
Gradient Match and Side Match Fractal Vector

Quantizers for Images

Hsuan T. Chang

Department of Electrical Engineering
National Yunlin University of Science and Technology

Touliu Yunlin, 640 TAIWAN R.O.C.
E-mail: htchang@pine.yuntech.edu.tw

Abstract

In this paper we propose the gradient match fractal vector quantizers (GMFVQs) and the

side match fractal vector quantizers (SMFVQs), which are two classes of finite state fractal

vector quantizers (FSFVQs), for the image coding framework. In our previous work, we

proposed the non-iterative fractal block coding (FBC) technique to improve the decoding

speed and the coding performance for conventional FBC techniques. To reduce the number of

bits for denoting the fractal code of the range block, the concepts of the gradient match vector

quantizers (GMVQs) and the side match vector quantizers (SMVQs) are employed to the non-

iterative FBC technique. Unlike the ordinary vector quantizers, the super codebooks in the

proposed GMFVQs and SMFVQs are generated from the affine-transformed domain blocks

in the non-iterative FBC technique. The codewords in the state codebook are dynamically

extracted from the super codebook with the side-match and gradient-match criteria. The

redundancy in the affine-transformed domain blocks is greatly reduced and the compression

ratio can be significantly increased. Our simulation results show that 15%–20% of the bit

rates in the non-iterative FBC technique are saved by using the proposed GMFVQs.

1

Keywords: fractal block coding, finite state vector quantization, side match, gradient

match, fractal vector quantizer.

December 12, 2001

2

1 Introduction

Fractal block coding (FBC) and vector quantization (VQ) are two efficient techniques for

image coding frameworks. There exists many similarities between both techniques so that

the FBC technique is also called the self-VQ technique. On the other hand, the major

differences between two techniques include: (1) VQ records the indices of the codewords

in the codebook and FBC technique records the fractal code of the range blocks, (2) VQ’s

codebook is pre-designed and FBC’s domain blocks are extracted from the image itself, (3)

the encoder and the decoder of VQ have the same codebook but we cannot obtain the same

domain blocks in the conventional FBC technique. (4) the computational load of the FBC

encoding and decoding processes is much higher than that of VQ.

There have been much research work proposed to improve FBC technique via employing

the hybrid (both VQ and FBC) techniques [1]–[9]. For example, the low frequency compo-

nents of an image are coded by VQ, and its residual is coded by the fractal approximation [1].

The Lloyd algorithm for VQ can be used to reduce the number of domain blocks such that

the lower encoding complexity can be achieved [5]. The mean shape-gain vector quantization

(MSGVQ) is combined with the fractal image compression in [3]. A fractal vector quantizer

(FVQ) was proposed to coarsely approximate the source image by fixed basis blocks, and

the codebooks are self-trained from the approximated image [4]. However, the concept of the

finite state machine for the state codebook design of finite state vector quantizers (FSVQs)

[10] is not found in the papers above. FSVQs save the bit rate for the ordinary VQ technique

and preserve the image fidelity very well. This is because the state codebook size is always

much smaller than the super codebook size and the codewords in the state codebooks are

selected according to the next-state function. Therefore, in this paper we will employ the

finite state algorithm on the FBC technique to significantly reduce the bit rate.

3

There were many next-state functions proposed to design the state codebooks in FSVQs

[10]. Side match vector quantizers (SMVQs) [11] were proposed to preserve the spatial

continuity between block boundaries. In SMVQs, the best selection of the state codebook is

the set of codewords whose boundary pixels are the most similar to the reproduction pixels

that contribute to the state generation. The bit rate can be drastically reduced when they

are used together with variable length noiseless coding. Recently, we proposed the gradient

match vector quantizers (GMVQs) [12], the considerably general cases of SMVQs, which

can outperform SMVQs in both the bit rate and the peak noise-to-signal ratio (PSNR). The

quantization noise in the reconstructed image by the use of GMVQs is less visible than that

in the case of SMVQs under the same bit rate.

In conventional FBC techniques, however, we cannot obtain the same domain pool (i.e.,

the codebook) in both the encoder and the decoder. The concept of FSVQs cannot be

directly applied to conventional FBC techniques to design the state codebooks. On the

other hand, more than ten bits are required to represent the four parameters (block mean

µ, contrast scaling α, isometry ι, and the position of domain block PD) in the fractal code.

Thus using the FBC technique to encode small range blocks is inefficient. The number of

the codewords in the state codebook of FSVQs is usually less than 512 to achieve a low bit

rate. Therefore, to achieve a lower bit rate, the number of the bits to denote four parameters

should be reduced to encode the range block.

Recently, we proposed a non-iterative FBC technique [9], [13] to solve the problem of long

decoding time due to the iteration process. Since the block mean is one of the parameters

in the fractal code, the domain pool is generated from the mean image whose pixel values

are the block means of all the range blocks in the encoder. The decoder receives the on-

line transmitted mean information and thus can reconstruct an identical domain pool. The

4

finite state algorithm now can be applied to the non-iterative FBC technique since both

the encoder and the decoder thus have the same domain pool and domain blocks. The

gradient match and side match criteria used in the next-state function design have shown

their superiority to reduce the redundancy among the codewords in the super codebook. We

here propose the gradient match fractal vector quantizers (GMFVQs) and the side match

fractal vector quantizers (SMFVQs) for image coding framework. Both techniques are two

classes of the finite state fractal vector quantizers (FSFVQs) that employ the finite state

algorithms to design the state codebooks for the non-iterative FBC technique. Instead of

recording the fractal code in the FBC technique, the block mean and the indices of the

codewords in the state codebooks are used to denote the encoded range blocks. The bit rate

is significantly reduced since the number of codewords in the state codebook is much smaller

than that of the codewords in the super codebook, which are all possible combinations of

the affine-transformed domain blocks in the non-iterative FBC technique.

2 Finite-State Fractal Vector Quantizers (FSFVQs)

The proposed FSFVQs are based upon the non-iterative FBC technique and the FSVQs.

Since the GMVQs and SMVQs are two classes of FSVQs, the proposed GMFVQs and SM-

FVQs can also be considered as two classes of FSFVQs. FSVQs and FSFVQs can share the

same next-state functions to design the state codebooks although their construction methods

of the super codebooks are different,

A. Encoder and Decoder

The block diagrams of the encoder and the decoder in the proposed FSFVQs are shown

in Figure 1. As shown in Figure 1(a), an image is first partitioned into non-overlapping

range blocks. After measuring the mean value and the variance of each range block, a mean

5

image can be constructed for the encoding purpose. The domain blocks Ds are obtained by

subsampling the mean image with a T -pixel period. If the variance is less than a threshold

value Vth, the range block is coded by its mean value. Otherwise, we perform the affine

transformation to determine the fractal code of the range block if the range block is located

at the first row or first column. An attached header is used to denote the coding status of a

range block. The detailed procedures of the non-iterative FBC can be found in our previous

work [9], [13]. For the range blocks that are not located at the first row or the first column,

they are coded by the proposed FSFVQs technique that will be described below. In FSVQs,

the range blocks at the first row or the first column are not necessary to be coded at first.

Other arrangements such as the blocks at diagonal axis [14] and at sampled positions [15]

have been proposed to improve the coding performance of FSVQs.

In conventional FBC techniques, the diversity of both the contrast scaling and isometry

operations complicates the encoding process very much. To denote these two parameters,

usually more than six bits are required. If the block size is smaller than 4×4, the compression

ratio is low since the number of bits for the fractal code of a range block may be more than

20. For example, it requires 21 bits to denote the fractal code if we choose one bit for the

header, three bits for contrast scaling factor, three bits for isometry types, six bits for mean

value, and eight bits for domain block’s position. From the viewpoint of FSVQs, all of the

possible affine-transformed domain blocks are the codewords in a super codebook. That is,

there would be a huge number of codewords, which construct a huge and inefficient super

codebook. The finite state algorithms can be used to design the state codebook of the much

smaller size than the super codebook. The range blocks are coded by the indices by using

the nearest neighboring search in the state codebook. In addition to the mean value, the

output of the encoder is the index of the codeword in the state codebook except for the range

6

blocks located at the first row or the first column (they are coded by the affine transform).

The decoder is basically a symmetric version of the encoder, especially for the FSVQ

part. First, the mean image is reconstructed from the mean values of all range blocks. Then

the same super codebook as that in the encoder is reconstructed. The state codebook for

each range block is reconstructed with the next-state function. According to the headers, the

range blocks are reconstructed sequentially. For the range blocks located at the first row and

the first column, they are decoded either by the mean value or by the affine transform. As to

the range blocks which are located elsewhere and not coded by mean, they are represented

by the indices of the codewords in the state codebook. These range blocks can be directly

reconstructed by the table-look-up operation. Note that the initial state in both the encoder

and the decoder should be the same.

B. State Codebook Design

Instead of using training images to generate the super codebook, we use all of possible

affine-transformed domain blocks to construct the super codebook. The codeword c is defined

as

c = ι{α(D − µD) + µ
x
}, (1)

where µD and µ
x

denote the mean values of the domain block and the range block respec-

tively. Since the domain blocks are selected from the mean image of the test image, the

constructed super codebook in the proposed FSFVQs is image-dependent. The test image

is like one of the training images in codebook design. Thus a better coding performance can

be expected. Unfortunately, the number of the codewords in this super codebook is much

greater than that in common vector quantizers. For example, if we use three bits for contrast

scaling factor, three bits for isometry, and select 1024 domain blocks from the mean image,

there are 23 × 23 × 1024 = 65536 affine-transformed domain blocks (i.e., codewords) in the

7

super codebook. The required number to denote the index of the codeword is 16, which is

inefficient for encoding 4×4 blocks (the bit rate will be more than 1 bit/pixel). To reduce

the bit rate, it should design the state codebooks of the size much smaller than the super

codebook.

The state codebook is dynamically generated by the next-state function in the proposed

GMFVQs and SMFVQs. There were many methods proposed to design the next-state

function in FSVQs [10]. Recently, the SMVQs [11] the GMVQs [12] are proposed to exploit

the spatial correlation and preserve the spatial continuity of boundaries between adjunct

blocks. Both techniques greatly improve the compression ratio of the ordinary VQ technique

while the PSNR performance is well preserved. The block diagram of SMVQ and GMVQ

is shown in Figure 2. In the next-state function design, only two past reproduction blocks,

x′
north and x′

west, at the north and the west of the current block x contribute to the generation

of the state. Then the state s and the next-state function f is represented as

s = f(x′
north,x

′
west). (2)

As shown in Figure 3, both blocks are continuous neighbors of the current block x in the

north and the west directions. The labeled area in Figure 3 corresponds to the pixels that

contribute to the state generation for encoding the current block. The next-state functions for

SMVQs and GMVQs use the side match and gradient match criteria to select the codewords

from the super codebook respectively. For each affine-transformed domain block in the super

codebook, we measure its gradient match error and side match error. Suppose that an input

block x is of size m × n. The corresponding state codebook (SC) is a subset of the super

codebook that contains N codewords with the smallest gradient match error Egm or with

the smallest side match error Esm. The gradient match error Egm for a codeword placed in

8

the position of the current block x is defined as [12]

Egm = Egmv
+ Egmh

=
n∑

j=1

(|um−1,j − 2um,j + x1,j| + |um,j − 2x1,j + x2,j|)
2

+
m∑

i=1

(|li,n−1 − 2li,n + xi,1| + |li,n − 2xi,1 + xi,2|)
2, (3)

where Egmv
and Egmh

represent the gradient match error for the block boundaries in vertical

and horizontal directions, respectively. On the other hand, the side match error of a codeword

placed in the position of the current block x is defined as [11]

Esm = Esmh
+ Esmv

=
n∑

j=1

(x1,j − lm,j)
2 +

m∑

i=1

(xi,1 − ui,n)2, (4)

where Esmh
and Esmv

denote the horizontal and vertical side-match error respectively. Fi-

nally, we encode a block using the quantizer with the corresponding state codebook. Note

that the generated state codebooks in both the encoder and the decoder are the same due

to the same mean images and super codebooks.

C. Image Partition

The partition of an image affects the bit rate of the compressed image. For examples, the

block size is 8×8 in JPEG format and usually 4×4 in ordinary VQs. In FBC techniques, we

can partition an image into the range blocks with two-level sizes (8×8 parent range blocks

x8 and 4×4 child range blocks x4) to compromise the bit rate and PSNR for the coded

image. The quadtree partition is also efficient and flexible for different coding techniques.

To simplify the comparison with the non-iterative FBC technique, we perform two types

of partition for the test images: (1) single block size, 8×8 or 4×4, and (2) two-level block

sizes, 8×8 (parent level) and 4×4 (child level). Nevertheless, the proposed GMFVQs and

9

SMFVQs can be modified to fit other partition schemes such as the quadtree partition for

the test images.

The block diagram of the proposed FSFVQs in Figure 1 is only for the single block

size only. For the two-level block sizes, the corresponding block diagram will require some

modifications. An image is first partitioned into parent range blocks to which the same

coding procedures as those in the non-iterative FBC technique are applied. The proposed

GMFVQs or SMFVQs are not applied here since we try to maximize the number of parent

range blocks coded to reduce the bit rate. In the parent level, however, if the distortion

between the range block and the affine-transform-coded blocks is greater than the threshold

value Eth, the parent range block is split into four child range blocks for further processing.

We measure the mean and variance for each child range block and then construct the mean

image at the child level. The super codebook is constructed by affine-transforming the

domain blocks subsampled from this mean image. Then the child range blocks are coded by

the proposed GMFVQs and SMFVQs. Note that in the proposed FSFVQs, the child range

blocks at the first row and the first column are still coded by the affine transformation in

the non-iterative FBC technique.

3 Experimental Results

In the computer simulation, two 512×512 images (Lena and Jetplane) shown in Figure 4(a)

and 4(b) with the eight-bit grayscale resolution are used to test the proposed FSFVQs. The

performance of the decoded image quality is evaluated by PSNR and the bit rate. In our

simulation, an image is partitioned into range blocks of a single size, either 8×8 or 4×4; or

an image is partitioned into two-level block sizes: 8×8 and 4×4. A general form for the

10

PSNR of the decoded image is defined as

PSNR = 10 log10

2552

∑N8

i=1 MSE(x8i
,x′

8i
) +

∑N4

i=1 MSE(x4i
,x′

4i
)

dB, (5)

where N8 and N4 are the total numbers of the 8×8 range block x8 and the 4×4 range block

x4 respectively. The distortion between the original and coded range blocks is represented

by the mean-squared-error (MSE) measurement defined as

MSE(x,x′) =
1

B2

∑

0<i,j≤B

(xi,j − x′
i,j)

2, (6)

where B×B is the block size and x′
i,j denotes the gray level of the (i, j)th pixel in the coded

range block x′. For all the cases in our simulation, we set 25 to the threshold values Eth for

the variance of 8×8 and 4×4 range blocks. The bit rate calculation for different partitions

will be given in the following subsections. The number of domain blocks in a domain pool

represents its size. There are four sizes (16, 64, 256, and 1024) of the domain pool used in

non-iterative FBC in our simulation. The corresponding numbers of the codewords in the

super codebooks are 1024, 4096, 16384, and 61536. On the other hand, ten sizes of state

codebook are used in the proposed FSFVQs. They are 16, 32, 64, 128, 256, 512, 1024, 2048,

4096, and 8192.

A. Single Block Size

The length of the attached header Ih to the fractal code for each range block is only one

bit (i.e., Ih=1) because it only denotes whether or not the range block is coded by the block

mean. Therefore, the bit rate can be calculated by

B = {Nµ(Ih + Iµ) + NAT(Ih + Iµ + Iα + Iι + IPD
)

+NSC(Ih + Iµ + ISC)}/5122 bit/pixel, (7)

where Iµ, Iα, Iι, IPD
and ISC denote the required bits for the block mean, contrast scaling,

isometry, the position of the domain pool, and the index of the codeword in the state

11

codebook respectively. In addition, Nµ, NAT, and NSC denote the number of the range blocks

coded by the block mean, the number of the range blocks coded by the affine transformation,

and the number of the range blocks coded by the codeword in the state codebook respectively.

Note that only the range blocks located at the first row or the first column can be coded by

the affine transform.

For an image partitioned into 8×8 or 4×4 range blocks, we measure the mean value and

the variance of every range block and then construct a 64×64 or 128×128 mean image. If

the block variance is less than the threshold value Vth = 25, the range block is coded by its

mean value. Otherwise, the range block is coded by the proposed FSFVQs. The domain

pool is constructed with the domain blocks extracted from the mean image. The rate-PSNR

comparisons of the proposed GMFVQs, SMFVQs, and non-iterative FBC techniques for the

Lena image in the cases of single block size are shown in Figures 5 and 6. In non-iterative

FBC techniques, we determine the coding performance with the affine transformation under

the different sizes of the domain pool. The numbers shown in the figure represent the different

sizes of the domain pool. On the other hand, the numbers shown in the curves for GMFVQs

and SMFVQs denote the sizes of the state codebooks. As shown in both figures, the bit

rates in the GMFVQs and SMFVQs are significantly reduced, and the GMFVQs save more

bit rate than the SMFVQs.

B. Two-Level Block Sizes

To identify the partition state for the parent range block, we attach a variable-length

header to the fractal code. Table 1 shows the headers, subheaders, and the bit allocation for

parent range blocks x8 and child range blocks x4. We assign ‘0’ as the header of the mean-

coded parent range block. For the parent range block coded by the affine transformation,

‘10’ is the header. The header ‘11’ represents that a parent range block is split into four child

12

blocks. Then, the subheader ‘0’ represents the child range block coded by the mean. Another

subheader ‘1’ represents two possible coding statuses for the child range blocks: (1) coded

by the affine transformation when the block is located in the first row or the first column; (2)

coded by the proposed FSFVQs when the block is located elsewhere. Therefore, the header

has various lengths for different parent range blocks. In the case of two-level block sizes, the

finite state algorithm is not used for parent range blocks. For a 64×64 mean image in the

parent level, we can select 57×57 parent domain blocks at most. Thus 12 bits are required

to denote the domain blocks. We perform the full search algorithm in the parent level so

that more parent range blocks can be coded in this level to reduce the bit rate. After the

coding process in the parent level is completed, the parent range blocks that do not satisfy

the MSE criterion are split into four child range blocks. An 128×128 mean image is first

derived from the mean values of the range blocks coded in the parent level and the child

level. Then the super codebook is constructed from the child domain blocks and their affine

transformations. Here the child domain blocks are subsampled from the mean image with

an adjustable sampling period T .

Now, only the child range blocks are coded with the similar method shown in Subsection

3-A. The bit rate can be calculated by

B2 = {N8µ
(Ih8µ

+ Iµ) + N8AT
(Ih8AT

+ Iµ + Iα + Iι + IPD
) (8)

+Ih84N84 + N4µ
(Ih4µ

+ Iµ) + N4AT
(Ih4AT

+ Iµ + Iα + Iι + IPD
)

+N4FSFVQ
(Ih4FSFVQ

+ Iµ + ISC)}/5122 bit/pixel,

where N8µ
, N8AT

, N84, N4AT
, and N4FSFVQ

denote the number of the parent range blocks

coded by the mean, the number of the parent rang blocks coded by affine transformation,

the number of the parent range blocks partitioned into four child range blocks, the number of

the child range blocks coded by the affine transformation, and the number of the child range

13

blocks coded by the proposed FSFVQs, respectively. The rate-PSNR comparisons of the

proposed GMFVQs, SMFVQs, and non-iterative FBC techniques for the Lena and Jetplane

images in the case of two-level block sizes are shown in Figure 7. We found that, under the

same PSNR, the bit rates for both coded images are significantly reduced in the proposed

methods. In average, GMFVQs achieve 15%–20% reduction and SMFVQs achieve 10%–12%

reduction in the bit rates. Note that here the entropy coding techniques for the indices of

the codewords are not employed. In GMVQs and SMVQs, the distribution of the indices

is highly nonuniform [10], [11] when the block size is small, e.g. 4×4. We can expect more

reduction in the bit rate with the entropy coding technique such as the Huffman coding. The

reconstructed images and their corresponding error images in the case of two-level block sizes

are shown in Figure 8. The error at the edges are not obvious. That is, the edge continuity

in coded images is preserved very well. Note that the error images are biased at the gray

level 128 and enhanced by three times. The blocking effects that appear at the uniform area

can be post processed by the method proposed in Refs. [16] and [17] to enhance the visual

quality. We also found that the number NDB of the domain blocks selected from the child

mean image (128×128) affects the PSNR performance. The number NDB is determined by

the sampling period T . For example, if T=4, the number NDB is 128/4×128/4 = 32×32. As

shown in Tables 2 and 3, if the state codebook size is less than 1024, the PSNRs of decoded

Lena image for NDB=32×32 are better than those for NDB=63×63 in both the GMFVQs

and SMFVQs. Therefore, it is not necessary to select a large number of the domain blocks

from the mean image in the parent level.

14

4 Conclusion

In this paper, we propose two classes of FSFVQs, the GMFVQs and SMFVQs, for the image

coding framework. The concepts in GMVQs and SMVQs are applied to the non-iterative

FBC technique so that the number of the bits required for coding a range block is greatly

reduced. In the proposed GMFVQs and SMFVQs, the codewords in the state codebooks

are extracted from the super codebook so that the contiguity at block boundaries can be

preserved. In our experiments, three different block partitions for the image are tested:

(1) 8×8 range blocks, (2) 4×4 range blocks, and (3) 8×8 (parent) and 4×4 (child) range

blocks. The simulation results show that the proposed GMFVQs and SMFVQs save about

10%–20% in the bit rate for the non-iterative FBC technique. On the other hand, the

reconstructed images have the excellent quality with negligible blocking effects at edges.

The only limitation of the proposed techniques is the extra computations in constructing

large super codebooks and sorting the codewords to obtain state codebooks from the super

codebook. In our future work, we will try to reduce the computational load and speed up

the encoding process for the proposed FSFVQs. We can select the significant domain blocks

with useful rules rather than regularly sample domain blocks from the mean image. Then

some redundant transformed blocks can be filtered out before the sorting process in order

to reduce the comparisons for sorting.

Acknowledgment

This research was partially supported by the National Science Council, Taiwan, under con-

tract NSC 89-2213-E-324-050.

15

References

[1] I. Kim and R. Kim, “Still image coding based on vector quantization and fractal ap-

proximation,” IEEE Trans. On Image Processing, vol. 5 no. 4, pp. 587–597, April 1996

[2] F. Davoine, M. Antonini, J.-M. Chassery, and M. Barlaud, “Fractal image compression

based on Delaunay triangulation and vector quantization,” IEEE Transactions on Image

Processing, vol. 5 no. 2, pp.338–346, Feb. 1996

[3] R. Hamzaoui and D. Saupe, “Combining fractal image compression and vector quanti-

zation,” IEEE Trans. on Image Processing, vol. 9, no. 2, pp. 197–208, February 2000

[4] C. Kim, R. Kim, and S. Lee, “A fractal vector quantizer for image coding,” IEEE Trans.

on Image Processing, vol. 7, no. 11, pp. 1598–1602, November 1998

[5] K. Masselos, Y. A. Karayiannis, and T. Stouraitis, “Image coding using a fractal/vector

quantization model,” Proceedings of the 1997 13th International Conference on Digital

Signal Processing (DSP 97), vol. 2, pp. 797–800, 1997

[6] K. A. Saddi, Z. Brahimi, and N. Baraka, “Hybrid approach for still image compression

based on fractal approximation and vector quantization,” Proceedings of the 24th An-

nual Conference of the IEEE Industrial Electronics Society, 1998. IECON ’98, vol. 3,

pp.1487–1492, 1998

[7] Hsuan T. Chang and C. J. Kuo, “Fractal block coding using simplified finite-state

algorithm,” SPIE’s Symposium on Visual Communication and Image Processing’95,

vol. 2501, no. 3, pp. 536–544, Taiwan, May 1995

[8] Hsuan T. Chang and C. J. Kuo, “Finite-state fractal block coding of images,” Proceed-

ings of 1996 IEEE International Conference on Image Processing, vol.1, pp.133–136,

1996

[9] Hsuan T. Chang and C. J. Kuo, “Iteration-free fractal image coding based on efficient

domain pool design,” IEEE Trans. on Image Processing, vol. 9, no. 3, pp. 329–339,

March 2000

16

[10] A. Gersho and R. Gray, Vector quantization and signal compression, Chapter 14, Kluwer

Academic, Taipei, Taiwan 1992

[11] T. Kim, “Side match and overlap match vector quantization for images,” IEEE Trans.

on Image Processing, vol. 1, no. 2, pp. 170–185, 1992

[12] Hsuan T. Chang, “Gradient match vector quantizers for images,” Optical Engineering,

vol. 39, no. 8, pp. 2046–2057, August 2000

[13] Hsuan T. Chang and C. J. Kuo, “A novel non-iterative scheme for fractal image coding,”

Journal of Information Science and Engineering, vol. 17, pp. 429 443, April 2001

[14] T.-S. Chen and C.-C. Chang , “A new image coding algorithm using variable-rate side-

match finite-state vector quantization,” IEEE Transactions on Image Processing, Vol.

6, no. 8, pp. 1185–1187, Aug. 1997

[15] H.-C. Wei, P.-C. Tsai, and J.-S. Wang, “Three-sided side match finite-state vector

quantization,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 10, no.

1, pp. 51–58, February 2000

[16] Y. Fisher, Fractal Image Compression: Theory and Applications, Y. Fisher, Ed. New

York: Springer Verlag, January 1995

[17] Hsuan T. Chang and C. J. Kuo, “Adaptive schemes for improving fractal block coding

of images,” Journal of Information Science and Engineering, vol. 15, no. 1, pp. 11–25,

1999

17

Table 1: HEADER/SUBHEADER AND BIT ALLOCATION FOR THE PARENT AND
THE CHILD RANGE BLOCKS.

BBLOCK STATUS HEADER/ BIT ALLOCATION
SUBHEADER Ih Iι Iµx

Iα IPD

x8 CODED BY µ
x

‘0’ Ih8µ
= 1 6

x8 CODED BY AT ‘10’ Ih8AT
= 2 3 6 3 12

x8 SPLIT INTO FOUR x4 ‘11’ Ih84 = 2
x4 CODED BY µ

x
‘0’ Ih4µ

= 1 6
x4 CODED BY AT ‘1’ Ih4AT

= 1 3 6 3 12
x4 CODED BY FSFVQ ‘1’ Ih4FSFVQ

= 1 6 + ISC

Table 2: THE PSNR (IN DECIBELS) COMPARISON FOR THE CHILD-LEVEL STATE
CODEBOOKS THAT USE DIFFERENT NUMBERS OF THE SAMPLED DOMAIN
BLOCKS, NDB, IN GMFVQs.

SC SIZE 16 32 64 128 256 512 1024 2048 4096 8192
BIT RATE (bpp) 0.330 0.343 0.356 0.369 0.382 0.395 0.408 0.421 0.434 0.457

NDB=16×16 30.60 31.47 32.22 32.70 33.15 33.51 33.68 33.79 33.88 34.03
NDB=32×32 30.30 31.29 31.97 32.51 33.08 33.54 33.96 34.18 34.36 34.47
NDB=63×63 29.27 30.47 31.49 32.21 32.83 33.39 33.81 34.23 34.49 34.71

Table 3: THE PSNR (IN DECIBELS) COMPARISON FOR THE CHILD-LEVEL STATE
CODEBOOKS THAT USE DIFFERENT NUMBERS OF THE SAMPLED DOMAIN
BLOCKS, NDB, IN SMFVQs.

SC SIZE 16 32 64 128 256 512 1024 2048 4096 8192
BIT RATE (bpp) 0.346 0.363 0.379 0.395 0.412 0.429 0.445 0.462 0.478 0.494

NDB=16×16 29.66 30.54 31.17 31.66 32.13 32.45 32.70 32.89 32.97 33.08
NDB=32×32 28.90 29.87 30.71 31.55 32.30 32.98 33.50 33.91 34.19 34.39
NDB=63×63 28.16 29.21 30.05 30.82 31.62 32.41 33.08 33.70 34.14 34.50

18

Measure mean

and variance

Mean image

Image
 Partition into

blocks

Variance < Vth?

First row or column?

Yes

Yes

Domain blocks

selection

Codewords

generated by

affine transform

Quantizer:

Nearest Neighboring

search

Fractal code

No

Dynamically generated

state codebook

GM and SM criteria

Dequantizer

Delay

(a) Encoder

(b) Decoder

Fractal code

Coded by mean

First row or column?

Coded by mean?

Mean image

Reconstructed by

mean

Yes

No

Domain blocks

selection

Codewords

generated by

affine transform

Dynamically generated

state codebook

GM and SM criteria

Delay

Look up table

Yes

Affine transform

No

Decoded block

Figure 1: THE BLOCK DIAGRAM OF THE PROPOSED FSFVQs.

19

Quantizer:

Nearest neighbor

search

Super

codebook

Gradient match

 and

 side match

criteria

State codebook

Delay

De-

quantizer

De-quantizer:

Table look up

Super

codebook

State codebook

Delay

Gradient match

 and

 side match

criteria

image block:
x
 Index:
q

(a) Encoder
 (b) Decoder

Reconstructed

 block:
x’

x’

north

x’

west

x’

north

x’

west

Figure 2: THE BLOCK DIAGRAM OF SMVQs AND GMVQs: (a) THE ENCODER AND
(b) THE DECODER.

X

1,1
 X

1,2

X

2,1

X

2,2
 X

2,n

X

1,n

u

m-
1,1

u

m-1,2

u

m,1
 u

m,2

u

m
-1,n

u

m,n

X

m,1
 X

m,2

l

1
,n-1

l

1
,n

l

2
,n-1
 l

2
,n

l

m,n

l

m,n-1

X’

north

=
u

X
X’

west

=
l

Figure 3: THE PIXELS THAT CONTRIBUTE TO THE GENERATION OF THE STATE
CODEBOOK IN SMVQs AND GMVQs.

20

Figure 4: THE TEST IMAGES: (a) LENA AND (b) JETPLANE.

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25

27

27.5

28

28.5

29

29.5

30

30.5

31

31.5

bit rate

P
S

N
R

 (
dB

)

8x8 range block

8192
4096

2048

1024

512

256

128

64

32

1024

256

64

Non−iterative
FBC

GMFVQ

SMFVQ

16

Figure 5: THE RATE-PSNR COMPARISON OF THE PROPOSED SMFVQs, GMFVQs
AND NON-ITERATIVE FBC TECHNIQUES USING BLOCK SIZE 8×8.

21

0.5 0.55 0.6 0.65 0.7 0.75 0.8

29

30

31

32

33

34

35

36

bit rate

P
S

N
R

 (
dB

)

4x4 range block

GMFVQ

32

64

128

256

1024

2048

4096

512

64

8192

16

256

1024

SMFVQ

Non−iterative
 FBC

Figure 6: THE RATE-PSNR COMPARISON OF THE PROPOSED SMFVQs, GMFVQs
AND NON-ITERATIVE FBC TECHNIQUES USING BLOCK SIZE 4×4.

0.35 0.4 0.45 0.5 0.55
29

30

31

32

33

34

35

bit rate

P
S

N
R

 (
dB

)

Lena

0.35 0.4 0.45 0.5 0.55 0.6
28

29

30

31

32

33

34

35

bit rate

P
S

N
R

 (
dB

)

Jetplane

GMFVQ

SMFVQ

Non−iterative
FBC

GMFVQ

SMFVQ

Non−iterative
FBC

Figure 7: THE RATE-PSNR COMPARISON OF THE PROPOSED SMFVQs, GMFVQs
AND NON-ITERATIVE FBC TECHNIQUES USING TWO-LEVEL BLOCK SIZES 4×4
AND 8×8: (a) LENA, (b) JETPLANE.

22

Figure 8: THE RECONSTRUCTED IMAGES AND THE CORRESPONDING EN-
HANCED ERROR IMAGES IN THE CASE OF TWO-LEVEL BLOCK SIZES: (a) LENA,
34.5 dB AT 0.407 BIT/PIXEL, (b) THE ENHANCED ERROR IMAGE OF (a); (c) JET-
PLANE, 34.07 dB AT 0.465 BIT/PIXEL, (d) THE ENHANCED ERROR IMAGE OF (c).

23

