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Abstract

Hard Thresholding Pursuit (HTP) is an iterative greedy selection procedure for finding
sparse solutions of underdetermined linear systems. This method has been shown to have
strong theoretical guarantee and impressive numerical performance. In this article, we
generalize HTP from compressed sensing to a generic problem setup of sparsity-constrained
convex optimization. The proposed algorithm iterates between a standard gradient descent
step and a hard-thresholding step with or without debiasing. We analyze the parameter
estimation and sparsity recovery performance of the proposed method. Extensive numerical
results confirm our theoretical predictions and demonstrate the superiority of our method
to the state-of-the-art greedy selection methods in sparse linear regression, sparse logistic
regression and sparse precision matrix estimation problems.1
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1. Introduction

In the past decade, high-dimensional data analysis has received broad research interest in
data mining and scientific discovery, with many significant results obtained in theory, algo-
rithm and application. The major driving force is the rapid development of data collection
technologies in many application domains such as social networks, natural language pro-
cessing, bioinformatics and computer vision. In these applications it is not unusual that
data samples are represented with millions or even billions of features using which an under-
lying statistical learning model must be fit. In many circumstances, however, the number of
collected samples is substantially smaller than the dimensionality of features, implying that
consistent estimators cannot be hoped for unless additional assumptions are imposed on the
model. One of the most popular prior assumptions is that the data exhibit low-dimensional
structure, which can often be captured by imposing sparsity constraint on model param-
eter space. It is thus crucial to develop robust and efficient computational procedures for
high-dimensional estimation with sparsity constraint.

1. A conference version of this work appeared in ICML 2014 (Yuan et al., 2014).
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In this article, we consider the following generic sparsity-constrained loss minimization
problem:

min
x∈Rp

f(x), s.t. ‖x‖0 ≤ k, (1)

where f : Rp 7→ R is a smooth convex loss function and ‖x‖0 denotes the number of
nonzero entries in parameter vector x. Among others, several popular examples falling into
this framework include: (i) Sparsity-constrained linear regression model (Tropp & Gilbert,
2007) where the residual error is used to measure data reconstruction error; (ii) Sparsity-
constrained logistic regression model (Bahmani et al., 2013) where the sigmoid loss is used
to measure prediction error; (iii) Sparsity-constrained graphical model learning (Jalali et al.,
2011) where the likelihood of samples drawn from an underlying probabilistic model is used
to measure data fidelity.

Due to the presence of cardinality constraint ‖x‖0 ≤ k, problem (1) is generally NP-
hard even for the quadratic loss function (Natarajan, 1995). Thus, one must instead seek
approximate solutions. For the special case of (1) with least squares error loss in com-
pressed sensing (Donoho, 2006), a number of low-complexity greedy pursuit methods have
been studied including matching pursuit (MP) (Mallat & Zhang, 1993), orthogonal match-
ing pursuit (OMP) (Pati et al., 1993), iterative hard thresholding (IHT) (Blumensath &
Davies, 2009), compressed sampling matching pursuit (CoSaMP) (Needell & Tropp, 2009)
and hard thresholding pursuit (HTP) (Foucart, 2011) to name a few. These algorithms
successively select the position of nonzero entries and estimate their values via exploring
the residual error from the previous iteration. Comparing to those first-order convex op-
timization methods developed for `1-regularized sparse learning (Beck & Teboulle, 2009;
Langford et al., 2009; Agarwal et al., 2012), these greedy pursuit algorithms often exhibit
more attractive computational efficiency and scalability in practice.

The least squares error used in compressed sensing, however, is not an appropriate mea-
sure of discrepancy in a variety of applications beyond signal processing. For example, in
statistical machine learning the log-likelihood function is commonly used in logistic regres-
sion (Bishop, 2006) and graphical model learning (Jalali et al., 2011; Ravikumar et al.,
2011). Thus, it is desirable to investigate theory and algorithms applicable to a broader
class of sparse learning problems as formulated by (1). To this end, several forward selection
algorithms have been proposed to select the nonzero entries in a sequential fashion (Kim &
Kim, 2004; Shalev-Shwartz et al., 2010; Yuan & Yan, 2013; Jaggi, 2011). This category of
methods dates back to the Frank-Wolfe method (Frank & Wolfe, 1956). In the meanwhile,
the forward greedy selection method has been generalized to convex loss minimization over
the linear hull of a collection of atoms (Tewari et al., 2011; Yuan & Yan, 2013). To make the
greedy selection procedure more adaptive, Zhang (2008) proposed a forward-backward algo-
rithm which takes backward steps adaptively whenever beneficial. Jalali et al. (2011) have
applied this forward-backward selection method to learn the sparse structure of graphical
model. Bahmani et al. (2013) proposed a gradient support pursuit method that general-
izes CoSaMP from compressed sensing to the generic sparse minimization problem (1). Jain
et al. (2014) presented and analyzed several HTP/IHT-style algorithms for high-dimensional
sparse estimation. In the paper of Blumensath (2013), a nonlinear-IHT algorithm was in-
vestigated in the generic setting of sparsity-constrained loss minimization. Recently, the
extensions of HTP/IHT-style methods to structured and stochastic sparse estimation have
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been extensively studied in machine learning community (Jain et al., 2016; Li et al., 2016;
Shen & Li, 2016; Liu et al., 2017; Nguyen et al., 2017).

1.1 Overview of Our Contribution

In this article, inspired by the success of Hard Thresholding Pursuit (HTP) (Foucart, 2011,
2012) in compressed sensing, we propose and analyze the Gradient Hard Thresholding
Pursuit (GraHTP) method to encompass the sparse estimation problems arising from ap-
plications with general nonlinear models. At each iteration, GraHTP performs standard
gradient descent followed by a hard thresholding operation which first selects the top k (in
magnitude) entries of the resultant vector and then (optionally) conducts debiasing on the
selected entries. We show that in various settings with or without assuming RIP-type con-
ditions, GraHTP has strong theoretical guarantees analogous to HTP in terms of parameter
estimation accuracy.

Apart from the accuracy of objective value and parameter estimation, in many appli-
cations such as compressed sensing and graphical models learning, one property of central
importance for sparse estimation is the recovery of sparsity pattern, which corresponds to
the set of indices of nonzero components of the model parameters. Once the sparsity pattern
is recovered, computing the actual nonzero coefficients just boils down to solving a convex
minimization problem over the supporting indices. For perfect measurements, the results
obtained by Foucart (2011) show that under proper conditions HTP can exactly recover the
underlying true model parameters. For noisy models, however, the sparsity recovery analy-
sis is a crucial challenge remains unsolved for HTP-style methods. As a core contribution of
this work, we provide a systematic sparsity recovery analysis for GraHTP. Since the output
of GraHTP is always k-sparse, the parameter estimation error bounds established in this
article roughly imply a sufficient condition for sparsity recovery: as long as the smallest
(in magnitude) nonzero entry of a k-sparse target model is larger than the estimation error
bound, exact recovery of such a target model can be guaranteed. With more insightful
analysis, we further derive some refined sparsity recovery results for GraHTP and for the
k-sparse minimizer of problem (1) as well. Some preliminary results on sparsity recovery
of GraHTP have been presented in a prior work of ours (Yuan et al., 2016), which we have
improved largely in this article.

Comparing to the prior analysis for HTP-style methods, the merits of our main results
can be distilled to the following two aspects:

• Parameter estimation accuracy analysis with/without RIP-type conditions.
Our parameter estimation accuracy analysis for GraHTP simultaneously covers the
setting where the target solution is an arbitrary k-sparse solution for which the RIP-
type conditions are required, and the setting where the target solution is certain
k̄-sparse solutions with k̄ � k for which the RIP-type conditions can be waived;

• Systematic sparsity recovery analysis. We extensively investigate the sparsity
recovery performance of GraHTP which is of great importance and practical vale in
many sparse learning applications including compressed sensing and graphical models
learning.
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Results Target Solution RIP Cond. Free Sparsity Recovery

(Foucart, 2011) True k-sparse signal x × ×

(Blumensath, 2013) x? = arg min‖x‖0≤k f(x) × ×

(Jain et al., 2014)
x̄ = arg min‖x‖0≤k̄ f(x)

for proper k̄ � k

√
×

This Work x̄ with ‖x̄‖0 ≤ k
× (for ‖x̄‖0 = k),
√

(for ‖x̄‖0 � k)

√

Table 1: Comparison between the results obtained in this work and several representative
prior results for HTP-style algorithms.

Table 1 summarizes a high level comparison between our results and several representative
state-of-the-art results for HTP-style algorithms, in terms of target solution, dependence
on RIP-type conditions, and sparsity recovery analysis.

We have applied GraHTP to sparse linear regression, sparse logistic regression and sparse
precision matrix estimation problems, with its algorithm and/or theory substantialized for
these models. Empirically we demonstrate that GraHTP is competitive to the state-of-the-
art greedy selection methods in these sparse learning problems.

1.2 Notation

In the following, x is a vector, A is a matrix, and F is an index set. The following notations
will be used in this article.

• [x]i: the ith entry of vector x.

• xF : the restriction of x on F , i.e., [xF ]i = [x]i if i ∈ F , and [xF ]i = 0 otherwise.

• xk: the restriction of x on its top k (in modulus) entries.

• ‖x‖ =
√
x>x: the Euclidean norm of x.

• ‖x‖1 =
∑

i |[x]i|: the `1-norm of x.

• ‖x‖∞ = maxi |[x]i|: the `∞-norm of x.

• ‖x‖0: the number of nonzero entries of x.

• supp(x): the index set of nonzero entries of x.

• supp(x, k): the index set of the top k (in modulus) entries of x.

• xmin = mini∈supp(x) |[x]i|: the smallest absolute value of nonzero element of x.

• [A]ij : the element on the ith row and jth column of matrix A.
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• ‖A‖ = sup‖x‖≤1 ‖Ax‖: the spectral norm of matrix A.

• |A|∞ = maxi,j |[A]ij |: the element-wise `∞-norm of A.

• Tr(A): the trace (sum of diagonal elements) of a square matrix A.

• AF : the restriction of A on index set F .

• A−: the restriction of a square matrix A on its off-diagonal entries.

• vect(A): (column wise) vectorization of a matrix A.

• λmax(A, k) = max‖x‖=1,‖x‖0≤k x
>Ax: the largest k-sparse eigenvalue of a positive

semi-definite matrix A.

• λmin(A, k) = min‖x‖=1,‖x‖0≤k x
>Ax: the smallest k-sparse eigenvalue of a positive

semi-definite matrix A.

1.3 Organization

This article proceeds as follows: We present in Section 2 the GraHTP algorithm. The
parameter estimation error and exact sparsity recovery guarantees of GraHTP are respec-
tively analyzed in Section 3 and Section 4. The implications of GraHTP in linear regression,
logistic regression and Gaussian graphical model learning are discussed in Section 5. Monte-
Carlo simulations and real data experimental results are presented in Section 6. We conclude
this article in Section 7.

2. Algorithm

GraHTP is an iterative greedy selection procedure for approximately optimizing the non-
convex problem (1). A high level summary of GraHTP is described in the top panel of Algo-
rithm 1. The procedure generates a sequence of intermediate k-sparse vectors x(0), x(1), . . .
from an initial sparse approximation x(0) (typically x(0) = 0). At the t-th iteration, the first
step (S1), x̃(t) = x(t−1) − η∇f(x(t−1)), computes the gradient descent at the point x(t−1)

with step-size η. Then in the second step (S2), the k coordinates of the vector x̃(t) that
have the largest magnitude are chosen as the support in which pursuing the minimization
will be most effective. In the third step (S3), we find a vector with this support which
minimizes the objective function, which becomes x(t). This last step, which is often referred
to as debiasing, has been shown to improve the performance in other algorithms too (Yuan
& Zhang, 2013; Bahmani et al., 2013). The iterations continue until the algorithm reaches
certain terminating condition, e.g., the difference of objective value or model parameters
between adjacent iterations converges. A more intuitive criterion is F (t) = F (t−1) (see (S2)
for the definition of F (t)), since then x(τ) = x(t) for all τ ≥ t, although there is no guarantee
that this should occur in general cases. It will be assumed throughout the article that the
sparsity level k is known. In practice this integer parameter may be tuned via, for example,
cross-validation in supervised learning tasks.

In the standard form of GraHTP, the debiasing step (S3) requires to minimize f(x)
over the supporting set F (t). If this step is judged too costly, we may consider instead a
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fast variant of GraHTP, where the debiasing is replaced by a simple truncation operation

x(t) = x̃
(t)
k . This leads to the Fast GraHTP (FGraHTP) as described in the bottom panel

of Algorithm 1, which can be understood as a projected gradient descent procedure for
optimizing the nonconvex minimization problem (1). Up to the cost of truncation operation,
its per-iteration computational overload is almost identical to that of the standard gradient
descent procedure. The iteration procedure of FGraHTP is also known as the nonlinear-IHT
algorithm (Blumensath, 2013). Comparing to that prior work, our analysis for FGraHTP
is more comprehensive and the results are tighter especially in sparsity recovery analysis.
While in this article we only study the FGraHTP outlined in Algorithm 1, we should
mention that other fast variants of GraHTP can also be considered. For instance, to reduce
the computational cost of the debiasing step (S3), we can take a restricted Newton step or
a restricted gradient descent step to calculate x(t).

We close this section by pointing out that, in the special case where the squares error
f(x) = 1

2‖y−Ax‖
2 is the cost function, GraHTP reduces to HTP (Foucart, 2011). Specifi-

cally, the gradient descent step (S1) reduces to x̃(t) = x(t−1) +ηA>(y−Ax(t−1)) and the de-
biasing step (S3) reduces to the orthogonal projection x(t) = arg min{1

2‖y−Ax‖
2, supp(x) ⊆

F (t)}. In the meanwhile, FGraHTP reduces to IHT (Blumensath & Davies, 2009), which
is also known as Gradient Descent with Sparsification (Garg & Khandekar, 2009), of which
the iteration is defined as x(t) = (x(t−1) + ηA>(y −Ax(t−1)))k.

Algorithm 1: Gradient Hard Thresholding Pursuit (GraHTP).

Initialization: x(0) with ‖x(0)‖0 ≤ k (typically x(0) = 0), t = 1.
Output: x(t).
repeat

(S1) Compute x̃(t) = x(t−1) − η∇f(x(t−1));
(S2) Let F (t) = supp(x̃(t), k) be the indices of x̃(t) with the largest k absolute
values;

(S3) Compute x(t) = arg min{f(x); supp(x) ⊆ F (t)};
t = t+ 1;

until halting condition holds;
——————————————F Fast GraHTP F——————————————–
repeat

Compute x̃(t) = x(t−1) − η∇f(x(t−1));

Compute x(t) = x̃
(t)
k as the truncation of x̃(t) with top k (in magnitude) entries

preserved;
t = t+ 1;

until halting condition holds;

3. Parameter Estimation Analysis

In this section, we analyze the parameter estimation accuracy of GraHTP/FGraHTP. To
simplify notation, we abbreviate ∇F f = (∇f)F and ∇sf = (∇f)s. Our analysis relies on
the conditions of Restricted Strong Convexity/Smoothness (RSC/RSS) which are conven-
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tionally used in the analysis of greedy sparse optimization methods (Shalev-Shwartz et al.,
2010; Bahmani et al., 2013; Jain et al., 2014).

Definition 1 (Restricted Strong Convexity/Smoothness) For any integer s > 0, we
say f(x) is restricted ms-strongly convex and Ms-smooth if there exist ms,Ms > 0 such that

ms

2
‖x− y‖2 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ Ms

2
‖x− y‖2, ∀‖x− y‖0 ≤ s. (2)

The ratio number Ms/ms, which measures the curvature of the loss function over sparse
subspaces, will be referred to as restricted strong condition number in this article.

3.1 Main Results

The following theorem is our main result on the parameter estimation accuracy of GraHTP
and FGraHTP with respect to arbitrary k-sparse target solutions. A proof of this theorem
is provided in Appendix B.1.

Theorem 2 Assume that f is M3k-smooth and m3k-strongly convex. Let x̄ be an arbitrary

k-sparse vector and ρ =
√

1− 2ηm3k + η2M2
3k.

(a) Assume that M3k/m3k < 2
√

3/3 and the step-size η is chosen such that ρ < 0.5. Then
GraHTP outputs x(t) satisfying

‖x(t) − x̄‖ ≤ µt1‖x(0) − x̄‖+
2.83η

√
k

1− 2ρ
‖∇f(x̄)‖∞,

where µ1 = ρ/(1− ρ) ∈ (0, 1).

(b) Assume that M3k/m3k < 1.26 and the step-size η is chosen such that ρ < 0.62. Then
FGraHTP outputs x(t) satisfying

‖x(t) − x̄‖ ≤ µt2‖x(0) − x̄‖+
2.81η

√
k

1− 1.62ρ
‖∇f(x̄)‖∞,

where µ2 = 1.62ρ ∈ (0, 1).

In the part (a) of Theorem 2, the contraction factor µ1 < 1 controls the convergence rate
of GraHTP. The condition ρ < 0.5 requires the step-size to be selected according to

2m3k −
√

4m2
3k − 3M2

3k

2M2
3k

< η <
2m3k +

√
4m2

3k − 3M2
3k

2M2
3k

, (3)

from which we can see that M3k/m3k < 2
√

3/3 is a necessary condition to guarantee the
existence of η such that ρ < 0.5 and µ1 < 1. The condition of ρ < 0.5 is analogous to
the RIP condition for estimation from noisy measurements in compressed sensing (Candès
et al., 2006; Needell & Tropp, 2009; Foucart, 2011). Indeed, in compressed sensing, GraHTP
reduces to HTP which requires weaker RIP condition than prior compressed sensing algo-
rithms. The condition in (3) also suggests that the value of η should be bounded from
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Figure 1: Evolving curves of the contraction factors in Theorem 2 and Theorem 5.

above to guarantee convergence, and be bounded away from zero to avoid early stopping
as well. Similarly, M3k/m3k < 1.26 in the part(b) is a necessary condition to guarantee the
existence of η such that ρ < 0.62 and µ2 < 1. Figure 1(a) shows the evolving curves of
contraction factors µ1 and µ2 as functions of M3k/m3k in the interval [1, 1.26). It can be
seen from this figure that µ1 < µ2 when M3k/m3k → 1 and µ1 > µ2 for relatively larger
M3k/m3k.

The non-vanishing terms in the error bounds of Theorem 2 indicate that the estimation
errors of GraHTP and FGraHTP are controlled by the multiplier of

√
k‖∇f(x̄)‖∞. Partic-

ularly if the sparse vector x̄ is sufficiently close to an unconstrained minimum of f , then the
estimation error floor is negligible because ‖∇f(x̄)‖∞ has small magnitude. The following
corollary is a direct consequence of Theorem 2 which shows that exact support recovery is
possible when x̄min is significantly larger than

√
k‖∇f(x̄)‖∞.

Corollary 3 Assume the conditions in Theorem 2 hold.

(a) Let x̄ be an arbitrary k-sparse vector satisfying x̄min > 5.66η
√
k

1−2ρ ‖∇f(x̄)‖∞. Then

GraHTP will output x(t) satisfying supp(x(t)) = supp(x̄) after t =
⌈

1
µ1

ln
(

2‖x(0)−x̄‖
x̄min

)⌉
steps of iteration.

(b) Let x̄ be an arbitrary k-sparse vector satisfying x̄min > 5.62η
√
k

1−1.62ρ ‖∇f(x̄)‖∞. Then

FGraHTP will output x(t) satisfying supp(x(t)) = supp(x̄) after t =
⌈

1
µ2

ln
(

2‖x(0)−x̄‖
x̄min

)⌉
steps of iteration.

Indeed, given the conditions in Corollary 3, for both GraHTP and FGraHTP we can show
that ‖x(t) − x̄‖ < x̄min and thus supp(x(t)) = supp(x̄) must hold as x(t) and x̄ are both
k-sparse vectors.
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Remark 4 Corollary 3 shows that GraHTP/FGraHTP requires RIP-type conditions as in
Theorem 2 to guarantee exact support recovery. As a comparison, the existing sparsity re-
covery results for `1-estimators (Wainwright, 2009; Li et al., 2015) are free of RIP-type con-
ditions but instead relying on the irrepresentablility condition which is known to be stronger.
For example, a case where the RIP-type condition holds while the irrepresentability condition
does not was given by Van De Geer & Bühlmann (2009, Example 10.4).

The RIP-type conditions assumed in Theorem 2 could still be restrictive in real-life high-
dimensional statistical settings wherein pairs of variables can be arbitrarily correlated. In
the following theorem, we further show that by properly relaxing sparsity levels, GraHTP
and FGraHTP are able to accurately estimate parameters without assuming bounded re-
stricted strong condition numbers. A proof of this theorem is deferred to Appendix B.2.

Theorem 5 Let x̄ be an arbitrary k̄-sparse vector with k̄ ≤ k. Assume that s = 2k+ k̄ < p.

(a) Assume that f is M2k-smooth and m2k-strongly convex. Assume the step-size η <

1/M2k. If k ≥
(

2 + 4
η2m2

2k

)
k̄, then GraHTP outputs x(t) satisfying

‖x(t) − x̄‖ ≤

√
2µ̄t14̄(0)

m2k
+

2.83
√
k‖∇f(x̄)‖∞
m2k

,

where µ̄1 = 1− ηm2k(1− ηM2k)/2 and 4̄(0) = max{f(x(0))− f(x̄), 0}.

(b) Assume that f is Ms-smooth and ms-strongly convex. Assume the step-size η <
2ms/M

2
s such that ρ =

√
1− 2ηms + η2M2

s < 1. If k > ρk̄/(1− ρ)2, then FGraHTP
outputs x(t) satisfying

‖x(t) − x̄‖ ≤ µ̄t2‖x(0) − x̄‖+
γη
√
s

1− µ̄2
‖∇f(x̄)‖∞,

where µ̄2 = ργ ∈ (0, 1) and γ =

√
1 +

(
k̄/k +

√
(4 + k̄/k)k̄/k

)
/2.

Remark 6 When using step-size η = 1
2M2k

, the part(a) of Theorem 5 tells that GraHTP

converges linearly towards an arbitrary k̄-sparse vector x̄ if the sparsity level is chosen as

k ≥
(

2 +
16M2

2k

m2
2k

)
k̄. The estimation error is controlled by the multiplier of

√
k‖∇f(x̄)‖∞.

Similarly, the part(b) of Theorem 5 establishes the convergence result of FGraHTP with
proper relaxed k � k̄. Note that the condition k > ρk̄/(1− ρ)2 in part(b) actually enforces
the contraction factor µ̄2 < 1. Figure 1(b) shows the evolving curves of contraction factors
µ̄1 and µ̄2 as functions of M3k/m3k, with the same target sparsity k̄. We can see from this
figure that µ̄2 is superior to µ̄1 when M3k/m3k is relatively small.

The following corollary of Theorem 5 shows that GrHTP/FGraHTP with certain relaxed
sparsity levels can guarantee supp(x̄) ⊆ supp(x(t)) without assuming RIP-type conditions.

Corollary 7 Let x̄ be an arbitrary k̄-sparse vector with k̄ ≤ k.
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(a) Under the conditions in Theorem 5(a), if x̄min > 5.66
√
k

m2k
‖∇f(x̄)‖∞, then GraHTP

will output x(t) satisfying supp(x̄) ⊆ supp(x(t)) after t =
⌈

1
µ̄1

ln
(

84̄(0)

m2kx̄
2
min

)⌉
steps of

iteration.

(b) Under the conditions in Theorem 5(b), if x̄min > 2γη
√
s

1−µ̄2 ‖∇f(x̄)‖∞, then FGraHTP

will output x(t) satisfying supp(x̄) ⊆ supp(x(t)) after t =
⌈

1
µ̄2

ln
(

2‖x(0)−x̄‖
x̄min

)⌉
steps of

iteration.

Indeed, the conditions in Corollary 7 imply ‖x(t) − x̄‖ < x̄min which leads to supp(x̄) ⊆
supp(x(t)). We note that the parameter estimation error bound derived by Jain et al. (2014,
Theorem 3) implies a similar support recovery guarantee as in Corollary 7(a).

3.2 Comparison to Prior Results

Now we compare our method and parameter estimation error bounds to some prior relevant
methods and results.

Our method versus nonlinear-IHT (Blumensath, 2013). As we remarked in
Section 2 that FGraHTP is identical to the nonlinear-IHT method proposed by Blumensath
(2013). The estimation error results of the two, however, are different: the error bound of
nonlinear-IHT is relying on the objective value at the target solution; whereas ours in
Theorem 2(b) is controlled by the infinity norm of gradient at the target solution.

Our method versus `1-norm ball constrained estimation (Agarwal et al.,
2012). It is worthwhile to compare our `0-estimation results to those established by Agar-
wal et al. (2012, Theorem 1) for `1-norm ball constrained M-estimator (maximum likelihood
type estimator). Let us consider x̄ as the underlying k̄-sparse nominal parameter in a statis-
tical model. When using sparsity level k = k̄, the O(

√
k‖∇f(x̄)‖∞) estimation error bound

in Theorem 2, which is at the same order of statistical error, is essentially identical to the
error bound derived by Agarwal et al. (2012, Theorem 1). Our analysis, however, requires
a bounding assumption on the restricted strong condition number which is not required in
their result. This can be interpreted as the price of using nonconvex sparsity constraint
rather than its convex relaxation. By using properly relaxed sparsity level k = O(k̄), we ob-
tain similar estimation error bounds in Theorem 5 but without assuming bounded restricted
strong condition number. In this case, at a slight sacrifice in sparsity level, our methods
gain better dependence on restricted strong condition number than those for convex models.
Concerning the efficiency of projection steps, the `0-projection used in FGraHTP is more
efficient than the `1-projection required by those first-order convex minimization methods.
The projection operation of GraHTP is more expensive as it requires an additional debiasing
step right after `0-projection.

Our method versus GraSP (Bahmani et al., 2013). A similar estimation er-
ror bound as in Theorem 2(a) has been established for the GraSP method (Bahmani et al.,
2013). At time instance t, GraSP first conducts debiasing over the union of the top k entries
of x(t−1) and the top 2k entries of ∇f(x(t−1)), and then preserves the top k entries of the
resultant vector, which becomes x(t). Our GraHTP is connected to GraSP in the sense that
the k largest absolute elements after the gradient descent step will come from some combi-
nation of the largest elements in x(t−1) and the largest elements in the gradient ∇f(x(t−1)).

10
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Although having similar convergence behavior, the per-iteration cost of GraHTP is cheaper
than GraSP: at each iteration, GraSP needs to minimize the objective over a support of size
at least 2k while that size for GraHTP is k. FGraHTP is even cheaper for iteration as it
does not need any debiasing operation. We will compare the actual numerical performance
of these methods in the experiment section.

Our results versus the results obtained by Jain et al. (2014). The RIP-
condition-free estimation error bound in Theorem 5(a) has also been proved by Jain et al.
(2014, Theorem 3) with relaxed sparsity levels. As pointed out in Remark 6, the contrac-
tion factor µ̄1 derived in Theorem 5(a) is inferior to the rate µ̄2 in Theorem 5(b) when the
restricted strong condition number is relatively small. Moreover, from Figure 1(b) we can
see that µ̄1 is valued in a quite restrictive interval (0.87, 1) while µ̄2 can be varied in a much
wider range of (0.65, 1). Figure 1(a) shows that the contraction factors µ1 and µ2 derived in
Theorem 2 can be widely valued in (0, 1). The more favorable contraction factors in Theo-
rem 5(b) and Theorem 2 are resulted from a more careful analysis of GraHTP/FGraHTP
and using a tight hard-thresholding bound derived by Shen & Li (2016).

4. Sparsity Recovery Analysis

In this section, we further analyze the sparsity recovery performance of GraHTP. In Corol-
lary 3 and Corollary 7, we have already established some general sparsity recovery results
for GraHTP. Here we will provide a refined analysis without assuming bounded restricted
strong condition number. Moreover, we will analyze the sparsity recovery behavior of the
sparse estimator x? = arg min‖x‖0≤k f(x) which to our knowledge has not been addressed
elsewhere in literature. The main results obtained in this section are highlighted in below:

• For GraHTP algorithm, we derive in Theorem 8 an improved RIP-condition-free result
for exactly recovering the support of a target k̄-sparse vector with k̄ < k.

• For the global k-sparse minimizer x?, we provide in Theorem 10 a set of sufficient
conditions under which x? is able to recover the support of a target sparse vector.

4.1 Sparsity Recovery of GraHTP

In the following theorem, we show that for proper k > k̄, GraHTP is able to recover
the support of certain target k̄-sparse vector without assuming bounded restricted strong
condition numbers. A proof of this theorem is given in Appendix C.1.

Theorem 8 Assume that f is M2k-smooth and m2k-strongly convex. Let x̄ be an arbitrary

k̄-sparse vector satisfying k ≥
(

1 +
16M2

2k

m2
2k

)
k̄. Set the step-size to be η = 1

2M2k
. If x̄min >

2.3
√

f(x̄)−f(x?)
m2k

, then GraHTP will terminate and output x(t) satisfying supp(x(t), k̄) =

supp(x̄) after at most

t =

⌈
2kM2k

m2k
ln
4(0)

4−?

⌉
steps of iteration, where 4(0) = f(x(0))− f(x?) and

4−? = min
‖x‖0≤k,supp(x)6=supp(x?),f(x)>f(x?)

f(x)− f(x?).

11
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Results Target Solution RIP Condition x-min Condition

Corollary 3(a) Arbitrary k-sparse x̄ Required x̄min > O
(√

k‖∇f(x̄)‖∞
m2k

)
Corollary 7(a) ‖x̄‖0 = O

(
(m2k
M2k

)2k
)

Free x̄min > O
(√

k‖∇f(x̄)‖∞
m2k

)
Theorem 8 ‖x̄‖0 = O

(
(m2k
M2k

)2k
)

Free x̄min > O
(√

f(x̄)−f(x?)
m2k

)
Table 2: Comparison of Theorem 8 against Corollary 3 and Corollary 7.

Remark 9 The main message conveyed by Theorem 8 is: If k̄ = O
(
m2

2k

M2
2k
k
)

and the nonzero

elements in x̄ are significantly larger than the value
√

(f(x̄)− f(x?))/m2k, then GraHTP
will output x(t) whose top k̄ entries are exactly the supporting set of x̄. The implication of
this result is that in order to recover certain k̄-sparse signals, one may run GraHTP with a
properly relaxed sparsity level k until convergence and then preserve the top k̄ entries of the
k-sparse output as the final estimation.

In Table 2, we summarize the sparsity recovery results established in Theorem 8, Corol-
lary 3 and Corollary 7. We claim that the x-min condition in Theorem 8 is no stronger
than those in Corollary 3 and Corollary 7. Indeed, when x̄ 6= x?, from the restricted
strong-convexity of f and the fact x>y ≤ ‖x‖∞‖y‖1 we can derive the following inequality:

f(x̄)− f(x?) ≤ ‖∇f(x̄)‖2∞‖x̄− x?‖21
2m2k‖x̄− x?‖2

.

It can be verified that the factor l̄ = ‖x̄− x?‖21/‖x̄− x?‖2 is valued in the interval [1, k+ k̄]
if x̄ 6= x?. Since k > k̄, we then always have

√
(f(x̄)− f(x?))/m2k ≤

√
k‖∇f(x̄)‖∞/m2k.

The closer l̄ is to 1, the weaker lower bound condition can be imposed on x̄min in Theorem 8.
In the extreme case when l̄ = 1, the x̄min condition becomes x̄min > O (‖∇f(x̄)‖∞/m2k)
which is not dependent on factor

√
k and thus is weaker than those in Corollary 3 and

Corollary 7.

4.2 Sparsity Recovery of x?

Given a target solution x̄, the following result gives some sufficient conditions under which
the sparse estimator x? is able to exactly recover the supporting set of x̄. A proof of this
result is provided in Appendix C.2.

Theorem 10 Assume that f is M2k-smooth and m2k-strongly convex. Let x̄ be an arbitrary
k̄-sparse vector with k̄ ≤ k. Then supp(x̄) = supp(x?, k̄) if either of the following two
conditions holds:

(1) x̄min >
4.59
√
k

m2k
‖∇f(x̄)‖∞;

(2) k ≥
(

1 +
4M2

2k

m2
2k

)
k̄ and x̄min > 2.3

√
f(x̄)−f(x?)

m2k
.

12
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Remark 11 Theorem 10 shows that when using sparsity level k ≥ k̄, the top k̄ entries
of the k-sparse global minimizer x? is exactly the support of x̄ if x̄min is significantly
larger than

√
k‖∇f(x̄)‖∞/m2k. By using a more relaxed sparsity level as in condition (2),

the top k̄ entries of x? is exactly the support of x̄ when x̄min is significantly larger than√
(f(x̄)− f(x?))/m2k. Note that Theorem 10 is valid without imposing bounding assump-

tions on restricted strong condition number.

We now compare the support recovery result in Theorem 10 for the `0-estimator (1) to
those known for the following `1-regularized estimator:

min
x∈Rp

f(x) + λ‖x‖1, (4)

where f(x) is a convex loss function and λ is the regularization strength parameter. When
the loss function is quadratic, a set of sufficient conditions were derived by Wainwright
(2009) to guarantee exact sparsity recovery of Lasso-type estimators. For more general loss
functions, a unified sparsity recovery analysis was presented in the paper of Li et al. (2015).
We summarize in below a comparison between Theorem 10 and those sparsity recovery
results for `1-regularized estimators (Li et al., 2015) with respect to several key conditions:

• Local structured smoothness/convexity condition: Theorem 10 only requires
first-order local structured smoothness/convexity conditions (i.e., RSC/RSS) while
the results obtained by Li et al. (2015, Theorem 5.1, Condition 1) rely on certain
second-order and third-order local structured smoothness conditions.

• Irrepresentablility condition: Theorem 10 is free of the so called irrepresentablility
condition which is typically required to guarantee the sparsistency of `1-regularized
estimators (Li et al., 2015, Theorem 5.1, Condition 3).

• x-min condition: Comparing to the x-min condition derived by Li et al. (2015,
Theorem 5.1, Condition 4) which is of order O(

√
k‖∇f(x̄)‖∞), the x-min condition

(1) in Theorem 10 is comparable at the same order while the x-min condition (2) is
sharper since

√
f(x̄)− f(x?)/m2k ≤

√
k‖∇f(x̄)‖∞/m2k.

We comment that the above key differences also apply to the comparison between Theorem 8
for GraHTP and the sparsity recovery results for `1-regularized estimators. In Section 5.1,
we will further specify our results to the setting of sparse linear regression and make a
comparison against those sparsity recovery results for Lasso-type estimators (Wainwright,
2009).

5. Applications to Sparsity-Constrained M-estimation

We now specify GraHTP and its analysis to the M-estimation problem which is a popular
formulation in statistical machine learning. Given a set of n independently drawn data sam-
ples {x(i)}ni=1, the M-estimation problem is defined as to minimize the following empirical
risk function averaged over the samples:

f(w) =
1

n

n∑
i=1

φ(x(i) | w),

13
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where φ is a loss function and w is a set of adjustable parameters. The sparsity-constrained
M-estimation problem is then given by

min
w
f(w), subject to ‖w‖0 ≤ k. (5)

In the subsections to follow, we will consider three instances of this model: linear regression,
logistic regression and Gaussian precision matrix estimation.

5.1 Sparsity-constrained Linear Regression

Given a k̄-sparse parameter vector w̄, we assume the samples are generated according to
the linear model v(i) = w̄>u(i) + ε(i) where ε(i) are n i.i.d. sub-Gaussian random variables
with parameter σ. The sparsity-constrained least squares regression model is then given by

min
w
f(w) =

1

2n

n∑
i=1

‖v(i) − w>u(i)‖2, subject to ‖w‖0 ≤ k. (6)

In this case, GraHTP (and FGraHTP) reduces to the conventional HTP (and IHT) of
which the parameter estimation performance has been extensively studied in compressed
sensing (Foucart, 2011; Blumensath & Davies, 2009). Here we illustrate the sparsity recov-
ery results we established in Section 4 and compare them against those for `1-estimators.
Suppose u(i) are drawn from Gaussian distribution with covariance matrix Σ � 0. Then it
holds with high probability that f(w) has RSC constant m2k ≥ λmin(Σ)−O(k̄ log p/n) and

RSS constant M2k ≤ λmax(Σ) + O(k̄ log p/n), and‖∇f(w̄)‖∞ = O
(
σ
√

log p/n
)

. Assume

that k ≥ k̄. We summarize in below the implications of our sparsity recovery results in
sparse linear regression:

• Sparsity recovery of GraHTP. Corollary 3 shows that if w̄min > O
(
σ
√
k log p/n

λmin(Σ)

)
and

λmax(Σ)
λmin(Σ) is well upper bounded, then after sufficient iteration GraHTP and FGraHTP

with k = k̄ will guarantee support recovery supp(x(t)) = supp(x̄) with high probability.

Corollary 7 indicates that when using certain relaxed sparsity level k = O
(
λ2max(Σ)
λ2min(Σ)

k̄
)

,

GraHTP and FGraHTP are able to guarantee supp(x(t)) ⊇ supp(x̄) without as-

suming bounded condition number. Since f(x̄) − f(x?) ≤ l̄‖∇f(x̄)‖2∞
2m2k

where l̄ =

‖x̄−x?‖21/‖x̄−x?‖2 ∈ [1, k+ k̄], Theorem 8 implies that if w̄min > O
(
σ
√
l̄ log p/n

λmin(Σ)

)
and

k = O
(
λ2max(Σ)
λ2min(Σ)

k̄
)

, then after finite iteration GraHTP will guarantee supp(x(t), k̄) =

supp(x̄) with high probability.

• Sparsity recovery of the least squares estimator (6). Let w? be the global k-sparse
minimizer of (6). Theorem 10 shows that supp(w?, k̄) = supp(w̄) holds with high

probability if w̄min > O
(
σ
√
k log p/n

λmin(Σ)

)
. To compare our sparsity recovery results for

`0-estimators against those established by Wainwright (2009, Theorem 1) for Lasso-

type estimators, the signal-noise-ratio condition of w̄min > O
(
σ
√
k log p/n

λmin(Σ)

)
is shared

14
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in that paper. The key difference is that our analysis is valid without imposing the
irrepresentablility condition on design matrix which is required in the sparsity recovery
analysis of Lasso-type estimators.

5.2 Sparsity-constrained Logistic Regression

Logistic regression is one of the most popular models in statistical machine learning (Bishop,
2006). In this model the relation between the random feature vector u ∈ Rp and its
associated random binary label v ∈ {−1,+1} is determined by the conditional probability

P(v|u; w̄) =
exp(2vw̄>u)

1 + exp(2vw̄>u)
, (7)

where w̄ ∈ Rp denotes parameter vector. Given a set of n independently drawn data
samples {(u(i), v(i))}ni=1, logistic regression learns the parameters so as to minimize the
following logistic loss function:

l(w) := − 1

n
log
∏
i

P(u(i) | v(i);w) =
1

n

n∑
i=1

log(1 + exp(−2v(i)w>u(i))),

which is known to be convex. Unfortunately, in high-dimensional setting, i.e., n < p, the
problem can be underdetermined and thus its minimum is not unique. A conventional way
to handle this issue is to impose `2-regularization to the logistic loss to avoid singularity.
The `2-penalty, however, does not promote sparse solutions which are often desirable in
high-dimensional learning tasks. The sparsity-constrained `2-regularized logistic regression
is then given by

min
w
f(w) = l(w) +

λ

2
‖w‖2, subject to ‖w‖0 ≤ k, (8)

where λ > 0 is the regularization strength parameter. Obviously f(w) is λ-strongly convex.
The cardinality constraint enforces the solution to be sparse.

Verifying restricted smoothness and strong convexity. Let U = [u(1), ..., u(n)] ∈
Rp×n be the design matrix and σ(z) = 1/(1+exp(−z)) be the sigmoid function. In the case
of `2-regularized logistic loss considered in this section we have ∇f(w) = Ua(w)/n+ λw in
which the vector a(w) ∈ Rn is given by [a(w)]i = −2v(i)(1−σ(2v(i)w>u(i))), and the Hessian
∇2f(w) = UΛ(w)U>/n+λI where Λ(w) is an n×n diagonal matrix whose diagonal entries
[Λ(w)]ii = 4σ(2viw

>ui)(1−σ(2viw
>ui)). Given an integer s, recall that λmax(A, s) denotes

the largest s-sparse eigenvalue of a positive semi-definite matrix A and λmin(A, s) denotes
the smallest s-sparse eigenvalue of A. Assume that the algorithm is initialized with all-zero
vector. Then it can be verified that f(w) is (λmax(UU>, s)+λ)-smooth and (γs+λ)-strongly
convex where γs := minf(w)≤f(0) λmin(UΛ(w)U>, s).

Bounding the value of ‖∇f(w̄)‖∞. We now bound the infinity norm ‖∇f(w̄)‖∞
which controls the estimation error and sparisty recovery bounds of GraHTP/FGraHTP. In
the following derivation, we assume that the joint density of the random vector (u, v) ∈ Rp+1

is given by the following exponential family distribution:

P(u, v; w̄) = exp
(
vw̄>u+B(u)−A(w̄)

)
, (9)
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where

A(w̄) := log
∑

v={−1,1}

∫
Rp

exp
(
vw̄>u+B(u)

)
du

is the log-partition function. The term B(u) characterizes the marginal behavior of u.
Obviously, the conditional distribution of v given u, P(v | u; w̄), is given by the Bernoulli
distribution in (7). By doing some elementary manipulations (see, e.g., Wainwright & Jor-
dan, 2008) we can obtain the following standard result which shows that the first derivative
of the logistic log-likelihood l(w) yields the cumulants of the random variables v[u]j :

∂l

∂[w]j
=

1

n

n∑
i=1

{
−v(i)[u(i)]j + Ev[v[u(i)]j | u(i)]

}
. (10)

Here the expectation Ev[· | u] is taken over the conditional distribution (7). We introduce
the following sub-Gaussian condition on the random variate v[u]j .

Assumption 1 For all j, we assume that there exists constant σ > 0 such that for all ζ,

E[exp(ζv[u]j)] ≤ exp
(
σ2ζ2/2

)
.

This assumption holds when [u]j are sub-Gaussian (e.g., Gaussian or bounded) random
variables. The following result establishes the bound of ‖∇f(w̄)‖∞.

Proposition 12 If Assumption 1 holds, then with probability at least 1− 4p−1,

‖∇f(w̄)‖∞ ≤ 4σ
√

ln p/n+ λ‖w̄‖∞.

A proof of this result is provided in Appendix D.1. If we choose λ = O(
√

ln p/n), then
with overwhelming probability ‖∇f(w̄)‖∞ vanishes at the rate of O(

√
ln p/n). This bound

is superior to the bound obtained by Bahmani et al. (2013, Section 4.2) which is not van-
ishing as sample size increases. Based on the above discussion, we can similarly specify our
parameter estimation and sparsity recovery results to sparse logistic regression. Here we
omit the detailed specification of results for the sake of redundance reducing.

5.3 Sparsity-constrained Gaussian Precision Matrix Estimation

As an important class of sparse learning problems for exploring the interrelationship among
a large number of random variables, the sparse Gaussian precision (inverse covariance)
matrix estimation problem has received significant interest in a variety of scientific and
engineering domains, including computational biology, natural language processing and
document analysis.

Let x be a p-variate random vector with zero-mean Gaussian distribution N (0, Σ̄). Its
density is parameterized by the precision matrix Ω̄ = Σ̄−1 � 0 as

φ(x; Ω̄) =
1√

(2π)p(det Ω̄)−1
exp

(
−1

2
x>Ω̄x

)
.

It is well known that the conditional independence between the variables [x]i and [x]j given
{[x]k, k 6= i, j} is equivalent to [Ω̄]ij = 0. The conditional independence relations between

16



Gradient Hard Thresholding Pursuit

components of x, on the other hand, can be represented by a graph G = (V,E) in which
the vertex set V has p elements corresponding to [x]1, ..., [x]p, and the edge set E consists
of edges between node pairs {[x]i, [x]j}. The edge between [x]i and [x]j is excluded from
E if and only if [x]i and [x]j are conditionally independent given other variables. This
graphical model is known as Gaussian Markov random field (GMRF) (Edwards, 2000).
Thus for multivariate Gaussian distribution, estimating the support of the precision matrix
Ω̄ is equivalent to learning the structure of GMRF G.

Given i.i.d. samples Xn = {x(i)}ni=1 drawn from N (0, Σ̄), the negative log-likelihood, up
to a constant, can be written in terms of the precision matrix as

L(Xn; Ω̄) := − log det Ω̄ + 〈Σn, Ω̄〉,

where Σn is the sample covariance matrix. We are interested in the problem of estimating
a sparse precision Ω̄ with no more than a pre-specified number of off-diagonal nonzero
entries. For this purpose, we consider the following cardinality constrained log-determinant
program:

min
Ω�0

L(Ω) := − log det Ω + 〈Σn,Ω〉, s.t. ‖Ω−‖0 ≤ 2k, (11)

where Ω− is the restriction of Ω on the off-diagonal entries, ‖Ω−‖0 = |supp(Ω−)| is the
cardinality of the supporting set of Ω− and the integer k > 0 controls the number of edges,
i.e., |E|, in the graph.

Verifying restricted smoothness and strong convexity. It can be verified that the
Hessian matrix of L(Ω) is given by ∇2L(Ω) = Ω−1 ⊗ Ω−1, where ⊗ denotes the Kronecker
product operator. Suppose that ‖Ω−‖0 ≤ s and αsI � Ω � βsI for some 0 < αs ≤ βs.
Due to the fact that the eigenvalues of Kronecker products of symmetric matrices are the
products of the eigenvalues of their factors, it holds that β−2

s I � Ω−1 ⊗ Ω−1 � α−2
s I.

Therefore we have β−2
s ≤ ‖∇2L(Ω)‖ ≤ α−2

s which implies that L(Ω) is β−2
s -strongly convex

and α−2
s -smooth. Inspired by this property, we consider applying GraHTP to the following

variant of problem (11):

min
αI�Ω�βI

L(Ω), s.t. ‖Ω−‖0 ≤ 2k, (12)

where 0 < α ≤ β are two constants which respectively lower and upper bound the eigenval-
ues of the desired solution. To roughly estimate α and β, we employ a rule proposed by Lu
(2009, Proposition 3.1) for the `1-regularized log-determinant program. Specifically, we set

α = (‖Σn‖2 + nξ)−1, β = ξ−1(n− αTr(Σn)),

where ξ is a small enough positive number (e.g., ξ = 10−2 as used in our implementation).

Bounding the value of |∇L(Ω̄)|∞. It is standard to know that |∇L(Ω̄)|∞ = |Σn −
Σ̄|∞ = O(

√
log p/n) with probability at least 1− c0p

−c1 for some positive constants c0 and
c1 and sufficiently large n (see, e.g., Ravikumar et al., 2011, Lemma 1). Therefore, with
overwhelming probability we have |∇L(Ω̄)|∞ = O(

√
log p/n) when n is sufficiently large.

A Modified GraHTP. Note that GraHTP is not directly applicable to the prob-
lem (12) due to the presence of the constraint αI � Ω � βI in addition to the sparsity
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constraint. To address this issue, we need to accordingly modify the debiasing step (S3) of
GraHTP to minimize L(Ω) over the constraints αI � Ω � βI and supp(Ω) ⊆ F (t):

min
αI�Ω�βI

L(Ω), s.t. supp(Ω) ⊆ F (t). (13)

Since this problem is convex, any off-the-shelf convex solver can be applied for optimiza-
tion. In our implementation, we resort to the alternating direction method of multipliers
(ADMM) (Boyd et al., 2010; Yuan, 2012) which has been observed to be efficient in our
numerical practice. The implementation details of ADMM for solving the subproblem (13)
are deferred to Appendix D.2. The modified GraHTP for sparse Gaussian precision matrix
estimation is outlined in Algorithm 2.

Algorithm 2: A Modified GraHTP for Sparse Gaussian Precision Matrix Estimation.

Initialization: Ω(0) with ‖(Ω(0))−‖0 ≤ 2k and αI � Ω(0) � βI (typically Ω(0) = αI),
t = 1.

Output: Ω(t).
repeat

(S1) Compute Ω̃(t) = Ω(t−1) − η∇L(Ω(t−1));
(S2) Let F̃ (t) = supp((Ω̃(t))−, 2k) be the indices of (Ω̃(t))− with the largest 2k
absolute values and F (t) = F̃ (t) ∪ {(1, 1), ..., (p, p)};

(S3) Compute Ω(t) = arg min
{
L(Ω);αI � Ω � βI, supp(Ω) ⊆ F (t)

}
;

t = t+ 1;
until halting condition holds;

6. Experimental Results

This section is devoted to illustrating the empirical performance of GraHTP/FGraHTP
when applied to sparse learning tasks. Our algorithms are implemented in Matlab 7.12
running on a desktop with Intel Core i7 3.2G CPU and 16G RAM.

6.1 Sparsity-constrained Linear Regression

We conduct a group of Monte-Carlo simulation experiments on sparse linear regression
model to verify the sparsity recovery results presented in Section 4.

Data generation. We consider a synthetic data model in which the sparse parameter
w̄ is a p = 500 dimensional vector that has k̄ = 50 nonzero entries drawn independently from
a Gaussian distribution with significant mean. Each data sample u is a normally distributed
dense vector. The responses are generated by v = w̄>u+ ε where ε is a standard Gaussian
noise. We allow the sample size n to be varying and for each n, we generate 100 random
copies of data independently.

Baselines and evaluation metric. We test GraHTP and FGraHTP with varying
sparsity level k ≥ k̄ and compare their performance with three state-of-the-art greedy selec-
tion methods: GraSP (Bahmani et al., 2013), FBS (Yuan & Yan, 2013) and FoBa (Zhang,
2008). As we have mentioned, GraSP is also a hard-thresholding-type method. This method
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(a) Exact support recovery
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(b) Relaxed support recovery

Figure 2: Sparse linear regression on simulated data: chance of success curves for support
recovery under varying sample size and sparsity level.

simultaneously selects at each iteration k nonzero entries and update their values via ex-
ploring the top k entries in the previous iterate as well as the top 2k entries in the previous
gradient. FBS is a forward-selection-type method which iteratively selects an atom from
the dictionary and minimizes the objective function over the linear combinations of all the
selected atoms. FoBa is an adaptive forward-backward greedy selection algorithm which al-
lows elimination of selected variables when the objective value does not increase significantly.
We use two metrics to measure the support recovery performance. We say a relaxed support
recovery is successful if supp(w̄) ⊆ supp(w(t)) and an exact support recovery is successful
if supp(w̄) = supp(w(t), k̄). We replicate the experiment over the 100 trials and record the
percentage of relaxed success and percentage of exact success for each configuration of the
pair (n, k).

Results. Figure 2 shows the percentage of exact (relaxed) success curves as functions
of sample size n, under different sparsity levels k ∈ {50, 70, 110}. From these curves we can
make the following observations:

• For each curve, the chance of success increases as sample size n increases. This is
as expected because the larger sample size is, the easier the x-min conditions can be
fulfilled so as to guarantee exact support recovery;

• GraHTP is superior to FGraHTP for sparsity recovery, especially when using sparsity
level k > k̄ and relatively small sample size. This indicates that the debiasing step
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conducted in GraHPT can significantly improve the accuracy of sparsity recovery,
especially in noisy settings.

• The left panel of Figure 2 shows that when k = k̄, GraHTP/FGraHTP and GraSP
are comparable and they all significantly outperform FBS and FoBa, especially when
the sample size is relatively small. This observation suggests that hard-thresholding-
type methods are more accurate than forward and/or backward selection methods for
sparsity recovery with exact sparsity level. The middle panel shows that for slightly
increased sparsity level k = 70, GraHTP and GraSP still exhibit superior performance,
while the performance gap among all the considered algorithms decreases. From the
right panel we can see that for relatively large k > k̄, FBS, Foba and GraHTP have
much better performance than FGraHTP and GraSP.

From the above observations we conclude that GraHTP is able to achieve better trade-off
between accuracy and stability of sparsity recovery than the other considered methods.

6.2 Sparsity-constrained Logistic Regression

We present in this subsection the experimental results on several synthetic and real-data
sparse logistic regression tasks.

6.2.1 Monte-Carlo simulation

In this group of Monte-Carlo experiments, we use a simulated data to verify the spar-
sity recovery performance of GraHTP and FGraHTP on logistic regression model. The
sparse parameter and design matrix are generated in an identical way to that of the lin-
ear regression model. The data labels, v ∈ {−1, 1}, are generated randomly according to
the Bernoulli distribution P(v = 1|u; w̄) = exp(2w̄>u)/(1 + exp(2w̄>u)). The same ex-
periment protocol as used in the previous linear regression setting applies here. Inspired
by Theorem 8 and the discussion in Section 5.2, we set the step-size η = 1

2M2k
where

M2k = λmax(UU>, 2k) + λ. The sparse eigenvalue λmax(UU>, 2k) can be computed using
the truncated power method (Yuan & Zhang, 2013).

Results. For different sparsity levels k ≥ k̄, Figure 3 shows the chance of exact (relaxed)
success curves as functions of sample size n. Again, from these curves we can observe that:
1) in a wide range of sparsity level, GraHP achieves better trade-off between accuracy and
stability than the other considered sparsity recovery methods; and 2) GraHTP consistently
outperforms FGraHTP in noisy settings when using k > k̄.

6.2.2 Real data experiments

We further illustrate the performance of GraHTP/FGraHTP on real data for binary logistic
regression. The data used for evaluation include two dense data sets gisette (Guyon et al.,
2005) and breast cancer (Hess et al., 2006), and two sparse data sets rcv1.binary (Lewis et al.,
2005) and news20.binary (Keerthi & DeCoste, 2005). Table 3 summaries the statistics of
these data sets. For each data set, we test with sparsity parameters k ∈ {100, 200, ..., 1000}
and fix the regularization parameter λ = 10−5. We initialize w(0) = 0 and set the stopping
criterion as ‖w(t) − w(t−1)‖/‖w(t−1)‖ ≤ 10−4.
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(b) Relaxed support recovery

Figure 3: Sparse logistic regression on simulated data: chance of success curves for support
recovery under varying sample size and sparsity level.

Datasets Training Size Testing Size Dimensionality

gisette 6,000 1,000 5,000
breast cancer 54 79 22,283
rcv1.binary 20,242 20,000 47,236

news20.binary 10,000 9,996 1,355,191

Table 3: Statistics of data sets used in binary logistic regression experiment.

Results. The objective value, test classification error and CPU running time curves
under varying sparsity level k are plot in Figure 4. From these curves we have the following
observations:

• On optimality: GraHTP is superior to the other considered algorithms in most cases.
FGraHTP is less optimal on gisette data, while it is comparable to the other algorithms
on the other three data sets.

• On classification accuracy: GraHTP and GraSP are comparable to each other and
they are slightly superior to the other algorithms in most cases; FGraHTP is average
in classification accuracy in most cases.
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(a) gisette
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(b) breast cancer
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(c) rcv1.binary
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(d) news20.binary

Figure 4: Sparse logistic regression on real data: objective value, classification error and
CPU running time curves under varying sparsity level.
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Figure 5: Sparse logistic regression on real data: comparison between GraHTP/FGraHTP
and Lasso-type estimator in classification error and CPU running time.

• On execution time: FGraHTP is the most efficient one and GraHTP is the runner-up
except on breast cancer. Particularly, as shown in Figure 4(d) that the computa-
tional advantage of FGraHTP/GraHTP over the other considered methods becomes
significant on news20.binary which is relatively large in scale.

To summarize, GraHTP and FGraHTP are able to achieve desirable trade-off between
accuracy and efficiency on the considered data sets.

Comparison against Lasso-type estimator. We have also conducted a set of ex-
periments to compare GraHTP/FGraHTP against the Lasso-type estimator (4) for `1-
regularized sparse learning. To make a fair comparison, we first solve the Lasso-type esti-
mator (4) using an accelerated proximal gradient method (Beck & Teboulle, 2009), which
we call Lasso-APG, and then run GraHTP with the sparsity level of the Lasso-APG so-
lution. Figure 5 shows the test classification error and CPU running time curves under
varying regularization parameter λ. We can observe from this group of results that: (1)
GraHTP and FGraHTP outperform Lasso-APG in classification accuracy on three out of
the four data sets in use; and (2) FGraHTP is the most efficient one on all the data sets and
GraHTP is faster than Lasso-APG on three of the data sets. Based on these observations,
we can conclude that GraHTP and FGraHTP tend to be more accurate and efficient than
Lasso-type estimator when their output solutions are at the same sparsity level.

6.3 Sparsity-constrained Gaussian Precision Matrix Estimation

We further assess the performance of GraHTP/FGraHTP when applied to sparse precision
matrix estimation.
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Figure 6: Sparse precision matrix estimation on simulated data: Matrix Frobenius norm
loss, support recovery F-score and CPU running time curves under varying data
dimensionality. The larger the F-score, the better the support recovery perfor-
mance.

6.3.1 Monte-Carlo Simulation

Our simulation study employs the sparse precision matrix model Ω̄ = Θ + σI where each
off-diagonal entry in Θ is generated independently and equals 1 with probability P = 0.1
or 0 with probability 1 − P = 0.9. Θ has zeros on the diagonal, and σ is chosen so that
the condition number of Ω̄ is p. Let Σ̄ = Ω̄−1 be the covariance matrix. We generate a
training sample of size n = 100 from N (0, Σ̄), and an independent sample of size 100 from
the same distribution for tuning the parameter k. The numerical performance is evaluated
with different values of p ∈ {30, 60, 120, 200}, replicated 100 times each.

We compare the modified GraHTP (as outlined in Algorithm 2) with GraSP, FBS and
FoBa. To adopt GraSP to sparse precision matrix estimation, we modify the algorithm
with a similar two-stage strategy as used in the modified GraHTP such that it can han-
dle the eigenvalue bounding constraint in addition to the sparsity constraint. FBS and
FoBa have already been applied to sparse precision matrix estimation problems in litera-
ture (Yuan & Yan, 2013; Jalali et al., 2011). Also, we compare GraHTP with Graphical
Lasso (GLasso) which is one of the representative Lasso-type convex estimators for `1-
penalized log-determinant program (Friedman et al., 2008). The quality of precision matrix
estimation is measured by its distance to the truth in Frobenius norm and the support
recovery F-score. The larger the F-score, the better the support recovery performance.

Figure 6 compares the matrix error in Frobenius norm, support recovery F-score and
CPU running time achieved by each of the considered algorithms for different p. The results
show that GraHTP performs favorably in terms of estimation error and support recovery
accuracy. We note from the error bars in the curves that the standard error (in 100 replica-
tion) of GraHTP is relatively larger than Glasso. This is because GraHTP approximately
solves a nonconvex problem via greedy selection at each iteration; the procedure is less sta-
ble than those convex solvers such as GLasso. Similar phenomenon of instability has also
been observed for the other considered `0-estimators. The right panel of Figure 6 shows
the computational time of the considered algorithms. We can see that GLasso is more
efficient than the four greedy selection methods. Although inferior to GLasso, GraHTP is
still computationally more attractive than the other considered greedy selection solvers.
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Methods Specificity Sensitivity MCC CPU Time (sec.)

GraHTP 0.77 (0.11) 0.77 (0.19) 0.49 (0.19) 1.92
GraSP 0.73 (0.10) 0.78 (0.18) 0.45 (0.17) 4.06
FBS 0.78 (0.11) 0.74 (0.18) 0.48 (0.19) 8.73
FoBa 0.72 (0.11) 0.78 (0.18) 0.44 (0.18) 6.73

GLasso 0.81 (0.11) 0.64 (0.21) 0.45 (0.19) 1.19

Table 4: Sparse precision matrix estimation on breast cancer data: comparison of average
(std) classification accuracy and average CPU running time over 100 replications.

6.3.2 Real Data

We consider the task of LDA (linear discriminant analysis) classification of tumors using the
breast cancer data set. This data consists of 133 subjects, each of which is associated with
22,283 gene expression levels. Among these subjects, 34 are with pathological complete
response (pCR) and 99 are with residual disease (RD). The pCR subjects are considered
to have a high chance of cancer free survival in the long term. Based on the estimated
precision matrix of the gene expression levels, we apply LDA to predict whether a subject
can achieve the pCR state or the RD state.

Experiment protocol. In this experiment, we follow the same protocol as what was
used in the paper of Cai et al. (2011). The data are randomly divided into the training
and test sets. In each random division, 5 pCR subjects and 16 RD subjects are ran-
domly selected to constitute the test data, and the remaining subjects form the training
set with size n = 112. By using two-sample t test, p = 113 most significant genes are
selected as covariates. Following the LDA framework, we assume that the normalized
gene expression data are normally distributed as N (µl, Σ̄), where the two classes are as-
sumed to have the same covariance matrix, Σ̄, but different means, µl, l = 1 for pCR
state and l = 2 for RD state. Given a test data sample x, we calculate its LDA scores,
δl(x) = x>Ω̂µ̂l − 1

2 µ̂
>
l Ω̂µ̂l + log π̂l, l = 1, 2, using the precision matrix Ω̂ estimated by the

considered methods. Here µ̂l = (1/nl)
∑

i∈classl
xi is the within-class mean in the training

set and π̂l = nl/n is the proportion of class l subjects in the training set. The classification
rule is l̂(x) = arg maxl=1,2 δl(x). Clearly, the classification performance is directly affected

by the estimation quality of Ω̂. Hence, we assess the precision matrix estimation perfor-
mance on the test data and compare GraHTP with GraSP, FBS, FoBa and GLasso. We
use a 6-fold cross-validation on the training data for tuning the sparsity level parameter
in `0-estimators and the regularization strength parameter in GLasso. We replicate the
experiment 100 times.

Evaluation metric and results. To evaluate classification performance, we use the
following defined specificity, sensitivity (or recall), and Mathews correlation coefficient
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(MCC) criteria as used by Cai et al. (2011):

Specificity =
TN

TN + FP
, Sensitivity =

TP

TP + FN
,

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP and TN stand for true positives (pCR) and true negatives (RD), respectively,
and FP and FN stand for false positives/negatives, respectively. The larger the criterion
value, the better the classification performance. Since one can adjust decision threshold
in any specific algorithm to trade-off specificity and sensitivity (increase one while reduce
the other), the MCC is more meaningful as a single performance metric. Table 4 lists
the averages and standard deviations, in the parentheses, of the three classification criteria
over 100 replications. It can be observed that GraHTP is quite competitive to the leading
methods in all the three metrics. The average CPU running time of each considered method
is listed in the rightmost column of Table 4.

7. Conclusion

In this article, we proposed GraHTP as a generalization of HTP from compressed sensing
to the generic problem of sparsity-constrained loss minimization. The main idea is to force
the gradient descent iteration to be sparse via hard thresholding. Theoretically, we proved
that under mild conditions, GraHTP converges geometrically and its estimation error is
controlled by the restricted norm of gradient at the target sparse solution. Under prop-
erly strengthened conditions, we further established the sparsity recovery performance of
GraHTP which to our knowledge has not been systematically analyzed elsewhere in liter-
ature. Also, we have proposed and analyzed the FGraHTP algorithm as a fast variant of
GraHTP without applying the debiasing operation after truncation. Empirically, we showed
that GraHTP and FGraHTP are superior or competitive to the state-of-the-art greedy pur-
suit methods when applied to sparse learning problems including linear regression, logistic
regression and precision matrix estimation. To conclude, simply combining gradient descent
with hard thresholding leads to an accurate and computationally tractable procedure for
solving sparsity-constrained loss minimization problems.

Acknowledgments

The authors would like to thank the anonymous referees for their constructive comments
which are extremely helpful for improving this work. Xiao-Tong Yuan and Ping Li were
partially supported by NSF-Bigdata-1419210, NSF-III-1360971, ONR-N00014-13-1-0764,
and AFOSR-FA9550-13-1-0137. Xiao-Tong Yuan is also partially supported by NSFC-
61522308 and Tencent AI Lab Rhino-Bird Joint Research Program (No.JR201801). Tong
Zhang was supported by NSF-IIS-1407939 and NSF-IIS-1250985.

Appendix A. Technical Lemmas

We present in this appendix section a few technical lemmas to be used in the proofs of main
results.
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Lemma 13 Let x be a k-sparse vector and y = x− η∇f(x). If f is M2k-smooth, then the
following inequality holds:

f(yk) ≤ f(x)− 1− ηM2k

2η
‖yk − x‖2.

Proof Since f is M2k-smooth, it follows that

f(yk)− f(x) ≤〈∇f(x), yk − x〉+
M2k

2
‖yk − x‖2

ξ1
≤− 1

2η
‖yk − x‖2 +

M2k

2
‖yk − x‖2

=− 1− ηM2k

2η
‖yk − x‖2,

where “ξ1” follows from the fact that yk is the best k-support approximation to y such that

‖yk − y‖2 = ‖yk − x+ η∇f(x)‖2 ≤ ‖x− x+ η∇f(x)‖2 = ‖η∇f(x)‖2,

which implies 2η〈∇f(x), yk − x〉 ≤ −‖yk − x‖2.

Lemma 14 Assume that f is ms-strongly convex. Then for any ‖x−x′‖0 ≤ s it holds that

‖x− x′‖ ≤

√
2 max {f(x)− f(x′), 0}

ms
+

2‖∇F∪F ′f(x′)‖
ms

,

where F = supp(x) and F ′ = supp(x′).

Proof Since f is ms-strongly convex, we have

f(x) ≥f(x′) + 〈∇f(x′), x− x′〉+
ms

2
‖x− x′‖2

≥f(x′)− ‖∇F∪F ′f(x′)‖‖x− x′‖+
ms

2
‖x− x′‖2,

where the second inequality follows from Cauchy-Schwarz inequality. From this above
inequality we can see that if f(x) ≤ f(x′), then

‖x− x′‖ ≤ 2‖∇F∪F ′f(x′)‖
ms

.

If otherwise f(x) > f(x′), then we have

‖x− x′‖ ≤
‖∇F∪F ′f(x′)‖+

√
‖∇F∪F ′f(x′)‖2 + 2ms(f(x)− f(x′))

ms

≤
2‖∇F∪F ′f(x′)‖+

√
2ms(f(x)− f(x′))

ms
.

By combining the above two cases we get the desired bound.
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Lemma 15 Assume that f is ms-strongly convex and Ms-smooth. For any index set F
with cardinality |F | ≤ s and any x, y with supp(x) ∪ supp(y) ⊆ F , if η ∈ (0, 2ms/M

2
s ), then

‖x− y − η∇F f(x) + η∇F f(y)‖ ≤
√

1− 2ηms + η2M2
s ‖x− y‖,

and
√

1− 2ηms + η2M2
s < 1.

Proof By adding two copies of the inequality (2) with x and y interchanged and applying
Theorem 2.1.5 in the textbook (Nesterov, 2004) on the supporting set F , we can show that

(x− y)>(∇f(x)−∇f(y)) ≥ ms‖x− y‖2, ‖∇F f(x)−∇F f(y)‖ ≤Ms‖x− y‖.

Then for any η > 0 we have

‖x− y − η∇F f(x) + η∇F f(y)‖2 ≤ (1− 2ηms + η2M2
s )‖x− y‖2.

It is clear that 1 − 2ηms + η2M2
s ≥ 1 −m2

s/M
2
s ≥ 0. The condition η < 2ms/M

2
s implies√

1− 2ηms + η2M2
s < 1. This proves the lemma.

Lemma 16 Assume that f is Ms-smooth and ms-strongly convex. Let F and F ′ be two
index sets with cardinality |F ∪ F ′| = s. Let x = arg minsupp(y)⊆F f(y) and supp(x′) ⊆ F ′.

Then for any η ∈ (0, 2ms/M
2
s ), the following two inequalities hold:

‖(x− x′)F ‖ ≤
ρ‖x′F ′\F ‖

1− ρ
+
η‖∇F∪F ′f(x′)‖

1− ρ
, (14)

‖x− x′‖ ≤
‖x′F ′\F ‖

1− ρ
+
η‖∇F∪F ′f(x′)‖

1− ρ
, (15)

where ρ =
√

1− 2ηms + η2M2
s < 1.

Proof Since x is the minimum of f(y) restricted over the supporting set F , we have
〈∇f(x), z〉 = 0 whenever supp(z) ⊆ F . Then

‖(x− x′)F ‖2

=〈x− x′, (x− x′)F 〉
=〈x− x′ − η∇F∪F ′f(x) + η∇F∪F ′f(x′), (x− x′)F 〉 − η〈∇F∪F ′f(x′), (x− x′)F 〉
ξ1
≤
√

1− 2ηms + η2M2
s ‖x− x′‖‖(x− x′)F ‖+ η‖∇F∪F ′f(x′)‖‖(x− x′)F ‖,

where “ξ1” follows from Lemma 15. Let us abbreviate ρ =
√

1− 2ηms + η2M2
s . After

simplification, we have

‖(x− x′)F ‖ ≤ ρ‖x− x′‖+ η‖∇F∪F ′f(x′)‖. (16)

It follows that

‖x− x′‖ ≤‖(x− x′)F ‖+ ‖(x− x′)F ′\F ‖
≤ρ‖x− x′‖+ η‖∇F∪F ′f(x′)‖+ ‖(x− x′)F ′\F ‖.
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After rearrangement we obtain

‖x− x′‖ ≤
‖(x− x′)F ′\F ‖

1− ρ
+
η‖∇F∪F ′f(x′)‖

1− ρ

=
‖x′F ′\F ‖

1− ρ
+
η‖∇F∪F ′f(x′)‖

1− ρ
.

(17)

By combining (16) and (17) we get

‖(x− x′)F ‖ ≤
ρ‖x′F ′\F ‖

1− ρ
+
η‖∇F∪F ′f(x′)‖

1− ρ
.

This proves the desired bounds in this lemma.

The following lemma is established by Shen & Li (2016, Theorem 1) for bounding the
estimation error of hard-thresholding operation. This result will be extensively used in our
analysis.

Lemma 17 Let b ∈ Rp be an arbitrary p-dimensional vector and a ∈ Rp be any k-sparse
vector. Denote k̄ = ‖a‖0 ≤ k. Then, we have the following universal bound:

‖bk − a‖2 ≤ ν‖b− a‖2, ν = 1 +
β +

√
(4 + β)β

2
, β =

min{k̄, p− k}
k − k̄ + min{k̄, p− k}

.

Appendix B. Proofs of Main Theorems in Section 3

The technical proofs of main results in Section 3 are collected in this appendix section.

B.1 Proof of Theorem 2

Before proving Theorem 2, we first present two lemmas which are respectively key to the
proof of part(a) and part(b) of Theorem 2.

Lemma 18 Assume that f is M3k-smooth and m3k-strongly convex. Let x̄ be an arbitrary
k-sparse vector. Then at time instance t, for any η ∈ (0, 2m3k/M

2
3k), GraHTP will output

x(t) satisfying

‖x(t) − x̄‖ ≤ ρ

1− ρ
‖x(t−1) − x̄‖+

2η‖∇2kf(x̄)‖
1− ρ

,

where ρ =
√

1− 2ηm3k + η2M2
3k < 1.

Proof Denote F̄ = supp(x̄). Since x(t) is the minimum of f(x) restricted over the sup-
porting set F (t), it is directly known from the inequality (15) in Lemma 16 that

‖x(t) − x̄‖ ≤
‖(x(t) − x̄)F̄\F (t)‖

1− ρ
+
η‖∇F (t)f(x̄)‖

1− ρ
. (18)
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According to the definition of F (t),

‖(x(t−1) − η∇f(x(t−1)))F̄ ‖ ≤ ‖(x(t−1) − η∇f(x(t−1)))F (t)‖.

By eliminating the contribution on F̄ ∩ F (t) we get

‖(x(t−1) − η∇f(x(t−1)))F̄\F (t)‖ ≤ ‖(x(t−1) − η∇f(x(t−1)))F (t)\F̄ ‖. (19)

For the right-hand side, we can derive

‖(x(t−1) − η∇f(x(t−1)))F (t)\F̄ ‖

≤‖(x(t−1) − x̄− η∇f(x(t−1)) + η∇f(x̄))F (t)\F̄ ‖+ η‖∇F (t)\F̄ f(x̄)‖.
(20)

As for the left-hand side, we can see that

‖(x(t−1) − η∇f(x(t−1)))F̄\F (t)‖

≥‖(x(t−1) − x̄− η∇f(x(t−1)) + η∇f(x̄))F̄\F (t) − (x(t) − x̄)F̄\F (t) − η∇F̄\F (t)f(x̄)‖

≥‖(x(t) − x̄)F̄\F (t)‖ − ‖(x(t−1) − x̄− η∇f(x(t−1)) + η∇f(x̄))F̄\F (t)‖
− η‖∇F̄\F (t)f(x̄)‖.

(21)

Denote F̄∆F (t) the symmetric difference of F̄ and F (t) and let F = F̄ ∪ F (t) ∪ F (t−1). It
can be shown from (19), (20) and (21) that

‖(x(t) − x̄)F̄\F (t)‖

≤‖(x(t−1) − x̄− η∇f(x(t−1)) + η∇f(x̄))F̄∆F (t)‖+ η‖∇F̄∆F (t)f(x̄)‖
≤‖x(t−1) − x̄− η∇F f(x(t−1)) + η∇F f(x̄)‖+ η‖∇F (t)∆F̄ f(x̄)‖
ξ1
≤ρ‖x(t−1) − x̄‖+ η‖∇F (t)∆F̄ f(x̄)‖,

(22)

where “ξ1” follows from Lemma 15. As a final step, combining (18) and (22) gives us

‖x(t) − x̄‖ ≤ ρ

1− ρ
‖x(t−1) − x̄‖+

2η‖∇F (t)∪F̄ f(x̄)‖
1− ρ

≤ ρ

1− ρ
‖x(t−1) − x̄‖+

2η‖∇2kf(x̄)‖
1− ρ

.

This completes the proof.

Lemma 19 Let x̄ be an arbitrary k̄-sparse vector. Assume that s = 2k + k̄ ≤ p and f is
Ms-smooth and ms-strongly convex. Then at time instance t, for any η ∈ (0, 2ms/M

2
s ),

FGraHTP will output x(t) satisfying

‖x(t) − x̄‖ ≤ γρ‖x(t−1) − x̄‖+ γη‖∇sf(x̄)‖,

where ρ =
√

1− 2ηms + η2M2
s < 1 and γ =

√
1 +

(
k̄/k +

√
(4 + k̄/k)k̄/k

)
/2.
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Proof Recall that F (t) = supp(x(t)) and F = F (t−1)∪F (t)∪supp(x̄). Consider the following
vector

y = x(t−1) − η∇F f(x(t−1)).

By using triangular inequality,

‖y − x̄‖ = ‖x(t−1) − η∇F f(x(t−1))− x̄‖
≤ ‖x(t−1) − x̄− η∇F f(x(t−1)) + η∇F f(x̄)‖+ η‖∇F f(x̄)‖
≤ ρ‖x(t−1) − x̄‖+ η‖∇sf(x̄)‖,

where the last inequality follows from Lemma 15 and ‖∇F f(x̄)‖ ≤ ‖∇sf(x̄)‖. We note that
x(t) = yk in FGraHTP. Then, by invoking Lemma 17 we get

‖x(t) − x̄‖ ≤ γ‖y − x̄‖,

where γ =

√
1 +

(
k̄/k +

√
(4 + k̄/k)k̄/k

)
/2. It follows that

‖x(t) − x̄‖ ≤ γρ‖x(t−1) − x̄‖+ γη‖∇sf(x̄)‖.

This proves the desired bound.

Equipped with Lemma 18 and Lemma 19, we can now prove Theorem 2 in a straight-
forward way.
Proof [of Theorem 2]

Part(a): Since M3k/m3k < 2
√

3/3, there exists η ∈ (0, 2m3k/M
2
3k) such that ρ =√

1− 2ηm3k + η2M2
3k < 0.5 and thus ρ/(1 − ρ) < 1. By recursively applying Lemma 18

and noting the fact ‖∇sf(x)‖ ≤
√
s‖∇f(x)‖∞ we obtain the desired bound in this part.

Part(b): Note that γ = 1.62 when k̄ = k in Lemma 19. Since M3k/m3k < 1.26, there
exists η ∈ (0, 2m3k/M

2
3k) such that ρ < 0.62 and thus 1.62ρ < 1. Then by recursively

applying Lemma 19 with k̄ = k we obtain the desired bound in this part.

B.2 Proof of Theorem 5

We need the following lemma to prove Theorem 5.

Lemma 20 Assume that f is M2k-smooth and m2k-strongly convex. Assume the step-size

η < 1/M2k. Let x̄ be an arbitrary k̄-sparse vector with k ≥
(

2 + 4
η2m2

2k

)
k̄. Then GraHTP

outputs x(t) satisfying
f(x(t)) ≤ f(x̄) + (1− ν̄)t4̄(0),

where ν̄ = ηm2k(1− ηM2k)/2 ∈ (0, 0.125m2k/M2k) and 4̄(0) = f(x(0))− f(x̄).

Proof From the definition of x̃(t) we know that the following inequality holds:

‖x̃(t)

F (t) − x(t−1)‖ ≥ η‖∇F (t)\F (t−1)f(x(t−1))‖. (23)
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From Lemma 13 we get

f(x(t))− f(x(t−1)) ≤ f(x̃
(t)

F (t))− f(x(t−1)) ≤ −1− ηM2k

2η
‖x̃(t)

F (t) − x(t−1)‖2. (24)

Combining the above two inequalities (23) and (24) gives us

f(x(t))− f(x(t−1)) ≤ −(1− ηM2k)η

2
‖∇F (t)\F (t−1)f(x(t−1))‖2. (25)

Let F̄ = supp(x̄). Under the conditions in the theorem, we claim

‖∇F (t)\F (t−1)f(x(t−1))‖2 ≥ m2k

[
f(x(t−1))− f(x̄)

]
. (26)

To prove this , let us distinguish the following two mutually complementary cases:

• Case I: |F (t) \ F (t−1)| ≥ k̄. In this case, we have |F (t) \ F (t−1)| ≥ |F̄ \ F (t−1)|. From
the m2k-strong convexity of f we have

m2k

2
‖x̄− x(t−1)‖2

≤f(x̄)− f(x(t−1))− (x̄− x(t−1))>∇f(x(t−1))

ξ1
≤f(x̄)− f(x(t−1)) +

m2k

2
‖x̄− x(t−1)‖2 +

1

2m2k
‖∇F̄\F (t−1)f(x(t−1))‖2,

where “ξ1” follows from Cauchy-Schwartz inequality, a basic inequality ma2/2 +
b2/(2m) ≥ ab for any m > 0, and ∇F (t−1)f(x(t−1)) = 0. This implies

‖∇F̄\F (t−1)f(x(t−1))‖2 ≥ 2m2k

[
f(x(t−1))− f(x̄)

]
. (27)

Since F (t) \F (t−1) contains the top |F (t) \F (t−1)| (in magnitude) entries in ∇f(x(t−1))
and |F (t) \ F (t−1)| ≥ |F̄ \ F (t−1)|, it follows that

‖∇F (t)\F (t−1)f(x(t−1))‖2 ≥ ‖∇F̄\F (t−1)f(x(t−1))‖2 ≥ 2m2k

[
f(x(t−1))− f(x̄)

]
.

• Case II: |F (t)\F (t−1)| < k̄. In this case, from the step (S2) we know that each element
of x̃(t) over F̄ \ (F (t) ∪ F (t−1)) has smaller magnitude than that over F (t) ∩ F (t−1).
This implies

‖x̃(t)

F̄\(F (t)∪F (t−1))
‖2

|F̄ \ (F (t) ∪ F (t−1))|
≤
‖x̃(t)

(F (t)∩F (t−1))\F̄ ‖
2

|(F (t) ∩ F (t−1)) \ F̄ |
.

Since x̃
(t)

F̄\(F (t)∪F (t−1))
= −η∇F̄\(F (t)∪F (t−1))f(x(t−1)), x̃

(t)

(F (t)∩F (t−1))\F̄ = x
(t−1)

(F (t)∩F (t−1))\F̄ ,

|F̄ \ (F (t) ∪ F (t−1))| ≤ k̄ and |(F (t) ∩ F (t−1)) \ F̄ | ≥ k − 2k̄, we have

η2‖∇F̄\(F (t)∪F (t−1))f(x(t−1))‖2 ≤ k̄

k − 2k̄
‖x(t−1)

(F (t)∩F (t−1))\F̄ ‖
2.
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From the m2k-strong convexity of f we have

m2k

2
‖x̄− x(t−1)‖2

≤f(x̄)− f(x(t−1))− (x̄− x(t−1))>∇f(x(t−1))

ξ1
≤f(x̄)− f(x(t−1)) +

m2k

4
‖x̄− x(t−1)‖2 +

1

m2k
‖∇F̄\F (t−1)f(x(t−1))‖2

≤f(x̄)− f(x(t−1)) +
m2k

4
‖x̄− x(t−1)‖2 +

1

m2k
‖∇F̄\(F (t)∪F (t−1))f(x(t−1))‖2

+
1

m2k
‖∇(F (t)\F (t−1))∩F̄ f(x(t−1))‖2

ξ2
≤f(x̄)− f(x(t−1)) +

m2k

4
‖x̄− x(t−1)‖2 +

k̄

η2(k − 2k̄)m2k
‖x(t−1)

(F (t)∩F (t−1))\F̄ ‖
2

+
1

m2k
‖∇F (t)\F (t−1)f(x(t−1))‖2

ξ3
≤f(x̄)− f(x(t−1)) +

m2k

4
‖x̄− x(t−1)‖2 +

k̄

η2(k − 2k̄)m2k
‖x̄− x(t−1)‖2

+
1

m2k
‖∇F (t)\F (t−1)f(x(t−1))‖2,

where “ξ1” follows from Cauchy-Schwartz inequality, ma2/4 + b2/(m) ≥ ab for any
m > 0, and ∇F (t−1)f(x(t−1)) = 0, “ξ2” follows from the preceding inequality, and

“ξ3” is due to ‖x(t−1)

(F (t)∩F (t−1))\F̄ ‖ ≤ ‖x̄ − x
(t−1)‖. Since k ≥

(
2 + 4

η2m2
2k

)
k̄, the above

inequality leads to

‖∇F̄\F (t−1)f(x(t−1))‖2 ≥ m2k

[
f(x(t−1))− f(x̄)

]
.

Since η < 1/M2k, from (25) and (26) we get that

f(x(t)) ≤ f(x(t−1))− ηm2k(1− ηM2k)

2

[
f(x(t−1))− f(x̄)

]
= f(x(t−1))− ν̄

[
f(x(t−1))− f(x̄)

]
.

Therefore, we get

f(x(t))− f(x̄) ≤ (1− ν̄)(f(x(t−1))− f(x̄)).

Since m2k ≤ M2k and η ∈ (0, 1/M2k), it can be verified that ν̄ ∈ (0, 0.125m2k/M2k). By
recursively applying the above inequality we obtain the desired result.

We are now in the position to prove Theorem 5.

Proof [of Theorem 5] Part(a): Since η < 1/M2k, it is directly known from Lemma 13 that
{f(x(t))} is monotonically decreasing. From Lemma 14 we know that the result holds when
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f(x(t)) ≤ f(x̄). Therefore, we only need to consider the case when f(x(t)) > f(x̄). In this
case, from Lemma 14 and Lemma 20 we get

‖x(t) − x̄‖ ≤

√
2(f(x(t))− f(x̄))

m2k
+

2‖∇2kf(x̄)‖
m2k

≤

√
2(1− ν̄)t4̄(0)

m2k
+

2
√

2k‖∇f(x̄)‖∞
m2k

.

This proves the result in part(a).
Part(b): From the condition k ≥ ρk̄/(1 − ρ)2 we can verify that µ̄2 = ργ < 1. Thus,

the result can be directly proved by recursively applying Lemma 19.

Appendix C. Proofs of Main Theorems in Section 4

The technical proofs of main results in Section 4 are collected in this appendix section.

C.1 Proof of Theorem 8

Before commencing with the actual proof, we first present an overview of the proof procedure
which consists of the following three key ingredients:

(a) We first prove that under the given conditions, GraHTP will not terminate (i.e.,
F (t) 6= F (t−1)) whenever supp(x̄) * supp(x(t−1)).

(b) We then show that supp(x̄) = supp(x(t), k̄) when GraHTP terminates at x(t).

(c) Finally we show that the conditions in the theorem guarantee finite termination of
GraHTP and analyze its iteration complexity before termination.

Proof [of Theorem 8]
We first show that F (t) 6= F (t−1) whenever supp(x̄) * supp(x(t−1)). To this end, let us

assume supp(x̄) * supp(x(t−1)). Recall x? = arg min‖x‖0≤k f(x). Then

x̄min + ‖x(t−1)

F (t−1)\F̄ ‖ ≤ ‖x̄− x
(t−1)‖

ξ1
≤

√
2 max

{
f(x̄)− f(x(t−1)), 0

}
m2k

+
2‖∇F̄\F (t−1)f(x(t−1))‖

m2k

ξ2
≤

√
2(f(x̄)− f(x?))

m2k
+

2‖∇F̄\F (t−1)f(x(t−1))‖
m2k

,

where “ξ1” follows from Lemma 14 and “ξ2” is due to the fact of f(x(t−1)) ≥ f(x?). Since

it is assumed x̄min > 1.62
√

2(f(x̄)−f(x?))
m2k

, the above inequality implies

‖x(t−1)

F (t−1)\F̄ ‖ <
2‖∇F̄\F (t−1)f(x(t−1))‖

m2k
,
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which then gives us √
k − k̄x(t−1)

min <
2
√
k̄

m2k
‖∇f(x(t−1))‖∞.

Since η = 1
2M2k

and k ≥
(

1 +
16M2

2k

m2
2k

)
k̄, we then have

η‖∇f(x(t−1))‖∞ > x
(t−1)
min .

This means that at least the smallest nonzero entry of x(t−1) and the largest entry of
∇f(x(t−1)) can be swapped in step (S2) of Algorithm 1, and thus F (t) 6= F (t−1). There-
fore, when the algorithm terminates at time instance t, i.e., F (t) = F (t−1), we must have
supp(x̄) ⊆ supp(x(t)).

Next we show that supp(x̄) = supp(x(t), k̄) when GraHTP terminates at time instance
t with supp(x̄) ⊆ supp(x(t)). Assume otherwise supp(x̄) 6= supp(x(t), k̄). Then

x̄min ≤ ‖x̄− x(t)

k̄
‖

ξ1
≤ 1.62‖x̄− x(t)‖

ξ2
≤ 1.62

√2(f(x̄)− f(x?))

m2k
+

2‖∇F̄\F (t)f(x(t))‖
m2k


ξ3
= 1.62

√
2(f(x̄)− f(x?))

m2k
,

where “ξ1” is based on the truncation error bound given by Shen & Li (2016, Theorem 1),
“ξ2” follows from Lemma 14 and the fact of f(x(t)) ≥ f(x?), and “ξ3” is the consequence
of F̄ ⊆ F (t). This above inequality contradicts the assumption on x̄min. Therefore, it must
hold that supp(x̄) = supp(x(t), k̄).

Now we claim that GraHTP is finite under the assumed conditions. Indeed, based on
Lemma 13 it is easy to verify that when η = 1

2M2k
, the sequence {f(x(t))} generated by

Algorithm 1 is monotonically decreasing. Since the number of k-support index sets is finite,
the sequence {f(x(t))} will be eventually periodic, and thus must be eventually a constant.

Therefore we deduce that x̃
(t)
k = x(t−1), i.e., F (t) = F (t−1), when t is sufficiently enough.

Finally, we estimate the iteration complexity bound before algorithm termination. Sup-
pose that F (t) 6= F (t−1) (otherwise GraHTP terminates at time instance t). From the step
(S3) we know that ∇F (t−1)f(x(t−1)) = 0. By definition of F (t) we may decompose F (t) =
G1 ∪ (F (t−1) \ G2) with G1 ⊆ supp(∇f(x(t−1))), G2 ⊆ F (t−1) and |G1| = |G2| = k′ ≤ k.
Here, G1 contains the top k′ (in magnitude) entries in ∇f(x(t−1)) while G2 contains the
bottom k′ nonzero entries in x(t−1). Since F (t) 6= F (t−1), we have k′ ≥ 1. From the step
(S2) we know that

‖x(t−1)
G2
‖ < η‖∇G1f(x(t−1))‖. (28)

Let F = F (t−1) ∪ supp(x?). From the conditions in the theorem we have

m2k

2
‖x? − x(t−1)‖2 ≤ f(x?)− f(x(t−1))− (x? − x(t−1))>∇f(x(t−1))

≤ f(x?)− f(x(t−1)) +
m2k

2
‖x? − x(t−1)‖2 +

1

2m2k
‖∇F f(x(t−1))‖2,
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where the second inequality follows from Cauchy-Schwartz inequality and a basic inequality
ma2/2 + b2/(2m) ≥ ab for any m > 0. This implies

‖∇F f(x(t−1))‖2 ≥ 2m2k

[
f(x(t−1))− f(x?)

]
.

Let F ? = supp(x?) and k′′ = |F ? \F (t−1)|. Obviously, we have k′′ ≤ k. Based on the above
arguments, it can be verified that

k‖∇G1f(x(t−1))‖2 ≥ (k′′/k′)‖∇G1f(x(t−1))‖2

≥ ‖∇F f(x(t−1))‖2

≥ 2m2k

[
f(x(t−1))− f(x?)

]
. (29)

Now let y(t) := x(t−1) + δ(t−1) in which

δ(t−1) = −η∇G1f(x(t−1))− x(t−1)
G2

.

From the steps (S1) and (S3) in Algorithm 1 we get

f(x(t)) ≤ f(y(t))

≤ f(x(t−1)) + 〈∇f(x(t−1)),∆(t−1)〉+
M2k

2
‖∆(t−1)‖2

≤ f(x(t−1)) +
M2k

2
‖x(t−1)

G2
‖2 − 2η − η2M2k

2
‖∇G1f(x(t−1))‖2

ξ1
≤ f(x(t−1))− (η − η2M2k)‖∇G1f(x(t−1))‖2

ξ2
≤ f(x(t−1))− m2k

2kM2k
(f(x(t−1))− f(x?)),

where “ξ1” follows from (28) and “ξ2” uses (29) and η = 1
M2k

as well. Therefore, we get

f(x(t))− f(x?) ≤
(

1− m2k

2kM2k

)
(f(x(t−1))− f(x?)).

Note that f(x(t)) ≥ f(x?) for all t ≥ 0. By recursively using the above inequality we get

f(x(t))− f(x?) ≤
(

1− m2k

2kM2k

)t
(f(x(0))− f(x?)).

Let us define the following quantity

4−? = min
‖x‖0≤k,supp(x)6=supp(x?),f(x)>f(x?)

f(x)− f(x?).

Then f(x(t))− f(x?) ≤ 4−? when t ≥ 2kM2k
m2k

ln 4
(0)

4−? (note that 4−? > 0 by definition). Af-

ter that, we have f(x(t)) = f(x?), i.e., x(t) is also a k-sparse minimizer. Then according to

Lemma 21 we have x
(t)
min ≥

‖∇f(x(t))‖∞
M2k

> η‖∇f(x(t))‖∞, and thus the algorithm terminates

at x(t). Based on the above arguments, we can conclude that GraHTP terminates after at

most t =
⌈

2kM2k
m2k

ln 4
(0)

4−?

⌉
steps of iteration. This completes the proof.
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C.2 Proof of Theorem 10

The following lemma gives a necessary condition on the k-sparse minimizer x?. A similar
result was proved by Beck & Eldar (2013).

Lemma 21 If f is M2k-smooth, then the following inequality holds for the global k-sparse
minimizer x? = arg min‖x‖0≤k f(x):

x?min ≥
‖∇f(x?)‖∞

M2k
.

Proof Assume otherwise that ϑ? :=
M2kx

?
min

‖∇f(x?)‖∞ < 1. Let us consider x̃? = x? − η∇f(x?)

with any η ∈ (ϑ?/M2k, 1/M2k). From Lemma 13 we get that

f(x̃?k)) ≤ f(x?)− 1− ηM2k

2η
‖x̃?k − x?‖2.

Since η < 1
M2k

and x?min = ϑ?‖∇f(x?)‖∞
M2k

< η‖∇f(x?)‖∞, we have x̃?k 6= x? and thus it fol-
lows from the above inequality that f(x̃?k) < f(x?) which contradicts the optimality of x?.

Now we can prove the main result in Theorem 10.

Proof [of Theorem 10] We first show that supp(x̄) = supp(x?, k̄) if the condition (1) is
satisfied. Assume otherwise supp(x̄) 6= supp(x?, k̄). From the optimality of x? and k ≥ k̄
we have f(x?) ≤ f(x̄). By invoking Lemma 14 and the truncation error bound by Shen &
Li (2016, Theorem 1) we get

x̄min ≤ ‖x?k̄ − x̄‖ ≤ 1.62‖x? − x̄‖ ≤ 3.24
√

2k‖∇f(x̄)‖∞
m2k

<
4.59
√
k‖∇f(x̄)‖∞
m2k

,

which contradicts the condition.

Next we prove that supp(x̄) = supp(x?, k̄) if the condition (2) is satisfied. Let F̄ =
supp(x̄) and F ? = supp(x?). We first claim that F̄ ⊆ F ?. Indeed, if otherwise F̄ * F ?,
then

x̄min + ‖x?F ?\F̄ ‖ ≤ ‖x̄− x
?‖

ξ1
≤

√
2 max {f(x̄)− f(x?), 0}

m2k
+

2‖∇F̄\F ?f(x?)‖
m2k

=

√
2(f(x̄)− f(x?))

m2k
+

2‖∇F̄\F ?f(x?)‖
m2k

,

where “ξ1” follows from Lemma 14. Since x̄min > 1.62
√

2(f(x̄)−f(x?))
m2k

, the above inequality

leads to √
k − k̄x?min ≤ ‖x?F ?\F̄ ‖ <

2‖∇F̄\F ?f(x?)‖
m2k

≤ 2
√
k̄‖∇f(x?)‖∞
m2k

.
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Since k ≥
(

1 +
4M2

2k

m2
2k

)
k̄, we thus have x?min < ‖∇f(x?)‖∞

M2k
. This contradicts Lemma 21.

Therefore we must have F̄ ⊆ F ?. Now let us assume supp(x̄) 6= supp(x?, k̄). Then

x̄min ≤ ‖x̄− x?k̄‖
ξ1
≤ 1.62‖x̄− x?‖

ξ2
≤ 1.62

√2(f(x̄)− f(x?))

m2k
+

2‖∇F̄\F ?f(x?)‖
m2k


ξ3
= 1.62

√
2(f(x̄)− f(x?))

m2k
< 2.3

√
f(x̄)− f(x?)

m2k
,

where “ξ1” is based on the truncation error bound by Shen & Li (2016, Theorem 1), “ξ2” fol-
lows from Lemma 14 and the fact of f(x̄) ≥ f(x?), and “ξ3” is the consequence of F̄ ⊆ F ?.
This above inequality contradicts the assumption on x̄min. Therefore, it must hold that
supp(x̄) = supp(x?, k̄).

Appendix D. Some Technical Details in Section 5

In this appendix section, we give the proof of Proposition 12 and present some implemen-
tation details of the proposed ADMM method for solving the subproblem (13).

D.1 Proof of Proposition 12

Proof It is straightforward to show that

‖∇f(w̄)‖∞ ≤ ‖∇l(w̄)‖∞ + λ‖w̄‖∞. (30)

We next bound the term ‖∇l(w̄)‖∞. From (10) we have∣∣∣∣ ∂l

∂[w̄]j

∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

−v(i)[u(i)]j + Ev[v[u(i)]j | u(i)]

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

v(i)[u(i)]j − E[v[u]j ]

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

Ev[v[u(i)]j | u(i)]− E[v[u]j ]

∣∣∣∣∣ ,
where E[·] is taken over the distribution (9). Therefore, for any ε > 0,

P
(∣∣∣∣ ∂l

∂[w̄]j

∣∣∣∣ > ε

)
≤P

(∣∣∣∣∣ 1n
n∑
i=1

v(i)[u(i)]j − E[v[u]j ]

∣∣∣∣∣ > ε

2

)

+ P

(∣∣∣∣∣ 1n
n∑
i=1

Ev[v[u(i)]j | u(i)]− E[v[u]j ]

∣∣∣∣∣ > ε

2

)
ξ1
≤4 exp

{
−nε

2

8σ2

}
,
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where “ξ1” follows from the large deviation inequality of sub-Gaussian random variables
which is standard (see, e.g., Vershynin, 2011). By the union bound we have

P(‖∇l(w̄)‖∞ > ε) ≤ 4p exp

{
−nε

2

8σ2

}
.

By choosing ε = 4σ
√

ln p/n in the above inequality we obtain that with probability at least
1− 4p−1,

‖∇l(w̄)‖∞ ≤ 4σ
√

ln p/n.

Combining the above bound with (30) yields the desired result.

D.2 The ADMM Method for Solving the Subproblem (13)

Now we present the algorithmic procedure of ADMM for solving the subproblem (13). By
introducing an auxiliary variable Θ ∈ Rp×p, this subproblem can be equivalently formulated
as

min
αI�Ω�βI

L(Ω), s.t. Ω = Θ, supp(Θ) ⊆ F. (31)

Then, the augmented Lagrangian function of (31) is

J(Ω,Θ,Γ) := L(Ω)− 〈Γ,Ω−Θ〉+
ρ

2
‖Ω−Θ‖2Frob,

where Γ ∈ Rp×p is the multiplier of the linear constraint Ω = Θ and ρ > 0 is the penalty
strength parameter for the violation of the linear constraint. The ADMM method alter-
nately solves the following problems to generate the new iterate:

Ω(τ) = arg min
αI�Ω�βI

J(Ω,Θ(τ−1),Γ(τ−1)), (32)

Θ(τ) = arg min
supp(Θ)⊆F

J(Ω(τ),Θ,Γ(τ−1)), (33)

Γ(τ) = Γ(τ−1) − ρ(Ω(τ) −Θ(τ)).

Let us first consider the minimization problem (32) for updating Ω(τ). It is equivalent to
the following minimization problem:

Ω(τ) = arg min
αI�Ω�βI

1

2
‖Ω−M‖2Frob −

1

ρ
log det Ω,

where

M = Θ(τ−1) − 1

ρ
(Σn − Γ(τ−1)).

Let the eigenvalue decomposition of M be

M = V ΛV >, with Λ = diag(λ1, ..., λn).

It is easy to verify that the solution of problem (32) is given by

Ω(τ) = V Λ̃V >, with Λ̃ = diag(λ̃1, ..., λ̃n),
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where

λ̃j = min

β,max

α, λj +
√
λ2
j + 4/ρ

2


 .

Next, we consider the minimization problem (33) for updating Θ(τ). It is straightforward
to see that the solution of problem (33) is given by

Θ(τ) =

[
Ω(τ) − 1

ρ
Γ(τ−1)

]
F

.
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