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Gradient Histogram Estimation and Preservation for

Texture Enhanced Image Denoising
Wangmeng Zuo, Lei Zhang, Chunwei Song, David Zhang and Huijun Gao

Abstract—Natural image statistics plays an important role in
image denoising, and various natural image priors, including
gradient based, sparse representation based and nonlocal self-
similarity based ones, have been widely studied and exploited for
noise removal. In spite of the great success of many denoising
algorithms, they tend to smooth the fine scale image textures
when removing noise, degrading the image visual quality. To
address this problem, in this paper we propose a texture enhanced
image denoising method by enforcing the gradient histogram of
the denoised image to be close to a reference gradient histogram
of the original image. Given the reference gradient histogram,
a novel gradient histogram preservation (GHP) algorithm is
developed to enhance the texture structures while removing noise.
Two region-based variants of GHP are proposed for the denoising
of images consisting of regions with different textures. An
algorithm is also developed to effectively estimate the reference
gradient histogram from the noisy observation of the unknown
image. Our experimental results demonstrate that the proposed
GHP algorithm can well preserve the texture appearance in the
denoised images, making them look more natural.

Index Terms—Image denoising, histogram specification, non-
local similarity, sparse representation.

I. INTRODUCTION

IMAGE denoising, which aims to estimate the latent clean

image x from its noisy observation y, is a classical yet

still active topic in image processing and low level vision.

One widely used data observation model [4], [7], [9]–[11] is

y = x+ v, where v is additive white Gaussian noise (AWGN).

One popular approach to image denoising is the variational

method, where an energy functional is minimized to search

the desired estimation of x from its noisy observation y. The

energy functional usually involves two terms: a data fidelity

term which depends on the image degeneration process and

a regularization term which models the prior of clean natural

images [4], [7], [8], [12]. The statistical modeling of natural

image priors is crucial to the success of image denoising.

Motivated by the fact that natural image gradients and

wavelet transform coefficients have a heavy-tailed distribution,

sparsity priors are widely used in image denoising [1]–[3].
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Fig. 1: Examples of denoised images and their gradient histograms.
(a) A cropped image with hair textures; (b) denoised image by the
SAPCA-BM3D method [11]; (c) denoised image by the proposed
texture enhanced image denoising via gradient histogram preservation
(GHP); (d) the gradient histograms of the denoised images. One can
see that the proposed GHP method can recover more texture details
than other methods, and the gradient histogram of the denoised image
by GHP is also closer to the gradient histogram of ground truth image.

The well-known total variation minimization methods actually

assume Laplacian distribution of image gradients [4]. The

sparse Laplacian distribution is also used to model the high-

pass filter responses and wavelet/curvelet transform coeffi-

cients [5], [6]. By representing image patches as a sparse

linear combination of the atoms in an over-complete redundant

dictionary, which can be analytically designed or learned from

natural images, sparse coding has proved to be very effective

in image denoising via l0-norm or l1-norm minimization [7],

[8]. Another popular prior is the nonlocal self-similarity (NSS)

prior [9]–[11], [50]; that is, in natural images there are often

many similar patches (i.e., nonlocal neighbors) to a given

patch, which may be spatially far from it. The connection

between NSS and the sparsity prior is discussed in [11], [12].

The joint use of sparsity prior and NSS prior has led to state-

of-the-art image denoising results [12]–[14]. In spite of the

great success of many denoising algorithms, however, they

often fail to preserve the image fine scale texture structures
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[23], degrading much the image visual quality (please refer to

Fig. 1 for example).

With the rapid development of digital imaging technology,

now the acquired images can contain tens of megapixels. On

one hand, more fine scale texture features of the scene will

be captured; on the other hand, the captured high definition

image is more prone to noise because the smaller size of

each pixel makes the exposure less sufficient. Unfortunately,

suppressing noise and preserving textures are difficult to

achieve simultaneously, and this has been one of the most

challenging problems in natural image denoising. Unlike large

scale edges, the fine scale textures are much more complex

and are hard to characterize by using a sparse model. Texture

regions in an image are homogeneous and are composed of

similar local patterns, which can be characterized by using

local descriptors or textons [43]. Cognitive studies [35], [36],

[43], [44] have revealed that the first-order statistics, e.g.,

histograms, are the most significant descriptors for texture

discrimination. Considering these facts, histogram of local

features has been widely used in texture analysis [15]–[17].

Meanwhile, image gradients are crucial to the perception and

analysis of natural images [45], [46]. All these motivate us

to use the histogram of image gradient to design new image

denoising models.

With the above considerations, in this paper we propose

a novel gradient histogram preservation (GHP) method for

texture enhanced image denoising. From the given noisy image

y, we estimate the gradient histogram of original image x.

Taking this estimated histogram, denoted by hr, as a reference,

we search an estimate of x such that its gradient histogram

is close to hr. As shown in Fig. 1, the proposed GHP based

denoising method can well enhance the image texture regions,

which are often over-smoothed by other denoising methods.

The major contributions of this paper are summarized as

follows:

(1) A novel texture enhanced image denoising framework is

proposed, which preserves the gradient histogram of the

original image. The existing image priors can be easily

incorporated into the proposed framework to improve the

quality of denoised images.

(2) Using histogram specification, a gradient histogram

preservation algorithm is developed to ensure that the

gradient histogram of denoised image is close to the

reference histogram, resulting in a simple yet effective

GHP based denoising algorithm.

(3) By incorporating the hyper-Laplacian and nonnegative

constraints, a regularized deconvolution model and an it-

erative deconvolution algorithm are presented to estimate

the image gradient histogram from the given noisy image.

The rest of the paper is organized as follows. Section II pro-

vides a brief survey of the related work. Section III introduces

the gradient histogram estimation and preservation framework.

Section IV presents the proposed denoising model and the

iterative histogram specification algorithm, while Section V

describes the regularized deconvolution model and algorithm

for gradient histogram estimation. Section VI presents the

experimental results. Finally, Section VII concludes this paper.

II. RELATED WORK

Image denoising methods can be grouped into two cat-

egories: model-based methods and learning-based methods.

Most denoising methods reconstruct the clean image by ex-

ploiting some image and noise prior models, and belong to

the first category. Learning-based methods attempt to learn a

mapping function from the noisy image to the clean image

[19], and have been receiving considerable research interests

[20], [21]. Here we briefly review those model-based denoising

methods related to our work from a viewpoint of natural image

priors.

Studies on natural image priors aim to find suitable models

to describe the characteristics or statistics (e.g., distribution)

of images in some domain. One representative class of image

priors is the gradient prior based on the observation that

natural images have a heavy-tailed distribution of gradients.

The use of gradient prior can be traced back to 1990s when

Rudin et al. [4] proposed a total variation (TV) model for

image denoising, where the gradients are actually modeled as

Laplacian distribution. Another well-known prior model, the

mixture of Gaussians, can also be used to approximate the

distribution of image gradient [1], [22]. In addition, hyper-

Laplacian model can more accurately characterize the heavy-

tailed distribution of gradients, and has been widely applied

to various image restoration tasks [2], [3], [23]–[25].

The image gradient prior is a kind of local sparsity prior,

i.e., the gradient distribution is sparse. More generally, the

local sparsity prior can be well applied to high-pass filter re-

sponses, wavelet/curvelet transform coefficients, or the coding

coefficients over a redundant dictionary. In [5], [6], Gaussian

scale mixtures are used to characterize the marginal and joint

distributions of wavelet transform coefficients. In [26], [27],

the Student t-distributions are used for both basis filter learning

and filter response modeling. By assuming that an image patch

can be represented as a sparse linear combination of the atoms

in an over-complete dictionary, a number of dictionary learning

(DL) methods (e.g., analysis and synthesis K-SVD [7], [28],

task driven DL [29], and adaptive sparse domain selection [8]

have been proposed and applied to image denoising and other

image restoration tasks.

Based on the fact that a similar patch to the given patch

may not be spatially close to it, another line of research is to

model the similarity between image patches, i.e., the image

nonlocal self-similarity (NSS) priors. The seminal work of

nonlocal means denoising [9] has motivated a wide range of

studies on NSS, and has led to a flurry of NSS based state-

of-the-art denoising methods, e.g., BM3D [11], LSSC [12],

and EPLL [30], etc. While most of the NSS based methods

find similar patches on the original scale, recent studies have

shown that NSS across different scales can also benefit image

denoising [52]. Under the NSS framework, Levin et al. [31]

investigated the inherent limit of denoising algorithms, and

their empirical validation showed that the existing methods

might still be improved by 1 dB.

Different image priors characterize different and comple-

mentary aspects of natural image statistics, and thus it is

possible to combine multiple priors to improve the denoising
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performance. For example, Dong et al. [13] unified both image

local sparsity and nonlocal similarity priors via clustering-

based sparse representation. Recently, Jancsary et al. [32]

proposed a method called regression tree fields (RTF) to

integrate different priors.

However, many existing image denoising algorithms, in-

cluding those local sparsity and NSS based ones, tend to

wipe out the image fine scale textures while removing noise.

As we discussed in Section I, considering the randomness

and homogeneousness of image texture regions, we propose

to use the histogram of gradient to describe image texture

and design a novel image denoising algorithm with gradient

histogram preservation. In [23], [24], Cho et al. used hyper-

Laplacian distribution to model gradient, and proposed a

content-aware prior for image deblurring by setting different

shape parameters of gradient distribution in different image

regions. By matching the gradient distribution prior, Cho et al.

[23] found that the deblurred images can have more detailed

textures as well as better visual quality. However, in [23],

[24] the estimation of desired gradient distribution is rather

heuristic, and the iterative distribution reweighting algorithm

is very complex.

III. THE TEXTURE ENHANCED IMAGE DENOISING

FRAMEWORK

The noisy observation y of an unknown clean image x is

usually modeled as

y = x + v, (1)

where v is the additive white Gaussian noise (AWGN) with

zero mean and standard deviation σ. The goal of image

denoising is to estimate the desired image x from y. One

popular approach to image denoising is the variational method,

in which the denoised image is obtained by

x̂ = arg min
x

{

1
2σ2 ∥y − x∥2 + λ · R(x)

}

, (2)

where R(x) denotes some regularization term and λ is a

positive constant. The specific form of R(x) depends on the

employed image priors.

One common problem of image denoising methods is that

the image fine scale details such as texture structures will

be over-smoothed. An over-smoothed image will have much

weaker gradients than the original image. Intuitively, a good

estimation of x without smoothing too much the textures

should have a similar gradient distribution to that of x. With

this motivation, we propose a gradient histogram preservation

(GHP) model for texture enhanced image denoising, whose

framework is illustrated in Fig. 2.

Suppose that we have an estimation of the gradient his-

togram of x, denote by hr. In order to make the gradient

histogram of denoised image x̂ nearly the same as the reference

histogram hr, we propose the following GHP based image

denoising model:

x̂ = arg minx,F

{

1
2σ2 ∥y − x∥2 + λR(x) + µ∥F(∇x) − ∇x∥2

}

s.t. hF = hr

,

(3)

where F denotes an odd function which is monotonically

non-descending, hF denotes the histogram of the transformed

gradient image |F (∇x)|, ∇ denotes the gradient operator, and

µ is a positive constant. The proposed GHP algorithm adopts

the alternating optimization strategy. Given F, we can fix

∇x0 = F(∇x), and update x. Given x, we can update F by the

histogram specification based shrinkage operator which will

be introduced in Section IV. Thus, by introducing F, we can

easily incorporate the gradient histogram constraint with any

existing image regularizer R(x).

Another issue in the GHP model is how to find the reference

histogram hr of unknown image x. In practice, we need to

estimate hr based on the noisy observation y. In Section V,

we will propose a regularized deconvolution model and an

associated iterative deconvolution algorithm to estimate hr

from the given noisy image. Once the reference histogram

hr is obtained, the GHP algorithm is then applied for texture

enhanced image denoising.

IV. DENOISING WITH GRADIENT HISTOGRAM

PRESERVATION

A. The Denoising Model

The proposed denoising method is a patch based method.

Let xi = Rix be a patch extracted at position i, i = 1, 2, ..., N,

where Ri is the patch extraction operator and N is the number

of pixels in the image. Given a dictionary D, we sparsely

encode the patch xi over D, resulting in a sparse coding vector

αi. Once the coding vectors of all image patches are obtained,

the whole image x can be reconstructed by [7]:

x = D ◦ α ,
(

∑N

i=1
RT

i Ri

)−1 ∑N

i=1
RT

i Dαi, (4)

where α is the concatenation of all αi.

Good priors of natural images are crucial to the success of

an image denoising algorithm. A proper integration of different

priors could further improve the denoising performance. For

example, the methods in [12], [14], [32] integrate image local

sparsity prior with nonlocal NSS prior, and they have shown

promising denoising results. In the proposed GHP model,

we adopt the following sparse nonlocal regularization term

proposed in the nonlocally centralized sparse representation

(NCSR) model [14]:

R(x) =
∑

i

∥

∥

∥αi − βi

∥

∥

∥

1
, s.t. x = D ◦ α, (5)

where βi is defined as the weighted average of α
q

i
:

βi =
∑

q
w

q

i
α

q

i
, (6)

and α
q

i
is the coding vector of the qth nearest patch (denoted by

x
q

i
) to xi. The weight is defined as w

q

i
= 1

W
exp

(

− 1
h

∥

∥

∥x̂i − x̂
q

i

∥

∥

∥

2
)

(x̂i and x̂
q

i
denote the current estimates of xi and x

q

i
, re-

spectively), where h is a predefined constant and W is the

normalization factor. More detailed explanations on NCSR can

be found in [14].

By incorporating the above R(x) into Eq. (3), the proposed
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Fig. 2: Flowchart of the proposed texture enhanced image denoising framework.

GHP model can be formulated as:

x̂ = arg minx,F

{

1
2σ2 ∥y − x∥2 + λ

∑

i

∥

∥

∥αi − βi

∥

∥

∥

1
+ µ∥F(∇x) − ∇x∥2

}

s.t. x = D ◦ α, hF = hr

.

(7)

From the GHP model with sparse nonlocal regularization

in Eq. (7), one can see that if the histogram regularization

parameter µ is high, the function F (∇x) will be close to ∇x.

Since the histogram hF of |F (∇x)| is required to be the same

as hr, the histogram of ∇x will be similar to hr, leading to the

desired gradient histogram preserved image denoising. In the

next subsection, we will see that there is an efficient iterative

histogram specification algorithm to solve the model in Eq.

(7).

B. Iterative Histogram Specification Algorithm

The proposed GHP model in Eq. (7) can be solved by

using the variable splitting (VS) method, which has been

widely adopted in image restoration [40]–[42]. By introducing

a variable g = F(∇x), we adopt an alternating minimization

strategy to update x and g alternatively. Given g = F(∇x), we

update x (i.e., α) by solving the following sub-problem:

minx

{

1
2σ2 ∥y − x∥2 + λ

∑

i

∥

∥

∥αi − βi

∥

∥

∥

1
+ µ∥g − ∇x∥2

}

s.t. x = D ◦ α
. (8)

We use the method in [14] to construct the dictionary D

adaptively. Based on the current estimation of image x, we

cluster its patches into K clusters, and for each cluster, a

PCA dictionary is learned. Then for each given patch, we

first check which cluster it belongs to, and then use the PCA

dictionary of this cluster as D. Although in Eq. (8) the l1-

norm regularization is imposed on
∥

∥

∥αi − βi

∥

∥

∥

1
rather than ∥αi∥1,

by introducing a new variable ϑi = αi − βi, we can use the

iterative shrinkage / thresholding method [33] to update ϑi

and then update αi = ϑi+βi. This strategy is also used in [14]

to solve the problem with this regularization term, and thus

here we omit the detailed deduction process.

To get the solution to the sub-problem in Eq. (8), we first

use a gradient descent method to update x:

x(k+1/2) = x(k) + δ
(

1
2σ2 (y − x(k)) + µ∇T

(

g − ∇x(k)
))

, (9)

where δ is a pre-specified constant. Then, the coding coeffi-

cients αi are updated by

α(k+1/2)

i
= DT Rix

(k+1/2). (10)

By using Eq. (6) to obtain βi, we further update αi by

α(k+1)

i
= S λ/d

(

α(k+1/2)

i
− βi

)

+ βi, (11)

where S λ/d is the soft-thresholding operator, and d is a constant

to guarantee the convexity of the surrogate function [33].

Finally, we update x(k+1) by

x(k+1) = D ◦ α(k+1)
,

(

∑N

i=1
RT

i Ri

)−1 ∑N

i=1
RT

i Dα(k+1)

i
. (12)

Once the estimate of image x is given, we can update F by

solving the following sub-problem:

ming,F∥g − ∇x∥2 s.t. hF = hr, g = F(∇x). (13)

Considering the equality constraint g = F(∇x), we can

substitute g in ∥g − ∇x∥2 with F(∇x), and the sub-problem

becomes

minF∥F(∇x) − ∇x∥2 s.t. hF = hr. (14)

To solve this sub-problem, by introducing d0 = |∇x|, the

standard histogram specification operator [34] can be used to

obtain the only feasible monotonic non-parametric transform

T which makes the histogram of T (d0) the same as hr. Note

that (x − y)2 ≤ ((−x) − y)2 if the signs of x and y are the

same. Since F̂ (|∇x|) = T (|∇x|), to minimizing the squared

error ∥F (∇x)−∇x∥2, we should require that the sign of F̂ (∇x)
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is the same as that of ∇x. Thus, we define F̂ (∇x) as

F̂ (∇x) = sgn (∇x) T (|∇x|) . (15)

Given F̂ (∇x), we then let g = F̂ (∇x).

The proposed iterative histogram specification (IHS) based

GHP algorithm is summarized in Algorithm 1. It should be

noted that, for any gradient based image denoising model, we

can easily adapt the proposed GHP to it by simply modifying

the gradient term and adding an extra histogram specification

operation.

Algorithm 1: Iterative Histogram Specification (IHS) for GHP

1. Initialize k = 0, x(k) = y
2. Iterate on k = 0, 1, ..., J
3. Update g:

g = F(∇x)
4. Update x:

x(k+1/2) = x(k) + δ
(

1

2σ2 (y − x(k))+µ∇T (g − ∇x(k))
)

5. Update the coding coefficients of each patch:

α(k+1/2)

i
= DT Rix

(k+1/2)

6. Update the nonlocal mean of coding vector αi:
βi =

∑

q w
q

i
α

q

i

7. Update α:

α(k+1)

i
= S λ/d

(

α(k+1/2)

i
− βi

)

+ βi

8. Update x

x(k+1) = D ◦ α(k+1)

9. F (∇x) = sgn (∇x) T (|∇x|)
10. k ←− k + 1

11. x = x(k) + δ
(

µ∇T (g − ∇x(k))
)

The GHP model in Eq. (7) is nonconvex, and thus the

proposed algorithm cannot be guaranteed to converge to a

global optimum. However, it is empirically found that our

GHP algorithm converges rapidly. Fig. 3 shows an example

convergence curve of the proposed GHP algorithm on image

Bear (in Fig. 2). One can see that GHP converges within 15 20

iterations.

0 5 10 15 20
0

2

4

6

8
x 10

8

The number of iterations

E
ne

rg
y

Fig. 3: The convergence curve of the proposed GHP algorithm on
image Bear.

C. Region-based GHP

The histogram constraint in Eq. (7) is global. If the image

consists of different regions with different textures, GHP may

generate some false textures in the less textured areas. To

address this problem, we can partition the noisy image into

several regions, estimate the reference gradient histogram of

each region, and then apply GHP to each region for denoising.

As shown in Fig. 4, we suggest two schemes to partition the

noisy image, resulting in two region-based GHP variants. The

first scheme (Fig. 4(a)), namely S-GHP, is to employ k-means

clustering method to roughly partition the image into K homo-

geneous regions, while the second scheme (Fig. 4(b)), namely

B-GHP, simply partitions the noisy image into K =
√

K×
√

K

blocks with equal size. Denote by {Ω1, . . . ,Ωk, . . . ,ΩK} the

partitioned regions. Each region Ωk has the corresponding

reference gradient histogram hr,k, and we have a function Fk

to process the pixels within region Ωk:

min
Fk

∑

(i, j)∈Ωk

(

Fk

(

(∇x)i j

)

− (∇x)i j

)2
s.t. hFk

= hr,k. (16)

We define an indicator function

1Ωc
(i, j) =

{

1, if(i, j) ∈ Ωk

0, else
. (17)

The F (∇x) for S-GHP/B-GHP can then be defined as

F(∇x) =
∑

k
Fk(∇x)1Ωk

. (18)

(a)  (b)

Fig. 4: Two image partition schemes. (a) The noisy image is parti-
tioned into K homogeneous regions by k-means clustering. (b) The

noisy image is partitioned into
√

K ×
√

K blocks.

V. REFERENCE GRADIENT HISTOGRAM ESTIMATION

To apply the model in Eq. (7), we need to know the

reference gradient histogram hr of original image x. In this

section, we propose a regularized deconvolution model to

estimate the histogram hr. Assuming that the pixels in gradient

image ∇x are independent and identically distributed (i.i.d.),

we can view them as the samples of a scalar variable, denoted

by x. Then the normalized histogram of ∇x can be regarded

as a discrete approximation of the probability density function

(PDF) of x. For the AWGN v, we can readily model its

elements as the samples of an i.i.d. variable, denoted by v.

Since v ∼ N
(

0, σ2
)

and let ε = ∇v, ε can then be well

approximated by the i.i.d. Gaussian with PDF [38]

pε =
1

2
√
πσ

exp

(

− ε
2

4σ2

)

. (19)

Since y = x+v, we have ∇y = ∇x+∇v. It is ready to model

∇y as an i.i.d. variable, denoted by y, and we have y = x + ε.

Let px be the PDF of x, and py be the PDF of y. Since x and

ε are independent, the joint PDF p (x, ε) is

p(x, ε) = px × pε. (20)

Then the PDF py is

py(y = t) =

∫

a

px(x = a) × pε (ε = (t − a)) da. (21)
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If we use the normalized histogram hx and hy to approxi-

mate px and py, we can rewrite Eq. (21) in the discrete domain

as:

hy = hx ⊗ hε, (22)

where ⊗ denotes the convolution operator. Note that hε can be

obtained by discretizing pε, and hy can be computed directly

from the noisy observation y.

Obviously, the estimation of hx can be generally modeled

as a deconvolution problem:

hr = arg minhx

{

∥

∥

∥hy − hx ⊗ hε
∥

∥

∥

2
+ c · R (hx)

}

, (23)

where c is a constant and R(hx) is some regularization term

based on the prior information of natural image’s gradient

histogram. We consider two kinds of constraints on hx. First,

it has been shown that px (i.e., the continuous counterpart of

hx) can be approximated by hyper-Laplacian distribution [3],

[23], [24]. Considering that the real hx might deviate from the

hyper-Laplacian distribution to some extent, we only require

that hx should be close to the hyper-Laplacian distribution:

px ≈ C · exp (−κ|x|γ) , (24)

where C is the normalization factor, γ and κ are the two

parameters of the hyper-Laplacian distribution. More specifi-

cally, we let κ ∈ [0.001, 3] and γ ∈ [0.02, 1.5]. Second, each

element of hx should be nonnegative. Based on these two

constraints, gradient histogram estimation can be formulated

as the following regularized deconvolution problem:

hr = arg minhx,C,κ,γ

∥

∥

∥hy − hx ⊗ hε
∥

∥

∥

2
+ c

∥

∥

∥hx −C · exp(−κ|x|γ)
∥

∥

∥

2
,

s.t. hx ≥ 0,
(25)

which can be re-written as:

hr = arg minhx,h
′
x,C,κ,γ














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
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



∥

∥

∥hy − hx ⊗ hε
∥

∥

∥

2

+c
∥

∥

∥hx −C · exp(−κ|x|γ)
∥

∥

∥

2

+η
∥

∥

∥hx − h′x
∥

∥

∥

2



























s.t. h′x ≥ 0

. (26)

We iteratively update hx, h′x, C, γ, and κ alternatively. Let

h0 = C · exp(−κ|x|γ), hx is updated by

hx =
FFT (hε) • FFT (hy) + cFFT (h0) + ηFFT (h′x)

FFT (hε) • FFT (hε) + c + η
, (27)

where “•” denotes the element-wise multiplication, “ ∗∗” de-

notes the element-wise division, and “∗” denotes the complex

conjugate operator. h′x is updated by

h′x(i) = max (hx(i), 0) . (28)

C is updated by

C =

∑

i exp(−κ|i|γ)
∑

i hx(i)
. (29)

γ and κ are updated based on gradient decent

κ(t+1) = κ(t) + τ
∑

i
C|i|γ exp(−κ(t)|i|γ)

(

C · exp(−κ(t)|i|γ − hx(i)
)

,

(30)

γ(t+1) = γ(t) + ρ
∑

|i,0|

{

Cκ(t)|i|γ ln |i| exp(−κ(t)|i|γ)
·
(

C · exp(−κ(t)|i|γ − hx(i)
)

}

. (31)

Fig. 5 shows an example of reference gradient histogram

estimation. It can be seen that our method can obtain a good

estimation of hx.

For region based B-GHP and S-GHP, the regularized de-

convolution method can be directly applied to each region to

estimate the corresponding reference gradient histogram.

VI. EXPERIMENTAL RESULTS

To verify the performance of the proposed GHP based image

denoising method, we apply it to ten natural images with

various texture structures, whose scenes are shown in Fig.

6. All the test images are gray-scale images with gray level

ranging from 0 to 255. We first discuss the parameter setting

in our GHP algorithm, and then compare the performance of

global based GHP and its region based variants, i.e., B-GHP

and S-GHP. Finally, experiments are conducted to validate its

performance in comparison with the state-of-the-art denoising

algorithms. In the following experiments we set the AWGN

standard deviation from 20 to 40 with step length 5.1

Fig. 6: Ten test images. From left to right and top to bottom, they
are labeled as 1 to 10.

A. Parameter setting

There are 4 parameters in our GHP algorithm and 4 pa-

rameters in the reference histogram estimation algorithm. All

these parameters are fixed in our experiments.

1) Parameters in the GHP algorithm: The proposed GHP

algorithm has two model parameters: λ, and µ. We use the

same strategy as in the original NCSR model [14] to determine

the value of λ. The parameter µ is introduced to balance

the nonlocally centralized sparse representation term and the

histogram preservation term. If µ is is set very large, GHP

can ensure that the gradient histogram of the denoising result

is the same as the reference histogram. Considering that in

practice the reference histogram is estimated from the noisy

image and there are certain estimation errors, µ cannot be set

too big. We empirically set µ to 5 based on our experimental

experience.

The GHP algorithm involves two more algorithm param-

eters: δ and d. Following [14], when the noise standard

deviation is less than 30, we set δ to 0.23; when else we set δ

to 0.26. Based on [14], [33], to guarantee the convexity of the

surrogate function, d should be larger than the spectral norm

of dictionary D. Since in our algorithm D is an adaptively

1We also evaluated the denoising performance of S-GHP under lower and
higher noise standard deviations, i.e., σ = 5, 10, 15, and σ = 50, 80, 100.
The detailed results can be found in the supplementary file.
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Fig. 5: An example of reference gradient histogram estimation. (a) Real and simulated AWGN gradient histograms (noise standard deviation
σ = 30); (b) real and simulated gradient histograms of noisy image; and (c) real and estimated gradient histograms of the clean image.

selected orthogonal PCA dictionary, any d ≥ 1 will be fine.

According to [14], [33] we choose a little higher d (d = 3)

for numerical stability of the algorithm.

In summary, compared with NCSR, GHP only introduces

one extra model parameter µ, and we set it to 5 by experience

in all the experiments.

2) Parameters in reference histogram estimation: Our ref-

erence histogram estimation method involves two model pa-

rameters, i.e., c and η. Image gradients are generally assumed

to follow hyper-Laplacian distributions [2], [3]. We choose

a relatively large c value, i.e., c = 10, to ensure that the

estimated histogram should be close to a hyper-Laplacian

distribution. The parameter η is introduced to ensure the non-

negative property of the estimated histogram, and a large η

value should be set to guarantee that the estimated histogram

is non-negative. Thus we also choose a large η value, i.e.,

η = 10, in the implementation.

There are also two algorithm parameters, τ and ρ, in our

reference histogram estimation method. τ and ρ denote the

step sizes in the gradient descent algorithm to update κ and γ,

respectively. If the step size is sufficiently small, the gradient

descent algorithm would converge to a local optimum [53].

Thus we set two smaller values to τ and ρ, i.e., τ = 0.01 and

ρ = 0.01.

In Fig. 5, we have shown an example of gradient histogram

estimation, and it can be seen that the estimated gradient

histogram is very close to the ground-truth. Table I lists the

K-L divergence between the estimated and the ground-truth

(obtained using the noiseless image) gradient histograms for

the ten test images with different standard deviations of noise.

From Table I, one can see that the average K-L divergence

is less than 0.1 and the standard deviation is less than 0.08,

indicating that the proposed gradient histogram estimation

method can obtain satisfactory estimation results.

B. Comparison between the three GHP variants

By setting the AWGN standard deviation

σ ∈ {20, 25, 30, 35, 40}, we evaluate the three variants

of the proposed method, i.e., GHP, B-GHP, and S-GHP, in

terms of PSNR and the perceptual quality index SSIM [39].

To evaluate if the proposed reference gradient histogram

estimation method is effective for the final noise removal

performance, we couple GHP with both the estimated

TABLE I: The K-L divergence between the estimated and ground-
truth gradient histograms.

σ 20 25 30 35 40

1 0.098 0.121 0.138 0.118 0.095

2 0.036 0.036 0.027 0.020 0.014

3 0.094 0.089 0.086 0.091 0.152

4 0.014 0.017 0.014 0.014 0.017

5 0.023 0.030 0.051 0.064 0.128

6 0.233 0.261 0.254 0.218 0.151

7 0.066 0.071 0.085 0.061 0.029

8 0.123 0.167 0.192 0.161 0.103

9 0.058 0.073 0.066 0.042 0.026

10 0.015 0.028 0.038 0.071 0.140

Avg. ±
Std.

0.076 ±
0.067

0.089 ±
0.076

0.095 ±
0.077

0.086 ±
0.064

0.086 ±
0.058

gradient histogram and the ground truth gradient histogram

and compare the outputs. Table II lists the PSNR and SSIM

values on the ten test images. One can see that GHP achieves

similar PSNR/SSIM values by using the estimated gradient

histogram and the ground truth gradient histogram.

We then compare the performance of GHP, B-GHP and S-

GHP on the ten test images. The PSNR and SSIM indices are

also listed in Table III. One can see that the region-based

GHP methods, i.e., B-GHP and S-GHP, generally achieve

better results than GHP in terms of both PSNR and SSIM.

Fig. 7 shows an example of the denoising outputs by GHP,

B-GHP, and S-GHP on test image 6. Since natural images

often consist of regions with different textures and GHP uses

the global gradient histogram for texture enhanced denoising,

sometimes false textures can be generated in the less textured

areas by GHP. By simply partitioning the image into regular

blocks, the block based B-GHP can reduce the possibility

of generating false textures. By segmenting the image into

texture homogeneous regions, S-GHP can further achieve

better denoising results than B-GHP in terms of PSNR/SSIM

measures and subjective visual quality, as demonstrated in Fig.

7.

C. Comparison with the State-of-the-Arts

We then compare S-GHP with some state-of-the-art de-

noising methods, including shape-adaptive PCA based BM3D

(SAPCA-BM3D) [11], the learned simultaneously sparse cod-

ing (LSSC) [12] and the NCSR [14] methods. The codes of
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TABLE II: The PSNR (dB) and SSIM results of GHP with the estimated gradient histogram (GHP-E) and with the ground truth gradient
histogram (GHP-G).

σ = 20 σ = 25 σ = 30 σ = 35 σ = 40
GHP-G GHP-E GHP-G GHP-E GHP-G GHP-E GHP-G GHP-E GHP-G GHP-E

1
30.67 30.59 29.53 29.40 28.62 28.47 27.91 27.78 27.29 27.01
0.870 0.866 0.843 0.833 0.817 0.808 0.800 0.799 0.781 0.779

2
27.93 27.90 26.82 26.72 26.00 25.87 25.43 25.28 24.90 24.62
0.813 0.808 0.769 0.761 0.731 0.725 0.699 0.697 0.668 0.663

3
28.13 28.15 27.19 27.12 26.42 26.34 25.77 25.71 25.22 25.12
0.758 0.757 0.722 0.720 0.692 0.690 0.662 0.661 0.640 0.638

4
26.69 26.59 25.51 25.41 24.55 24.46 23.93 23.84 23.31 23.16
0.803 0.795 0.757 0.748 0.715 0.708 0.677 0.676 0.643 0.640

5
30.65 30.54 29.68 29.52 28.87 28.61 28.38 28.07 27.83 27.26
0.805 0.802 0.773 0.769 0.743 0.737 0.723 0.719 0.701 0.693

6
28.54 28.39 27.24 27.13 26.22 26.12 25.52 25.44 24.90 24.76
0.887 0.866 0.854 0.833 0.820 0.804 0.799 0.797 0.772 0.771

7
30.14 30.07 29.11 28.99 28.33 28.15 27.79 27.58 27.29 26.93
0.839 0.834 0.804 0.800 0.774 0.769 0.752 0.750 0.729 0.726

8
31.43 31.27 30.33 30.14 29.47 29.23 28.83 28.56 28.26 27.82
0.893 0.884 0.870 0.858 0.848 0.835 0.840 0.837 0.824 0.821

9
27.45 27.31 26.26 26.12 25.33 25.21 24.61 24.52 24.01 23.88
0.819 0.806 0.779 0.764 0.743 0.730 0.710 0.709 0.681 0.680

10
30.93 30.83 29.95 29.75 29.19 28.85 28.76 28.32 28.26 27.50
0.813 0.811 0.780 0.776 0.752 0.745 0.734 0.727 0.714 0.703

Avg.
29.26 29.16 28.16 28.03 27.30 27.13 26.69 26.51 26.13 25.81
0.830 0.823 0.795 0.786 0.764 0.755 0.740 0.737 0.715 0.711

TABLE III: The PSNR (dB) and SSIM results of GHP, B-GHP, and S-GHP.

σ = 20 σ = 25 σ = 30 σ = 35 σ = 40

GHP B-GHP S-GHP GHP B-GHP S-GHP GHP B-GHP S-GHP GHP B-GHP S-GHP GHP B-GHP S-GHP

1
30.59 30.53 30.60 29.40 29.40 29.47 28.47 28.55 28.60 27.78 27.82 27.85 27.01 27.23 27.22

0.866 0.869 0.869 0.833 0.841 0.842 0.808 0.818 0.818 0.799 0.796 0.801 0.779 0.779 0.781

2
27.90 27.89 27.97 26.72 26.79 26.88 25.87 25.98 26.07 25.28 25.42 25.43 24.62 24.86 24.87

0.808 0.815 0.814 0.761 0.771 0.771 0.725 0.735 0.734 0.697 0.695 0.698 0.663 0.665 0.666

3
28.15 28.07 28.17 27.12 27.12 27.25 26.34 26.36 26.43 25.71 25.71 25.75 25.12 25.19 25.21

0.757 0.753 0.753 0.720 0.718 0.720 0.690 0.688 0.688 0.661 0.657 0.659 0.638 0.636 0.636

4
26.59 26.60 26.72 25.41 25.47 25.53 24.46 24.58 24.67 23.84 23.93 23.97 23.16 23.31 23.34

0.795 0.801 0.801 0.748 0.759 0.756 0.708 0.719 0.718 0.676 0.673 0.676 0.640 0.640 0.639

5
30.54 30.63 30.65 29.52 29.66 29.77 28.61 28.86 28.99 28.07 28.29 28.38 27.26 27.77 27.88

0.802 0.807 0.807 0.769 0.775 0.774 0.737 0.745 0.751 0.719 0.716 0.723 0.693 0.696 0.704

6
28.39 28.36 28.46 27.13 27.08 27.19 26.12 26.09 26.26 25.44 25.41 25.58 24.76 24.77 24.96

0.866 0.880 0.883 0.833 0.848 0.848 0.804 0.819 0.820 0.797 0.793 0.802 0.771 0.768 0.775

7
30.07 30.06 30.22 28.99 29.00 29.12 28.15 28.22 28.39 27.58 27.66 27.81 26.93 27.20 27.30

0.834 0.839 0.843 0.800 0.805 0.807 0.769 0.777 0.780 0.750 0.745 0.754 0.726 0.725 0.730

8
31.27 31.15 31.34 30.14 29.86 30.21 29.23 29.14 29.42 28.56 28.59 28.80 27.82 28.16 28.21

0.884 0.887 0.895 0.858 0.858 0.872 0.835 0.841 0.853 0.837 0.830 0.843 0.821 0.822 0.829

9
27.31 27.35 27.40 26.12 26.16 26.22 25.21 25.26 25.31 24.52 24.59 24.57 23.88 23.99 24.05

0.806 0.817 0.818 0.764 0.777 0.777 0.730 0.742 0.744 0.709 0.707 0.708 0.680 0.680 0.684

10
30.83 30.96 30.98 29.75 29.94 29.93 28.85 29.18 29.15 28.32 28.67 28.74 27.50 28.20 28.15

0.811 0.816 0.815 0.776 0.783 0.782 0.745 0.756 0.754 0.727 0.729 0.736 0.703 0.711 0.711

Avg.
29.16 29.16 29.25 28.03 28.05 28.16 27.13 27.22 27.33 26.51 26.61 26.69 25.81 26.07 26.12

0.823 0.828 0.830 0.786 0.794 0.795 0.755 0.764 0.766 0.737 0.734 0.740 0.711 0.712 0.716

all the competing methods are provided by the authors and

we used the recommended parameters by the authors. On a

PC with two Intel CPUs (1.86 GHz) and 2GB RAM, under

Matlab 2011a programming environment, GHP spends 2383s

to process a 512 × 512 image, which is similar to B-GHP

(2388s), S-GHP (2386s) and NCSR (2445s) but is much faster

than LSSC (4287s). SAPCA-BM3D spends 420s to process a

512 × 512 image but it should be noted that SAPCA-BM3D

is mainly implemented by C programming language.

The quantitative experimental results by competing methods

are shown in Tables IV. One can see that the proposed S-GHP

method has similar PSNR/SSIM measures to SAPCA-BM3D,

LSSC and NCSR. Nonetheless, the goal of our GHP method

is to preserve and enhance the image texture structures, and

we further compare the visual quality of the denoised images

by these methods. Fig. 8 shows the denoising results of noisy

image 7 with noise standard deviation σ = 30. In this image,

there are different texture regions, such as sky, tree, water and

building. We can see that SAPCA-BM3D, LSSC and NCSR

smooth too much the textures in tree, water and building

areas, while LSSC introduces some artifacts in the smooth

sky area. Though these methods have good PSNR and even

SSIM indices, the denoised images by them look somewhat

unnatural. In contrast, S-GHP preserves much better the fine

textures in areas of tree and water, making the denoised image

look more natural and visually pleasant. It should also be noted

that, the better visual quality in areas of tree and water of S-

GHP might not always result in higher PSNR or SSIM values

on the close-ups.

Fig. 9 shows the denoising results of image 1 with noise
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Fig. 7: (a) The noisy test image 6 (noise standard deviation σ = 35). From (b) to (e): the zoom-in denoising results by GHP, B-GHP and
S-GHP, and the ground truth.

standard deviation σ = 30. This image consists of texture

regions like cloud, tree, and water. We can see that SAPCA-

BM3D, LSSC and NCSR tend to over-smooth the textures in

tree and water areas. In contrast, S-GHP preserves much better

the fine texture in tree and water areas, while making the cloud

area look more natural.

Due to the limit of space, we do not show the full denoised

images in the main paper. However, examples of full denoised

images are given in the supplementary file. Similar conclusions

can be made; that is, S-GHP obtains more natural denoising

results and preserves better the fine textures. We also evaluated

the denoising performance of competing methods under lower

(i.e., σ = 5, 10, 15) and higher noise standard deviations (i.e.,

σ = 50, 80, 100). Please refer to the supplementary file for the

detailed results. In terms of average PSNR and SSIM, S-GHP

is comparable to SAPCA-BM3D, LSSC and NCSR. In terms

of visual quality, when the noise standard deviation is high,

S-GHP can preserve better the textures and strong edges than

the competing methods. When the noise standard deviation is

low, S-GHP can preserve better image fine textures.

The proposed S-GHP method has similar overall

PSNR/SSIM results to the state-of-the-arts and it leads

to better visual quality of the denoised images. In terms of

visual quality, it improves much the textured areas. However,

the improvement in visual quality may not result in PSNR

and SSIM improvements. S-GHP enforces the statistical

distribution of image gradients to be close to the reference

histogram, but it cannot guarantee that the restored image

will be close to the real image in terms of PSNR or SSIM.

Using image 6 with AWGN of standard deviation 30 as

an example, we calculate the local PSNR maps (with a

sliding window of size 41 × 41) for the denoised images

by SAPCA-BM3D and S-GHP. Denote by pBM3D and pGHP

the two local PSNR maps of SAPCA-BM3D and S-GHP,

respectively. In Fig. 10, we show the original image, the

denoised images by SAPCA-BM3D and S-GHP, and the

difference map (pBM3D − pGHP). The white values indicate

the areas where pBM3D is higher than pGHP, while the dark

values indicate the areas where pGHP is higher than pBM3D.

One can see that, in terms of PSNR, S-GHP outperforms

SAPCA-BM3D in many smooth areas, while SAPCA-BM3D

outperforms S-GHP in many textured areas. However, the

denoised image by S-GHP has better visual quality than the

one by SAPCA-BM3D in most textured and smooth areas.

D. Subjective Evaluation

How to evaluate the perceptual quality of an image is a very

challenging problem. Though many image quality assessment

(IQA) indices (e.g., SSIM [39] and FSIM [51]) have been

developed and they can well predict the perceptual quality

of images with a single type of distortion such as noise

corruption, Gaussian blur and compression artifacts, they are

still far from satisfying to faithfully evaluate the subjective

quality of denoised images, whose distortion is much more

complex. This is also why the denoised images by our methods

have better visual quality, but their SSIM indices are similar

to the denoised images by other methods.
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TABLE IV: The PSNR (dB) and SSIM values of SAPCA-BM3D (BM3D), LSSC, NCSR and S-GHP.

σ = 20 σ = 25 σ = 30 σ = 35 σ = 40

BM3D LSSC NCSR S-GHP BM3D LSSC NCSR S-GHP BM3D LSSC NCSR S-GHP BM3D LSSC NCSR S-GHP BM3D LSSC NCSR S-GHP

1
30.83 30.69 30.59 30.60 29.66 29.56 29.46 29.47 28.75 28.62 28.58 28.60 28.02 27.91 27.76 27.85 27.41 27.32 27.19 27.22

0.876 0.872 0.869 0.869 0.849 0.846 0.843 0.842 0.825 0.820 0.820 0.818 0.803 0.800 0.793 0.801 0.784 0.781 0.776 0.781

2
28.07 27.98 27.91 27.97 26.99 26.94 26.87 26.88 26.18 26.14 26.08 26.07 25.54 25.51 25.37 25.43 25.02 24.98 24.87 24.87

0.817 0.815 0.807 0.814 0.773 0.773 0.764 0.771 0.734 0.734 0.727 0.734 0.699 0.700 0.681 0.698 0.668 0.670 0.651 0.666

3
28.39 28.46 28.11 28.17 27.43 27.52 27.16 27.25 26.66 26.66 26.39 26.43 26.01 26.03 25.64 25.75 25.46 25.47 25.10 25.21

0.755 0.762 0.736 0.753 0.721 0.728 0.702 0.720 0.692 0.696 0.675 0.688 0.667 0.670 0.640 0.659 0.647 0.647 0.621 0.636

4
26.86 26.75 26.65 26.72 25.68 25.61 25.52 25.53 24.79 24.76 24.64 24.67 24.08 24.06 23.84 23.97 23.50 23.48 23.26 23.34

0.803 0.803 0.782 0.801 0.758 0.758 0.737 0.756 0.715 0.717 0.697 0.718 0.677 0.678 0.640 0.676 0.641 0.643 0.604 0.639

5
30.88 30.75 30.64 30.65 29.96 29.81 29.68 29.77 29.21 29.04 28.91 28.99 28.58 28.41 28.27 28.38 28.06 27.90 27.76 27.88

0.812 0.809 0.802 0.807 0.780 0.776 0.770 0.774 0.754 0.744 0.742 0.751 0.730 0.718 0.710 0.723 0.709 0.696 0.690 0.704

6
28.59 28.47 28.49 28.46 27.32 27.26 27.24 27.19 26.35 26.33 26.30 26.26 25.59 25.59 25.49 25.58 24.97 24.98 24.90 24.96

0.888 0.883 0.882 0.883 0.856 0.850 0.851 0.848 0.824 0.825 0.820 0.820 0.794 0.795 0.788 0.802 0.765 0.769 0.761 0.775

7
30.17 30.18 30.13 30.22 29.14 29.18 29.14 29.12 28.35 28.40 28.38 28.39 27.71 27.81 27.71 27.81 27.18 27.32 27.22 27.30

0.839 0.840 0.833 0.843 0.803 0.807 0.799 0.807 0.771 0.775 0.770 0.780 0.744 0.751 0.738 0.754 0.721 0.729 0.717 0.730

8
31.58 31.38 31.41 31.34 30.48 30.33 30.35 30.21 29.64 29.54 29.52 29.42 28.94 28.86 28.79 28.80 28.37 28.32 28.24 28.21

0.900 0.894 0.897 0.895 0.879 0.872 0.877 0.872 0.861 0.858 0.860 0.853 0.843 0.840 0.841 0.843 0.828 0.826 0.827 0.829

9
27.58 27.58 27.34 27.40 26.37 26.40 26.18 26.22 25.44 25.48 25.31 25.31 24.73 24.77 24.47 24.57 24.15 24.19 23.92 24.05

0.821 0.822 0.804 0.818 0.778 0.782 0.764 0.777 0.740 0.748 0.729 0.744 0.707 0.716 0.683 0.708 0.677 0.687 0.655 0.684

10
31.23 31.04 30.98 30.98 30.28 30.08 30.03 29.93 29.53 29.36 29.30 29.15 28.92 28.75 28.76 28.74 28.42 28.24 28.28 28.15

0.823 0.818 0.813 0.815 0.791 0.787 0.781 0.782 0.763 0.755 0.755 0.754 0.740 0.732 0.728 0.736 0.721 0.712 0.710 0.711

Avg.
29.42 29.33 29.23 29.25 28.33 28.27 28.16 28.16 27.49 27.43 27.34 27.33 26.81 26.77 26.61 26.69 26.25 26.22 26.07 26.12

0.833 0.832 0.823 0.830 0.799 0.798 0.789 0.795 0.768 0.767 0.760 0.766 0.740 0.740 0.724 0.740 0.716 0.716 0.701 0.716
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Fig. 8: Denoising results on image 7. (a) Noisy image with AWGN of standard deviation 30; cropped and zoom-in denoised images by
(b) SAPCA-BM3D [11], (c) LSSC [12], (d) NCSR [14], and (e) S-GHP; (f) ground truth. The PSNR and SSIM values are shown in the
close-ups.
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Fig. 9: Denoising results on image 1. (a) Noisy image with AWGN of standard deviation 30; cropped and zoom-in denoised images by
(b) SAPCA-BM3D [11], (c) LSSC [12], (d) NCSR [14], and (e) S-GHP; (f) ground truth. The PSNR and SSIM values are shown in the
close-ups.

In this subsection, we adopted the strategy in [23] to

compare the subjective quality of denoised images obtained

by different methods. For each of the ten test images and

on each noise standard deviation (20, 25, 30, 35 and 40),

15 student volunteers2 were asked to compare the denoising

results between S-GHP and SAPCA-BM3D, LSSC and NCSR,

respectively. In each test, the volunteers were shown two

denoised images on LCD monitor: one (denoted by A) is

obtained by S-GHP and the other one (denoted by B) is

obtained by the competing method. The volunteers were asked

to make one of the following decisions: A is visually better

than B (labeled by 1), B is visually better than A (labeled by

-1), and there is nearly no visual difference between A and

B (labeled by 0). Then for each pair of competing methods

(i.e., S-GHP vs. SAPCA-BM3D, S-GHP vs. LSSC, S-GHP

vs. NCSR), we have 10 (test images) × 5 (noise standard

deviations) × 15 (volunteers) = 750 test outputs (1, -1, or 0).

In Fig. 11, we plot the distributions of the subjective evaluation

outputs for each pair of competing methods. One can see

that S-GHP is always the more favored method in terms of

subjective evaluation.

VII. CONCLUSION

In this paper, we presented a novel gradient histogram

preservation (GHP) model for texture-enhanced image denois-

ing, and further introduce two region-based GHP variants, i.e.,

2Among the 15 volunteers, 3 have experience on image restoration and 1
has experience on image quality assessment.

B-GHP and S-GHP. A simple but theoretically solid model and

the associated algorithm were presented to estimate the refer-

ence gradient histogram from the noisy image, and an efficient

iterative histogram specification algorithm was developed to

implement the GHP model. By pushing the gradient histogram

of the denoised image toward the reference histogram, GHP

achieves promising results in enhancing the texture struc-

ture while removing random noise. The experimental results

demonstrated the effectiveness of GHP in texture enhanced

image denoising. GHP leads to similar PSNR/SSIM measures

to the state-of-the-art denoising methods such as SAPCA-

BM3D, LSSC and NCSR; however, it leads to more natural

and visually pleasant denoising results by better preserving

the image texture areas. Most of the state-of-the-art denoising

algorithms are based on the local sparsity and nonlocal self-

similarity priors of natural images. Unlike them, the gradient

histogram used in our GHP method is a kind of global prior,

which is adaptively estimated from the given noisy image.

One limitation of GHP is that it cannot be directly applied

to non-additive noise removal, such as multiplicative Pois-

son noise and signal-dependent noise [47]. Thus, it would

be interesting and valuable to study more general models

and algorithms for non-additive noise removal with texture

enhancement. One strategy is to transform the noisy image

into an image with additive white Gaussian noise (AWGN)

and then apply GHP. For example, for image with Poisson

noise, Anscombe root transformation [48], [49] can be used

to transform it into an image with AWGN.
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� �

�Fig. 10: From left to right and from top to bottom: original image, the difference PSNR map (pBM3D − pGHP), the denoised images by
SAPCA-BM3D and S-GHP.

�

(a)

�

(b)

�

(c)

Fig. 11: The distributions of subjective evaluation outputs. (a) S-GHP vs. SAPCA-BM3D; (b) S-GHP vs. LSSC; (c) S-GHP vs. NCSR.
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