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GRADIENT RICCI SOLITONS

ON ALMOST KENMOTSU MANIFOLDS

Yaning Wang, Uday Chand De, and Ximin Liu

Abstract. If the metric of an almost Kenmotsu manifold with conformal
Reeb foliation is a gradient Ricci soliton, then it is an Einstein metric and
the Ricci soliton is expanding. Moreover, let (M2n+1, φ, ξ, η, g) be an almost
Kenmotsu manifold with ξ belonging to the (k, µ)′-nullity distribution and
h 6= 0. If the metric g of M2n+1 is a gradient Ricci soliton, then M2n+1 is
locally isometric to the Riemannian product of an (n+1)-dimensional manifold
of constant sectional curvature −4 and a flat n-dimensional manifold, also, the
Ricci soliton is expanding with λ = 4n.

1. Introduction

In 1972, Kenmotsu in [12] introduced a special class of almost contact metric
manifolds, which is known as Kenmotsu manifolds nowadays. Since then, many
authors have investigated Kenmotsu manifolds by using various meaningful geo-
metric conditions. Almost Kenmotsu manifolds were first introduced by Janssens
and Vanhecke in [11], generalizing the class of Kenmotsu manifolds. Recently,
almost Kenmotsu manifolds were investigated by some authors in [5, 6, 13, 14].

On the other hand, in 1982, Hamilton in [9] introduced the notion of the Ricci
flow to find a canonical metric on a smooth manifold. The Ricci flow is an evolution
equation for metrics on a Riemannian manifold:

(1.1)
∂

∂t

gij(t) = −2Rij .

A Ricci soliton (see [10]) is a generalization of the Einstein metric (that is, the
Ricci tensor is a constant multiple of the Riemannian metric g) and is defined on
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a Riemannian manifold (M, g) by

(1.2) 1
2 LV g + Ric +λg = 0

for some constant λ and a vector field V . Clearly, a Ricci soliton with V zero or
a Killing vector field reduces to an Einstein equation. The Ricci soliton is said to
be shrinking, steady and expanding according as λ is negative, zero and positive
respectively. Compact Ricci solitons are the fixed points of the Ricci flow projected
from the space of metrics onto its quotient modulo diffeomorphisms and scalings,
and often arise as blow-up limits for the Ricci flow. If the vector field V is the
gradient of a potential function −f , then g is called a gradient Ricci soliton and
equation (1.2) becomes

(1.3) ∇∇f = Ric +λg.

Following Perelman [15], we know that a Ricci soliton on a compact manifold is a
gradient Ricci soliton.

Ricci solitons on contact metric manifods, three-dimensional trans-Sasakian
manifolds and N(k)-quasi-Einstein manifolds were studied by Ghosh [8], Turan,
De, and Yildiz [18] and Crasmareanu [3], respectively. With regard to the studies
of Ricci solitons on Kenmotsu manifolds, we refer the reader to De and Matsuyama
[4] and Ghosh [7], respectively. Moreover, Ricci solitons on f -Kenmotsu manifolds
were studied by Călin and Crasmareanu [2]. As far as we know, there are no
studies on Ricci solitons on almost Kenmotsu manifolds. The object of this paper
is to investigate gradient Ricci solitons on almost Kenmotsu manifolds under some
geometric conditions. In fact, we mainly obtain the following results in Section 3.

Theorem 1.1. If the metric of an almost Kenmotsu manifold (M2n+1, φ, ξ, η, g)
with conformal Reeb foliation is a gradient Ricci soliton, then one of the following

cases occurs:

case 1: n = 1, M3 is a three dimensional Kenmotsu manifold of constant

sectional curvature −1 and the gradient Ricci soliton is expanding with λ = 2;

case 2: n > 1, M2n+1 is an Einstein manifold with the Ricci operator Q =
−2n id and the gradient Ricci soliton is expanding with λ = 2n.

The above theorem is a generalization of Theorem 4.1 of [4] (see Corollary 3.3
in Section 3). Moreover, gradient Ricci solitons on almost Kenmotsu manifolds
with ξ belonging to certain nullity distribution and h 6= 0 are classified as follows:

Theorem 1.2. Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold with ξ

belonging to the (k, µ)′-nullity distribution and h 6= 0. If the metric g of M2n+1 is a

gradient Ricci soliton, then M2n+1 is locally isometric to the Riemannian product

of an (n + 1)-dimensional manifold of constant sectional curvature −4 and a flat

n-dimensional manifold. Moreover, the Ricci soliton is expanding with λ = 4n and

the gradient of the potential function is an eigenvector field of h′ with eigenvalue −1.

The paper is organized as follows. In Section 2, we recall some well known basic
formulas and properties of almost Kenmotsu manifolds. In Section 3, by applying
some results proved by Pastore and Saltarelli, we completely classify the gradi-
ent Ricci solitons on almost Kenmotsu manifolds with conformal Reeb foliation.
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Finally, by using some results obtained by Dileo and Pastore, we also obtain the
classification of gradient Ricci solitons on almost Kenmtsu manifolds with h 6= 0
whose Reeb vector field ξ belongs to the (k, µ)′-nullity distribution.

2. Almost Kenmotsu manifolds

Following [5, 6, 12], we first recall some basic notions and properties of almost
Kenmotsu manifolds. An almost contact structure (see Blair [1]) on a (2n + 1)-
dimensional smooth manifold M2n+1 is a triplet (φ, ξ, η), where φ is a (1, 1)-type
tensor field, ξ a global vector field (which is called the characteristic vector field)
and η a 1-form, such that

(2.1) φ2 = − id +η ⊗ ξ, η(ξ) = 1,

where id denotes the identity mapping. This implies that φ(ξ) = 0, η ◦ φ = 0 and
rank(φ) = 2n. A Riemannian metric g on M2n+1 is said to be compatible with the
almost contact structure (φ, ξ, η) if g(φX, φY ) = g(X, Y )−η(X)η(Y )for any vector
fields X, Y ∈ Γ(T M), where Γ(T M) denotes the Lie algebra of all differentiable
vector fields on M2n+1.

An almost contact structure endowed with a compatible Riemannian metric is
said to be an almost contact metric structure. The fundamental 2-form Φ of an
almost contact metric structure is defined by Φ(X, Y ) = g(X, φY ) for any vector
fields X and Y on M2n+1. We may define on the product manifold M2n+1 × R an
almost complex structure J by

J
(

X, f
d

dt

)

=
(

φX − fξ, η(X)
d

dt

)

,

where X denotes a vector field tangent to M2n+1, t is the coordinate of R and f is
a C∞-function on M2n+1 × R. From Blair [1], the normality of an almost contact
structure is expressed by the vanishing of the tensor Nφ = [φ, φ] + 2dη ⊗ ξ, where
[φ, φ] is the Nijenhuis tensor of φ. An almost Kenmotsu manifold is defined as an
almost contact metric manifold such that dη = 0 and dΦ = 2η∧Φ. A normal almost
Kenmotsu manifold is said to be a Kenmotsu manifold (see [11]). It is known [12]
that a Kenmotsu manifold M2n+1 is locally a warped product I ×f M2n (where
M2n is a Kählerian manifold, I is an open interval with coordinate t and f = cet

for some positive constant c).
Now let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold. We consider two

tensor fields l = R(· , ξ)ξ and h = 1
2 Lξφ on M2n+1, where R denotes the curvature

tensor and L is the Lie differentiation. Following [13], the two (1, 1)-type tensor
fields l and h are symmetric and satisfy

(2.2) hξ = 0, lξ = 0, tr h = 0, tr(hφ) = 0, hφ + φh = 0.

We also have the following formulas presented in [5, 6, 13]:

∇Xξ = −φ2X − φhX (⇒ ∇ξξ = 0),(2.3)

φlφ − l = 2(h2 − φ2),(2.4)

tr(l) = S(ξ, ξ) = g(Qξ, ξ) = −2n − tr h2,(2.5)
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R(X, Y )ξ = η(X)(Y − φhY ) − η(Y )(X − φhX) + (∇Y φh)X − (∇Xφh)Y,(2.6)

∇ξh = −φ − 2h − φh2 − φl(2.7)

for any X, Y ∈ Γ(T M), where S, Q and ∇ denote the Ricci curvature tensor, the
Ricci operator with respect to g and the Levi-Civita connection of g, respectively.

On an almost contact metric manifold M , if the Ricci operator satisfies

Q = α id +βη ⊗ ξ,

where both α and β are smooth functions, then M is called an η-Einstein manifold.
Clearly, an η-Einstein manifold with β = 0 and α a constant is an Einstein manifold.
An η-Einstein manifold is said to be proper η-Einstein if β 6= 0.

3. Proofs of main results

We assume that the metric g of an almost Kenmotsu manifold (M2n+1, φ, ξ, η, g)
is a gradient soliton; then equation (1.3) becomes

(3.1) ∇Y Df = QY + λY

for any Y ∈ Γ(T M), where D denotes the gradient operator of g. It follows from
(3.1) that

(3.2) R(X, Y )Df = (∇XQ)Y − (∇Y Q)X

for any X, Y ∈ Γ(T M). Before giving the detailed proof of our Theorem 1.1, we
first present the following result which is directly deduced from Theorem 5.1 and
Remark 5.1 of [14]. Throughout this paper, we denote by D the distribution defined
by D = ker η.

Lemma 3.1. Let (M2n+1, φ, ξ, η, g) be an η-Einstein almost Kenmotsu manifold

with h = 0, then one of the following cases occurs:

case 1: n = 1, the Ricci operator of M3 is Q = −(β + 2) id +βη ⊗ ξ and

ξ(β) = −2β;

case 2: n > 1, β = 0, the Ricci operator is Q = −2n id and the integral subman-

ifolds of the distribution D are Einstein almost Kählerian Ricci-flat hypersurfaces;

case 3: n > 1, β is not a constant, X(β) = 0 for any X ∈ D and ξ(β) = −2β.

Hence, the Ricci operator is Q = −2n id +βφ2, where β is locally given by β = ce−2t

for some constant c 6= 0.

From Lemma 3.1 we see that for an η-Einstein almost Kenmotsu manifold
M2n+1 with h = 0, if either α or β is a constant then M2n+1 is an Einstein
manifold with Q = −2n id.

Proof of Theorem 1.1. From Pastore and Saltarelli [14], we see that the
Reeb foliation of an almost Kenmotsu manifold is conformal if and only if h = 0.
Using h = 0 in (2.3) and (2.6) we have

(3.3) ∇Xξ = X − η(X)ξ

for any Y ∈ Γ(T M) and

(3.4) R(X, Y )ξ = η(X)Y − η(Y )X
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for any X, Y ∈ Γ(T M), respectively. Replacing X by ξ in (3.4) gives an equation;
then taking the inner product of the resulting equation with Df and making use
of the curvature properties, we obtain

(3.5) g(R(ξ, Y )Df, ξ) = −Y (f) + η(Y )ξ(f)

for any Y ∈ Γ(T M). On the other hand, by a straightforward calculation, we may
obtain from (3.2) that

(3.6) g(R(ξ, Y )Df, ξ) = 0

for any Y ∈ Γ(T M), where Qξ = −2nξ (which is deduced from equation (3.4)) and
(3.3) are used. Clearly, from (3.5) and (3.6) we have

Df = ξ(f)ξ.

Substituting the above equation into (3.1) gives

(3.7) QY = (ξ(f) − λ)Y + (Y (ξ(f)) − ξ(f)η(Y ))ξ

for any Y ∈ Γ(T M). Then taking the inner product of relation (3.7) with ξ and
making use of Qξ = −2nξ we obtain

(3.8) Y (ξ(f)) = (λ − 2n)η(Y )

for any Y ∈ Γ(T M). Finally, putting (3.8) into (3.7) we get

(3.9) Q = (ξ(f) − λ) id +(λ − ξ(f) − 2n)η ⊗ ξ

This means that M2n+1 is an η-Einstein manifold. In this context, it follows from
Lemma 3.1 that ξ(β) = −2β for n > 1, applying this equation on (3.9) we have
ξ(ξ(f)) = 2(λ − 2n − ξ(f)). On the other hand, replacing Y by ξ in equation (3.8)
implies that ξ(ξ(f)) = λ − 2n. Consequently, it follows that ξ(f) = λ−2n

2 being a
constant. This means that case 3 of Lemma 3.1 can not occur. Taking into account
equation (3.8) we obtain λ = 2n and hence ξ(f) = 0, then we see from (3.9) that
Q = −2n id. It is well known that the curvature tensor of a three dimensional
Riemannian manifold (M3, g) is given by

R(X, Y )Z = g(Y, Z)QX − g(X, Z)QY + g(QY, Z)X

− g(QX, Z)Y − r

2

(

g(Y, Z)X − g(X, Z)Y
)

for any X, Y, Z ∈ Γ(T M), where r denotes the scalar curvature of M3. It is also
well known that an almost Kenmotsu manifold of dimension 3 with h = 0 is a
Kenmotsu manifold (see [5]). Then putting Q = −2 id in the above equation
proves case 1 of Theorem 1.1. The proof of case 2 of Theorem 1.1 follows from the
above arguments. �

Remark 3.1. We observe from [6, 14] that for an almost Kenmotsu manifold,
the following four conditions are equivalent: (1) the Reeb foliation is conformal; (2)
ξ belongs to the k-nullity distribution; (3) ξ belongs to the (k, µ)-nullity distribu-
tion; (4) the tensor field h vanishes. Therefore, for an almost Kenmotsu manifold
whose Riemanian metric is a gradient Ricci soliton, under one of the above four
conditions, the conclusion of Theorem 1.1 still holds.
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From Proposition 3.2 of [5], we know that an almost Kenmotsu manifold is a
Kenmotsu manifold if and only if the integral manifolds of the distribution D are
Kählerian and h = 0. Thus, the following result follows from Theorem 1.1.

Corollary 3.1. If the metric g of a Kenmotsu manifold M2n+1 is a gradient

Ricci soliton, then M2n+1 is an Einstein manifold with Q = −2n id and the gradient

Ricci soliton is expanding with λ = 2n.

We remark that Corollary 3.1 is just Theorem 4.1 of [4], which means that our
Theorem 1.1 extends the corresponding results shown in [4].

In what follows, we shall consider almost Kenmotsu manifolds for which ξ

belongs to the (k, µ)′-nullity condition (see [6]), that is,

(3.10) R(X, Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )h′X − η(X)h′Y )

for any X, Y ∈ Γ(T M) where k, µ ∈ R and h′ = h ◦ φ. It follows from Proposition
4.1 of [6] that, for an almost Kenmotsu manifold with ξ belonging to the (k, µ)′-
nullity distribution, µ = −2. Replacing Y by ξ in (3.10) gives lX = k(X −η(X)ξ)+
µh′X , then making use of (2.1) and (2.2) we get φlφX = −k(X − η(X)ξ) + µh′X .
Substituting this equation into (2.4) gives

(3.11) h′2 = (k + 1)φ2 (⇔ h2 = (k + 1)φ2).

Let X ∈ D be an eigenvector field of h′ orthogonal to ξ with the corresponding
eigenvalue γ, thus from (3.10) we have that γ2 = −(k + 1). It follows that k 6 −1
and γ = ±

√
−k − 1. It is known [6] that M2n+1 is locally isometric to the warped

product of an (n + 1)-dimensional hyperbolic space of constant sectional curvature
k−2γ and a flat n-dimensional space. By Proposition 4.2 of [6], if h′ 6= 0 (⇔ h 6= 0),
the present first and third authors proved the following result.

Lemma 3.2 (Lemma 3.2 of [20]). Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu

manifold with ξ belonging to the (k, µ)′-nullity distribution and h′ 6= 0. Then the

Ricci operator Q of M2n+1 is given by

(3.12) Q = −2n id +2n(k + 1)η ⊗ ξ − 2nh′,

where k < −1, moreover, the scalar curvature of M2n+1 is 2n(k − 2n).

Proof of Theorem 1.2. By applying Lemma 3.2 we have

(∇Y Q)X = 2n(k + 1)η(X)(Y + h′Y ) − 2n(∇Y h′)X

+ 2n(k + 1)(g(X, Y ) − 2η(X)η(Y ) + g(h′X, Y ))ξ

for any X, Y ∈ Γ(T M). It follows from the above equation that

(∇XQ)Y − (∇Y Q)X = − 2n((∇Xh′)Y − (∇Y h′)X)(3.13)

− 2n(k + 1)(η(X)(Y + h′Y ) − η(Y )(X + h′X))

for any X, Y ∈ Γ(T M). Replacing X by ξ in (3.10) gives an equation, then taking
the inner product of the resulting equation with Df and making use of the curvature
properties we obtain

(3.14) g(R(ξ, Y )Df, ξ) = kg(Df − ξ(f)ξ, Y ) − 2g(Df, h′Y )
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for any Y ∈ Γ(T M), where µ = −2 is used. On the other hand, replacing X by ξ

in (3.2) and making use of (3.13) we see

R(ξ, Y )Df = −2n((∇ξh′)Y − (∇Y h′)ξ) − 2n(k + 1)(Y + h′Y − η(Y )ξ)

for any Y ∈ Γ(T M). Hence, it follows from the above equation and (2.2)-(2.3) that

(3.15) g(R(ξ, Y )Df, ξ) = 0

for any Y ∈ Γ(T M). Comparing (3.14) with (3.15) we get

(3.16) k(Df − ξ(f)ξ) = 2h′(Df).

By h′ξ = 0, the action of h′ on the above equation and making use of (3.16) imply

h′2(Df) =
k2

4
(Df − ξ(f)ξ).

Putting the above equation into (3.11) and taking into account k < −1 we know

(3.17) (k + 2)2(Df − ξ(f)ξ) = 0.

Clearly, it follows from (3.17) that either k = −2 or Df = ξ(f)ξ Now we prove
that the latter case can not occur. In fact, if we assume that the latter case is true,
that is Df = ξ(f)ξ, putting this into (3.1) and making use of (2.3) we obtain

∇Y Df = Y (ξ(f))ξ + ξ(f)(Y − η(Y )ξ + h′Y )

for any Y ∈ Γ(T M). Using the above equation in (3.1) we have

QY = (ξ(f) − λ)Y + (Y (ξ(f)) − ξ(f)η(Y ))ξ + ξ(f)h′Y

for any Y ∈ Γ(T M). Comparing the above equation with (3.12) we see that

(3.18) (2n+ξ(f))h′Y = (λ−ξ(f)−2n)Y +(2n(k+1)η(Y )+ξ(f)η(Y )−Y (ξ(f)))ξ

for any Y ∈ Γ(T M). Next, we assume that 2n + ξ(f) = 0; then it follows from
(3.18) that λY + 2nkη(Y )ξ = 0 for any Y ∈ Γ(T M). Let Y ∈ D in this equation
we get λ = 0, consequently, it follows that k = 0; this contradicts the hypothesis
k < −1 (⇔ h 6= 0). Hence, by 2n + ξ(f) 6= 0, (3.18) implies that for any vector
field Y orthogonal to ξ we have Y (ξ(f)) = 0 and

(3.19) h′Y =
( λ

2n + ξ(f)
− 1

)

Y.

Combining (3.19) and h′ ◦ φ + φ ◦ h′ = 0, we get

(3.20)
λ

2n + ξ(f)
− 1 = 0

and thus h′Y = 0 for any Y ∈ D. Therefore h′ = 0, contradicting the hypothesis
h′ 6= 0. Consequently, we obtain from relation (3.17) that k = −2, making use of
this equation in (3.11) we see that h′2 = −φ2. Finally, it follows from Proposi-
tion 4.1 and Corollary 4.2 of [6] that M2n+1 is locally isometric to the Riemannian
product of an (n + 1)-dimensional manifold of constant sectional curvature −4 and
a flat n-dimensional manifold.

Now we denote by [1]′ and [−1]′ the distributions of the eigenvectors of h′

orthogonal to ξ with eigenvalues 1 and −1 respectively. Notice that if X ∈ [1]′
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then φX ∈ [−1]′, and thus both eigenvalues 1 and −1 have the same multiplicity n.
Hence we may consider a local orthonormal φ-frame {ξ, Ei, φEi} for 1 6 i 6 n with
Ei ∈ [1]′. Suppose that Df =

∑n

i=1 αiEi +
∑n

i=1 βiφEi +θξ (where αi, βi and θ are
smooth functions on M2n+1). Then we have h′(Df) =

∑n

i=1 αiEi −
∑n

i=1 βiφEi.
On the other hand, making use of k = −2 in equation (3.16), we obtain h′(Df) =
− ∑n

i=1 αiEi−
∑n

i=1 βiφEi +(ξ(f)−θ)ξ. Obviously, we get αi = 0 for any 1 6 i 6 n

and θ = ξ(f). Thus, making use of Df =
∑n

i=1 βiφEi + ξ(f)ξ in relation (3.1) and
by a direct calculation we obtain an equation; applying (3.12) in (3.1) and making
use of k = −2, we get another equation, comparing these two equations we have

(3.21) (λ − 2n)Y − 2nη(Y )ξ − 2nh′Y

=

n
∑

i=1

(Y (βi)φEi + βi∇Y φEi) + Y (ξ(f))ξ + ξ(f)(Y − η(Y )ξ + h′Y )

for any Y ∈ Γ(T M). From the proof of Proposition 4.1 of [6], we have ∇ξφEi ∈
[−1]′; then letting Y = ξ in (3.21) we obtain

(3.22) λ − 4n = ξ(ξ(f)).

Also, from the proof of Proposition 4.1 of [6] we have ∇Ej
φEi ∈ [−1]′ for any

Ej ∈ [1]′, then replacing Y by Ej in (3.21) we have

(3.23) λ − 4n = 2ξ(f).

It follows from (3.22) and (3.23) that λ = 4n and hence ξ(f) = 0. In this case,
we may write Df =

∑n

i=1 βiφEi and (3.16) becomes h′(Df) = −Df . Moreover,
applying (3.12) we obtain from equation (3.1) that ∇Df = −2n(h′ + φ2). This
completes the proof. �

Remark 3.2. We see from Petersen and Wylie [16, 17] that under the hypoth-
esis of our Theorem 1.2, M2n+1 turns out to be locally isometric to a rigid gradient
Ricci soliton, which is the Riemannian product of the Einstein manifold H

n+1(−4)
and the Gaussian soliton R

n.
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