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A GRADIENT PROJECTION METHOD FOR 
CONSTRAINED OPTIMIZATION 

ABSTRACT 

A description is made of the constraint portion of a nonlinear 

optimization program which was developed for the purpose of solving a 

series of  engineering design and economic problems. Additional capa- 

bilities were incorporated into an existing gradient search program 

to enable the consideration of both linear and nonlinear, equality and 

inequality, constraints. A rather nontheoretical approach is attempted 

in describing both the philosophy and the mechanics involved in the 

constraint techniques. 
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I. INTRODUCTION 

In the field of nonlinear optimization there are many methods 192 

which may be used successfully on unconstrained problems. However, most 

practical problems arising in industry involve constraints, both general 

and specific, which must be satisfied in order to obtain meaningful 

results. 

optimizing a series of constrained nonlinear problems utilizing an exist- 

ing nonlinear optimization program. This particular program uses a 

gradient search procedure, with refinements for recognizing patterns 

in the response surfaces and boundaries on the variables. 

constraint technique should be applicable to most gradient search pro- 

grams since they operate within the feasible solution space while search- 

ing for an optimum. The goal of the constraint technique is the projec- 

tion of gradient so as to obtain a feasible direction and the adjustment 

of points which fail to satisfy the constraints. Designed with general- 

ity and flexibility in mind, this code has been used t o  solve a wide 

variety of engineering and management problems in whilch the function 

to be optimized was relatively smooth, yet involved blDth linear and 

nonlinear constraints. 

The technique described here was developed for the purpose of 

However, the 

<” 
i 

I 
I 

i. 
A 

t 



f 

R 
i 

i 

c9 
c 

11 

11. STATEMENT OF THE PROBLEM 

The basic problem is the optimization (maximization or minimization) 

of a function of n variables: 

F = f(x1, x*, x3, . * * Y  xnL 

subject to m constraints: 
> gi(xl, x2, x3 . .. xn) = 0, where i = 1, 2, 3, . . . m. 

Since most techniques for projecting onto constraints are designed 

for equality constraints, the problem of handling inequality constraints 

arises. Use of slack variables, as found in linear programming, has 

been suggested. However, this alternative has several disadvantages. 

First, the number of variables under consideration in the gradient is 

increased. 

by a lower bound on the slack variable. 

In addition, the inequality constraint is merely replaced 

A last, but major, objection 

to the use of slack variables is the necessity for considering all con- 

straints at all times. In many problems there are inequality constraints 

which are not violated, and thus, need not be considered. The constraint 

technique to be described disregards inequality constraints until the 

search procedure attempts to violate them. 

bounds on the variables are considered to be inequality constraints when 

Further, upper and lower 

projecting the gradient. 

to present no significant improvement to the problem of constraint 

manipulation. 

With these facts in mind, slack factors appear 
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111. GRADIENT PROJECTION 

The basic method of handling constraints is use of Lagrange multi- 
4 pliers to project a vector onto the constrained subspace of interest. 

By definition, in an unconstrained region, n variables exist in an 

n-dimensional domain. 

the dimension of the space is reduced by m. 

coefficients Xi, (i = 1, 2, ... m), applied to the partial derivatives 

of the equality constraints with respect to the n variables. 

cation results in a vector which adjusts the gradient to lie in an 

L-dimensional (L = n-m) subspace. 

defined as the feasible area in which the m equality constraints are 

satisfied. 

However, when m equality constraints are applied, 

Lagrange multipliers are 

This appli- 

The L, or constrained, subspace is 

For example, let P be the n-dimensional column vector representing 

the gradient: 

P = Vf 

Pi = af/axi; i = 1, 2,  ... n. (1) 

Let G be the m by n matrix of partial derivatives of the constraints: 

G.. = 3g./axi; i = 1, 2 ,  ... n, and j :: 1, 2,  ... m.(2) 
31 J 

The Lagrange multipliers are the elements Xi of an m-dimensional column 

vector : 

(3) 
T -1 A = (GG ) (GP) 

Using this vector, one can compute a new direction, PF’, by adjusting 

P: 
T P P = P - G  X 

n 
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This new direction, PP, will lie along the constraints themselves if 

they are linear. 

will lie along the hyperplanes, tangent to the constraints at the point 

under consideration. 

However, with nonlinear constraints the new gradient 

This technique is a very precise projection method for satisfying 

equality constraints. However, the problem remains of identifying which 

inequality constraints to include in the projection (that is, which 

inequalities to consider as equalities). 
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IV. VIOLATION OF CONSTRAINTS 

After a feasible direction is determined and steps, which improve 
I 

the objective function, have been taken in that direc'tion, further prog- 

ress may result in violation of an inequality constra.int. 

a method of accepting only feasible points as candida'tes for improving 

the objective function was devised. 

Therefore, 

When the violation involves a specified upper orllower bound on a 

variable, the most direct procedure is reduction of tlie step size. 

length of the step is adjusted by a ratio: 

last point and the bound, divided by the distance the variable actually 

moved. Should more than one variable violate a boundary, the step is 

scaled small enough to avoid the most imminent and, therefore, all 

violations. 

straints, it loses accuracy when the constraints are nonlinear. There- 

fore, a linear projection technique as developed below is used when con- 

straints other than boundaries are violated. 

cient for linear constraints, whereas with nonlinear constraints several 

projections may be required to adjust a point onto the constraints. 

The 

the distai~ice between the 

Although this procedure is precise for linear con- 

One projection is suffi- 

Let the m by n matrix, G, be as previously described: 

Gji = ag./axi; i = 1, 2,  ... n, and j = 1, 2,  ... m. 
3 

Let AX be an n-dimensional column vector representing the necessary 

change in the variables in order to satisfy the constraints being 

considered. 

Further, let Ag be an m-dimensional column vector, representing the 

change in the constraints necessary for their satisfaction. For example, 

i 

http://constra.int
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the constraint g should equal 0. If gi = C,  then Ag = -C. These 

changes are a function of the changes in the variables: 
i i 

Ag = G(AX) (5) 

An m-dimensional column vector, y, whose elements are to be applied 

to the elements of G in order to obtain the desired AX, is then defined: 

( 6 )  
T AX = G (y) 

Substituting for AX in equation (5 ) :  

T Ag = GG ( y ) .  

Since Ag and G are known, one can solve for y. Then using equation ( 6 ) ,  

- ?  

i 

AX can be determined. 

For nonlinear constraints several iterations through this procedure 

may be necessary. However, most constraint violations are minor, and the 

procedure converges rapidly to a feasible point. 

It should be noted that in the case of nonlinear constraints, the 

elements of the G matrix are approximations to the actual partial deriva- 

tives of the constraints with respect to the variables. This approxima- 

tion is a result of calculating the partial derivatives using a point 

which does not lie on a constraint. In cases where constraints are almost 

linear, or where a constraint violation is small, the approximations in G 

are very good. 

In rare cases a step may be taken by the search procedure which 

violates constraints to such an extent that the iterative procedure is 

unable t o  converge and give a feasible point. 

result from violating a constraint by an extremely large amount, or 

Such a situation might 

from an attempt to project onto too many constraints. These problems, 

however, are easily eliminated. After a predetermined number of 
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i t e r a t i o n s  have f a i l e d  t o  give a f e a s i b l e  poin t  (with,in some to le rance  

of  the  c o n s t r a i n t s ) ,  the  s t e p  i s  r e j ec t ed .  

a new gradien t  and reduces t h e  s t e p  s ize  i n  order  t o  obta in  a f eas ib l e  

po in t .  Further  progress  w i l l  depend on t h e  particula!r gradient  search 

procedure with which t h e  p ro jec t ion  technique is  used', 

The progrgm then determines 

I 
i 
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V. BOUNDARIES APPLICABLE TO VARIABLES 

-1 

i 

As previously stated, variable boundaries are treated differently 

than the inequality constraints already described. 

inequality constraints, but involve only one variable. When a bound is 

exceeded, the length of the step is merely reduced to obtain a feasible 

Bounds are linear 

point. However, when a bound is considered an 

which a projection will be made, its treatment 

if the variable xi is to be held at one of its 

inequality constraint onto 

is different. For example, 

bounds, x = a, af/axi is i 
set equal to zero. 

zero when the gradient is projected onto other constraints. 

It is possible, however, that af/axi will not remain 

To assure 

a value of zero for this partial derivative, the variable xi must be 

removed from consideration when projecting the gradient. This is ac- 

complished by setting ag./ax equal to zero for each constraint j being 

considered as an equality constraint during projection of the gradient. 
J i  

The projection can now be performed in a subspace in which the x 

tion has been eliminated from both the gradient and the constraints. 

direc- i 

When any of the inequality constraints are nonlinear, the procedure 

just described may not produce the desired result. For instance, if a 

constraint becomes parallel and coincides with a boundary, all nonzero 

partial derivatives of a constraint g 
T this occur, the matrix GG will be singular, since all elements of row 

and column j will be zero. This singularity is merely a computational 

problem which can be eliminated by replacing the j- diagonal element 

with one, whenever it is equal to zero. Since the j- element of the 

may be set equal to zero. Should 
j 

th 

th 

vector GP is also zero, A .  will be calculated as zero -- in effect 
disregarding the j- constraint. 

3 th 
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I 

A more frequent cause of singularity in the matr:/x discussed above 

I is the addition of another bound to the set already considered to be 

the set of inequality constraints. 

"over constrained," with the matrix GG being singu1a:r. Again, if the 
. th th 
J- row and column are zero vectors, setting the j- diagonal element 

at 1 will force A .  to be zero. If a step in the direction determined 

does not show improvement, or if the projection of tht? gradient is zero, 

a new gradient is calculated and projected onto the nt!cessary inequality 

constraints. 

In this case the problem may be 
T 

I 

3 
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VI. INEQUALITIES CONSIDERED AS EQUALITIES 

The basic idea when projecting onto inequality constraints is con- 

This is directly opposed sideration of as few constraints as possible. 

to the linear programming philosophy whereby a maximum number of inequal- 

ity constraints are treated as equalities. 

After a new gradient is calculated, it is projected onto the inter- 

section of the constraints under consideration. This set originally 

consists of equality constraints. 

straints violated by the gradient calculation. 

To this are added the inequality con- 

The dot product of the gradient and the unit normal is calculated 

for each inequality constraint to statisfy the above criteria. 

straint, corresponding to the normal resulting in the largest dot product, 

is added to the original set of equality constraints. 

repeated until the gradient projection onto the constraint intersection 

results in a feasible direction. 

The con- 

This procedure is 

In a simple two-variable, two-inequality constraint problem, a 

feasible direction will be found unless the gradient lies between the 

normals N1 and N2. 

since G *N <G ON Then, since G violates C G is projected onto 

the intersection of C1 and C2, thus obtaining a zero vector and, for this 

particular two-variable problem, an optimum. In the general case, when 

no successful steps can be taken in a particular direction, a new gradi- 

ent is calculated, the inequality constraints are considered as 

equalities, and the search continues. 

In Figure 1, G2 will be projected onto C2 first, 

2 1 2 2 '  2P 1' 2 
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Figure 1. Gradient Projection at Optiinum. 
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If, while moving in the direction determined, another inequality 

constraint is violated, this constraint is added to the set, and the 

gradient is again projected. Removal of constraints from the group con- 

sidered as equalities occurs only when a new gradient is calculated. In 

each gradient calculation a minimum number of constraints is considered. 

Rarely will an excessive number of constraints be added during the search 

procedure. However, should the gradient projection fail due to an excess 

of constraint violations, a new gradient is calculated; and a minimum num- 

ber of constraints is again considered. 

vided an optimum has not been reached. The criterion for optimality is 

embedded within the particular gradient search procedure with which the 

project technique is associated. 

ents with no successful steps signal an end to the search. 

The search continues, pro- 

In this program two consecutive gradi- 

Following are two important points to consider when projecting a 

gradient. 

constraints. 

violate an inequality constraint, and when the current point is near 

(within specified tolerance) the constraint, the gradient must be ad- 

justed away from this infeasible direction. 

violate several inequality constraints, it is not always necessary to 

project onto the intersection of all the violated constraints. 

Figure 2 it is only necessary to project onto C 

direction G . 

First, the gradient must be projected to satisfy all equality 

Further, when a gradient points in a direction which will 

Although a gradient may 

In 

to obtain a feasible 2 

P 
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Figure 2. Gradient Projection at Nonopt:imum 
Intersection of Constraints. 
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VII. CONCLUSION 

The technique and the program into which it was incorporated are 

designed to handle general nonlinear problems with nonlinear constraints. 

The program is not intended to handle expeditiously any particular class 

of problems, such as those with steep ridges or other complicated surfaces. 

The method is intended to work with consistency on a variety of problems, 

even though in many cases slower solution times may result. The program 

may be characterized by the fact that it works best on small, relatively 

nonlinear problems. 

The program has been used to solve problems with up to 50 variables 

and 50 constraints; however, it was intended primarily for use with 

fewer variables and constraints. Calculation of the objective function 

in problems that have been solved has varied from one arithmetic state- 

ment to a model represented by several hundred FORTRAN statements. The 

classes of problems solved vary from mathematical test problems to 

economic, design, and production models for gaseous diffusion, desalina- 

tion, and nuclear reactor operations. 

The program was compared with about 30 other nonlinear optimization 

codes, and the results were reported by A .  R. Colville at the Mathe- 

matical Programming Symposium at Princeton University on August 14-18, 

1967. 

tives, compared very favorably to codes which took advantage of the 

property of analytical first or second partial derivatives, which were 

present in most of the problems in the specified test set. 

The algorithm, which utilizes numerical approximation to deriva- 
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With this program, as with most nonlinear prograins, the results 

obtained on real-life problems are very dependent on the design of the 

problem to be solved, as well as the effectiveness oflminor adjustments 

of an algorithm to obtain best results for specific uksual problems. 

The program is available as SHARE Release No. SDA 3541. 

I 
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