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e gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data
dimensionality reducing, and other speci�c �elds. In this paper, we raise a new gradient learning model for ontology similarity
measuring and ontology mapping in multidividing setting. 
e sample error in this setting is given by virtue of the hypothesis
space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics �eld verify
the e�ciency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing
setting.

1. Introduction and Motivations


e term “ontology” is originally from the �eld of philosophy
and it is used to describe the nature connection of things
and the inherent hidden connections of their components.
In information and computer science, ontology is a model
for knowledge storing and representation and has been
widely applied in knowledgemanagement,machine learning,
information systems, image retrieval, information retrieval
search extension, collaboration, and intelligent information
integration. In the past decade, as an e
ective concept seman-
tic model and a powerful analysis tool, ontology has been
widely applied in pharmacology science, biology science,
medical science, geographic information system, and social
sciences (e.g., see Hu et al., [1], Lambrix and Edberg [2],Mork
and Bernstein [3], Fonseca et al., [4], and Bouzeghoub and
Elbyed [5]).


e structure of ontology can be expressed as a simple
graph. Each concept, object, or element in ontology corre-
sponds to a vertex and each (directed or undirected) edge
on an ontology graph represents a relationship (or potential
link) between two concepts (objects or elements). Let � be
an ontology and � a simple graph corresponding to �. 
e
nature of ontology engineer application can be attributed to
get the similarity calculating function which is to compute

the similarities between ontology vertices. 
ese similarities
represent the intrinsic link between vertices in ontology
graph. 
e goal of ontology mapping is to get the ontology
similarity measuring function by measuring the similarity
between vertices from di
erent ontologies, such mapping is
a bridge between di
erent ontologies, and get a potential
association between the objects or elements from di
erent
ontologies. Speci�cally, the ontology similarity function Sim :�×� → R

+∪{0} is a semipositive score functionwhichmaps
each pair of vertices to a nonnegative real number.

Example 1. Ontology technologies are widely used in
humanoid robotics in recent years. Di
erent bionic robot has
a di
erent structure. Each bionic robot or each component
of a bionic robot can be represented as an ontology. Each
vertex in ontology stands for a part or a construction,
edge between vertices represents a direct physical link
between these constructs, or these parts have intrinsic link
with its function. 
us, the similarity calculation between
vertices in the same ontology allows us to �nd the degree
of association and the potential link between di
erent
constructs in bionic robots. Similarity calculation between
two di
erent ontologies (i.e., ontology mapping building)
allows us to understand the potential association for di
erent
components or parts in two biomimetic robots.
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Example 2. In information retrieval, ontology concepts are
o�en used in query expansion. 
e user queries the infor-
mation related concept �. If we manually set the parameters� > 0, the ontology algorithm will �nd that all concepts 	
meet Sim(�, 	) > �. 
en the information related concepts	 will be returned to the user as the query expansion for
concept �.

Very recently, ontology technologies are employed in
a variety of applications. Ma et al. [6] presented a graph
derivation representation based technology for stable seman-
tic measurement. Li et al. [7] raised an ontology represen-
tation method for online shopping customers knowledge in
enterprise information. Santodomingo et al. [8] proposed an
innovative ontologymatching system that �nds complex cor-
respondences by processing expert knowledge from external
domain ontologies and in terms of using novel matching
tricks. Pizzuti et al. [9] described themain features of the food
ontology and some examples of application for traceability
purposes. Lasierra et al. [10] argued that ontologies can be
used in designing an architecture for monitoring patients at
home.

Traditional methods for ontology similarity computation
are heuristic and based on pairwise similarity calculation.
With high computational complexity and low intuitive , this
model requires large parameters selection. One example of
traditional ontology similarity computation method is

Sim (�, 	) = 
1Simname (�, 	) + 
2Siminstance (�, 	)
+ 
3Simattribute (�, 	) + 
4Simstructure (�, 	) ,

(1)

where � and 	 are two vertices corresponding to two

concepts; 0 ≤ 
1, 
2, 
3, 
4 ≤ 1 and ∑4
�=1 
� = 1; Simname,

Siminstance, Simattribute, and Simstructure are functions of name
similarity, instance similarity, attribute similarity, and struc-
ture similarity, respectively. 
ese similarity functions are
determined by experts directly in terms of their experience.
Hence, this model has the following de�ciencies:

(i) many parameters rely heavily on the experts;

(ii) high computational complexity and thus being inap-
plicable to ontology with large number of vertices;

(iii) pairwise similarities fall re�ect the ontology structure
intuitively.


us, a more advanced way to deal with the ontology
similarity computation is using ontology learning algorithm
which gets an ontology function 
 : � → R. By virtue of the
ontology function, the ontology graph is mapped into a line
which consists of real numbers. 
e similarity between two
concepts then can be measured by comparing the di
erence
between their corresponding real numbers.


e essence of this algorithm is dimensionality reduction.
In order to associate the ontology function with ontology
application, for vertex V, we use a vector to express all
its information (including its name, instance, attribute and
structure, and semantic information of the concept which is

corresponding to the vertex and that is contained in name and
attribute components of its vector). In order to facilitate the
representation, we slightly confuse the notations and use V to
denote both the ontology vertex and its corresponding vector.

e vector is mapped to a real number by ontology function
 : � → R, and the ontology function is a dimensionality
reduction operator which maps multidimensional vectors
into one-dimensional vectors.


ere are several e
ective methods for getting e�cient
ontology similarity measure or ontology mapping algorithm
in terms of ontology function. Wang et al. [11] considered
the ontology similarity calculation in terms of ranking learn-
ing technology. Huang et al. [12] raised the fast ontology
algorithm in order to cut the time complexity for ontology
application. Gao and Liang [13] presented an ontology opti-
mizing model such that the ontology function is determined
by virtue of NDCG measure, and it is successfully applied in
physics education. Since the large part of ontology structure is
the tree, Lan et al. [14] explored the learning theory approach
for ontology similarity calculating and ontology mapping in
speci�c setting when the structure of ontology graph has no
cycle. In the multidividing ontology setting, all vertices in
ontology graph or multiontology graph are divided into �
parts corresponding to the � classes of rates. 
e rate values
of all classes are determined by experts. In this way, a vertex
in a rate � has larger score than any vertex in rate � (if 1 ≤� < � ≤ �) under the multidividing ontology function 
 :� → R. Finally, the similarity between two ontology vertices
corresponding to two concepts (or elements) is judged by
the di
erence of two real numbers which they correspond
to. Hence, the multidividing ontology setting is suitable to
get a score ontology function for an ontology application if
the ontology is drawn into a noncycle structure. Gao and Xu
[15] studied the uniform stability of multidividing ontology
algorithm and obtained the generalization bounds for stable
multidividing ontology algorithms.

In the above described ontology learning algorithms,
their optimal ontology function calculationmodel or its solu-
tion strategy is done by gradient calculation. Speci�cally, the
ontology gradient learning algorithm obtains the ontology

function vector ⃗
 = (
1, 
2, . . . , 
�)� which maps each

vertex into a real number (the value 
� corresponds to vertex
V�). In this sense, it is good or bad policy gradient calculation
algorithm that will determine the merits of the ontology
algorithm. In this paper, we raise an ontology gradient
learning algorithm for ontology similarity measuring and
ontology mapping in multidividing setting. 
e organization
of the rest paper is as follows: the notations and ontology
gradient computingmodel are directly presented in Section 2;
the detailed description of new ontology algorithms is
shown in Section 3; in Section 4, we obtain some theoretical
results concerning the sample error and convergence rate; in
Section 5, two simulation experiments on plant science and
humanoid robotics are designed to test the e�ciency of our
gradient computation based ontology algorithm, and the data
results reveal that our algorithm has high precision ratio for
plant and humanoid robotics applications.
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2. The Gradient Computation Model for
Ontology in Multidividing Setting

In order to combine the machine learning technology and
ontology frame, the relevant information for each vertex in
ontology graph is represented as an �-dimensional vector.
Hence the vertex set � is a subset of R� (vertex space or
input space for ontology). Assume that � is compact. In the
supervised learning, let� = R be the label set for�. Denote �
as a probability measure on � = � × �. Let �� and �(⋅ | V) be
the marginal distribution on � and conditional distribution
at V ∈ �, respectively. 
e ontology function 
� : � → R

associated with � is described as 
� = ∫� ���(� | V).
For each vertex V ∈ �, denote V = (V1, V2, . . . , V�)� ∈ R

�.

en, the gradient of the ontology function
� is the vector of
ontology functions

∇
� = ( �
�
�V1 ,
�
�
�V2 , . . . ,

�
�
�V�)
�. (2)

Let z = {(V�, ��)}��=1 be a random sample independently
drawn according to � in standard ontology setting. 
e
purpose of standard ontology gradient learning is to learn∇
� from the sample set z. From the perspective of statistical
learning theory, the gradient learning algorithm is based on
the Taylor expansion 
�(V) ≈ 
�(V	) + ∇
�(V	)(V − V

	) if two
vertices have large common information (i.e., V ≈ V

	). We
expect that �� ≈ 
�(V) and �
 ≈ 
�( ) if V	 = V

	
� , V = V
. 
e

demand V� ≈ V
 is met by virtue of setting weights

! (V) = !� (V) = 1"�+2 #−|V|2/2V2 ,
!�,
 = !�

�,
 = 1"�+2 #−|V�−V�|2/2V2 = ! (V� − V
) .
(3)

Using unknown ontology function vector ⃗
 = (
1, 
2, . . . ,
�)� to replace ∇
�, then the standard least-square ontology
learning algorithm is denoted as

⃗
�,
 = arg min
⃗�∈H��

{{{
1-2

�∑
�,
=1

!�
�,
(�� − �
 + ⃗
 (V�) (V
 − V�))2

+ 455555 ⃗
555552H��}}} ,
(4)

where 4 and " are two positive constants to control the
smoothness of ontology function. Here 9 : � × � → R

is a positive semide�nite, continuous, and symmetric kernel
(i.e.,Mercer kernel) andH� is the reproducing kernelHilbert
space (for short, RKHS) associated with the Mercer kernel9. 
e notationH

�
� presented in (4) is the �-fold hypothesis

space ofH� composing of vectors of ontology functions ⃗
 =(
1, 
2, . . . , 
�)� with norm ‖ ⃗
‖2
H
�
�
= {∑�

�=1 ‖
�‖2�}1/2.
By the representation theory in statistical learning theory,

the ontology algorithm (4) can be implemented in terms of

solving a linear system for the coe�cients {?�, z}��=1 of ⃗
z,
 =∑�
�=1 ?�,z9V�

, where 9
V
(V	) = 9(V, V	) for V ∈ � is the ontology

function inH� and ?�,z ∈ R
�. Let � be the rank of the matrix[V�−V�]�−1

�=1 ; hence the coe�cientmatrix for the linear system
has size -�. 
erefore, this size will become huge if the size
of sample set - is large itself. 
e standard approximation
ontology algorithm allows us to solve linear systems with
coe�cient matrices of smaller sizes.


e gradient learning model for ontology algorithm in
standard setting is determined as follows:

⃗
�
�+1 = ⃗
�

� − @�-2

�∑
�,
=1

!(�)
�,
 (�� − �
 + ⃗
�

� (V�) ⋅ (V
 − V�))9V�

− @�4� ⃗
�
� ,

(5)

where the sample set z ∈ ��, ⃗
�
1 = 0, A ∈ Z, {@�} is the

sequence of step sizes and {4�} is the sequence of balance
parameters.

Formultidividing ontology setting, the vertex in ontology

sample set can be divided into � rates. Let z = {z1, z2, . . . , z�}
with z

� = {V�1, V�2, . . . , V���} for 1 ≤ B ≤ �. Denote |z�| = -�,- = ∑�
�=1-� and ��

� is the label of V�� for 1 ≤ � ≤ � and1 ≤ B ≤ -�. Hence, (4) becomes

⃗
z,

= arg min

⃗�∈H��
{ @�∑�−1

�=1∑�
�=�+1-�-�

× �−1∑
�=1

�∑
�=�+1

��∑
�=1

��∑

=1
!(�)
�
� ,��

× (��
� − ��


 + ⃗
 (V�� ) (V�
 − V
�
� ))2 + 455555 ⃗
555552H��} .

(6)

We obtain the following gradient computation model for
ontology application in multidividing setting which corre-
sponds to (5):

⃗
z

�+1 = ⃗
z

� − @�∑�−1
�=1∑�

�=�+1-�-�

× �−1∑
�=1

�∑
�=�+1

��∑
�=1

��∑

=1
!(�)
�
� ,��

× (��
� − ��


 + ⃗
z

� (V�� ) ⋅ (V�
 − V
�
� ))9V

�
�
− @�4� ⃗
z

� .
(7)

Here in (6) and (7), !(�)
�
� ,��

= (1/"�+2)#−((V�� )2−(V�� )2)/2�2 .
We emphasize that our algorithm inmultidividing setting

is di
erent from that of Wu et al. [16]. First, the label � for
ontology vertex V is used to present its class information in
[16], that is, � ∈ {1, . . . , �}, while in our setting, � ∈ R.
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Second, the computation model in [16] relies heavily on the
convexity loss function F, while our algorithm depends on the
weight function !.
3. Description of Ontology Algorithms

via Gradient Learning


e above raised gradient learning ontology algorithm can
be used in ontology concepts similarity measurement and
ontology mapping. 
e basic idea is the following: via the
ontology gradient computation model, the ontology graph
is mapped into a real line consisting of real numbers. 
e
similarity between two concepts then can be measured by
comparing the di
erence between their corresponding real
numbers.

Algorithm 3 (gradient calculating based ontology similarity
measure algorithm). For V ∈ �(�) and 
 is an optimal
ontology function determined by gradient calculating, we use
one of the following methods to obtain the similar vertices
and return the outcome to the users.

Method 1. Choose a parameter G and return set {V	 ∈�(�), |
(V	) − 
(V)| ≤ G}.
Method 2. Choose an integer G and return the closest H
concepts on the value list in �(�).

Clearly, method 1 looks like fairer, but method 2 can
control the number of vertices that return to the users.

Algorithm 4 (gradient calculating based ontology mapping
algorithm). Let �1, �2, . . . , �� be ontology graphs corre-
sponding to ontologies �1, �2, . . . , ��. For V ∈ �(��) (1 ≤B ≤ �) and 
 being an optimal ontology function determined
by gradient calculating, we use one of the following methods
to obtain the similar vertices and return the outcome to the
users.

Method 1. Choose a parameter G and return set {V	 ∈ �(� −��), |
(V	) − 
(V)| ≤ G}.
Method 2. Choose an integer H and return the closest H
concepts on the list in �(� − ��).

Also, method 1 looks like fairer and method 2 can control
the number of vertices that return to the users.

4. Theoretical Analysis

In this section, we give certain theoretical analysis for
our proposed multidividing ontology algorithm. Let I =
sup

V∈�√9(V, V) and Diam(�) = sup
V,V	∈�|V − V

	|. We
divide this section into two parts: �rst, some useful lemmas
are prepared; then, main results in our paper concerning
approximation conclusions are presented. Our error analysis
depends on integral operators and gradient learning, and
more references on these tricks can be referred to inMukher-
jee and Wu [18], Mukherjee et al. [19], Yao et al. [20], and
Rosasco et al. [21].

Set⃗
∗



= arg min
⃗�∈H��

{�−1∑
�=1

�∑
�=�+1

∫
��
∫
��
!(V� − V

�)
× (�� − �� + ⃗
 (V)

⋅(V� − V
�)2)2��

× (V�, ��) �� (V�, ��)
+ 455555 ⃗
555552H��} .

(8)

In what follows,-Π = -1-2 ⋅ ⋅ ⋅ -�,

-1
Π = -Π-1

= -2-3 ⋅ ⋅ ⋅ -�,
-2

Π = -Π-2
= -1-3 ⋅ ⋅ ⋅ -�,

... ,
-�

Π = -Π-�
= -1-2 ⋅ ⋅ ⋅ -�−1.

(9)

Our tricks of proofs in this paper follow from [22, 23].

4.1. Preliminary Results. Let sequence { ⃗
�}�∈N be the noise-

free limit of the sequence (7) which is determined by ⃗
1 = 0
and⃗
�+1
= ⃗
� − @��−1∑

�=1

�∑
�=�+1

∫
��
∫
��
! (V� − V

V)
× (�� − �� + ⃗
� (V)

⋅ (V� − V
�))

× (V� − V
�)9

V
�� (V�, ��) �� (V�, ��)

− @�4� ⃗
�.
(10)

Our error analysis for proving main result (
eorems 12 and
13 in the next subsection) consists of two parts: sample error
and approximation error.


e main task in this subsection is to estimate the
sample error ‖ ⃗
z

� − ⃗
�‖ in terms of McDiarmid-Bernstein-
type probability inequality and the multidividing sampling
operator. For each 1 ≤ � ≤ �, the multidividing sampling
operator N�

V
: H�

� → R
��� associated with a discrete subset

v
� = {V�� }���=1 of � is de�ned by

N�
k
( ⃗
) = ( ⃗
 (V�� ))���=1 = ( ⃗
 (V�1) , ⃗
 (V�2) , . . . , ⃗
 (V���))�. (11)
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e adjoint of the multidividing ontology sampling operator,(N�
v
)� : R��� → H

�
�, is given by

(N�
k
)� (?) = ��∑

�=1
?�� 9V

�
�
, (12)

where

? = (?�)���=1 = (?1, ?2, . . . , ?��)� ∈ R
���. (13)

Let us express (7) by virtue of the multidividing ontology
sampling operator. Note that

⃗
z

� (V�� ) ⋅ (V�
 − V
�
� ) (V�
 − V

�
� )

= (V�
 − V
�
� ) (V�
 − V

�
� )� ⃗
z

� (V�� )
= (V�
 − V

�
� ) (V�
 − V

�
� )�(NV ( ⃗
z

� ))�� .
(14)

For each pair of (�, �) with 1 ≤ � < � ≤ �, we single out one
summation∑��


=1 from (7) as

	�,�
� = ��∑


=1
! �
� ,�� (V�
 − V

�
� ) (V�
 − V

�
� )� ∈ R

�×�,
��,�
� = ��∑


=1
! �
� ,�� (��


 − ��
� ) (V�
 − V

�
� )� ∈ R

�.
(15)

We infer that

⃗
z

�+1 = (1 − @�4�) ⃗
z

� − @�∑�−1
�=1∑�

�=�+1-�-�

× {{{−��∑
�=1

��∑

=1
��,�
� 9

V
�
�
+ ��∑

�=1

��∑

=1
9

V
�
�
	�,�
�

⃗
z

� (V�� )}}} .
(16)

Denote

(O�
v
)�,� = diag {	�,�

1 , 	�,�
2 , . . . , 	�,�

��} ∈ R
���×���

(�⃗�)�,� = (��,�
1 , ��,�

2 , . . . , ��,�
�� )� ∈ R

���. (17)

Hence, we have

⃗
z

�+1 = (1 − @�4�) ⃗
z

� + @�∑�−1
�=1∑�

�=�+1-�-�

× {�−1∑
�=1

�∑
�=�+1

(N�
k
)�((�⃗�)�,�)�}

− @�∑�−1
�=1∑�

�=�+1-�-�

× {�−1∑
�=1

�∑
�=�+1

(N�
k
)�(O�

k
)�,�N�

k
( ⃗
z

� )} .

(18)


us, it con�rms the following representation for the

sequence { ⃗
z

� }. For simplicity, let∏�
�=�+1(U − Vv,�) = U in the

following contents.

Lemma 5. Set

Vv,� = @�∑�−1
�=1∑�

�=�+1-�-�
{�−1∑

�=1

�∑
�=�+1

(N�
v
)�(O�

v
)�,�N�

v
}

+ @�4�U.
(19)

If { ⃗
z

� } is de	ned by (7), we deduce
⃗
z

� = Π�−1
�=1 (U − V

k,�) ⃗
z

1

+ �−1∑
�=1

�−1∏
�=�+1

(U − V
k,�) @�∑�−1

�=1∑�
�=�+1-�-�

× {�−1∑
�=1

�∑
�=�+1

(N�
k
)�((�⃗�)�,�)�} .

(20)

We should discuss the convergence of the multidividing
ontology operator

1
∑�−1

�=1∑�
�=�+1-�-�

{�−1∑
�=1

�∑
�=�+1

(N�
k
)�(O�

k
)�,�N�

k
( ⃗
z

� )} (21)

to the integral operator V�,� : H�
� → H

�
� determined by

V�,� ⃗
 = �−1∑
�=1

�∑
�=�+1

{∫
��
∫
��
!(V� − V

�) (V� − V
�) (V� − V

�)�

⋅ ⃗
 (V�)9
V
����� (V�) ���� (V�) } ,

(22)

where ⃗
 ∈ H
�
�.

Lemma 6. Let z = {z1, z2, . . . , z�} be multidividing sample set
independently drawn according to a probability distribution �
on �. Denote (\, ‖ ⋅ ‖) as a Hilbert space and suppose that ^ :��1×�2×⋅⋅⋅×�� → H is measurable. If there is nonnegative �̃
such that ‖^(z) − E`(^(v))‖ ≤ �̃ for each V ∈ z and almost
every z ∈ ��1×�2×⋅⋅⋅×�� , then for every a > 0,

Pz∈�
1×
2×⋅⋅⋅×
� {5555^ (z) − Ez (^ (z))5555 ≥ a}
≤ 2 exp{− a22 (�̃a + f2)} , (23)

where

f2 = �∑
�=1

��∑
�=1

sup
z\{V�� }∈�
1×
2×⋅⋅⋅×(
�−1)×⋅⋅⋅×
�

E
V�
{55555^(z) − E

V�
(^(z))555552} .

(24)

For any 0 < i < 1, with con	dence 1 − i, one gets
5555^ (z) − Ez (^ (z))5555 ≤ 4 log 4i {�̃ + √f2}

≤ 4(1 + √ -Π∑�
�=1-�

Π
) log

4i�̃. (25)
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By regarding (1/∑�−1
�=1∑�

�=�+1-�-�){∑�−1
�=1∑�

�=�+1(N�v)�(O�
v
)�,�N�

v
( ⃗
z

� )} and V�,� as elements in (V(H�
�) and ‖ ⋅ ‖�(H��),

the space of bounded linear multidividing ontology
operators on H

�
�, Lemma 6 cannot be directly employed

because V(H�
�) is not a Hilbert space, but a Banach space

only. 
erefore, we consider a subspace of V(H�
�), \N(H�

�)
which is the space of Hilbert-Schmidt operators onH

�
� with

inner product ⟨�, 	⟩��(H��) = pq(	��). As \N(H�
�) is a

subspace of V(H�
�), their norm relations are presented as

‖�‖�(H��) ≤ ‖�‖��(H��),
‖�	‖��(H��) ≤ ‖�‖��(H��)‖	‖��(H��). (26)

In addition, \N(H�
�) is a Hilbert space and contains multi-

dividing ontology operators V�,� and (1/∑�−1
�=1∑�

�=�+1-�-�){∑�−1
�=1∑�

�=�+1(N�v)�(O�
v
)�,�N�

v
( ⃗
z

� )}. By applying Lemma 6 to
this Hilbert space, we obtain the following lemma.

Lemma 7. Let v = {v1, v2, . . . , v�} be multidividing sample set
independently drawn from (�, ��). With con	dence 1 − i, one
obtains

5555555555
1

∑�−1
�=1∑�

�=�+1
(N�,�

V
)�O

V
N�,�
V

− V�,�

5555555555��(H��)

≤ 34√�I2( Diam (�))2
√-Π/∑�

�=1-�
Π"�+2 log

4i .
(27)

Proof. Let \ = \N(\�
�). Consider the multidividing ontol-

ogy function ^ : ��1×�2×⋅⋅⋅×�� → H with values in \ =\N(H�
�) de�ned by

^ (v) = 1
∑�−1

�=1∑�
�=�+1-�-�

{�−1∑
�=1

�∑
�=�+1

(N�
v
)�(O�

v
)�,�N�

v
} .
(28)

For ⃗
 ∈ H
�
�, we con�rm that

^ (k) ( ⃗
)
= 1
∑�−1

�=1∑�
�=�+1

��∑
�=1

��∑

=1
!(V�� − V

�

) (V�
 − V

�
� )

× (V�
 − V
�
� )� ⃗
 (V�� )9V

�
�
.

(29)

Recall that reproducing property of the RKHSH� says that


 (V) = ⟨
,9
V
⟩�, ∀V ∈ �, 
 ∈ H�. (30)

It implies that the rank of operator �
V

: H� → H�
determined by �

V
(
) = 
(V)9

V
= ⟨
,9

V
⟩� 9

V
is 1, and

also in\N(H�). Furthermore, ‖�
V
‖\N(H�) = 9(V, V). Let�⃗

V
be the operator on H

�
� which maps ⃗
 to ⃗
(V)9

V
. 
en

the above fact reveals that ‖�⃗
V
‖��(H��) ≤ 9(V, V)√�. Hence

for any v ∈ ��1×�2×⋅⋅⋅×�� , we infer that

^ (k) = 1
∑�−1

�=1∑�
�=�+1

��∑
�=1

��∑

=1
!(V�� − V

�

) (V�
 − V

�
� )

× (V�
 − V
�
� )��⃗V

�
�
∈ \N (H�

�) .
(31)

Using the fact that !(V) ≤ 1/"�+2 and ‖�⃗
V
‖��(H��) ≤√�9(V, V) ≤ √�I2, we deduce that

55555^ (k) − E
V�
(^ (k))55555��(H��)

≤ 4 (-Π/∑�
�=1-�

Π − 1) I2(Diam (�))2√�
(-Π/∑�

�=1-�
Π)2"�+2 . (32)

Since

Ev ( 1
∑�−1

�=1∑�
�=�+1-�-�

{�−1∑
�=1

�∑
�=�+1

(N�
v
)�(O�

v
)�,�N�

v
})

= Ev (^ (v)) = -Π/∑�
�=1-�

Π-Π/∑�
�=1-�

Π − 1V�,�,
(33)

the stated result is held by combining Lemma 6 with

�̃ = (Diam (�))2I2√�8 (-Π/∑�
�=1-�

Π − 1)
(-Π/∑�

�=1-�
Π)2"�+2 (34)

and using the bound ‖V�,�‖��(H��)
≤ I2√�(Diam(�))2/"�+2.

In order to �nd the di
erence between ⃗
z

� and ⃗
�, the
convergence of

1
∑�−1

�=1∑�
�=�+1-�-�

{�−1∑
�=1

�∑
�=�+1

(N�
k
)�((�⃗�)�,�)�} (35)

to the ontology function de�ned by (55) is studied.

Lemma 8. Let z be a multidividing ontology sample indepen-
dently drawn from (�, �). With con	dence 1 − i, one has
5555555555

1
∑�−1

�=1∑�
�=�+1-�-�

{�−1∑
�=1

�∑
�=�+1

(N�
k
)�((�⃗�)�,�)�} − ⃗
�,�

5555555555H��
≤ 68 Diam (�)�I
√-Π/∑�

�=1-�
Π"�+2 log

4i .
(36)
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Proof. By applying Lemma 6 to the Hilbert space \ = H
�
�

and the ontology function ^ : ��1×�2×⋅⋅⋅×�� → H
�
� given by

^ (z)
= 1
∑�−1

�=1∑�
�=�+1-�-�

{�−1∑
�=1

�∑
�=�+1

(N�
k
)�((�⃗�)�,�)�}

= 1
∑�−1

�=1∑�
�=�+1

��∑
�=1

��∑

=1
!(V�� − V

�

) (V�
 − V

�
� ) (V�
 − V

�
� )9V

�
�
,
(37)

we yield Ez(^(z)) = ((-Π/∑�
�=1-�

Π − 1)/-Π/∑�
�=1-�

Π) ⃗
�,�.
Hence, for almost every z ∈ ��1×�2×⋅⋅⋅×�� , we get

55555^ (z) − E�� (^ (z))55555H��
≤ 16�IDiam (�) (-Π/∑�

�=1-�
Π − 1)

(-Π/∑�
�=1-�

Π)2"�+2 . (38)

Lemma 6 implies that for any 0 < i < 1, with con�dence1 − i, we obtain
5555555555

1
∑�−1

�=1∑�
�=�+1-�-�

{�−1∑
�=1

�∑
�=�+1

(N�
k
)�((�⃗�)�,�)�}

− -Π/∑�
�=1-�

Π − 1
-Π/∑�

�=1-�
Π

⃗
�,�
5555555555H��

≤ 32 (1 + 1/√-Π/∑�
�=1-�

Π)�IDiam (�)
√-Π/∑�

�=1-�
Π"�+2 log

4i .
(39)

Finally, conclusion follows from the fact that ‖ ⃗
�,�‖H�� ≤
4Diam(�)�I/"�+2.

Obviously, for { ⃗
z

� }, the sequence { ⃗
�} has a similar
expression as (20).

Lemma9. Let V�,
� , � = @�V�,�+@�4�U be an ontology operator
on H

�
� and suppose that ∏�−1

�=�+1(U − V�,
�� , �) = U. For the
ontology operator V�,� determined by (22) and { ⃗
�} by (10), one
obtains

⃗
� = �−1∏
�=1

(U − V�,
� , �) ⃗
1 + �−1∑
�=1

�−1∏
�=�+1

(U − V�,
� , �) @� ⃗
�,�.
(40)


e sample error ‖ ⃗
z

� − ⃗
�‖H�� is stated in the following

conclusion.

�eorem 10. Let { ⃗
z

� } be obtained by (5) and { ⃗
�} by (10).
Suppose that @� ≤ 1 and 4�+1 ≤ 4� ≤ 1 for all B ∈ N. 
en
for any 0 < i < 1, with con	dence 1 − i, one infers that

55555 ⃗
z

� − ⃗
�55555H��
≤ 34 Diam (�) I
√-Π/∑�

�=1-�
Π42�−1"�+2

× {I√� Diam (�) + 44�−1�} log 8i .
(41)

Proof. Let

⃗
z

�,� = �−1∑
�=1

�−1∏
�=�+1

(U − V
k,�) @� ⃗
�,� + �−1∏

�=1
(U − V

k,�) ⃗
z

1 . (42)

Let �1 ⊆ ��1×�2×⋅⋅⋅×�� with measure at least 1 − i such that
(36) establishes for any z ∈ �1.
us, from the positivity of the

multidividing ontology operator (N�
v
)�(O�

v
)�,�N�

v
(for each pair

of (�, �)) on H
�
� and the assumption ∏�−1

�=�+1(1 − @�4�) = 1,
we have that for any z ∈ �1,

55555 ⃗
z

� − ⃗
z

�,�
55555H��

= 55555555555
�−1∑
�=1

�−1∏
�=�+1

(U − V
k,�) @�

× ( 1
∑�−1

�=1∑�
�=�+1-�-�

× {�−1∑
�=1

�∑
�=�+1

(N�
k
)�((�⃗�)�,�)�} − ⃗
�,�)

5555555555�(H��)
≤ �−1∑

�=1

�−1∏
�=�+1

5555U − V
k,�
5555�(H��) 68 Diam (�)�I

√-Π/∑�
�=1-�

Π"�+2 log
4i

≤ 68 Diam (�)�I
√-Π/∑�

�=1-�
Π"�+2 log

4i
�−1∑
�=1

�−1∏
�=�+1

(1 − @�4�) @�.
(43)

In terms of @�4� = 1 − (1 − @�4�) and 1 ≤ 4�4−1�−1, we get
�−1∑
�=1

�−1∏
�=�+1

(1 − @�4�) @�

≤ 14�−1

{{{
�−1∑
�=1

�−1∏
�=�+1

(1 − @�4�) − �−1∑
�=1

�−1∏
�=�

(1 − @�4�)}}}
= 14�−1

{1 − �−1∏
�=1

(1 − @�4�)} .

(44)
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By virtue of the assumptions on @�, 4�, we infer that

�−1∑
�=1

�−1∏
�=�+1

(1 − @�4�) @� ≤ 14�−1
, (45)

which implies that

55555 ⃗
z

� − ⃗
z

�,�
55555H�� ≤ log

4i 68 Diam (�)�I
"�+2√-Π/∑�

�=1-�
Π4�−1

(46)

for any z ∈ �1.

Now, we consider the estimate of ‖ ⃗
�
� − ⃗
z

�,�‖H�� . Let �2 ⊆��1×�2×⋅⋅⋅×�� with measure at least 1 − i such that (27) is
established for any z ∈ �2. In view of (26), for each z ∈ �2
we yield

5555555555
1

∑�−1
�=1∑�

�=�+1-�-�
{�−1∑

�=1

�∑
�=�+1

(N�
k
)�(O�

k
)�,�N�

k
} − V�,�

5555555555�(H��)
≤ log

2i 34√�I
2( Diam (�))2

"�+2√-Π/∑�
�=1-�

Π

.
(47)

Using the fact that V�,
� ,�� − Vv,
 = @
(V�,� − (1/
∑�−1

�=1∑�
�=�+1-�-�) {∑�−1

�=1∑�
�=�+1(N�v)�(O�

v
)�,�N�

v
}), we obtain

that for any z ∈ �2,

55555 ⃗
� − ⃗
�
�,�
55555H��

= 55555555555
�−1∑
�=1

( �−1∏
�=�+1

(U − V
k,�) − �−1∏

�=�+1
(U − V�,
� ,��))@� ⃗
�,�

55555555555H��
= 55555555555

�−1∑
�=1

�−1∑

=�+1

�−1∏
�=
+1

(U − V
k,�) (V�,
� ,�� − V

k,�)

× �−1∏
�=�+1

(U − V�,
� ,��) @� ⃗
�,�
55555555555H��

≤ �−1∑
�=1

�−1∑

=�+1

�−1∏
�=
+1

(1 − @�4�) @

× 17I2( Diam (�))2√�

√-Π/∑�=1-	
� "�+2 log

2i

−1∏
�=�+1

(1 − @�4�) @�55555 ⃗
�,�55555H�� .
(48)

By changing the order of summation, we determine that55555 ⃗
� − ⃗
�
�,�
55555H��

≤ 34I2( Diam (�))2√�
√-Π/∑�

�=1-�
Π"�+2 log

4i
⋅ �−1∑

=2

�−1∏
�=
+1

(1 − @�4�) @

× 
−1∑

�=1


−1∏
�=�+1

(1 − @�4�) @�55555 ⃗
�,�55555H�� .

(49)

According to (45), we can verify that ‖ ⃗
� − ⃗
z

�,�‖H�� is bounded
by

log(4i) 34I2( Diam (�))2√�
√-Π/∑�

�=1-Π�"�+2
× �−1∑


=2

�−1∏
�=
+1

(1 − @�4�) @
 14
−1

55555 ⃗
�,�55555H��
≤ log(4i) 34I2( Diam (�))2√�

√-Π/∑�
�=1-Π�"�+2

142
−1
55555 ⃗
�,�55555H�� .

(50)

In view of the above fact and (46), we obtain that for any z ∈�1 ∩ �2,55555 ⃗
� − ⃗
z

�,�
55555H��

≤ log
2i
{{{{{
68I2( Diam (�))2√�
√-Π/∑�

�=1-�
Π"�+2

+ 34I2( Diam (�))2√�
√-Π/∑�

�=1-�
Π"�+2

55555 ⃗
�,�55555H��
}}}}}
.

(51)

However, the measure of the subset �1 ∩ �2 of ��1×�2×⋅⋅⋅×��

is at least 1 − 2i. 
e desired conclusion follows a�er
substituting i for i/2.


e following result is
eorem 4 inDong and Zhou [23];
it also holds in multidividing setting and we skip the detailed
proof.

�eorem 11. Let {4�, @�}�∈N be determined by (53). 
en, we
deduce that55555 ⃗
� − ⃗
∗




55555H��

≤ A2!+"−1 {4��
1 1 ,!+",1−! + exp{41@1 − log (#41@1)1 − � − 
 }}

×
55555 ⃗
�,�55555H��41

.
(52)
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4.2. Main Results. 
e �rst main result in our paper implies

that { ⃗
z

� } is a good approximation of a noise-free limit for the
ontology function (6) as a solution of (8) which we refer as

multidividing ontology function ⃗
∗

 .

�eorem 12. Let 0 < �, 
 < 1, and 41 and @1 > 0 satisfy2� + 
 < 1 and 41@1 < 1. For any A ∈ N, take

4� = 41A−". (53)

De	ne { ⃗
z

� } by (7) and { ⃗
∗

 } by (8). If |�| ≤ � is almost

established, then for any 0 < i < 1, with con	dence 1 − i,
one has

55555 ⃗
z

� − ⃗
∗



55555H�� ≤ �̃{{{{{

log
8i A2!
√-Π/∑�

�=1-�
Π"�+2 + A2!+"−1}}}}}

× (1 + 55555 ⃗
�,�55555H��) ,
(54)

where constant �̃ independent of -1, -2, . . . , -�, A, " or i and⃗
�,� is the multidividing ontology function determined by

⃗
�,� = �−1∑
�=1

�∑
�=�+1

∫
��
∫
��
!(�)
�,� (V� − V

�) (
� (V�) − 
� (V�))
× (V� − V

�)9
V
��� (V�) ��� (V�) .

(55)


e proof of 
eorem 12 follows from 
eorems 10 and

11 and an exact expression for the constant �̃ relying on
, @1, 41, I, �, �,� and Diam (�) can be easily determined.


e second main result in our paper follows from

eorem 10 and the technologies raised in [23].

�eorem 13. Assume that for certain 0 < � ≤ 2/3, ?� > 0 and
for any " > 0, the marginal distribution �� satis	es

�� ({V ∈ � : inf
#∈R�\�

| − V| ≤ "}) ≤ ?2�"4�, (56)

and the density �(V) of ���(V) exists and for any, any  , V ∈ �
satis	es

sup
V∈�

� (V) ≤ ?�, ����� (V) − � ( )���� ≤ ?�| − V|$. (57)

Suppose that the kernel 9 ∈ �3 and ∇
� ∈ H
�
�. Let 0 < � <1/(4+(2�+4)�/�) and 0 < � < 2/5. Take4� = A−!, @� = A(5/2)!−1,

and " = "(-1, -2, . . . , -�) = (I?�)2/$(-Π/∑�
�=1-�

Π)−%!/$ and
suppose that (-Π/∑�

�=1-�
Π)% ≤ A ≤ 2(-Π/∑�

�=1-�
Π)%; then for

any 0 < i < 1, with con	dence 1 − i, one infers that
55555 ⃗
z

� − ∇
�55555(��2� )� ≤ �̃�,�( 1
-Π/∑�

�=1-�
Π
)&

log(4i) , (58)

where

� = min{12 − 2� − (� + 2) ��� , ��2 } (59)

and constant �̃�,� is independent of-1, -2, . . . , -�, A or i.
Proof. Obviously, under the assumptions 9 ∈ �3, (56) and
(57), we get

55555 ⃗
�,�55555H�� ≤ ��,� (?��(2�)�/2I255555∇
�55555H�� + ") . (60)

Furthermore, by virtue of Proposition 15 in Mukherjee and
Zhou [22], we have

55555 ⃗
∗
� − ∇
�55555(��2� )� ≤ ��,� {55555∇
�55555H��√4 + "4} , (61)

where constant ��,� relies on � and9. 
eorem 10 and these
estimates reveal that with con�dence 1 − i, we yield
55555 ⃗
z

� − ∇
�55555(��2� )�
≤ �̃	 (1 + 55555∇
�55555H��)

× log
4i
{{{{{

A2!
√-Π/∑�

�=1-�
Π"�+2 + A2!+"−1 + "A! + A−!/2}}}}}

.
(62)


e learning rate (58) is determined according to the selec-
tion of the parameters.

5. Experiments

To show the e
ectiveness of our new ontology algorithms,
two experiments concerning ontology measure and ontology
mapping are designed below.

5.1. Ontology Similarity Measure Experiment on Plant Data.
In the �rst experiment, we use plant “PO” ontology�1 which
was constructed in the website http://www.plantontology
.org/. 
e structure of �1 is presented in Figure 1. �@H
(precision ratio; see Craswell and Hawking [24]) is used to
measure the quality of the experiment data. Here, we take� = 2, A = 3, @� = 1, and 4 = 0.1.

We �rst give the closestH concepts for every vertex on the
ontology graph by experts in plant �eld, and then we obtain
the �rst H concepts for every vertex on ontology graph by
Algorithm 3 and compute the precision ratio. Speci�cally, for

vertex V and given integer H > 0. Let Sim',expert
V

be the set



10 Computational Intelligence and Neuroscience

Table 1: 
e experiment results of ontology similarity measure.

�@3 average precision ratio �@5 average precision ratio �@10 average precision ratio

Algorithm 3 in our paper 0.5042 0.6216 0.7853

Algorithm in [11] 0.4549 0.5117 0.5859

Algorithm in [12] 0.4282 0.4849 0.5632

Algorithm in [13] 0.4831 0.5635 0.6871

PO

Plant anatomical entity Plant structure development stage 

Plant anatomical 
space

Plant structure Fruit 
development stage

Seed 
development stage

Anther 
pore

Fruit 
formation stageAxil

Portion of plant 
substance

Plant tissue 
development

Bract 
axil

Branch 
axil

Leaf 
axil

Trichome
 tip

Whole plant

Multicellular 
trichome tip

�allus Vascular 
system

Fruit ripening
 stage

Trichome 
development 

stage

Developing 
seed stage

Dry 
seed 
stage

Endosperm 
development 
stage

Chalazal and 
micropylar domain 
establishment stage

Primary 
endosperm 
cell stage

Functional 
specialization of the 
endosperm stage

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

Figure 1: 
e structure of “PO” ontology.

of vertices determined by experts and it contains H vertices
having the most similarity of V. Let

V
1
V
= arg min

V
	∈�(*)−V

{�����
 (V) − 
 (V	)�����} ,
V
2
V
= arg min

V
	∈�(*)−{V,V1

V
}
{�����
 (V) − 
 (V	)�����} ,

...
V
'
V
= arg min

V
	∈�(*)−{V,V1

V
,...,V�−1

V
}
{�����
 (V) − 
 (V	)�����} ,

Sim',algorithm
V

= {V1
V
, V2

V
, . . . , V'

V
} .

(63)


en the precision ratio for vertex V is denoted by

Pre'
V
= �����Sim',algorithm

V
∩ Sim',expert

V

�����H . (64)


e�@H average precision ratio for ontology graph� is then
stated as

Pre'* = ∑
V∈�(*) Pre

'
V|� (�)| . (65)

At the same time, we apply ontology methods in [11–
13] to the “PO” ontology. Calculating the average precision
ratio by these three algorithms and comparing the results to

Algorithm 3 rose in our paper, part of the data is referred to
in Table 1.

When H = 3, 5, or 10, the precision ratio by virtue of
our gradient computation based algorithm is higher than the
precision ratio determined by algorithms proposed in [11–
13]. In particular, whenH increases, such precision ratios are
increasing apparently. 
erefore, the gradient learning based
ontology Algorithm 3 described in our paper is superior to
the method proposed by [11–13].

5.2. Ontology Mapping Experiment on Humanoid Robotics
Data. For the second experiment, we use “humanoid
robotics” ontologies �2 and �3. 
e structure of �2 and�3 is shown in Figures 2 and 3, respectively. 
e ontology�2 presents the leg joint structure of bionic walking device
for six-legged robot, while the ontology �3 presents the
exoskeleton frame of a robot with wearable and power-
assisted lower extremities. In this experiment, we take � = 2,A = 4, @� = 1, and 4 = 0.05.


e goal of this experiment is to give ontology mapping
between �2 and �3. We also use �@H precision ratio to
measure the quality of experiment. Again, we apply ontology
algorithms in [12, 13, 17] on “humanoid robotics” ontology
and compare the precision ratio which is gotten from three
methods. Some results referred to in Table 2.

Taking H = 1, 3, or 5, the precision ratio in terms of
our gradient computation based ontologymapping algorithm
is higher than the precision ratio determined by algorithms
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Table 2: 
e experiment results of ontology mapping.

�@1 average precision ratio �@3 average precision ratio �@5 average precision ratio

Algorithm 4 in our paper 0.4444 0.5185 0.6111

Algorithm in [17] 0.2778 0.4815 0.5444

Algorithm in [12] 0.2222 0.4074 0.4889

Algorithm in [13] 0.2778 0.4630 0.5333

Hip raise 
joint

Actuator attach 
directly to body Upperleg segment

Hip actuator

Knee actuator
Knee joint

Lowerleg segment

Ball foot

Figure 2: “Humanoid robotics” ontology �2.

proposed in [12, 13, 17]. Particularly, as H increases, the
precision ratios in view of our algorithm are increasing
apparently. 
erefore, the gradient learning based ontology
Algorithm 4 described in our paper is superior to themethod
proposed by [12, 13, 17].

6. Conclusions

As a data structural representation and storage model, ontol-
ogy has been widely used in various �elds and proved to have
a high e�ciency. 
e core of ontology algorithm is to get the
similarity measure between vertices on ontology graph. One
learning trick is mapping each vertex to a real number, and
the similarity is judged by the di
erence between the real
number which the vertices correspond to. In this paper, we
raise a gradient learning model for ontology application in
multidividing setting. 
e sample error and approximation
properties are given in our paper. 
ese results support the
gradient computation based ontology algorithm from the
theoretical point of view. 
e new technology contributes to
the state of the art for applications and the result achieved in
our paper illustrates the promising application prospects for
multidividing ontology algorithm.
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Force sensor

Electrical machinery Bandage

Shank link 

Force transducer

Antiseptic dressing

Frame feetFoot force sensor 

Figure 3: “Humanoid robotics” ontology �3.
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