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Abstract

Zero-shot learning (ZSL) is one of the most promising

problems where substantial progress can potentially be

achieved through unsupervised learning, due to distribu-

tional differences between supervised and zero-shot classes.

For this reason, several works investigate the incorporation

of discriminative domain adaptation techniques into ZSL,

which, however, lead to modest improvements in ZSL ac-

curacy. In contrast, we propose a generative model that

can naturally learn from unsupervised examples, and syn-

thesize training examples for unseen classes purely based

on their class embeddings, and therefore, reduce the zero-

shot learning problem into a supervised classification task.

The proposed approach consists of two important compo-

nents: (i) a conditional Generative Adversarial Network that

learns to produce samples that mimic the characteristics of

unsupervised data examples, and (ii) the Gradient Matching

(GM) loss that measures the quality of the gradient signal

obtained from the synthesized examples. Using our GM loss

formulation, we enforce the generator to produce examples

from which accurate classifiers can be trained. Experimental

results on several ZSL benchmark datasets show that our

approach leads to significant improvements over the state of

the art in generalized zero-shot classification.

1. Introduction

There has been tremendous progress in visual recognition

models over the past several years, primarily driven by the

advances in deep learning. The state-of-the-art approaches

in deep learning, however, predominantly rely on the avail-

ability of a large set of carefully annotated training examples.

The need for such large-scale datasets poses a significant

bottleneck against building comprehensive recognition mod-

els of the visual world, especially due to the long-tailed

distribution of object categories [1].

Recently, there has been a significant research interest

in overcoming this difficulty. Prominent approaches for
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Figure 1: Illustration of our approach. We propose the

Gradient Matching Network (GMN) which learns to produce

synthetic examples for a class given it’s semantic embedding.

By using the GMN we generate training samples for zero-

shot (unseen) classes, then train a supervised classifier over

the union of this synthetic set and the training set of seen

classes.

this purpose include semi-supervised learning, i.e. improv-

ing supervised classification through leveraging unlabeled

data [2, 3], few-shot learning, i.e. learning from few labeled

samples [4, 5] and zero-shot learning (ZSL) for modeling

novel classes without training samples [6, 7, 8]. In our pa-

per, we focus on the ZSL problem, where the goal is to

extrapolate a classification model learned from seen classes,

i.e. those with labeled examples, to unseen classes with

no labeled training samples. In order to relate classes to

each other, they are commonly represented as class embed-

ding vectors constructed from side information. Such class

embedding vectors can be constructed in several different

ways, such as by manually defining attributes that character-

ize visual and semantic properties of objects [9, 10, 11]

or by adapting vector-space embeddings of class names

[12, 13, 14] or by representing the position of classes in

a relevant taxonomy tree as vectors [15]. Given the class

embeddings, the ZSL problem boils down to modeling rela-

tions between a visual feature space, i.e. images or features

extracted from some deep convolutional network, and a class

embedding space [16, 15, 17, 18, 19, 20, 21, 22].

However, ZSL models typically suffer from the domain

shift problem [23] due to distributional differences between

seen and unseen classes. This can significantly limit the

generalized zero-shot learning (GZSL) accuracy where test
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samples may belong to any of the seen or unseen classes [24].

Towards addressing this problem, several recent work have

proposed generative models that can synthesize training sam-

ples for unseen classes and learn a classifier from real and/or

synthesized examples [25, 26, 27, 28]. Therefore, a bias

towards seen classes can be reduced considerably.

Similarly, in this work, our goal is to learn a generative

model that can synthesize samples for any class of interest,

purely based on the embedding vector of the class. Once

the generative model is learned, we augment the set of seen

class examples by the set of unseen class examples sampled

from the generative model. The final classification model is

then built by training a classifier over the real and synthetic

training examples, Therefore, in a sense, we reduce ZSL to

a supervised learning problem, as illustrated in Fig 1.

Just like any other example-synthesis based ZSL ap-

proach, however, the accuracy of the resulting classifier

heavily depends on the diversity and fidelity of the training

examples synthesized by the generative model. For this rea-

son, we specifically focus on two directions: (i) leveraging

unseen examples to implicitly model the manifold of each

unseen class, (ii) ensuring that generative model produces

data using which we can train an accurate classifier.

In order to leverage unlabeled examples, we propose

as a Generative Adversarial Network (GAN) [29] based

formulation. In particular, in contrast to recent GAN-based

example synthesis approaches [26, 27, 28], our approach

allows utilizing an unconditional GAN discriminator, which

naturally extends to incorporating over unlabeled training

examples. In this way, we aim to learn a generator that

produces samples that mimic the characteristics of both seen

and unseen classes.

In order to learn to generate better training data, we pro-

pose a novel loss function that behaves as a quality inspector

on the synthetic samples. More specifically, we aim to guide

the generator towards minimizing the classification loss of

synthetic example-driven classification models. For this pur-

pose, we derive the gradient matching loss as a proxy for the

classification loss, which measures the discrepancy between

the gradient vectors obtained using the real versus synthetic

samples. We refer to our complete model that incorporates

this loss term as Gradient Matching Network (GMN).

We show that our final classification models lead to state-

of-the-art results on ZSL benchmark datasets Caltech-UCSD

Birds (CUB) [30], SUN Attributes (SUN) [31] and Animals

with Attributes (AWA) [11] using the challenging and realis-

tic Generalized ZSL (GZSL) evaluation protocols [24, 32].

The rest of the paper is organized as follows: Section 2

provides an overview of the most relevant previous work,

Section 3 explains the details of the proposed approach, and

Section 4 presents empirical evaluations of the method. Fi-

nally, Section 5 concludes the paper with a brief discussion.

2. Related Work

In this section, we provide an overview of the most related

work on zero-shot learning.

Over the years, a number of ZSL approaches have been

proposed. For example, [6] models the joint probability of

attributes, [8] models the conditional distribution of features

given attributes, [33] uses semantic knowledge bases for at-

tribute classification, [34, 35, 36] build convex combinations

of seen class classifiers, [15, 17, 18, 19, 20, 21, 22] learn a

compatibility function between features and class embed-

dings. Similarly, [37, 38, 39] learn a mapping from semantic

embeddings to visual features, and, [40, 41, 42] learn a data-

driven metric for comparing similarities between features

and semantic embeddings. Alternatively, transductive ap-

proaches have been proposed to benefit from unlabeled data

[43, 23, 44, 39]. Such discriminative techniques, however,

typically assume that each unlabeled example belongs to one

of the unseen (or seen) classes, which can be an unrealistic

assumption in practice.

Recently, the use of contemporary generative models

in zero-shot learning settings has gained attention. [45]

proposes training a conditional Variational Auto-Encoder

(cVAE), that learns to generate samples according to given

class embeddings. [44] extends this notion with trainable

class conditional latent spaces. [28] also develops a cVAE ex-

cept that their model learns a separate semantic embedding

regressor/discriminator. [25] evaluates several generative

models for learning to generate training examples. [27]

adopts cycle consistency loss of cycle-GAN into zero-shot

learning to regularize feature synthesis network. [46] uses

a separate reconstructor, discriminator and classifier all tar-

geting at visual features to remedy domain-shift problem.

Slightly different from mainstream approaches, [47] intro-

duces diffusion regularization to increase utility of features.

[26] proposes a WGAN [48] based formulation that uses a

discriminative supervised loss function, in addition to the

unsupervised adversarial loss. In this model, the supervised

loss enforces the WGAN generator to produce samples that

are correctly classified according to a pre-trained classifier

of seen classes.

Among the aforementioned works, [26] is the one closest

to ours in the sense that we also train a conditional WGAN

towards synthesizing training samples. However, our ap-

proach has two major differences. First, we use the proposed

gradient matching loss, which aims to directly maximize the

value of the produced training examples by measuring the

quality of the gradient signal obtained over the synthesized

examples. Second, our model learns an unconditional dis-

criminator i.e., the discriminator network does not rely on a

semantic embedding vector. This permits us to explore the

incorporation of unlabeled training examples into training in

a semi-supervised fashion.
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Figure 2: Illustration of the gradient matching loss. φ is a pre-trained CNN. G is the generator and it synthesizes features for

any class using its semantic embedding. D represents the discriminator network. f is the compatibility function. ∇ denotes

gradient operator in the compute graph. Paths through which only data of seen classes flow when D is unconditional are

colored in green. (Best viewed in color.)

3. Method

In ZSL, the goal is to learn a classifier on a set of seen

classes for which we have training samples, and then to

use this function to predict the class labels of test samples

belonging to unseen classes for which we have no training

data. In addition to the conventional ZSL, in GZSL, the

test samples may also belong to the seen classes. To enable

knowledge transfer to novel classes, one can define an aux-

iliary (semantic embedding) space A, in which both seen

and unseen classes can be uniquely identified. This way,

the classifier can be formulated as a compatibility function

f(x, a; θf ) : X × A → R, which estimates the degree of

confidence that the input image (or its representation) x ∈ X
belongs to the class represented by the embedding a ∈ A,

using the model with parameters θf . Given the compatibility

function, the classifier over all classes can be constructed.

We start by defining a set of seen classes Ys =
{1, . . . , Cs} and a set of unseen classes Yu = {Cs +
1, . . . , Cs + Cu} such that Ys ∩ Yu = ∅ and Yall = Ys ∪ Yu.

For each class in Yall, there is a unique class embedding

vector a ∈ R
da , and we denote the set of all class embed-

dings by Aall. Thus As and Au represent embeddings of

seen and unseen classes, respectively. Dtrain = {(x, a) |x ∈
Xs, a ∈ As}, is the training set containing N examples,

where each training example consists of the feature repre-

sentation x ∈ R
dx extracted using a pre-trained CNN, and

the corresponding class embedding vector a. Here, Xs de-

notes the set of all labeled data points. During training, our

approach can optionally utilize a set of unlabeled examples,

denoted by Xu.

3.1. Unsupervised GAN

Our generative model is built upon the WGAN [49] as in

[26]. Different from vanilla GAN [29], WGAN optimizes

the Wasserstein distance using Kantorovich Rubinstein du-

ality, instead of optimizing the Jensen-Shannon divergence.

It is shown that enforcing discriminators to be 1-Lipschitz

provides more stable gradients for generators. Even though

clipping the weights of discriminators serves this purpose,

it leads to unstable training for the WGAN. Instead, [48]

propose to apply gradient penalty to discriminators to control

their Lipschitz norm, which we use as our starting point:

LWGAN = E
x∼Pr

[D(x)]− E
x̃∼Pg

[D(x̃)] + (1)

λ E
x̂∼Px̂

[

(‖∇x̂D(x̂)‖2 − 1)2
]

,

where, Pr is the true data distribution, Pg denotes generator

outputs and x̂ is the interpolation between x and x̃.

Note that Eq. 1 does not involve any label information

regarding either the real samples from the data distribution

x ∼ Pr or fake ones synthesized by the generator x̃ ∼ Pg.

In order to generate a sample x̃, a noise vector shall be sam-

pled from a prior distribution and then fed into the generator

in a purely unsupervised manner. In our case, however, we

aim to produce training samples for the unseen classes using

the generative model. For this purpose, we need to train a

generator network such that it takes a combination of the

noise vector and class embeddings as input, and therefore,

produces class-specific samples according to the side infor-

mation given by the class embedding.

A simple scheme for combining the noise and class em-

bedding vectors is to concatenate them [26]. However, we

can also aim to model the latent distributions corresponding

to classes and then take samples from these latent distri-

butions instead. For this purpose, inspired from [44], we

propose to define a conditional multivariate Gaussian dis-

tribution N (µ(a),Σ(a)), where µ(a) = Wmua + bmu and

Σ(a) = exp(Wcova + bcov) estimate an R
dz dimensional

Gaussian noise mean and covariance conditioned on class

embeddings, Wmu and Wcov are linear transformation ma-

trices and bmu and bcov are bias vectors. Therefore, in order

to generate a sample of class j, we first compute µ(aj) and

Σ(aj), take a noise sample from N (µ(a),Σ(a)) and then

feed the noise into the generator network. To make the sam-

pling process differentiable, we use the re-parameterization

trick [50, 51]. In this manner, we make Wmu, Wcov, bmu and

bcov end-to-end differentiable and train them as an integral

part of the generative network.
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3.2. Gradient Matching Loss

So far the aforementioned approach lacks definition of

any supervisory signal, which is crucial for learning a correct

conditional generative model (See the Ablation Study in

Sec. 4). One possible solution is to measure the correctness

of the resulting samples for the seen classes using the loss

function of a pre-trained classification model, which is the

approach used in [26]. However, we argue that classification

guidance does not necessarily lead to the synthesis of a

good training set as it measures the loss of the samples

w.r.t. the pre-trained model, rather than the expected loss of

the model trained on them. For instance, if the generator

learns to generate only confidently classified examples, the

classification loss given by the pre-trained model will be

low, even though the resulting training set lacks examples

near class boundaries, i.e. the support vectors. In fact, [52,

53] report that conditional GAN models tend to produce

degenerate class conditional examples when they are trained

to minimize the loss of a pre-trained classifier.

Based on these observations we propose that instead of

aiming to produce samples that are correctly classified by a

pre-trained model, we should focus on learning to generate

training examples that lead to accurate classification models.

For this purpose, one can consider training the generative

model by minimizing the final loss of a tentative classifi-

cation model trained over the synthetic samples. Here, the

tentative classifier would be iteratively trained via a gradient

based optimizer over a number of model update steps, within

each training iteration for the generative model. Since all

computational blocks are differentiable, such an approach

would allow training the generative model in an end-to-end

fashion such that it learns to generate training examples from

which accurate classification models can be built.

However, based on our preliminary experiments, we have

observed that such a naive strategy performs poorly for two

important reasons. First, normally a large number of model

update steps are needed to be able to train the tentative

classifier. However, integrating a long compute chain of

model update steps within the generative model training

procedure not only slows down the training procedure very

significantly, but also leads to vanishing gradient problems.

Second, using an unrealistically small number of classifier

update steps due to the aforementioned problems, on the

other hand, encourages the generative model to produce

unrealistic samples that aim to “quickly” minimize the final

loss over the few classification model update steps.

Instead, we address these issues by focusing on maximiz-

ing the correctness of individual model updates. We observe

the simple fact that in the case where a generative model

learns true class manifolds, partial derivatives of a loss func-

tion with respect to classification model parameters over a

large set of synthetic examples would be highly correlated

with those over a large set of real training examples.

Following these observations, we propose to minimize

the approximation error of the gradients obtained over the

synthetic samples of seen classes. More specifically, we

propose to learn a generative model G such that it maximizes

the correlation between gradients over the synthetic samples

and those over the real samples. To formalize this idea, we

first define the aliases gr and gs for the expected gradient

vectors over the real and synthesized examples, respectively:

gr(θ) = E
(x,a)∼Ds

[

∇θfLCLS(f, x, a; θf = θ)
]

, (2)

gs(θ) = E
x̃∼G(a∼As)

[

∇θfLCLS(f, x̃, a; θf = θ)
]

. (3)

Here, LCLS(f, x, a) is the loss function used in training the

compatibility function f(x, a; θf ). Throughout the training

procedure, we approximate gr and gs over sample batches.

Since the most important information conveyed by the

gradient vector is the direction towards the local minima

rather than the absolute scale of the gradient vectors, we

measure the discrepancy between gr and gs via the cosine

similarity between two vectors. Finally, we formalize the

gradient matching loss LGM as the expected cosine distance

between the gr and gs, computed over all possible compati-

bility model parameters θ:

LGM = E
θ

[

1−
gr(θ)

Tgs(θ)

‖gr(θ)‖2‖gs(θ)‖2

]

, (4)

In our experiments, we approximate the expectation by sam-

pling θf vectors obtained over the training iterations while

learning the compatibility function via gradient descent over

real training examples. Then our final objective becomes

θ∗G , θ
∗
D = arg min

θG ,θD
{LWGAN + βLGM}, (5)

where β is a simple weight hyper-parameter to be tuned on a

validation set. We refer to a generative model trained within

this framework as Gradient Matching Network (GMN).

Given the true generative model of the data distribution

and a representative train set, the correlation between gr(θ)
and gs(θ) is expected to be high, independent of the com-

patibility model parameters θ. Therefore, in principle, any

compatibility function model can be utilized within the gradi-

ent matching loss. In our experiments, we use cross-entropy

as LCLS and implement the compatibility function f as a

bilinear model:

f(x, a;W, b) = xTWa+ b. (6)

The compatibility matrix W and bias vector b corresponds to

θ. We note that while optimizing LGM by a batch gradient de-

scent update rule, it is important to compute gr(θ) and gs(θ)
over real and synthetic samples of the same class, respec-

tively. This makes sure that the genarator effectively learns

class manifolds separately. Otherwise, although matching

the aggregated gradients ∇θf of a batch of samples that be-

long to different classes is still a valid supervision for the

generator to learn the data distribution, it becomes difficult
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for the generator to learn individual class distributions.

Furthermore, thanks to our gradient matching loss, we can

decouple the class label supervision from LWGAN objective.

This way, depending on the availability of unlabeled training

data, LWGAN term in Eq. 5 can be computed either over seen

class embeddings and samples (LS
WGAN), or, over all classes

(LS+U
WGAN) possibly in a transductive way:

LS
WGAN = E

x̃∼G(a∼As)
[D(x̃)]− E

x∼Xs

[D(x)] + λLGP (7)

LS+U
WGAN = E

x̃∼G(a∼A
all
)
[D(x̃)]− E

x∼X
all

[D(x)] + λLGP, (8)

where LGP is the gradient penalty term in Eq. 1. Here, in

the case of Eq. 8, Dtrain also includes Xu. Unlike most of

the transductive zero-shot learning approaches, we do not

assume that unseen examples belong solely to the unseen

classes: while such an assumption can possibly provide a

significant advantage in training, it is unrealistic in most

scenarios. The compute graph summarizing our approach is

depicted in Fig. 2.

3.3. Supervision by Conditional Discriminator

Up to now, the source of supervision for a generator

network is defined by an auxiliary loss function minimized

by the generator network itself during training. However, we

can also condition a discriminator network on either one-hot

class labels or semantic embedding vectors so that it can

also learn relations between visual features and semantic

embeddings [26, 27, 28, 46]. To do that we slightly change

Eq. 1 as follows:

LS
cWGAN = E [D(x, a)]− E [D(x̃, a)] + (9)

λE
[

(‖∇x̂D(x̂, a)‖2 − 1)2
]

.

We note that this conditional form of the discriminator net-

work can only be trained using training samples of seen

classes. In other words, it cannot be utilized over unsuper-

vised samples in a semi-supervised or transductive settings.

In our experiments, we comprehensively evaluate the

impact of training with different GAN loss versions

(LS
WGAN,L

S+U
WGAN,L

S
cWGAN) and their combinations with gra-

dient matching loss.

3.4. Feature Synthesis

Once we train our generative model, we synthesize train-

ing examples for both seen and unseen classes by providing

their class embeddings into the generative network as input,

and then we combine the resulting Dfake with Dtrain to form

our final training set D̃ = Dtrain ∪ Dfake. Once all samples

are generated, we train the multi-class classification model

based on the compatibility function by simply minimizing

the cross-entropy loss over all (seen+unseen) classes. Finally,

we utilize the resulting f to perform ZSL and GZSL.

4. Experiments

In this section, we present an experimental evaluation of

the proposed approach. First we briefly explain our experi-

mental setup, then we evaluate important GMN variants and

compare with the state of the art. We additionally analyze our

model via a detailed ablation study, including an evaluation

on the effect of using synthesized training examples.

nattr |Yu| |Ys| |Xu| |Xs| ANOSPC

CUB [30] 312 50 150 2967 8821 59

SUN [31] 102 72 645 1440 12900 20

AWA [11] 85 10 40 5685 24790 609

Table 1: Statistics for the benchmark datasets. nattr denotes

number of attributes and |.| indicates cardinality of a set. The

last column shows average number of samples per class over

each of the datasets. We use the splits proposed in [32].

Datasets. We evaluate our model in the three commonly

used benchmark datasets, namely Caltech-UCSD Birds-200-

2011 (CUB) [30], SUN Attribute (SUN) [31] and Animals

with Attributes (AWA) [11]. CUB and SUN are fine-grained

image datasets which contain 200 bird species and 717 scene

categories, respectively. They are particularly challenging

for ZSL & GZSL as they contain relatively fewer images

per class, making it difficult to model intra-class variations

efficiently. AWA is a coarse-grained dataset consisting of

images belonging to 50 animals. AWA contains a relatively

small set of classes, which makes generalization to unseen

classes more difficult. A summary is given in Table 1.

In our comparisons, we utilize the splits, class embed-

dings and evaluation metrics proposed in [32] for standard-

ized ZSL and GZSL evaluation. We use class-level attributes

as class embeddings. For CUB experiments, we addition-

ally use 1024-dimensional character-based CNN-RNN fea-

tures [54] as in [32, 27]. As a pre-processing step, we ℓ2
normalize the class embeddings. Following [32, 25, 26], we

use the 2048-dimensional top pooling units of a ResNet-101

pretrained on ImageNet-1K as the image representation. We

do not apply any pre-processing to these features.

Evaluation. Once we train a GMN on a particular dataset

Dtrain, we synthesize nzsl, ngzsl-u and ngzsl-s-many samples

for each unseen class to create a separate augmented dataset

Dzsl
fake, Du

fake, Ds
fake for training separate models for the ZSL,

GZSL-u and GZSL-s evaluations, respectively. Additionally,

we create Da
fake containing na synthetic sample per unseen

class, to train a single model that performs all tasks, i.e. clas-

sifying seen and unseen class examples. Exceptionally, only

on the AWA dataset, where there is a significant imbalance

among training classes, we additionally synthesize examples

for the seen classes to obtain equivalent number of training
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Zero-Shot Learning Generalized Zero-Shot Learning

CUB SUN AWA CUB SUN AWA

Method T-1 T-1 T-1 u s h u s h u s h

Train only with real samples (Ds) 56.8 60.7 62.3 26.9 67.6 38.4 23.4 36.3 28.4 13.4 78.1 22.9

LS
WGAN + LCLS 58.3 61.4 70.0 47.0 71.0 56.5 47.7 41.2 44.2 47.8 78.7 59.5

LS
cWGAN 60.6 62.6 72.0 55.9 71.1 62.6 53.6 41.1 46.5 55.2 79.1 65.0

LS
WGAN + LGM 61.9 63.8 70.4 55.8 70.7 62.4 53.8 40.9 46.5 52.1 78.8 62.7

LS
cWGAN + LGM 64.6 64.1 73.9 57.9 71.2 63.9 55.2 40.8 46.9 63.2 78.8 70.1

LS+U
WGAN + LGM (transductive) 64.6 64.3 82.5 60.2 70.6 65.0 57.1 40.7 47.5 70.8 79.2 74.8

Table 2: Quantitative evaluation of GMN over the strong baselines.

examples for the seen classes. These numbers are considered

as hyper-parameters and therefore tuned on the validation

splits. We set sample spaces in a way that they are compara-

ble with the ANOSPC value of each dataset (Table 1). Then

we stack each Dfake together with the training set Dtrain to

form D̃ on which we train f defined in Eq. 6. We also tune

the hyper-parameters of this classifier, i.e. learning rate and

number of training iterations, for each experimental setup

separately on the validation splits as well. Once the final

classifier is trained, we assign a label to a test sample by

considering only the scores of unseen classes Yu for ZSL;

we consider the scores of all classes Yall when determin-

ing the label for GZSL. As evaluation scores we compute

normalized mean top-1 accuracies T-1. We compute two

metrics for GZSL experiments: GZSL-u (u) and GZSL-s

(s) are normalized GZSL T-1 accuracies of unseen and seen

classes, respectively . Finally we compute their harmonic

means by h = 2×u×s

u+s
[32].

Implementation details. In our experiments, we realize

G and D as simple MLPs that have 1 or 2 hidden layers

with 1024, 2048 or 4096 units. Both networks have ReLU

activation functions. We consider the dimension of noise

spaces dz as another hyper-parameter. While minimizing

LGM, we also update the classification model, but unlike the

G and D models, we regularly re-initialize the classification

model every N iterations. We tune all the hyper-parameters

on the validation sets. While developing the model, we

observed the followings: (i) Constraining noise means by

applying tanh activation, i.e. µ(a) = tanh(Wmua + bmu),
slightly improves generalization performance. (ii) Using an

identity covariance matrix, ie. Σ(a) = I, performs equally

well. (iii) Minimizing lp loss between the gradient vectors,

i.e. ‖gr(θ)− gs(θ)‖p in addition to maximizing their cosine

similarity leads to slightly better results. Therefore, we tune

these design choices on the validation sets as well.

GMN versus strong baselines. In Table 2, we present a

detailed evaluation of the GMN variants and compare them

against strong baselines. In order to carefully observe the

variants on each task, we train a separate model for each

task following the evaluation scheme described above. The

first part of the table shows baselines with no GM-loss: (i)

training f with available seen class samples only, (ii) train-

ing G model w.r.t. unconditional discriminator based on the

seen class examples (LS
WGAN) plus the loss of a pre-trained

classifier (LCLS), (iii) training G model with conditional dis-

criminator over the seen classes (LS
cWGAN). The second part

of the table shows GMN variants, where the GM-loss is used

in combination with (i) an unconditional seen-class only dis-

criminator (LS
WGAN), (ii) a conditional discriminator over the

seen classes (LS
cWGAN), (iii) an unconditional discriminator

over seen and unseen classes (LS+U
WGAN). In all cases (except

the very first one), the resulting G model is used for generat-

ing nzsl, ngzsl-u and ngzsl-s-many synthetic training examples

for each unseen class. Only the last experiment runs in a

transductive setting. Note that we do not report any results

with LS
WGAN-only or LS+U

WGAN-only training as they lead to

unusable G due to lack any class supervision (see Fig.5).

From the results, we observe that all generative model

based methods significantly improve over the simple real

data only baseline. This result shows that generating unseen

class examples via G helps training f models that are par-

ticularly better at Generalized ZSL. We also observe that

using a conditional discriminator leads to better results than

training with the loss function of a pre-trained classifier, as

we hypothesize in Section 3.

From the results in the second part of Table 2, we observe

that the proposed gradient matching loss consistently im-

proves all ZSL and u scores by marginally sacrificing the s

scores. In particular we observe that GM loss is significantly

a better way for training G than minimizing the classification

loss of a pre-trained classifier. In addition, we observe that

LGM improves over the conditional discriminator based G
training. Finally, we observe that unsupervised discriminator

(over all classes) combined with the GM loss (over seen

class examples only) gives a strong approach for training the

conditional generative model in a transductive way.

GMN versus state of the art. Finally, we present a com-

parison of GMN with the recently proposed state-of-the-art

non-transductive ZSL approaches on the benchmarks from
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Zero-Shot Learning Generalized Zero-Shot Learning

CUB SUN AWA CUB SUN AWA

Method T-1 T-1 T-1 u s h u s h u s h

Zhang et al. [46] ’18 52.6 61.7 67.4 31.5 40.2 35.3 41.2 26.7 32.4 38.7 74.6 51.0

Bucher et al. [25] ’17 57.8 60.4 66.3 28.8 55.7 38.0 40.5 37.2 38.8 2.3 90.2 4.5

Xian et al. [26] - DEVISE ’18 60.3 60.9 66.9 52.2 42.4 46.7 38.4 25.4 30.6 35.0 62.8 45.0

Xian et al. [26] - ALE ’18 61.5 62.1 68.2 40.2 59.3 47.9 41.3 31.1 35.5 47.6 57.2 52.0

Verma et al. [28] ’18 59.6 63.4 69.5 41.5 53.3 46.7 40.9 30.5 34.9 56.3 67.8 61.5

Felix et al. [27] - cycle-WGAN ’18 57.8 59.7 65.6 46.0 60.3 52.2 48.3 33.1 39.2 56.4 63.5 59.7

Felix et al. [27] - cycle-CLSWGAN ’18 58.4 60.0 66.3 45.7 61.0 52.3 49.4 33.6 40.0 56.9 64.0 60.2

LS
cWGAN + LCLS [26] 62.2 62.7 69.4 51.1 54.9 52.9 50.6 30.3 37.3 57.5 66.8 61.8

LS
cWGAN + LGM (Ours) 64.3 63.6 71.9 56.1 54.3 55.2 53.2 33.0 40.7 61.1 71.3 65.8

LS
cWGAN + LGM ‡ (Ours) 64.6 64.1 73.9 57.9 71.2 63.9 55.2 40.8 46.9 63.2 78.8 70.1

Table 3: Comparison of GMN against the baselines and the state-of-the-art on the benchmarks from [32]. The results are taken

from the papers, except for [25] (using the the authors’ implementation) and LS
cWGAN + LCLS (our implementation).

[32], in Table 3. GMN, ALE and DEVISE models from

[32], cycle-WGAN model from [27] and our implemen-

tation of [32] by using a bilinear compatibility function

(LS
cWGAN + LCLS) employ the same generative model i.e.

WGAN conditioned on semantic embeddings (except that

GMN and LS
cWGAN +LCLS explicitly learn a noise space con-

ditioned on the embeddings) but optimize different auxiliary

loss functions aside from the WGAN objective. Therefore,

by comparing them we can see that gradient matching out-

performs both minimizing the loss of a pre-trained classifier

and minimizing the cycle-consistency loss in the context of

zero-shot learning either when a single model is trained to

perform all tasks (LS
cWGAN + LGM) or a separate model is

trained to perform individual tasks (LS
cWGAN +LGM ‡). Over-

all, we observe that GMN leads to significant improvements

over the state of the art in terms of h-scores on all datasets.

Effect of the feature generation. Having verified the ef-

fectiveness of our framework, we now evaluate how the

size of the synthetic train data affect the final ZSL and

GZSL performances. For this purpose, we train two gen-

erative models on each dataset by optimizing LS
WGAN and

LS+U
WGAN, respectively. Then we create six different synthetic

datasets D̃i
u with each model by sampling for each class

{10, 25, 50, 150, 200, 250} features on CUB and SUN and

{500, 600, 700, 800, 900, 1000} features on AWA. In Fig. 3,

we see that, as the number of features synthesized increases,

u scores on all datasets increase rapidly, ZSL scores develop

progressively on the SUN and remain almost fixed on the

others. In addition, we observe a trade-off between s scores

and the amount of synthesized features, i.e. s scores decrease

dramatically as f is trained with more synthesized features.

This is an expected result since (i) f is no longer biased to-

wards seen classes, (ii) the pooled sets D̃i become dominated

by the synthesized sets D̃i
u. In fact s scores on the AWA sup-

port this claim i.e. slope of the decrease in s scores is much

smaller, because in AWA there are 609 samples per class on

average. We observe that synthesizing more features does

not necessarily increase the ZSL scores. This might indicate

that class specific noise spaces become less discriminative

due to the WGAN updates or the generator might be learning

to model feature space irrespective of the noise distributions.

And finally, the gap between LS
WGAN and LS+U

WGAN on AWA

suggests that GMN struggles in finding generalizable latent

spaces when there are small set of classes and attributes.

Ablation study. We perform additional analyses to gain

further insight about GMN. We begin by elaborating more

on the supervision signal conveyed by LGM, when discrim-

inator is unconditional, and the effect of utilizing samples

of unseen classes on u scores. To do that we train four dif-

ferent generators over SUN dataset by optimizing LS
WGAN,

LGM, LS
WGAN + LGM and LS+U

WGAN + LGM, respectively. Be-

sides, while training the generators we compute u scores

of samples in the validation set. Not surprisingly, when a

generator optimizes LS
WGAN alone, it cannot distinguish class

modes separately. Therefore features synthesized by this

network results in a poor classifier. However, a generator

optimizing only LGM starts learning a mapping from seman-

tic embeddings to prominent visual features. Furthermore,

LS
WGAN +LGM slightly improves the mapping by most likely

modeling data manifold more effectively. Finally, as an

unconditional discriminator captures statistics of samples

belonging to unseen classes by means of optimizing LS+U
WGAN,

classifier performance peaks. We share plots corresponding

to each experiment in Fig. 5.

Next, we show that conditioning a discriminator on se-

mantic embeddings and gradient matching are complemen-

tary sources of supervision for a generator network. In our

experiments, we see that optimizing LS
cWGAN + LGM, com-

pared to optimizing only LS
cWGAN, improves almost all perfor-
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Figure 3: Analysis of the impact of the number of synthesized features on (from left to right) T-1, u and s scores on CUB,

SUN and AWA. Top row is obtained by optimizing LS
WGAN, while bottom row is LS+U

WGAN.

Figure 4: Examples from unseen CUB classes that are mis-

classified with a cWGAN-based classifier but correctly rec-

ognized when we include LGM into generator training. From

top to bottom the classes are groove billed ani, wilson war-

bler, mallard, le conte sparrow and tropical kingbird.

mance metrics significantly. We perform a rather qualitative

evaluation on CUB dataset to examine the improvements

that result from introducing LGM term in a plain conditional

WGAN setup. For this purpose, we inspect classes that are

improved by introducing gradient matching. Significant im-

provements in certain classes suggest that GMN can help

0 25 50 75 100

Epoch

20

40

u
ac
cu
ra
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(i
n
%
) SUN
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GMNin
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Figure 5: u scores of validation samples from the SUN

dataset over the training iterations of LS
WGAN (GMNin§),

LGM (GMNin‡), LS
WGAN+LGM (GMNin) and LS+U

WGAN+LGM

(GMNtr). (Better viewed in color.)

learning better relations between visual features and seman-

tic embeddings. Some of examples are shown in Fig. 4.

5. Conclusion

In this work, we propose a novel loss function based

generative model for capturing modalities of CNN features

given semantic class embeddings. We show that our gen-

erative model is able to synthesize discriminative features

which can be used to train a state-of-the-art classifier for

generalized zero-shot classification.
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