−1)2 ≤ γ
1−γ

∑k−1
r=1 γ

k−rG2
r−1,∑∞

k=1

∑k−1
r=1 γ

k−rE[G2
r−1] ≤ γ

1−γ
∑∞
k=0 E[G2

k] and
Lemma 4 have been applied. As the step-size is square-
summable, we obtain

∑∞
k=1 E[‖xik − z̄k‖2] < ∞. By

the monotone convergence theorem, it follows that
E[
∑∞
k=1 ‖xik − z̄k‖2] =

∑∞
k=1 E[‖xik − z̄k‖2] < ∞,

which implies {xik − z̄k}k≥0 converges a.s. to 0.
(C) Convergence of z̄k to an optimizer x? ∈ X ?:
Finally, we will show that {z̄k}k≥0 indeed has a limit, and

converges to an optimizer x? ∈ X ?. The proof of this part
is based on the Robbins-Siegmund’s Lemma [44] as quoted
below for completeness.

Lemma 6: (Robbins-Siegmund’s Lemma) Let uk, vk, wk, ηk
be non-negative random variables satisfying that

E[uk+1|Fk] ≤ (1 + ηk)uk − vk + wk a.s.,
∞∑
k=0

ηk <∞ a.s.,
∞∑
k=0

wk <∞ a.s.,

where E[uk+1|Fk] is the conditional expectation for the given
u0, . . . , uk, v0, . . . , vk, w0, . . . , wk, η0, . . . , ηk. Then

1) {uk}k≥0 converges a.s.;

2)
∞∑
k=0

vk <∞ a.s.

From Proposition 1-(2), we have that for any z? ∈ X ?,
E[‖z̄k+1 − z?‖2|Fk] ≤ ‖z̄k − z?‖2 − 2αk

N (f(z̄k)− f?) + Zk.
To invoke Lemma 6, it suffices to show that

∑∞
k=0 Zk <∞,

a.s.
Now, taking the total expectation for Zk and summing over

from k = 1 to infinity, we have
∞∑
k=1

E[Zk] ≤ 2D̂
√
n+ 2

∞∑
k=1

αkβ1,k + 2α0K2

(
B1

+
2N(2N + ε)ςΓγ

1− γ
+ max

i∈V
‖xi0 − z?‖

) ∞∑
k=0

β̃k

+ 2K2

[
K1 + Φ1

(
(2N + ε)Γγ

1− γ
+ 2N

)] ∞∑
k=0

β̃k

∞∑
k=0

α2
k

+ 2Φ1(2K1 + β̄K2)

∞∑
k=0

α2
k +

5Φ2 + 4Φ3

N

∞∑
k=1

α2
k

+ 2ς(Φ2 + 3NK1 +Nβ̄K2)Γ

∞∑
k=1

α2
k

+ 2

(
Φ1(3K1 + β̄K2) +

Φ2

N

)
Γγ

1− γ

∞∑
k=1

α2
k

+ 2K2Ψ1

(
(2N + ε)Γγ

1− γ
+ 2N

) ∞∑
k=0

β̃k + 2Ψ1(2K1

+ β̄K2) + 2ςΓ

(
(1 + 3NK1 +Nβ̄K2)γ2

1− γ2
+ Ψ2

)
+ 2

(
Ψ1(3K1 + β̄K2) +

Ψ2

N

)
Γγ

1− γ
+

5Ψ2 + 4Ψ3

N
,

where we applied E[E[Gk|Fk]Gr−1] ≤
√

E[G2
k]E[G2

r−1] ≤
1
2 (E[G2

k] + E[G2
r−1]) based on Cauchy-Schwarz inequal-

ity, the results in (10), and
∑∞
k=0 αkβ̃k

∑k−1
r=0 E[Gr] ≤∑∞

k=0 β̃k
∑k−1
r=0 αrE[Gr] ≤

∑∞
k=0 β̃k

∑∞
k=0 αkE[Gk] ≤

Φ1

∑∞
k=0 β̃k

∑∞
k=0 α

2
k + Ψ1

∑∞
k=0 β̃k. Since

∑∞
k=0 β1,kαk <

∞,
∑∞
k=0 β̃k < ∞ and

∑∞
k=0 α

2
k < ∞, by the monotone

convergence theorem, we have E[
∑∞
k=1 Zk] =

∑∞
k=1 E[Zk] <

∞, which proves that
∑∞
k=1 Zk <∞ a.s.

Invoking Lemma 6, we obtain that

∀z? ∈ X ?, {‖z̄k − z?‖2}k≥0 converges a.s. (19a)
∞∑
k=0

αk(f(z̄k)− f?) <∞ a.s. (19b)

Since f(z̄k) − f? ≥ 0, and the step-size is non-summable,
it follows from (19b) that lim infk→∞ f(z̄k) = f? a.s. Let
{z̄k1}k1≥0 be a subsequence of {z̄k}k≥0 such that

lim
k1→∞

f(z̄k1) = lim inf
k→∞

f(z̄k) = f? a.s. (20)

From (19a), the sequence {z̄k}k≥0 is bounded a.s. Without
loss of generality, we may assume that {z̄k1}k1≥0 converges
a.s. to some x? (if not, we may choose one such subsequence).
Due to the continuity of f , we have f(z̄k1) converges to
f(x?) a.s., which by (20) implies that f(x?) = f?, i.e.,
x? ∈ X ?. Then we let z? = x? in (19a) and consider
the sequence {‖z̄k − x?‖2}k≥0. It converges a.s., and its
subsequence {‖z̄k1 − x?‖2}k≥0 converges a.s. to 0. Thus, we
have {z̄k}k≥0 converges a.s. to x?.

Therefore, combining the arguments of (A), (B) and (C),
we complete the proof of Theorem 1. �

Our second result removes the square-summable step-size
condition, and shows the convergence of E[f(x̂ik)] to the
optimal value.

Theorem 2: Suppose Assumptions 1, 2 and 3 hold. Let
{x̂ik}k≥0 be the sequence generated by (2) with a non-
increasing step-size sequence {αk}k≥0 satisfying

∞∑
k=0

αk =∞, lim
k→∞

αk = α∞.

Let ε be the constant such that 0 < ε < min(ε̄, 1−γ
2
√

3NΓγ
),

where Γ and γ are some constants, and ε̄ = ( 1−|λ3|
20+8N )N with

λ3 being the third largest eigenvalue of the weighting matrix
A in (5) by setting ε = 0. Let β1,k and β̃k defined in (4)
satisfy limk→∞ β1,k = 0 and

∑∞
k=0 β̃k < ∞. Then, for any

z? ∈ X ?, we have

lim sup
k→∞

E[f(x̂ik)]− f? ≤ α∞
∞∑
k=0

β̃kNK2

[
K1

+ Φ1

(
(2N + ε)Γγ

1− γ
+ 2N

)]
+ α∞

[
2.5Φ2 + 2Φ3

+
(NΦ1(3K1 + β̄K2) + Φ2 + D̂Φ1)Γγ

1− γ
+ D̂Φ1



+Nς(Φ2 +N(3K1 + β̄K2) + D̂)Γ

]
,

where f? is the optimal value of the problem, i.e., f? =
minz?∈X? f(z?), K1, K2, Φ1, Φ2, Φ3, Γ and γ are pos-
itive constants, β̄ is the upper bound of β̃k, and ς =
max{‖xi0‖, ‖yi0‖, i ∈ V}.
Proof. Taking the total expection for the result in Proposi-
tion 1-(2) and re-arranging the terms, we have αk(E[f(z̄k)]−
f?) ≤ N

2 (E[‖z̄k − z?‖2] − E[‖z̄k+1 − z?‖2|]) + N
2 E[Zk].

Summing over from k = 0 to t− 1, we have
t−1∑
k=0

αk(E[f(z̄k)]− f?) ≤ N

2

t−1∑
k=0

E[Zk] +
N

2
‖z̄0 − z?‖2

≤ ND̂
√
n+ 2

t−1∑
k=0

αkβ1,k +NK2

(
2N(2N + ε)ςΓγ

1− γ

+ max
i∈V
‖xi0 − z?‖+B1

) t−1∑
k=0

αkβ̃k +NK2

[
K1

+ Φ1

(
(2N + ε)Γγ

1− γ
+ 2N

)] t−1∑
k=0

β̃k

t−1∑
k=0

α2
k

+

[
(NΦ1(3K1 + β̄K2) + Φ2)Γγ

1− γ
+ 2.5Φ2 + 2Φ3

+Nς(Φ2 +N(3K1 + β̄K2))Γ

] t−1∑
k=0

α2
k

+NK2Ψ1

(
(2N + ε)Γγ

1− γ
+ 2N

) ∞∑
k=0

β̃k

+NςΓ

(
(1 + 3NK1 +Nβ̄K2)γ2

1− γ2
+ Ψ2

)
+

(NΨ1(3K1 + β̄K2) + Ψ2)Γγ

1− γ
+
N

2
‖z̄0 − z?‖2

+NΨ1(2K1 + β̄K2) + 2.5Ψ2 + 2Ψ3. (21)

Dividing both sides of (21) by
∑t−1
k=0 αk and taking the

limit superior as t → ∞, it follows from Jensen’s inequal-
ity that E[f(ẑt)] ≤

∑t−1
k=0 αkE[f(z̄k)]∑t−1

k=0 αk
, and Lemma 5 that∑∞

k=0 αkβ1,k∑∞
k=0 αk

= limk→∞ β1,k = 0,
∑∞

k=0 α
2
k∑∞

k=0 αk
= α∞, we

obtain lim supk→∞ E[f(ẑk)]− f? ≤ α∞
∑∞
k=0 β̃kNK2[K1 +

Φ1( (2N+ε)Γγ
1−γ + 2N)] +α∞[ (NΦ1(3K1+β̄K2)+Φ2)Γγ

1−γ + 2.5Φ2 +

2Φ3 +Nς(Φ2 +N(3K1 + β̄K2))Γ].
It follows from Assumption 2 and Proposition 1-(1) that

lim supk→∞(E[f(x̂ik)]−E[f(ẑk)]) ≤ D̂ lim supk→∞ E[‖x̂ik−
ẑk‖] ≤ D̂(NςΓ + Φ1 + Φ1Γγ

1−γ )α∞. The desired result follows
by combining the preceding two relations. �

Remark 2: Theorem 2 shows that the cost value of the multi-
agent system will finally converge to a neighborhood of its
optimal value with an error bounded by some terms, which
are dependent on the step-size αk and parameters β1,k, β2,k.
Appropriate choice of the step-size and parameters will lead
to the exact convergence to the optimal value. In particular, if
the step-size αk is set to 1/(k + 1)a, where a ∈ (0, 1); the
parameters β1,k, β2,k are set to 1/(k + 1)p1 and 1/(k + 1)p2 ,
respectively, where p1 > 0 and p2 − p1 > 1; then α∞ = 0
and

∑∞
k=0 β̃k < ∞, which means all the error terms will

converge to 0. On the other hand, Theorem 2 only proves
the convergence of E[f(x̂ik)], but cannot state anything about
the convergence of the sequence x̂ik, for i ∈ V . We remark
that achieving the exact convergence to the optimal value
(i.e., f(x̂ik) → f?) is theoretically weaker than the exact
convergence to an optimal solution (i.e., x̂ik → x?). The exact
convergence of the sequence x̂ik to the optimal solution can be
guaranteed based on the square-summable step-size condition,
by using the Robbins-Siegmund’s Lemma [44], see the proof
of Theorem 1.

In the following corollary, we characterize the convergence
rate of the proposed algorithm for both a diminishing step-size
of αk = α√

k+2
and a constant step-size of αk = α√

t+2
if the

number of iterations t is known in advance.
Corollary 1: Suppose Assumptions 1, 2 and 3 hold. Let
{x̂ik}k≥0 be the sequence generated by (2) with a step-size
sequence αk. Let ε be the constant such that 0 < ε <
min(ε̄, 1−γ

2
√

3NΓγ
), where Γ and γ are some constants, and

ε̄ = ( 1−|λ3|
20+8N )N with λ3 being the third largest eigenvalue

of the weighting matrix A in (5) by setting ε = 0. Let
the parameters β1,k, β2,k be set to 1

(k+2)p1 and 1
(k+2)p2 ,

respectively, where p1 > 1 and p = p2 − p1 > 1. Then
1) if the step-size αk = α√

k+2
, k = 0, . . . , t− 1, we have

E[f(x̂it)]− f? ≤ O(ln t/
√
t),

2) if the step-size αk = α√
t+2

, k = 0, . . . , t− 1, we have

E[f(x̂it)]− f? ≤ O(1/
√
t).

Proof. Following the proof of Theorem 2, we can obtain that

E[f(x̂it)]− f?

≤ 1∑t−1
k=0 αk

[
C0 + C1

t−1∑
k=0

α2
k + C2

t−1∑
k=0

αkβ1,k

+ C3

t−1∑
k=0

αkβ̃k + C4

( t−1∑
k=0

α2
k

)( t−1∑
k=0

β̃k

)]
,

where C0, C1, C2, C3 and C4 some constants.
For (1), αk = α√

k+2
, k = 0, . . . , t− 1, we have

E[f(x̂it)]− f? ≤
C0

2α[
√
t+ 2−

√
2]

+
αC1 ln (t+ 1)

2(
√
t+ 2−

√
2)

+
C2(1− 1

(t+1)p1−0.5 )

[
√
t+ 2−

√
2](2p1 − 1)

+
C3(1− 1

(t+1)p−0.5 )

[
√
t+ 2−

√
2](2p− 1)

+
αC4 ln (t+ 1)(1− 1

(t+1)p−1 )

2(
√
t+ 2−

√
2)(p− 1)

= O(1/
√
t) +O(ln t/

√
t) = O(ln t/

√
t).

Likewise for (2), αk = α√
t+2

, k = 0, . . . , t− 1, we have

E[f(x̂it)]− f? ≤
C0

√
t+ 2

tα
+

αC1√
t+ 2

+
C2(1− 1

(t+1)p1−1 )

t(p1 − 1)
+
C3(1− 1

(t+1)p−1 )

t(p− 1)

+
αC4(1− 1

(t+1)p−1 )
√
t+ 2(p− 1)



Fig. 1. Communication topology.

= O(1/
√
t) +O(1/t) = O(1/

√
t).

which gives the desired convergence rate results. �

V. NUMERICAL SIMULATION

In this section, we investigate the performance of the pro-
posed algorithm through a numerical example. In particular,
we consider a non-smooth test problem in a multi-agent system
with N agents originated from [25]:

min f(x) =

N∑
i=1

(
li|x1−1|+

n−1∑
d=1

|1+xd+1−2xd|2
)
,x ∈ X ,

where x = [x1, . . . , xn]> ∈ X ⊆ Rn, li, i = 1, 2, . . . , N is a
positive constant.

In the simulation, the performance of the proposed algo-
rithm is investigated from the following perspectives: the step-
size and parameters selections, and comparison with both
state-of-the-art gradient-free algorithm and gradient-based al-
gorithm. Throughout the simulation, we let [Ar]ij = 1/|N in

i |
and [Ac]ij = 1/|N out

j |, where |N | denotes the number of
elements in N . li is randomly set in [0.5, 1.5].

A. Influence of Step-Size αk and Parameters β1,k, β2,k

In this part, we set the dimension of the problem n = 1,
the number of agents N = 10 under the directed graph G
shown in Fig. 1. Then, we investigated the performance of
the algorithm for the cases of different step-size αk and two
positive parameter sequences β1,k, β2,k, respectively.

To test the influence of the step-size on the convergence, we
set the step-size αk = 0.1/(1 +k)a, where a = 0, 0.2, 0.5, 0.7
and 1. It should be noted that the step-size αk is not square-
summable for a = 0, 0.2, 0.5. Two positive sequences were
set to β1,k = 1/(1 + k)1.5 and β2,k = 1/(1 + k)2.5. The
convergence result was shown in Fig. 2. As can be seen, both
the optimality gap decreases for diminishing step-sizes, which
is consistent with our findings in Theorem 2. Moreover, it
can be observed that faster convergence result is attained with
slower diminishing step-size (i.e., smaller a), but larger errors
(oscillations in the plot) are incurred.

To test the influence of the two positive parameter sequences
on the convergence, we set β1,k = 1/(1 + k)1.5, β̃k =
β2,k/β1,k = 1/(1 + k)b, where b = 1, 3, 5, 7 and 9. The step-
size αk was set to 0.1/

√
k + 1. The convergence result under

these five cases was plotted in Fig. 3. As can be seen, typical b
values (ranging from 1 to 3) do not have much influence on the
convergence rate. However, it can also be observed that when
b is increasing, the convergence performance is downgraded.
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Fig. 2. Influence of step-size αk on the convergence property.
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B. Comparison with the State-Of-The-Art Algorithms

In this part, we compared our proposed method with the
state-of-the-art algorithms, including the randomized gradient-
free push-sum protocol (RGF-Push) proposed in [29] using
diminishing smoothing parameter and a subgradient-based
method (D-DPS) proposed in [37]. All these three methods
can work for directed graphs. We set the dimension of the
problem n = 2, the number of agents N = 10 under
the directed graph G shown in Fig. 1. The step-size was
set to αk = 0.1/(k + 1)0.5. The convergence results of all
three methods were shown in Fig. 4. As can be seen, our
proposed method shows a similar performance to the RGF-
Push protocol, where both methods exhibit a theoretical con-
vergence rate of ln k/

√
k. The gradient-based algorithm (D-

DPS) outperforms the two gradient-free methods as expected
due to the use of the true gradient information.

VI. CONCLUSIONS

This paper has considered a set constrained distributed opti-
mization problem with possibly non-smooth cost functions. A
distributed projected pseudo-gradient descent algorithm with
an optimal averaging scheme has been proposed to solve the
problem. The proposed algorithm has been shown to achieve



the exact convergence to the optimal value with any positive,
non-summable and non-increasing step-size sequence. When
the step-size is also square-summable, the exact convergence
to an optimal solution has been guaranteed. Theoretical anal-
ysis on the convergence rate of the proposed algorithm has
also been provided. To illustrate its performance, the pro-
posed algorithm has been tested in a non-smooth problem.
The convergence properties have been investigated, and the
effectiveness has been verified by comparing with the state-
of-the-art algorithms.

APPENDIX

A. Proof of Lemma 4

For part (1), by definition of gik in (5) ‖gik‖ ≤ ‖εyik‖ +

‖xik+1 −
∑N
j=1[Ar]ijx

j
k‖ ≤ ε‖yik‖ + ‖εyik − αkg

i(xik)‖ ≤
2ε‖yik‖ + αk‖gi(xik)‖, where the second inequality follows
from the projection’s nonexpansive property. Summing over
i = 1, . . . , N , and applying Lemma 3-(2),

Gk ≤ 4N2ςεΓγk

+ αk

N∑
i=1

‖gi(xik)‖+ 2NεΓ

k−1∑
r=1

γk−rGr−1. (22)

Multiplying both sides by αk, summing over from k =
1 to K, and noting that

∑K
k=1 αk

∑k−1
r=1 γ

k−rGr−1 ≤∑K
k=1

∑k−1
r=1 γ

k−rαrGr−1 ≤ γ
1−γ

∑K
k=1 αkGk, we obtain

K∑
k=1

αkGk ≤ 2N2ςεΓ

K∑
k=1

γ2k + 2N2ςεΓ

K∑
k=1

α2
k

+

K∑
k=1

α2
k

N∑
i=1

‖gi(xik)‖+
2NεΓγ

1− γ

K∑
k=1

αkGk,

Taking the total expectation and invoking Lemma 1-
(3), we have

∑K
k=1 αkE[Gk] ≤ 2N2ςεΓ

∑K
k=1 γ

2k +

NK1

∑K
k=1 α

2
k + 2NεΓγ

1−γ
∑K
k=1 αkE[Gk]. Re-arranging the

term and noticing that ε < 1−γ
2
√

3NΓγ
< 1−γ

2NΓγ , we obtain
the desired result by denoting Φ1 = NK1

1−γ(2NεΓ+1) , and

Ψ1 = 2N2ςεΓγ2

1−γ(2NεΓ+1) .
For part (2), squaring both sides of (22), summing over from

k = 1 to K, and taking the total expectation, we have

K∑
k=1

E[G2
k] ≤ 48N4ς2ε2Γ2

K∑
k=1

γ2k + 3N2K2
1

K∑
k=1

α2
k

+ 12N2ε2Γ2
K∑
k=1

E
[( k−1∑

r=1

γk−rGr−1

)2]
.

Applying Cauchy-Schwarz inequality on the last term that( k−1∑
r=1

γk−rGr−1

)2

≤ γ

1− γ

k−1∑
r=1

γk−rG2
r−1,

we obtain
K∑
k=1

E[G2
k] ≤ 48N4ς2ε2Γ2

K∑
k=1

γ2k + 3N2K2
1

K∑
k=1

α2
k

+
12N2ε2Γ2γ

1− γ

K∑
k=1

k−1∑
r=1

γk−rE[G2
r−1]

≤ 48N4ς2ε2Γ2
K∑
k=1

γ2k + 3N2K2
1

K∑
k=1

α2
k

+
12N2ε2Γ2γ2

(1− γ)2

K∑
k=1

E[G2
k].

Re-arranging the term and noticing that ε < 1−γ
2
√

3NΓγ
, we

obtain the desired result by denoting Φ2 =
3N2K2

1

(1−γ)2−12N2ε2Γ2γ2 ,

and Ψ2 = 48N4ς2ε2Γ2γ2

(1−γ)2−12N2ε2Γ2γ2 .
For part (3), multiplying both sides of (22) by∑N
i=1 αk‖gi(xik)‖, summing over from k = 1 to K, and

taking the total expectation, we have

K∑
k=1

N∑
i=1

αkE[‖gi(xik)‖Gk] ≤ 2N3ςεK1Γ

K∑
k=1

γ2k

+ 2N3ςεK1Γ

K∑
k=1

α2
k +N2K2

1

K∑
k=1

α2
k

+ 2NεΓ

K∑
k=1

k−1∑
r=1

γk−rαk

N∑
i=1

E[‖gi(xik)‖Gr−1]. (23)

Based on Cauchy-Schwarz inequality that

N∑
i=1

E[‖gi(xik)‖Gr−1] ≤
N∑
i=1

√
E[‖gi(xik)‖2]E[G2

r−1]

≤ NK1

√
E[G2

r−1],

the last term of (23) holds that

2NεΓ

K∑
k=1

k−1∑
r=1

γk−rαk

N∑
i=1

E[‖gi(xik)‖Gr−1]

≤ 2N2εK1Γ

K∑
k=1

k−1∑
r=1

γk−rαk

√
E[G2

r−1]

≤ N2εK1Γ

K∑
k=1

k−1∑
r=1

γk−r(α2
k + E[G2

r−1])

≤ N2εK1Γγ

1− γ

K∑
k=1

α2
k +

N2εK1Γγ

1− γ

K∑
k=1

E[G2
k]

≤ N2εK1Γγ

1− γ

K∑
k=1

α2
k +

N2εK1Γγ

1− γ

(
Φ2

K∑
k=1

α2
k + Ψ2

)
.

Combining the above relation with (23), we obtain the desired
result by denoting Φ3 = 2N3ςεK1Γ+N2K2

1+N2εK1Γγ(1+Φ2)
1−γ ,

and Ψ3 = 2N3ςεK1Γγ2

(1−γ)2−12N2ε2Γ2γ2 + N2εK1ΓγΨ2

1−γ .
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