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Abstract

In this paper we analyze several new methods for solving optimization problems with
the objective function formed as a sum of two terms: one is smooth and given by a
black-box oracle, and another is a simple general convex function with known structure.
Despite the absence of good properties of the sum, such problems, both in convex and
nonconvex cases, can be solved with efficiency typical for the first part of the objective.
For convex problems of the above structure, we consider primal and dual variants of the
gradient method (with convergence rate O

(
1
k

)
), and an accelerated multistep version with

convergence rate O
(

1
k2

)
, where k is the iteration counter. For nonconvex problems with

this structure, we prove convergence to a point from which there is no descent direction.
In contrast, we show that for general nonsmooth, nonconvex problems, even resolving the
question of whether a descent direction exists from a point is NP-hard.

For all methods, we suggest some efficient “line search” procedures and show that
the additional computational work necessary for estimating the unknown problem class
parameters can only multiply the complexity of each iteration by a small constant factor.
We present also the results of preliminary computational experiments, which confirm the
superiority of the accelerated scheme.
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1 Introduction

Motivation. In recent years, several advances in Convex Optimization have been based
on development of different models for optimization problems. Starting from the theory
of self-concordant functions [14], it was becoming more and more clear that the proper
use of the problem’s structure can lead to very efficient optimization methods, which
significantly overcome the limitations of black-box Complexity Theory (see Section 4.1
in [9] for discussion). For more recent examples, we can mention the development of
smoothing technique [10], or the special methods for minimizing convex objective function
up to certain relative accuracy [12]. In both cases, the proposed optimization schemes
strongly exploit the particular structure of corresponding optimization problem.

In this paper, we develop new optimization methods for approximating global and
local minima of composite convex objective functions φ(x). Namely, we assume that

φ(x) = f(x) + Ψ(x), (1.1)

where f(x) is a differentiable function defined by a black-box oracle, and Ψ(x) is a general
closed convex function. However, we assume that function Ψ(x) is simple. This means
that we are able to find a closed-form solution for minimizing the sum of Ψ with some
simple auxiliary functions. Let us give several examples.

1. Constrained minimization. Let Q be a closed convex set. Define Ψ as an
indicator function of the set Q:

Ψ(x) =

{
0, if x ∈ Q,

+∞, otherwise.

Then, the unconstrained minimization of composite function (1.1) is equivalent to mini-
mizing the function f over the set Q. We will see that our assumption on simplicity of
the function Ψ reduces to the ability of finding a closed form Euclidean projection of an
arbitrary point onto the set Q.

2. Barrier representation of feasible set. Assume that the objective function of
the convex constrained minimization problem

find f∗ = min
x∈Q

f(x)

is given by a black-box oracle, but the feasible set Q is described by a ν-self-concordant
barrier F (x) [14]. Define Ψ(x) = ε

ν F (x), φ(x) = f(x) + Ψ(x), and x∗ = arg min
x∈Q

f(x).

Then, for arbitrary x̂ ∈ intQ, by general properties of self-concordant barriers we get

f(x̂) ≤ f(x∗) + 〈∇φ(x̂), x̂− x∗〉+ ε
ν 〈∇F (x̂), x∗ − x̂〉

≤ f∗ + ‖∇φ(x̂)‖∗ · ‖x̂− x∗‖+ ε.

Thus, a point x̂, with small norm of the gradient of function φ, approximates well the
solution of the constrained minimization problem. Note that the objective function φ does
not belong to any standard class of convex problems formed by functions with bounded
derivatives of certain degree.
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3. Sparse least squares. In many applications, it is necessary to minimize the
following objective:

φ(x) = 1
2‖Ax− b‖2

2 + ‖x‖1
def= f(x) + Ψ(x), (1.2)

where A is a matrix of corresponding dimension and ‖ · ‖k denotes the standard lk-norm.
The presence of additive l1-term very often increases the sparsity of the optimal solution
(see [1, 18]). This feature was observed a long time ago (see, for example, [2, 6, 16, 17]).
Recently, this technique became popular in signal processing and statistics [7, 19].1)

From the formal point of view, the objective φ(x) in (1.2) is a nonsmooth convex func-
tion. Hence, the standard black-box gradient schemes need O( 1

ε2
) iterations for generating

its ε-solution. The structural methods based on the smoothing technique [10] need O(1
ε )

iterations. However, we will see that the same problem can be solved in O( 1
ε1/2 ) iterations

of a special gradient-type scheme.

Contents. In Section 2 we study the problem of finding a local minimum of a nonsmooth
nonconvex function. First, we show that for general nonsmooth, nonconvex functions,
even resolving the question of whether there exists a descent direction from a point is NP-
hard. However, for the special form of the objective function (1.1), we can introduce the
composite gradient mapping, which makes the above mentioned problem solvable. The
objective function of the auxiliary problem is formed as a sum of the objective of the
usual gradient mapping [8] and the general nonsmooth convex term Ψ. For the particular
case (1.2), this construction was proposed in [20].2) We present different properties of this
object, which are important for complexity analysis of optimization methods.

In Section 3 we study the behavior of the simplest gradient scheme based on the
composite gradient mapping. We prove that in convex and nonconvex cases we have
exactly the same complexity results as in the usual smooth situation (Ψ ≡ 0). For example,
for nonconvex f , the maximal negative slope of φ along the minimization sequence with
monotonically decreasing function values increases as O

(
− 1

k1/2

)
, where k is the iteration

counter. Thus, the limiting points have no decent directions (see Theorem 3). If f is
convex and has Lipschitz continuous gradient, then the Gradient Method converges as
O( 1

k ). It is important that our version of the Gradient Method has an adjustable stepsize
strategy, which needs on average one additional computation of the function value per
iteration.

In Section 4, we introduce a machinery of estimate sequences and apply it first for
justifying the rate of convergence of the dual variant of the gradient method. Afterwards,
we present an accelerated version, which converges as O( 1

k2 ). As compared with the pre-
vious variants of accelerated schemes (e.g. [9], [10]), our new scheme can efficiently adjust
the initial estimate of the unknown Lipschitz constant. In Section 5 we give examples of
applications of the accelerated scheme. We show how to minimize functions with known
strong convexity parameter (Section 5.1), how to find a point with a small residual in
the system of the first-order optimality conditions (Section 5.2), and how to approximate

1)An interested reader can find a good survey of the literature, existing minimization techniques, and new
methods in [3] and [5].

2)However, this idea has much longer history. To the best of our knowledge, for the general framework this
technique was originally developed in [4].
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unknown parameters of strong convexity (Section 5.3). In Section 6 we present the results
of preliminary testing of the proposed optimization methods. An earlier version of the
results was published in the research report [11].

Notation. In what follows, E denotes a finite-dimensional real vector space, and E∗ the
dual space, which is formed by all linear functions on E. The value of function s ∈ E∗ at
x ∈ E is denoted by 〈s, x〉. By fixing a positive definite self-adjoint operator B : E → E∗,
we can define the following Euclidean norms:3)

‖h‖ = 〈Bh, h〉1/2, h ∈ E,

‖s‖∗ = 〈s,B−1s〉1/2, s ∈ E∗.
(1.3)

In the particular case of coordinate vector space E = Rn, we have E = E∗. Then, usually
B is taken as a unit matrix, and 〈s, x〉 denotes the standard coordinate-wise inner product.

Further, for function f(x), x ∈ E, we denote by ∇f(x) its gradient at x:

f(x + h) = f(x) + 〈∇f(x), h〉+ o(‖h‖), h ∈ E.

Clearly ∇f(x) ∈ E∗. For a convex function Ψ we denote by ∂Ψ(x) its subdifferential at
x. Finally, the directional derivative of function φ is defined in the usual way:

Dφ(y)[u] = lim
α↓0

1
α [φ(y + αu)− φ(y)].

Finally, we use notation a
(#.#)

≥ b for indicating that the inequality a ≥ b is an immediate
consequence of the displayed relation (#.#).

2 Composite gradient mapping

The problem of finding a descent direction for a nonsmooth nonconvex function (or proving
that this is not possible) is one of the most difficult problems in Numerical Analysis. In

order to see this, let us fix an arbitrary integer vector c ∈ Zn
+ and denote γ =

n∑
i=1

c(i) ≥ 1.

Consider the function

φ(x) =
(
1− 1

γ

)
max
1≤i≤n

|x(i)| − min
1≤i≤n

|x(i)|+ |〈c, x〉|. (2.1)

Clearly, φ is a piece-wise linear function with φ(0) = 0. Nevertheless, we have the following
discouraging result.

Lemma 1 It is NP-hard to decide if there exists x ∈ Rn with φ(x) < 0.

Proof:
Assume that some vector σ ∈ Rn with coefficients ±1 satisfies equation 〈c, σ〉 = 0. Then
φ(σ) = − 1

γ < 0.

3)In this paper, for the sake of simplicity, we restrict ourselves to Euclidean norms only. The extension onto
the general case can be done in a standard way using Bregman distances (e.g. [10]).
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Let us assume now that φ(x) < 0 for some x ∈ Rn. We can always choose x with
max
1≤i≤n

|x(i)| = 1. Denote δ = |〈c, x〉|. In view of our assumption, we have

|x(i)| (2.1)
> 1− 1

γ + δ, i = 1, . . . , n.

Denoting σ(i) = signx(i), i = 1, . . . , n, we can rewrite this inequality as σ(i)x(i) > 1− 1
γ +δ.

Therefore, |σ(i) − x(i)| = 1− σ(i)x(i) < 1
γ − δ, and we conclude that

|〈c, σ〉| ≤ |〈c, x〉|+ |〈c, σ − x〉| ≤ δ + γ max
1≤i≤n

|σ(i) − x(i)| < (1− γ)δ + 1 ≤ 1.

Since c has integer coefficients, this is possible if and only if 〈c, σ〉 = 0. It is well known
that verification of solvability of the latter equality in boolean variables is NP-hard (this
is the standard Boolean Knapsack Problem). 2

Thus, we have shown that finding a descent direction of function φ is NP-hard. Con-
sidering now the function max{−1, φ(x)}, we can see that finding a (local) minimum of a
unimodular nonsmooth nonconvex function is also NP-hard.

Thus, in a sharp contrast to Smooth Minimization, for nonsmooth functions even
the local improvement of the objective is difficult. Therefore, in this paper we restrict
ourselves to objective functions of very special structure. Namely, we consider the problem
of minimizing

φ(x) def= f(x) + Ψ(x) (2.2)

over a convex set Q, where function f is differentiable, and function Ψ is closed and convex
on Q. For characterizing a solution to our problem, define the cone of feasible directions
and the corresponding dual cone, which is called normal:

F(y) = {u = τ · (x− y), x ∈ Q, τ ≥ 0} ⊆ E,

N (y) = {s : 〈s, x− y〉 ≥ 0, x ∈ Q} ⊆ E∗, y ∈ Q.

Then, the first-order necessary optimality conditions at the point of local minimum x∗

can be written as follows:

φ′∗
def= ∇f(x∗) + ξ∗ ∈ N (x∗), (2.3)

where ξ∗ ∈ ∂Ψ(x∗). In other words,

〈φ′∗, u〉 ≥ 0 ∀u ∈ F(x∗). (2.4)

Since Ψ is convex, the latter condition is equivalent to the following:

Dφ(x∗)[u] ≥ 0 ∀u ∈ F(x∗). (2.5)

Note that in the case of convex f , any of the conditions (2.3) - (2.5) is sufficient for point
x∗ to be a point of global minimum of function φ over Q.

The last variant of the first-order optimality conditions is convenient for defining an
approximate solution to our problem.
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Definition 1 The point x̄ ∈ Q satisfies the first-order optimality conditions of local min-
imum of function φ over the set Q with accuracy ε ≥ 0 if

Dφ(x̄)[u] ≥ −ε ∀u ∈ F(x̄), ‖u‖ = 1. (2.6)

Note that in the case F(x̄) = E with 0 /∈ ∇f(x̄) + ∂Ψ(x̄), this condition reduces to
the following inequality:

−ε ≤ min
‖u‖=1

Dφ(x̄)[u] = min
‖u‖=1

max
ξ∈∂Ψ(x̄)

〈∇f(x̄) + ξ, u〉

= min
‖u‖≤1

max
ξ∈∂Ψ(x̄)

〈∇f(x̄) + ξ, u〉 = max
ξ∈∂Ψ(x̄)

min
‖u‖≤1

〈∇f(x̄) + ξ, u〉

= − min
ξ∈∂Ψ(x̄)

‖∇f(x̄) + ξ‖∗.

For finding a point x̄ satisfying condition (2.6), we will use the composite gradient
mapping. Namely, at any y ∈ Q define

mL(y;x) = f(y) + 〈∇f(y), x− y〉+ L
2 ‖x− y‖2 + Ψ(x),

TL(y) = arg min
x∈Q

mL(y; x),
(2.7)

where L is a positive constant. Recall that in the usual gradient mapping [8] we have
Ψ(·) ≡ 0 (our modification is inspired by [20]). Then, we can define a constrained analogue
of the gradient direction for a smooth function, the vector

gL(y) = L ·B(y − TL(y)) ∈ E∗, (2.8)

where the operator B Â 0 defines the norm (1.3). (In case of ambiguity of the objective
function, we use notation gL(y)[φ].) It is easy to see that for Q ≡ E and Ψ ≡ 0 we get
gL(y) = ∇φ(y) ≡ ∇f(x) for any L > 0. Our assumption on simplicity of function Ψ
means exactly the feasibility of operation (2.7).

Let us mention the main properties of the composite gradient mapping. Almost all of
them follow from the first-order optimality condition for problem (2.7):

〈∇f(y) + LB(TL(y)− y) + ξL(y), x− TL(y)〉 ≥ 0, ∀x ∈ Q, (2.9)

where ξL(y) ∈ ∂Ψ(TL(y)). In what follows, we denote

φ′(TL(y)) = ∇f(TL(y)) + ξL(y) ∈ ∂φ(TL(y)). (2.10)

We are going to show that the above subgradient inherits all important properties of the
gradient of a smooth convex function.

From now on, we assume that the first part of the objective function (2.2) has Lipschitz-
continuous gradient:

‖∇f(x)−∇f(y)‖∗ ≤ Lf‖x− y‖, x, y ∈ Q, (2.11)

5



From (2.11) and convexity of Q, one can easily derive the following useful inequality (see,
for example, [15]):

|f(x)− f(y)− 〈∇f(y), x− y〉| ≤ Lf

2 ‖x− y‖2, x, y ∈ Q. (2.12)

First of all, let us estimate a local variation of function φ. Denote

SL(y) = ‖∇f(TL(y))−∇f(y)‖∗
‖TL(y)−y‖ ≤ Lf .

Theorem 1 At any y ∈ Q,

φ(y)− φ(TL(y)) ≥ 2L−Lf

2L2 ‖gL(y)‖2∗, (2.13)

〈φ′(TL(y)), y − TL(y)〉 ≥ L−Lf

L2 ‖gL(y)‖2∗. (2.14)

Moreover, for any x ∈ Q, we have

〈φ′(TL(y)), x− TL(y)〉 ≥ −
(
1 + 1

LSL(y)
)
· ‖gL(y)‖∗ · ‖TL(y)− x‖

≥ −
(
1 + Lf

L

)
· ‖gL(y)‖∗ · ‖TL(y)− x‖.

(2.15)

Proof:
For the sake of notation, denote T = TL(y) and ξ = ξL(y). Then

φ(T )
(2.11)

≤ f(y) + 〈∇f(y), T − y〉+ Lf

2 ‖T − y‖2 + Ψ(T )

(2.9), x=y

≤ f(y) + 〈LB(T − y) + ξ, y − T 〉+ Lf

2 ‖T − y‖2 + Ψ(T )

= f(y) + Lf−2L
2 ‖T − y‖2 + Ψ(T ) + 〈ξ, y − T 〉

≤ φ(y)− 2L−Lf

2 ‖T − y‖2.

Taking into account the definition (2.8), we get (2.13). Further,

〈∇f(T ) + ξ, y − T 〉 = 〈∇f(y) + ξ, y − T 〉 − 〈∇f(T )−∇f(y), T − y〉

(2.9), x=y

≥ 〈LB(y − T ), y − T 〉 − 〈∇f(T )−∇f(y), T − y〉

(2.11)

≥ (L− Lf )‖T − y‖2 (2.8)
= L−Lf

L2 ‖gL(y)‖2∗.

Thus, we get (2.14). Finally,

〈∇f(T ) + ξ, T − x〉
(2.9)

≤ 〈∇f(T ), T − x〉+ 〈∇f(y) + LB(T − y), x− T 〉

= 〈∇f(T )−∇f(y), T − x〉 − 〈gL(y), x− T 〉

(2.8)

≤
(
1 + 1

LSL(y)
)
· ‖gL(y)‖∗ · ‖T − x‖,
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and (2.15) follows. 2

Corollary 1 For any y ∈ Q, and any u ∈ F(TL(y)), ‖u‖ = 1, we have

Dφ(TL(y))[u] ≥ −
(
1 + Lf

L

)
· ‖gL(y)‖∗. (2.16)

In this respect, it is interesting to investigate the dependence of ‖gL(y)‖∗ in L.

Lemma 2 The norm of the gradient direction ‖gL(y)‖∗ is increasing in L, and the norm
of the step ‖TL(y)− y‖ is decreasing in L.

Proof:
Indeed, consider the function

ω(τ) = min
x∈Q

[
f(y) + 〈∇f(y), x− y〉+ 1

2τ ‖x− y‖2 + Ψ(x)
]
.

The objective function of this minimization problem is jointly convex in x and τ . There-
fore, ω(τ) is convex in τ . Since the minimum of this problem is attained at a single point,
ω(τ) is differentiable and

ω′(τ) = −1
2‖ 1

τ [T1/τ (y)− y]‖2 = −1
2‖g1/τ (y)‖2∗.

Since ω(·) is convex, ω′(τ) is an increasing function of τ . Hence, ‖g1/τ (y)‖∗ is a decreasing
function of τ .

The second statement follows from the concavity of the function

ω̂(L) = min
x∈Q

[
f(y) + 〈∇f(y), x− y〉+ L

2 ‖x− y‖2 + Ψ(x)
]
.

2

Now let us look at the output of the composite gradient mapping from a global per-
spective.

Theorem 2 For any y ∈ Q we have

mL(y;TL(y)) ≤ φ(y)− 1
2L‖gL(y)‖2∗, (2.17)

mL(y;TL(y)) ≤ min
x∈Q

[
φ(x) + L+Lf

2 ‖x− y‖2
]
. (2.18)

If function f is convex, then

mL(y; TL(y)) ≤ min
x∈Q

[
φ(x) + L

2 ‖x− y‖2
]
. (2.19)
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Proof:
Note that function mL(y; x) is strongly convex in x with convexity parameter L. Hence,

φ(y)−mL(y;TL(y)) = mL(y; y)−mL(y; TL(y)) ≥ L
2 ‖y − TL(y)‖2 = 1

2L‖gL(y)‖2∗.

Further, if f is convex, then

mL(y; TL(y)) = min
x∈Q

[
f(y) + 〈∇f(y), x− y〉+ L

2 ‖x− y‖2 + Ψ(x)
]

≤ min
x∈Q

[
f(x) + Ψ(x) + L

2 ‖x− y‖2
]

= min
x∈Q

[
φ(x) + L

2 ‖x− y‖2
]
.

For nonconvex f , we can plug into the same reasoning the following consequence of (2.12):

f(y) + 〈∇f(y), x− y〉 ≤ f(x) + Lf

2 ‖x− y‖2.

2

Remark 1 In view of (2.11), for L ≥ Lf we have

φ(TL(y)) ≤ mL(y;TL(y)). (2.20)

Hence, in this case inequality (2.19) guarantees

φ(TL(y)) ≤ min
x∈Q

[
φ(x) + L

2 ‖x− y‖2
]
. (2.21)

Finally, let us prove a useful inequality for strongly convex φ.

Lemma 3 Let function φ be strongly convex with convexity parameter µφ > 0. Then for
any y ∈ Q we have

‖TL(y)− x∗‖ ≤ 1
µφ
·
(
1 + 1

LSL(y)
)
· ‖gL(y)‖∗ ≤ 1

µφ
·
(
1 + Lf

L

)
· ‖gL(y)‖∗, (2.22)

where x∗ is a unique minimizer of φ on Q.

Proof:
Indeed, in view of inequality (2.15), we have:

(
1 + Lf

L

)
· ‖gL(y)‖∗ · ‖TL(y)− x∗‖ ≥

(
1 + 1

LSL(y)
)
· ‖gL(y)‖∗ · ‖TL(y)− x∗‖

≥ 〈φ′(TL(y)), TL(y)− x∗〉 ≥ µφ‖TL(y)− x∗‖2,

and (2.22) follows. 2

Now we are ready to analyze different optimization schemes based on the composite
gradient mapping. In the next section, we describe the simplest one.

8



3 Gradient method

Define first the gradient iteration with the simplest backtracking strategy for the “line
search” parameter (we call its termination condition the full relaxation).

Gradient Iteration G(x,M)

Set: L := M.

Repeat: T := TL(x),

if φ(T ) > mL(x;T ) then L := L · γu,

Until: φ(T ) ≤ mL(x; T ).

Output: G(x,M).T = T, G(x,M).L = L,

G(x,M).S = SL(x).

(3.1)

If there is an ambiguity in the objective function, we use notation Gφ(x,M).
For running the gradient scheme, we need to choose an initial optimistic estimate L0

for the Lipschitz constant Lf :
0 < L0 ≤ Lf , (3.2)

and two adjustment parameters γu > 1 and γd ≥ 1. Let y0 ∈ Q be our starting point. For
k ≥ 0, consider the following iterative process.

Gradient Method GM(y0, L0)

yk+1 = G(yk, Lk).T,

Mk = G(yk, Lk).L,

Lk+1 = max{L0,Mk/γd}.

(3.3)

Thus, yk+1 = TMk
(yk). Since function f satisfies inequality (2.12), in the loop (3.1),

the value L can keep increasing only if L ≤ Lf . Taking into account condition (3.2), we
obtain the following bounds:

L0 ≤ Lk ≤ Mk ≤ γuLf . (3.4)
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Moreover, if γd ≥ γu, then
Lk ≤ Lf , k ≥ 0. (3.5)

Note that in (3.1) there is no explicit bound on the number of repetition of the loop.
However, it is easy to see that the total amount of calls of oracle Nk after k iterations of
(3.3) cannot be too big.

Lemma 4 In the method (3.3), for any k ≥ 0 we have

Nk ≤
[
1 + ln γd

ln γu

]
· (k + 1) + 1

ln γu
·
(
ln γuLf

γdL0

)
+

. (3.6)

Proof:
Denote by ni ≥ 1 the number of calls of the oracle at iteration i ≥ 0. Then

Li+1 ≥ 1
γd
· Li · γni−1

u .

Thus,
ni ≤ 1 + ln γd

ln γu
+ 1

ln γu
· ln Li+1

Li
.

Hence, we can estimate

Nk =
k∑

i=0
ni =

[
1 + ln γd

ln γu

]
· (k + 1) + 1

ln γu
· ln Lk+1

L0
.

In remains to note that Lk+1

(3.4)

≤ max
{
L0,

γu

γd
Lf

}
. 2

A reasonable choice of the adjustment parameters is as follows:

γu = γd = 2
(3.6)⇒ Nk ≤ 2(k + 1) + log2

Lf

L0
, Lk

(3.5)

≤ Lf . (3.7)

Thus, the performance of the Gradient Method (3.3) is well described by the estimates
for the iteration counter, Therefore, in the rest of this section we will focus on estimating
the rate of convergence of this method in different situations.

Let us start from the general nonconvex case. Denote

δk = min
0≤i≤k

1
2Mi

‖gMi(yi)‖2∗,

ik = 1 + arg min
0≤i≤k

1
2Mi

‖gMi(yi)‖2∗.

Theorem 3 Let function φ be bounded below on Q by some constant φ∗. Then

δk ≤ φ(y0)−φ∗
k+1 . (3.8)

Moreover, for any u ∈ F(yik) with ‖u‖ = 1 we have

Dφ(yik)[u] ≥ − (1+γu)Lf

L
1/2
0

·
√

2(φ(y0)−φ∗)
k+1 . (3.9)

10



Proof:
Indeed, in view of the termination criterion in (3.1), we have

φ(yi)− φ(yi+1) ≥ φ(yi)−mMi(yi; TMi(yi))
(2.17)

≥ 1
2Mi

‖gMi(yi)‖2∗.

Summing up these inequalities for i = 0, . . . , k, we obtain (3.8).
Denote jk = ik − 1. Since yik = TMjk

(yjk
), for any u ∈ F(yik) with ‖u‖ = 1 we have

Dφ(yik)[u]
(2.16)

≥ −
(
1 + Lf

Mjk

)
· ‖gMjk

(yjk
)‖∗ = −

(
1 + Lf

Mjk

)
·√2Mjk

δk

(3.8)

≥ −Mjk
+Lf

M
1/2
jk

·
√

2(φ(y0)−φ∗)
k+1

(3.4)

≥ − (1+γu)Lf

L
1/2
0

·
√

2(φ(y0)−φ∗)
k+1 .

2

Let us describe now the behavior of the Gradient Method (3.3) in the convex case.

Theorem 4 Let function f be convex on Q. Assume that it attains a minimum on Q at
point x∗ and that the level sets of φ are bounded:

‖y − x∗‖ ≤ R ∀y ∈ Q : φ(y) ≤ φ(y0). (3.10)

If φ(y0) − φ(x∗) ≥ γuLfR2, then φ(y1) − φ(x∗) ≤ γuLf R2

2 . Otherwise, for any k ≥ 0 we
have

φ(yk)− φ(x∗) ≤ 2γuLf R2

k+2 . (3.11)

Moreover, for any u ∈ F(yik) with ‖u‖ = 1 we have

Dφ(yik)[u] ≥ − 4(1+γu)Lf R

[(k+2)(k+4]1/2 ·
√

γu
Lf

L0
. (3.12)

Proof:
Since φ(yk+1) ≤ φ(yk) for all k ≥ 0, we have the bound ‖yk − x∗‖ ≤ R valid for all
generated points. Consider

yk(α) = αx∗ + (1− α)yk ∈ Q α ∈ [0, 1].

Then,

φ(yk+1) ≤ mMk
(yk;TMk

(yk))
(2.19)

≤ min
y∈Q

[
φ(y) + Mk

2 ‖y − yk‖2
]

(y = yk(α)) ≤ min
0≤α≤1

[
φ(αx∗ + (1− α)yk) + Mkα2

2 ‖yk − x∗‖2
]

(3.4)

≤ min
0≤α≤1

[
φ(yk)− α(φ(yk)− φ(x∗)) + γuLf R2

2 · α2
]
.
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If φ(y0)− φ(x∗) ≥ γuLfR2, then the optimal solution of the latter optimization problem
is α = 1 and we get

φ(y1)− φ(x∗) ≤ γuLf R2

2 .

Otherwise, the optimal solution is

α = φ(yk)−φ(x∗)
γuLf R2 ≤ φ(y0)−φ(x∗)

γuLf R2 ≤ 1,

and we obtain
φ(yk+1) ≤ φ(yk)− [φ(yk)−φ(x∗)]2

2γuLf R2 . (3.13)

From this inequality, denoting λk = 1
φ(yk)−φ(x∗) , we get

λk+1 ≥ λk + λk+1

2λkγuLf R2 ≥ λk + 1
2γuLf R2 .

Hence, for k ≥ 0 we have

λk ≥ 1
φ(y0)−φ(x∗) + k

2γuLf R2 ≥ k+2
2γuLf R2 .

Further, let us fix an integer m, 0 < m < k. Since

φ(yi)− φ(yi+1) ≥ 1
2Mi

‖gMi(yi)‖2∗, i = 0, . . . , k,

we have

(k −m + 1)δk ≤
k∑

i=m

1
2Mi

‖gMi(yi)‖2∗ ≤ φ(ym)− φ(yk+1)

≤ φ(ym)− φ(x∗)
(3.11)

≤ 2γuLf R2

m+2 .

Denote jk = ik − 1. Then, for any u ∈ F(yik) with ‖u‖ = 1, we have

Dφ(yik)[u]
(2.16)

≥ −
(
1 + Lf

Mjk

)
· ‖gMjk

(yjk
)‖∗ = −

(
1 + Lf

Mjk

)
·√2Mjk

δk

(3.11)

≥ −2Mjk
+Lf

M
1/2
jk

·
√

γuLf R2

(m+2)(k+1−m)

(3.4)

≥ −2(1 + γu)LfR ·
√

γuLf

L0(m+2)(k+1−m) .

Choosing m = bk
2c, we get (m + 2)(k + 1−m) ≥ (k+2)(k+4)

4 . 2

Theorem 5 Let function φ be strongly convex on Q with convexity parameter µφ. If
µφ

Lf
≥ 2γu, then for any k ≥ 0 we have

φ(yk)− φ(x∗) ≤
(

γuLf

µφ

)k
(φ(y0)− φ(x∗)) ≤ 1

2k (φ(y0)− φ(x∗)). (3.14)

Otherwise,

φ(yk)− φ(x∗) ≤
(
1− µφ

4γuLf

)k · (φ(y0)− φ(x∗)). (3.15)
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Proof:
Since φ is strongly convex, for any k ≥ 0 we have

φ(yk)− φ(x∗) ≥ µφ

2 ‖yk − x∗‖2. (3.16)

Denote yk(α) = αx∗ + (1− α)yk ∈ Q, α ∈ [0, 1]. Then,

φ(yk+1)
(2.19)

≤ min
0≤α≤1

[
φ(αx∗ + (1− α)yk) + Mkα2

2 ‖yk − x∗‖2
]

(3.4)

≤ min
0≤α≤1

[
φ(yk)− α(φ(yk)− φ(x∗)) + γuLf

2 · α2‖yk − x∗‖2
]

(3.16)

≤ min
0≤α≤1

[
φ(yk)− α

(
1− α · γuLf

µφ

)
(φ(yk)− φ(x∗))

]
.

The minimum of the last expression is achieved for α∗ = min
{
1,

µφ

2γuLf

}
. Hence, if

µφ

2γuLf
≥ 1, then α∗ = 1 and we get

φ(yk+1)− φ(x∗) ≤ γuLf

µφ
(φ(yk)− φ(y∗)) ≤ 1

2(φ(yk)− φ(y∗)).

If µφ

2γuLf
≤ 1, then α∗ = µφ

2γuLf
and

φ(yk+1)− φ(x∗) ≤
(
1− µφ

4γuLf

)
· (φ(yk)− φ(y∗)).

2

Remark 2 1) In Theorem 5, the “condition number” Lf

µφ
can be smaller than one.

2) For strongly convex φ, the bounds on the directional derivatives can be obtained by
combining the inequalities (3.14), (3.15) with the estimate

φ(yk)− φ(x∗)
(2.13):L=Lf≥ 1

2Lf
‖gLf

(yk)‖2∗

and inequality (2.16). Thus, inequality (3.14) results in the bound

Dφ(yk+1)[u] ≥ −2
(

γuLf

µφ

)k/2 ·
√

2Lf (φ(y0)− φ∗), (3.17)

and inequality (3.15) leads to the bound

Dφ(yk+1)[u] ≥ −2
(
1− µφ

4γuLf

)k/2 ·
√

2Lf (φ(y0)− φ∗), (3.18)

which are valid for all u ∈ F(yk+1) with ‖u‖ = 1.
3) The estimate (3.6) may create an impression that a large value of γu can reduce the
total number of calls of the oracle. This is not true since γu enters also into the estimate
of the rate of convergence of the methods (e.g. (3.11)). Therefore, reasonable values of
this parameter lie in the interval [2, 3].
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4 Accelerated scheme

In the previous section, we have seen that, for convex f , the gradient method (3.3) con-
verges as O( 1

k ). However, it is well known that on convex problems the usual gradient
scheme can be accelerated (e.g. Chapter 2 in [9]). Let us show that the same acceleration
can be achieved for composite objective functions.

Consider the problem

min
x∈E

[ φ(x) = f(x) + Ψ(x) ], (4.1)

where function f is convex and satisfies (2.11), and function Ψ is closed and strongly
convex on E with convexity parameter µΨ ≥ 0. We assume this parameter to be known.
The case µΨ = 0 corresponds to convex Ψ. Denote by x∗ the optimal solution to (4.1).

In problem (4.1), we allow dom Ψ 6= E. Therefore, the formulation (4.1) covers
also constrained problem instances. Note that for (4.1), the first-order optimality condi-
tion (2.9) defining the composite gradient mapping can be written in a simpler form:

TL(y) ∈ dom Ψ,

∇f(y) + ξL(y) = LB(y − TL(y)) ≡ gL(y),
(4.2)

where ξL(y) ∈ ∂Ψ(TL(y)).
For justifying the rate of convergence of different schemes as applied to (4.1), we will

use the machinery of estimate functions in its newer variant [13]. Taking into account the
special form of the objective in (4.1), we update recursively the following sequences:

• A minimizing sequence {xk}∞k=0.

• A sequence of increasing scaling coefficients {Ak}∞k=0:

A0 = 0, Ak
def= Ak−1 + ak, k ≥ 1.

• A sequence of estimate functions

ψk(x) = lk(x) + AkΨ(x) + 1
2‖x− x0‖2 k ≥ 0, (4.3)

where x0 ∈ domΨ is our starting point, and lk(x) are linear functions in x ∈ E.

However, as compared with [13], we will add a possibility to update the estimates for
Lipschitz constant Lf , using the initial guess L0 satisfying (3.2), and two adjustment
parameters γu > 1 and γd ≥ 1.

For the above objects, we maintain recursively the following relations:

R1
k : Akφ(xk) ≤ ψ∗k ≡ min

x
ψk(x),

R2
k : ψk(x) ≤ Akφ(x) + 1

2‖x− x0‖2, ∀x ∈ E.





, k ≥ 0. (4.4)

These relations clearly justify the following rate of convergence of the minimizing sequence:

φ(xk)− φ(x∗) ≤ ‖x∗−x0‖2
2Ak

, k ≥ 1. (4.5)
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Denote vk = arg min
x∈E

ψk(x). Since µψk
≥ 1, for any x ∈ E we have

Akφ(xk) + 1
2‖x− vk‖2

R1
k≤ ψ∗k + 1

2‖x− vk‖2 ≤ ψk(x)
R2

k≤ Akφ(x) + 1
2‖x− x0‖2.

Hence, taking x = x∗, we get two useful consequences of (4.4):

‖x∗ − vk‖ ≤ ‖x∗ − x0‖, ‖vk − x0‖ ≤ 2‖x∗ − x0‖, k ≥ 1. (4.6)

Note that the relations (4.4) can be used for justifying the rate of convergence of a dual
variant of the gradient method (3.3). Indeed, for v0 ∈ domΨ define ψ0(x) = 1

2‖x− v0‖2,
and choose L0 satisfying condition (3.2).

Dual Gradient Method DG(v0, L0), k ≥ 0.

yk = G(vk, Lk).T, Mk = G(vk, Lk).L,

Lk+1 = max{L0, Mk/γd}, ak+1 = 1
Mk

,

ψk+1(x) = ψk(x) + 1
Mk

[f(vk) + 〈∇f(vk), x− vk〉+ Ψ(x)].

(4.7)

In this scheme, the operation G is defined by (3.1). Since Ψ is simple, the points vk are
easily computable.

Note that the relations R1
0 and R2

k, k ≥ 0, are trivial. Relations R1
k can be justified

by induction. Define x0 = y0, φk = min
0≤i≤k−1

φ(yi), and xk : φ(xk) = φk for k ≥ 1. Then

ψ∗k+1 = min
x

{
ψk(x) + 1

Mk
[f(vk) + 〈∇f(vk), x− vk〉+ Ψ(x)]

}

R1
k≥ Akφk + min

x

{
1
2‖x− vk‖2 + 1

Mk
[f(vk) + 〈∇f(vk), x− vk〉+ Ψ(x)]

}

(2.7)
= Akφk + ak+1mMk

(vk; yk)

(3.1)

≥ Akφk + ak+1φ(yk) ≥ Ak+1φk+1.

Thus, relations R1
k are valid for all k ≥ 0. Since the values Mk satisfy bounds (3.4), for

method (4.7) we obtain the following rate of convergence:

φ(xk)− φ(x∗) ≤ γuLf

2k ‖x∗ − v0‖2, k ≥ 1. (4.8)

Note that the constant in the right-hand side of this inequality is four times smaller than
the constant in (3.11). However, each iteration in the dual method is two times more
expensive as compared to the primal version (3.3).
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However, the method (4.7) does not implement the best way of using the machinery
of estimate functions. Let us look at the accelerated version of (4.7). As parameters, it
has the starting point x0 ∈ domΨ, the lower estimate L0 > 0 for the Lipschitz constant
Lf , and a lower estimate µ ∈ [0, µΨ] for the convexity parameter of function Ψ.

Accelerated method A(x0, L0, µ)

Initial settings: ψ0(x) = 1
2‖x− x0‖2, A0 = 0.

Iteration k ≥ 0

Set: L := Lk.

Repeat: Find a from quadratic equation a2

Ak+a = 21+µAk
L . (∗)

Set y = Akxk+avk
Ak+a , and compute TL(y).

if 〈φ′(TL(y)), y − TL(y)〉 < 1
L‖φ′(TL(y))‖2∗, then L := L · γu.

Until: 〈φ′(TL(y)), y − TL(y)〉 ≥ 1
L‖φ′(TL(y))‖2∗. (∗∗)

Define: yk := y, Mk := L, ak+1 := a,

Lk+1 := Mk/γd, xk+1 := TMk
(yk),

ψk+1(x) := ψk(x) + ak+1[f(xk+1) + 〈∇f(xk+1), x− xk+1〉+ Ψ(x)].

(4.9)

As compared with Gradient Iteration (3.1), we use a damped relaxation condition (∗∗)
as a stopping criterion of the internal cycle of (4.9).

Lemma 5 Condition (**) in (4.9) is satisfied for any L ≥ Lf .

Proof:
Denote T = TL(y). Multiplying the representation

φ′(T ) = ∇f(T ) + ξL(y)
(4.2)
= LB(y − T ) +∇f(T )−∇f(y) (4.10)
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by the vector y − T , we obtain

〈φ′(T ), y − T 〉 = L‖y − T‖2 − 〈∇f(y)−∇f(T ), y − T 〉

(4.10)
= 1

L

[‖φ′(T )‖2∗ + 2L〈∇f(y)−∇f(T ), y − T 〉 − ‖∇f(y)−∇f(T )‖2∗
]

−〈∇f(y)−∇f(T ), y − T 〉

= 1
L‖φ′(T )‖2∗ + 〈∇f(y)−∇f(T ), y − T 〉 − 1

L‖∇f(y)−∇f(T )‖2∗.

Hence, for L ≥ Lf condition (**) is satisfied. 2

Thus, we can always guarantee

Lk ≤ Mk ≤ γuLf . (4.11)

If γd ≥ γu, then the upper bound (3.5) remains valid.
Let us establish a relation between the total number of calls of oracle Nk after k

iterations, and the value of the iteration counter.

Lemma 6 In the method (4.9), for any k ≥ 0 we have

Nk ≤ 2
[
1 + ln γd

ln γu

]
· (k + 1) + 2

ln γu
· ln γuLf

γdL0
. (4.12)

Proof:
Denote by ni ≥ 1 the number of calls of the oracle at iteration i ≥ 0. At each cycle of the
internal loop we call the oracle twice for computing ∇f(y) and ∇f(TL(y)). Therefore,

Li+1 = 1
γd
· Li · γ0.5ni−1

u .

Thus,
ni = 2

[
1 + ln γd

ln γu
+ 1

ln γu
· ln Li+1

Li

]
.

Hence, we can compute

Nk =
k∑

i=0
ni = 2

[
1 + ln γd

ln γu

]
· (k + 1) + 2

ln γu
· ln Lk+1

L0
.

In remains to note that Lk+1

(4.11)

≤ γu

γd
Lf . 2

Thus, each iteration of (4.9) needs approximately two times more calls of the oracle
than one iteration of the Gradient Method:

γu = γd = 2 ⇒ Nk ≤ 4(k + 1) + 2 log2
Lf

L0
, Lk ≤ Lf . (4.13)

However, we will see that the rate of convergence of (4.9) is much higher.
Let us start from two auxiliary statements.
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Lemma 7 Assume µΨ ≥ µ. Then the sequences {xk}, {Ak} and {ψk}, generated by the
method A(x0, L0, µ), satisfy relations (4.4) for all k ≥ 0, .

Proof:
Indeed, in view of initial settings of (4.9), A0 = 0 and ψ∗0 = 0. Hence, for k = 0, both
relations (4.4) are trivial.

Assume now that relations R1
k, R2

k are valid for some k ≥ 0. In view of R2
k, for any

x ∈ E we have

ψk+1(x) ≤ Akφ(x) + 1
2‖x− x0‖2 + ak+1[f(xk+1) + 〈∇f(xk+1), x− xk+1〉+ Ψ(x)]

≤ (Ak + ak+1)φ(x) + 1
2‖x− x0‖2,

and this is R2
k+1. Let us show that the relation R1

k+1 is also valid.
Indeed, in view of (4.3), function ψk(x) is strongly convex with convexity parameter

1 + µAk. Hence, in view of R1
k, for any x ∈ E, we have

ψk(x) ≥ ψ∗k + 1+µAk
2 ‖x− vk‖2 ≥ Akφ(xk) + 1+µAk

2 ‖x− vk‖2. (4.14)

Therefore

ψ∗k+1 = min
x∈E

{ψk(x) + ak+1[f(xk+1) + 〈∇f(xk+1), x− xk+1〉+ Ψ(x)]}

(4.14)

≥ min
x∈E

{
Akφ(xk) + 1+µAk

2 ‖x− vk‖2 + ak+1[φ(xk+1) + 〈φ′(xk+1), x− xk+1〉]
}

≥ min
x∈E

{(Ak + ak+1)φ(xk+1) + Ak〈φ′(xk+1), xk − xk+1〉

+ak+1〈φ′(xk+1), x− xk+1〉+ 1+µAk
2 ‖x− vk‖2}

(4.9)
= min

x∈E
{Ak+1φ(xk+1) + 〈φ′(xk+1), Ak+1yk − ak+1vk −Akxk+1〉

+ak+1〈φ′(xk+1), x− xk+1〉+ 1+µAk
2 ‖x− vk‖2}

= min
x∈E

{Ak+1φ(xk+1) + Ak+1〈φ′(xk+1), yk − xk+1〉

+ak+1〈φ′(xk+1), x− vk〉+ 1+µAk
2 ‖x− vk‖2}.

The minimum of the later problem is attained at x = vk − ak+1

1+µAk
B−1φ′(xk+1). Thus, we

have proved inequality

ψ∗k+1 ≥ Ak+1φ(xk+1) + Ak+1〈φ′(xk+1), yk − xk+1〉 − a2
k+1

2(1+µAk)‖φ′(xk+1)‖2∗.

On the other hand, by the termination criterion in (4.9), we have

〈φ′(xk+1), yk − xk+1〉 ≥ 1
Mk
‖φ′(xk+1)‖2∗.
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It remains to note that in (4.9) we choose ak+1 from the quadratic equation

Ak+1 ≡ Ak + ak+1 =
Mka2

k+1

2(1+µAk) .

Thus, R1
k+1 is valid. 2

Thus, in order to use inequality (4.5) for deriving the rate of convergence of method
A(x0, L0, µ), we need to estimate the rate of growth of the scaling coefficients {Ak}∞k=0.

Lemma 8 For any µ ≥ 0, the scaling coefficients grow as follows:

Ak ≥ k2

2γuLf
, k ≥ 0. (4.15)

For µ > 0, the rate of growth is linear:

Ak ≥ 2
γuLf

·
[
1 +

√
µ

2γuLf

]2(k−1)

, k ≥ 1. (4.16)

Proof:
Indeed, in view of equation (∗) in (4.9), we have:

Ak+1 ≤ Ak+1(1 + µAk) = Mk
2 (Ak+1 −Ak)2 = Mk

2

[
A

1/2
k+1 −A

1/2
k

]2 [
A

1/2
k+1 + A

1/2
k

]2

≤ 2Ak+1Mk

[
A

1/2
k+1 −A

1/2
k

]2 (4.11)

≤ 2Ak+1γuLf

[
A

1/2
k+1 −A

1/2
k

]2
.

Thus, for any k ≥ 0 we get A
1/2
k ≥ k√

2γuLf
. If µ > 0, then, by the same reasoning as

above, we obtain

µAkAk+1 < Ak+1(1 + µAk) ≤ 2Ak+1γuLf

[
A

1/2
k+1 −A

1/2
k

]2
.

Hence, A
1/2
k+1 ≥ A

1/2
k

[
1 +

√
µ

2γuLf

]
. Since A1 = 2

M0

(4.11)

≥ 2
γuLf

, we come to (4.16). 2

Now we can summarize all our observations.

Theorem 6 Let the gradient of function f be Lipschitz continuous with constant Lf .
Also, let the parameter L0 satisfy condition (3.2). Then the rate of convergence of the
method A(x0, L0, 0) as applied to the problem (4.1) can be estimated as follows:

φ(xk)− φ(x∗) ≤ γuLf‖x∗−x0‖2
k2 , k ≥ 1. (4.17)

If in addition the function Ψ is strongly convex, then the sequence {xk}∞k=1 generated by
A(x0, L0, µΨ) satisfies both (4.17) and the following inequality:

φ(xk)− φ(x∗) ≤ γuLf

4 ‖x∗ − x0‖2 ·
[
1 +

√
µΨ

2γuLf

]−2(k−1)

, k ≥ 1. (4.18)

In the next section we will show how to apply this result in order to achieve some
specific goals for different optimization problems.
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5 Different minimization strategies

5.1 Strongly convex objective with known parameter

Consider the following convex constrained minimization problem:

min
x∈Q

f̂(x), (5.1)

where Q is a closed convex set, and f̂ is a strongly convex function with Lipschitz con-
tinuous gradient. Assume the convexity parameter µf̂ to be known. Denote by σQ(x) an
indicator function of set Q:

σQ(x) =

{
0, x ∈ Q,

+∞, otherwise.

We can solve the problem (5.1) by two different techniques.
1. Reallocating the prox-term in the objective. For µ ∈ (0, µf̂ ], define

f(x) = f̂(x)− µ
2‖x− x0‖2, Ψ(x) = σQ(x) + µ

2‖x− x0‖2. (5.2)

Note that function f in (5.2) is convex and its gradient is Lipschitz continuous with
Lf = Lf̂ − µ. Moreover, the function Ψ(x) is strongly convex with convexity parameter
µ. On the other hand,

φ(x) = f(x) + Ψ(x) = f̂(x) + σQ(x).

Thus, the corresponding unconstrained minimization problem (4.1) coincides with con-
strained problem (5.1). Since all conditions of Theorem 6 are satisfied, the method
A(x0, L0, µ) has the following performance guarantees:

f̂(xk)− f̂(x∗) ≤ γu(Lf̂−µ)‖x∗−x0‖2

2

[
1+

√
µ

2γu(L
f̂
−µ)

]2(k−1) , k ≥ 1.
(5.3)

This means that an ε-solution of problem (5.1) can be obtained by this technique in

O

(√
Lf̂

µ · ln 1
ε

)
(5.4)

iterations. Note that the same problem can be solved also by the Gradient Method (3.3).
However, in accordance to (3.15), its performance guarantee is much worse; it needs

O

(
Lf̂

µ · ln 1
ε

)

iterations.
2. Restart. For problem (5.1), define the following components of composite objec-

tive function in (4.1):
f(x) = f̂(x), Ψ(x) = σQ(x). (5.5)
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Let us fix an upper bound N ≥ 1 for the number of iterations in A. Consider the following
two-level process:

Choose u0 ∈ Q.

Compute uk+1 as a result of N iterations of A(uk, L0, 0), k ≥ 0.
(5.6)

In view of definition (5.5), we have

f̂(uk+1)− f̂(x∗)
(4.17)

≤ γuLf̂‖x∗−uk‖2
N2 ≤ 2γuLf̂ [f̂(uk)−f̂(x∗)]

µf̂ ·N2 .

Thus, taking N = 2
√

γuLf̂

µf̂
, we obtain

f̂(uk+1)− f̂(x∗) ≤ 1
2 [f̂(uk)− f̂(x∗)].

Hence, the performance guarantees of this technique are of the same order as (5.4).

5.2 Approximating the first-order optimality conditions

In some applications, we are interested in finding a point with small residual of the system
of the first-order optimality conditions. Since

Dφ(TL(x))[u]
(2.16)

≥ −
(
1 + Lf

L

)
· ‖gL(x)‖∗

(2.13)

≥ −(L + Lf ) ·
√

φ(x)−φ(x∗)
2L−Lf

∀u ∈ F(TL(x)), ‖u‖ = 1,

(5.7)

the upper bounds on this residual can be obtained from the estimates on the rate of
convergence of method (4.9) in the form (4.17) or (4.18). However, in this case, the first
inequality does not give a satisfactory result. Indeed, it can guarantee that the right-hand
side of inequality (5.7) vanishes as O( 1

k ). This rate is typical for the Gradient Method
(see (3.12)), and from accelerated version (4.9) we can expect much more. Let us show
how we can achieve a better result.

Consider the following constrained optimization problem:

min
x∈Q

f(x), (5.8)

where Q is a closed convex set, and f is a convex function with Lipschitz continuous
gradient. Let us fix a tolerance parameter δ > 0 and a starting point x0 ∈ Q. Define

Ψ(x) = σQ(x) + δ
2‖x− x0‖2.

Consider now the unconstrained minimization problem (4.1) with composite objective
function φ(x) = f(x) + Ψ(x). Note that function Ψ is strongly convex with parameter
µΨ = δ. Hence, in view of Theorem 6, the method A(x0, L0, δ) converges as follows:

φ(xk)− φ(x∗) ≤ γuLf

4 ‖x∗ − x0‖2 ·
[
1 +

√
δ

2γuLf

]−2(k−1)
. (5.9)
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For simplicity, we can choose γu = γd in order to have Lk ≤ Lf for all k ≥ 0.
Let us compute now Tk = G(xk, Lk).T and Mk = G(xk, Lk).L. Then

φ(xk)− φ(x∗) ≥ φ(xk)− φ(Tk)
(2.17)

≥ 1
2Mk

‖gMk
(xk)‖2∗, L0 ≤ Mk ≤ γuLf ,

and we obtain the following estimate:

‖gMk
(xk)‖∗

(5.9)

≤ γuLf

21/2 ‖x∗ − x0‖ ·
[
1 +

√
δ

2γuLf

]1−k
. (5.10)

In our case, the first-order optimality conditions (4.2) for computing TMk
(xk) can be

written as follows:

∇f(xk) + δB(Tk − x0) + ξk = gMk
(xk), (5.11)

where ξk ∈ ∂σQ(Tk). Note that for any y ∈ Q we have

0 = σQ(y) ≥ σQ(Tk) + 〈ξk, y − Tk〉 = 〈ξk, y − Tk〉. (5.12)

Hence, for any direction u ∈ F(Tk) with ‖u‖ = 1 we obtain

〈∇f(Tk), u〉
(2.11)

≥ 〈∇f(xk), u〉 − Lf

Mk
‖gMk

(xk)‖∗

(5.11)
= 〈gMk

(xk)− δB(Tk − x0)− ξk, u〉 − Lf

Mk
‖gMk

(xk)‖∗

(5.12)
= −δ · ‖Tk − x0‖ −

(
1 + Lf

Mk

)
· ‖gMk

(xk)‖∗.

Assume now that the size of the set Q does not exceed R, and δ = ε · L0. Let us choose
the number of iterations k from inequality

[
1 +

√
εL0

2γuLf

]1−k ≤ ε.

Then the residual of the first-order optimality conditions satisfies the following inequality:

〈∇f(Tk), u〉 ≥ −ε ·R ·
[
L0 + γuLf

21/2 ·
(
1 + Lf

L0

)]
, u ∈ F(Tk), ‖u‖ = 1. (5.13)

For that, the required number of iterations k is at most of the order O
(

1√
ε
ln 1

ε

)
.

5.3 Unknown parameter of strongly convex objective

In Section 5.1 we have discussed two efficient strategies for minimizing a strongly convex
function with known estimate of convexity parameter µf̂ . However, usually this informa-
tion is not available. We can easily get only an upper estimate for this value, for example,
by inequality

µf̂ ≤ SL(x) ≤ Lf̂ , x ∈ Q.

Let us show that such a bound can be also used for designing an efficient optimization
strategy for strongly convex functions.
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For problem (5.1), assume that we have some guess µ for the parameter µf̂ and a

starting point u0 ∈ Q. Denote φ0(x) = f̂(x) + σQ(x). Let us choose

x0 = Gφ0(u0, L0).T, M0 = Gφ0(u0, L0).L, S0 = Gφ0(u0, L0).S,

and minimize the composite objective (5.2) by method A(x0,M0, µ) using the following
stopping criterion:

Compute: vk = Gφ0(xk, Lk).T, Mk = Gφ0(xk, Lk).L.

Stop the stage: if (A): ‖ gMk
(xk)[φ0] ‖∗ ≤ 1

2‖ gM0(u0)[φ0] ‖∗,

or (B): Mk
Ak

·
(
1 + S0

M0

)
≤ 1

4µ2.

(5.14)

If the stage was terminated by Condition (A), then we call it successful. In this case, we
run the next stage, taking vk as a new starting point and keeping the estimate µ of the
convexity parameter unchanged.

Suppose that the stage was terminated by Condition (B) (that is an unsuccessful
stage). If µ were a correct lower bound for the convexity parameter µf̂ , then

1
2Mk

‖gMk
(xk)[φ0]‖2∗

(2.17)

≤ f̂(xk)− f̂(x∗)
(4.5)

≤ 1
2Ak

‖x0 − x∗‖2

(2.22)

≤ 1
2Akµ2 ·

(
1 + S0

M0

)
· ‖gM0(u0)[φ0]‖2∗.

Hence, in view of Condition (B), in this case the stage must be terminated by Condi-
tion (A). Since this did not happen, we conclude that µ > µf̂ . Therefore, we redefine
µ := 1

2µ, and run again the stage keeping the old starting point x0.
We are not going to present all details of the complexity analysis of the above strategy.

It can be shown that, for generating an ε-solution of problem (5.1) with strongly convex
objective, it needs

O
(
κ

1/2

f̂
lnκf̂

)
+ O

(
κ

1/2

f̂
ln κf̂ · ln

κf̂

ε

)
, κf̂

def=
Lf̂

µf̂
,

calls of the oracle. The first term in this bound corresponds to the total amount of calls
of the oracle at all unsuccessful stages. The factor κ

1/2

f̂
ln κf̂ represents an upper bound

on the length of any stage independently on the variant of its termination.

6 Computational experiments

We tested the algorithms described above on a set of randomly generated Sparse Least
Squares problems of the form

Find φ∗ = min
x∈Rn

[
φ(x) def= 1

2‖Ax− b‖2
2 + ‖x‖1

]
, (6.1)
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where A ≡ (a1, . . . , an) is an m×n dense matrix with m < n. All problems were generated
with known optimal solutions, which can be obtained from the dual representation of the
initial primal problem (6.1):

min
x∈Rn

[
1
2‖Ax− b‖2

2 + ‖x‖1

]
= min

x∈Rn
max
u∈Rm

[
〈u, b−Ax〉 − 1

2‖u‖2
2 + ‖x‖1

]

= max
u∈Rm

min
x∈Rn

[
〈b, u〉 − 1

2‖u‖2
2 − 〈AT u, x〉+ ‖x‖1

]

= max
u∈Rm

[
〈b, u〉 − 1

2‖u‖2
2 : ‖AT u‖∞ ≤ 1

]
.

(6.2)

Thus, the problem dual to (6.1) consists in finding a Euclidean projection of the vector
b ∈ Rm onto the dual polytope

D = {y ∈ Rm : ‖AT y‖∞ ≤ 1}.

This interpretation explains the changing sparsity of the optimal solution x∗(τ) to the
following parametric version of problem (6.1):

min
x∈Rn

[
φτ (x) def= 1

2‖Ax− b‖2
2 + τ‖x‖1

]
(6.3)

Indeed, for τ > 0, we have

φτ (x) = τ2
[

1
2‖Ax

τ − b
τ ‖2

2 + ‖x
τ ‖1

]
.

Hence, in the dual problem, we project vector b
τ onto the polytope D. The nonzero

components of x∗(τ) correspond to the active facets of D. Thus, for τ big enough, we
have b

τ ∈ intD, which means x∗(τ) = 0. When τ decreases, we get x∗(τ) more and more
dense. Finally, if all facets of D are in general position, we get in x∗(τ) exactly m nonzero
components as τ → 0.

In our computational experiments, we compare three minimization methods. Two
of them maintain recursively relations (4.4). This feature allows us to classify them as
primal-dual methods. Indeed, denote

φ∗(u) = 1
2‖u‖2

2 − 〈b, u〉.

As we have seen in (6.2),

φ(x) + φ∗(u) ≥ 0 ∀x ∈ Rn, u ∈ D. (6.4)

Moreover, the lower bound is achieved only at the optimal solutions of the primal and
dual problems. For some sequence {zi}∞i=1, and a starting point z0 ∈ dom Ψ, relations
(4.4) ensure

Akφ(xk) ≤ min
x∈Rn

{
k∑

i=1
ai[f(zi) + 〈∇f(zi), x− zi〉] + AkΨ(x) + 1

2‖x− z0‖2

}
. (6.5)
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In our situation, f(x) = 1
2‖Ax − b‖2

2, Ψ(x) = ‖x‖1, and we choose z0 = 0. Denote
ui = b−Azi. Then ∇f(zi) = −AT ui, and therefore

f(zi)− 〈∇f(zi), zi〉 = 1
2‖ui‖2 + 〈AT ui, zi〉 = 〈b, ui〉 − 1

2‖ui‖2
2 = −φ∗(ui).

Denoting

ūk = 1
Ak

k∑
i=1

aiui, (6.6)

we obtain

Ak[φ(xk) + φ∗(ūk)] ≤ Akφ(xk) +
k∑

i=1
aiφ∗(ui)

(6.5)

≤ min
x∈Rn

{
k∑

i=1
ai〈∇f(zi), x〉+ AkΨ(x) + 1

2‖x‖2

}
x=0≤ 0.

In view of (6.4), uk cannot be feasible:

φ∗(ūk) ≤ −φ(xk) ≤ −φ∗ = min
u∈D

φ∗(u). (6.7)

Let us measure the level of infeasibility of these points. Note that the minimum of
optimization problem in (6.5) is achieved at x = vk. Hence, the corresponding first-order
optimality conditions ensure

‖ −
k∑

i=1
aiA

T ui + Bvk‖∞ ≤ Ak.

Therefore, |〈ai, ūk〉| ≤ 1 + 1
Ak
|(Bvk)(i)|, i = 1, . . . , n. Assume that the matrix B in (1.3)

is diagonal:

B(i,j) =

{
di, i = j,
0, otherwise.

Then, |〈ai, ūk〉| − 1 ≤ di
Ak
· |v(i)

k |, and

ρ(ūk)
def=

[
n∑

i=1

1
di
· ( |〈ai, ūk〉| − 1 )2+

]1/2

≤ 1
Ak
‖vk‖

(4.6)

≤ 2
Ak
‖x∗‖, (6.8)

where (α)+ = max{α, 0}. Thus, we can use function ρ(·) as a dual infeasibility measure.
In view of (6.7), it is a reasonable stopping criterion for our primal-dual methods.

For generating the random test problems, we apply the following strategy.

• Choose m∗ ≤ m, the number of nonzero components of the optimal solution x∗ of
problem (6.1), and parameter ρ > 0 responsible for the size of x∗.

• Generate randomly a matrix B ∈ Rm×n with elements uniformly distributed in the
interval [−1, 1].

• Generate randomly a vector v∗ ∈ Rm with elements uniformly distributed in [0, 1].
Define y∗ = v∗/‖v∗‖2.
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• Sort the entries of vector BT y∗ in the decreasing order of their absolute values. For
the sake of notation, assume that it coincides with a natural order.

• For i = 1, . . . , n, define ai = αibi with αi > 0 chosen accordingly to the following
rule:

αi =





1
|〈bi,y∗〉| for i = 1, . . . , m∗,

1, if |〈bi, y
∗〉| ≤ 0.1 and i > m∗,

ξi

|〈bi,y∗〉| , otherwise,

where ξi are uniformly distributed in [0, 1].

• For i = 1, . . . , n, generate the components of the primal solution:

[x∗](i) =





ξi · sign(〈ai, y
∗〉), for i ≤ m∗,

0, otherwise,

where ξi are uniformly distributed in
[
0, ρ√

m∗

]
.

• Define b = y∗ + Ax∗.

Thus, the optimal value of the randomly generated problem (6.1) can be computed as

φ∗ = 1
2‖y∗‖2

2 + ‖x∗‖1.

In the first series of tests, we use this value in the termination criterion.
Let us look first at the results of minimization of two typical random problem instances.
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The first problem is relatively easy.

Problem 1: n = 4000, m = 1000, m∗ = 100, ρ = 1.

PG DG AC
Gap k #Ax SpeedUp k #Ax SpeedUp k #Ax SpeedUp

1 1 4 0.21% 1 4 0.85% 1 4 0.14%
2−1 3 8 0.20% 3 12 0.81% 4 28 1.24%
2−2 10 29 0.24% 8 38 0.89% 8 60 2.47%
2−3 28 83 0.32% 25 123 1.17% 14 108 4.06%
2−4 159 476 0.88% 156 777 3.45% 40 316 17.50%
2−5 557 1670 1.53% 565 2824 6.21% 74 588 29.47%
2−6 954 2862 1.31% 941 4702 5.17% 98 780 25.79%
2−7 1255 3765 0.86% 1257 6282 3.45% 118 940 18.62%
2−8 1430 4291 0.49% 1466 7328 2.01% 138 1096 12.73%
2−9 1547 4641 0.26% 1613 8080 2.13% 156 1240 8.19%
2−10 1640 4920 0.14% 1743 8713 0.61% 173 1380 4.97%
2−11 1722 5167 0.07% 1849 9243 0.33% 188 1500 3.01%
2−12 1788 5364 0.04% 1935 9672 0.17% 202 1608 1.67%
2−13 1847 5539 0.02% 2003 10013 0.09% 216 1720 0.96%
2−14 1898 5693 0.01% 2061 10303 0.05% 230 1836 0.55%
2−15 1944 5831 0.01% 2113 10563 0.05% 248 1968 0.31%
2−16 1987 5961 0.00% 2164 10817 0.03% 265 2112 0.19%
2−17 2029 6085 0.00% 2217 11083 0.02% 279 2224 0.10%
2−18 2072 6215 0.00% 2272 11357 0.01% 305 2432 0.06%
2−19 2120 6359 0.00% 2331 11652 0.00% 314 2504 0.03%
2−20 2165 6495 0.00% 2448 12238 0.00% 319 2544 0.02%

In this table, the column Gap shows the relative decrease of the initial residual. In
the rest of the table, we can see the computational results for three methods:

• Primal gradient method (3.3), abbreviated as PG.

• Dual version of the gradient method (4.7), abbreviated as DG.

• Accelerated gradient method (4.9), abbreviated as AC.

In all methods, we use the following values of the parameters:

γu = γd = 2, x0 = 0, L0 = max
1≤i≤n

‖ai‖2 ≤ Lf , µ = 0.

Let us explain the remaining columns of this table. For each method, the column
k shows the number of iterations necessary for reaching the corresponding reduction
of the initial gap in the function value. Column Ax shows the necessary number of
matrix-vector multiplications. Note that for computing the value f(x) we need one mul-
tiplication. If in addition, we need to compute the gradient, we need one more multipli-
cation. For example, in accordance to the estimate (4.13), each iteration of (4.9) needs
four computations of the pair function/gradient. Hence, in this method we can expect
eight matrix-vector multiplications per iteration. For the Gradient Method (3.3), we need
in average two calls of the oracle. However, one of them is done in the “line-search”
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procedure (3.1) and it requires only the function value. Hence, in this case we expect to
have three matrix-vector multiplications per iteration. In the table above, we can observe
the remarkable accuracy of our predictions. Finally, the column SpeedUp represents
the absolute accuracy of current approximate solution as a percentage of the worst-case
estimate given by the corresponding rate of convergence. Since the exact Lf is unknown,
we use L0 instead.

We can see that all methods usually significantly outperform the theoretically predicted
rate of convergence. However, for all of them, there are some parts of the trajectory where
the worst-case predictions are quite accurate. This is even more evident from our second
table, which corresponds to a more difficult problem instance.

Problem 2: n = 5000, m = 500, m∗ = 100, ρ = 1.

PG DG AC
Gap k #Ax SpeedUp k #Ax SpeedUp k #Ax SpeedUp

1 1 4 0.24% 1 4 0.96% 1 4 0.16%
2−1 2 6 0.20% 2 8 0.81% 3 24 0.92%
2−2 5 17 0.21% 5 24 0.81% 5 40 1.49%
2−3 11 33 0.19% 11 45 0.77% 8 64 1.83%
2−4 38 113 0.30% 38 190 1.21% 19 148 5.45%
2−5 234 703 0.91% 238 1189 3.69% 52 416 20.67%
2−6 1027 3081 1.98% 1026 5128 7.89% 106 848 43.08%
2−7 2402 7206 2.31% 2387 11933 9.17% 160 1280 48.70%
2−8 3681 11043 1.77% 3664 18318 7.05% 204 1628 39.54%
2−9 4677 14030 1.12% 4664 23318 4.49% 245 1956 28.60%
2−10 5410 16230 0.65% 5392 26958 2.61% 288 2300 19.89%
2−11 5938 17815 0.36% 5879 29393 1.41% 330 2636 13.06%
2−12 6335 19006 0.19% 6218 31088 0.77% 370 2956 8.20%
2−13 6637 19911 0.10% 6471 32353 0.41% 402 3212 4.77%
2−14 6859 20577 0.05% 6670 33348 0.21% 429 3424 2.71%
2−15 7021 21062 0.03% 6835 34173 0.13% 453 3616 1.49%
2−16 7161 21483 0.01% 6978 34888 0.05% 471 3764 0.83%
2−17 7281 21842 0.01% 7108 35539 0.05% 485 3872 0.42%
2−18 7372 22115 0.00% 7225 36123 0.03% 509 4068 0.24%
2−19 7438 22313 0.00% 7335 36673 0.02% 525 4192 0.12%
2−20 7492 22474 0.00% 7433 37163 0.01% 547 4372 0.07%

In this table, we can see that the Primal Gradient Method still significantly outper-
forms the theoretical predictions. This is not too surprising since it can, for example,
automatically accelerate on strongly convex functions (see Theorem 5). All other meth-
ods require in this case some explicit changes in their schemes.

However, despite all these discrepancies, the main conclusion of our theoretical analysis
seems to be confirmed: the accelerated scheme (4.9) significantly outperforms the primal
and dual variants of the Gradient Method.

In the second series of tests, we studied the abilities of the primal-dual schemes (4.7)
and (4.9) in decreasing the infeasibility measure ρ(·) (see (6.8)). This problem, at least for
the Dual Gradient Method (4.7), appears to be much harder than the primal minimization
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problem (6.1). Let us look at the following results.

Problem 3: n = 500, m = 50, m∗ = 25, ρ = 1.

DG AC
Gap k #Ax ∆φ SpeedUp k #Ax ∆φ SpeedUp

1 2 8 2.5 · 100 8.26% 2 16 3.6 · 100 2.80%
2−1 5 25 1.4 · 100 9.35% 7 56 8.8 · 10−1 15.55%
2−2 13 64 6.0 · 10−1 13.17% 11 88 5.3 · 10−1 20.96%
2−3 26 130 3.9 · 10−1 12.69% 15 120 4.4 · 10−1 19.59%
2−4 48 239 2.7 · 10−1 12.32% 21 164 3.1 · 10−1 19.21%
2−5 103 514 1.6 · 10−1 13.28% 35 276 1.8 · 10−1 25.83%
2−6 243 1212 8.3 · 10−2 15.64% 54 432 1.0 · 10−1 31.75%
2−7 804 4019 3.0 · 10−2 25.93% 86 688 4.6 · 10−2 39.89%
2−8 1637 8183 6.3 · 10−3 26.41% 122 976 1.8 · 10−2 40.22%
2−9 3298 16488 4.6 · 10−4 26.6% 169 1348 5.3 · 10−3 38.58%
2−10 4837 24176 1.8 · 10−7 19.33% 224 1788 7.7 · 10−4 34.28%
2−11 4942 24702 1.2 · 10−14 9.97% 301 2404 8.0 · 10−5 30.88%
2−12 5149 25734 −1.3 · 10−15 5.16% 419 3352 2.7 · 10−5 29.95%
2−13 5790 28944 −1.3 · 10−15 2.92% 584 4668 5.3 · 10−6 29.11%
2−14 6474 32364 0.0 2.67% 649 5188 4.1 · 10−7 29.48%

In this table we can see the computational cost for decreasing the initial value of ρ in
214 ≈ 104 times. Note that both methods require more iterations than for Problem 1,
which was solved up to accuracy in the objective function of the order 2−20 ≈ 10−6.
Moreover, for reaching the required level of ρ, method (4.7) has to decrease the residual
in the objective up to machine precision, and the norm of gradient mapping up to 10−12.
The accelerated scheme is more balanced: the final residual in φ is of the order 10−6, and
the norm of the gradient mapping was decreased only up to 1.3 · 10−3.

Let us look at a bigger problem.

Problem 4: n = 1000, m = 100, m∗ = 50, ρ = 1.

DG AC
Gap k #Ax ∆φ SpeedUp k #Ax ∆φ SpeedUp

1 2 8 3.7 · 100 6.41% 2 12 4.2 · 100 1.99%
2−1 5 24 2.0 · 100 7.75% 7 56 1.4 · 100 11.71%
2−2 15 74 1.0 · 100 11.56% 12 96 8.7 · 10−1 15.49%
2−3 37 183 6.9 · 10−1 14.73% 17 132 6.8 · 10−1 16.66%
2−4 83 414 4.5 · 10−1 16.49% 26 208 4.7 · 10−1 20.43%
2−5 198 989 2.4 · 10−1 19.79% 42 336 2.5 · 10−1 26.76%
2−6 445 2224 7.8 · 10−2 22.28% 65 520 1.0 · 10−1 32.41%
2−7 1328 6639 2.2 · 10−2 33.25% 91 724 3.6 · 10−2 31.50%
2−8 2675 13373 4.1 · 10−3 33.48% 125 996 1.1 · 10−2 30.07%
2−9 4508 22535 5.6 · 10−5 28.22% 176 1404 2.6 · 10−3 27.85%
2−10 4702 23503 2.7 · 10−10 14.7% 240 1916 4.4 · 10−4 26.08%
2−11 4869 24334 −2.2 · 10−15 7.61% 328 2620 7.7 · 10−5 26.08%
2−12 6236 31175 −2.2 · 10−15 4.88% 465 3716 6.5 · 10−6 26.20%
2−13 12828 64136 −2.2 · 10−15 5.02% 638 5096 2.4 · 10−6 24.62%
2−14 16354 81766 −4.4 · 10−15 5.24% 704 5628 7.8 · 10−7 24.62%
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As compared with Problem 3, in Problem 4 the sizes are doubled. This makes almost
no difference for the accelerated scheme, but for the Dual Gradient Method, the compu-
tational expenses grow substantially. The further increase of dimension makes the latter
scheme impractical. Let us look at how these methods work on Problem 1 with ρ(·) being
a termination criterion.

Problem 1a: n = 4000, m = 1000, m∗ = 100, ρ = 1.

DG AC
Gap k #Ax ∆φ SpeedUp k #Ax ∆φ SpeedUp

1 2 8 2.3 · 101 2.88% 2 12 2.4 · 101 0.99%
2−1 5 24 1.2 · 101 3.44% 8 60 8.1 · 100 7.02%
2−2 17 83 5.8 · 100 6.00% 13 100 4.6 · 100 10.12%
2−3 44 219 3.5 · 100 7.67% 20 160 3.5 · 100 11.20%
2−4 100 497 2.7 · 100 8.94% 28 220 2.9 · 100 12.10%
2−5 234 1168 1.9 · 100 10.51% 44 348 2.1 · 100 14.79%
2−6 631 3153 1.0 · 100 14.18% 78 620 1.0 · 100 23.46%
2−7 1914 9568 1.0 · 10−2 21.50% 117 932 2.9 · 10−1 26.44%
2−8 3704 18514 4.6 · 10−7 20.77% 157 1252 6.8 · 10−2 23.88%
2−9 3731 18678 1.4 · 10−14 15.77% 212 1688 5.3 · 10−3 21.63%
2−10 Line search failure ... 287 2288 2.0 · 10−4 19.87%
2−11 391 3120 2.5 · 10−5 18.43%
2−12 522 4168 7.0 · 10−6 16.48%
2−13 693 5536 4.5 · 10−7 14.40%
2−14 745 5948 3.8 · 10−7 13.76%

The reason of the failure of the Dual Gradient Method is quite interesting. In the
end, it generates the points with very small residual in the value of the objective function.
Therefore, the termination criterion in the gradient iteration (3.1) cannot work properly
due to the rounding errors. In the accelerated scheme (4.9), this does not happen since
the decrease of the objective function and the dual infeasibility measure is much more
balanced. In some sense, this situation is natural. We have seen that on the current
test problems all methods converge faster at the end. On the other hand, the rate of
convergence of the dual variables ūk is limited by the rate of growth of coefficients ai

in the representation (6.6). For the Dual Gradient Method, these coefficients are almost
constant. For the accelerated scheme, they grow proportionally to the iteration counter.

We hope that the numerical examples above clearly demonstrate the advantages of the
accelerated gradient method (4.9) with the adjustable line search strategy. It is interesting
to check numerically how this method works in other situations. Of course, the first
candidates to try are different applications of the smoothing technique [10]. However,
even for the Sparse Least Squares problem (6.1) there are many potential improvements.
Let us discuss one of them.

Note that we treated the problem (6.1) by a quite general model (2.2) ignoring the
important fact that the function f is quadratic. The characteristic property of quadratic
functions is that they have a constant second derivative. Hence, it is natural to select the
operator B in metric (1.3) taking into account the structure of the Hessian of function f .

Let us define B = diag (AT A) ≡ diag (∇2f(x)). Then

‖ei‖2 = 〈Bei, ei〉 = ‖ai‖2
2 = ‖Aei‖2

2 = 〈∇2f(x)ei, ei〉, i = 1, . . . , n,
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where ei is a coordinate vector in Rn. Therefore,

L0
def= 1 ≤ Lf ≡ max

‖u‖=1
〈∇2f(x)u, u〉 ≤ n.

Thus, in this metric, we have very good lower and upper bounds for the Lipschitz
constant Lf . Let us look at the corresponding computational results. We solve the
Problem 1 (with n = 4000, m = 1000, and ρ = 1) up to accuracy Gap = 2−20 for
different sizes m∗ of the support of the optimal vector, which are gradually increased from
100 to 1000.

Problem 1b.
PG AC

m∗ k #Ax k #Ax

100 42 127 58 472
200 53 160 61 496
300 69 208 70 568
400 95 286 77 624
500 132 397 84 680
600 214 642 108 872
700 330 993 139 1120
800 504 1513 158 1272
900 1149 3447 196 1576

1000 2876 8630 283 2272

Recall that the first line of this table corresponds to the previously discussed version of
Problem 1. For the reader’s convenience, in the next table we repeat the final results
on the latter problem, adding the computational results for m∗ = 1000, both with no
diagonal scaling.

PG AC
m∗ k #Ax k #Ax

100 2165 6495 319 2544
1000 42509 127528 879 7028

Thus, for m∗ = 100, the diagonal scaling makes Problem 1 very easy. For easy
problems, the simple and cheap methods have definite advantage with respect to more
complicated strategies. When m∗ increases, the scaled problems become more and more
difficult. Finally, we can see again the superiority of the accelerated scheme. Needless to
say, at this moment of time, we have no plausible explanation for this phenomenon.

Our last computational results clearly show that an appropriate complexity analysis
of the Sparse Least Squares problem remains a challenging topic for future research.
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