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1. Introduction. This paper is concerned with relationship between three
notions: the differentiability of a convex function/ the rotundity of the convex
function g conjugate to / and the continuity of the subdifferential mapping 8fi
(which reduces to the gradient mapping V/where/is differentiable). These notions
are considered in the context of various admissible topologies on paired vector
spaces.

When /is the norm || • || on a Banach space X, or/=(l/2)|| ■ ||2, our results are
comparable to the theorems of Smulyan [19], Cudia [6] and others about the
relationship between the differentiability of ¡|||, the rotundity of the dual unit
ball in X* and the continuity of the spherical or extended spherical mappings from
A" to A**; see Asplund [2]. Our results also contain as a special case some recent
results of Lescarret [9] on the strong continuity of gradient mappings in Banach
spaces. They are stronger than, but do not quite contain, the theorems of Moreau
[12], [13] about the upper semicontinuity of 8fi and SA/(see the remark following
Proposition 5).

We would like to thank Professor J. J. Moreau for some very helpful suggestions
with regard to an earlier version of this paper.

2. Basic definitions. Throughout this paper, X and F will denote vector spaces
over the real number system F paired by a bilinear form <•, •>, with respect to
which X distinguishes the points of F and F distinguishes the points of X. We
denote by w(X, Y) and s(X, Y), respectively, the weak and strong topologies
induced on X by F; similarly w( Y, X) and s( Y, X) on F. Differentiability proper-
ties in the space X will be shown to be dual to rotundity properties in the space F.

Let / be an extended-real-valued function on X (i.e. an everywhere-defined
function with values in F u {±oo}). Let A be any nonempty subset of X. We shall
say that/is A-differentiable at a given xe X if/is finite at x and there exists a
y e Y such that

f(^u)-fi(x)_<u^=0
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In this event y is called an A-gradient of fiat x, and y satisfies in particular

(2.2) f'(x;u) = (u,yy,   Vue A,

where fi'(x; u) is the one-sided directional derivative off at x with respect to u.
If si is a collection of nonempty subsets of A1, we shall say that/is -si-differenti-

able at x when there exists a y such that y is an ,4-gradient of / at x for every
A esé.

If .s/ consists of all singleton subsets of X (subsets consisting of a single point),
■^-differentiability is called Gâteaux differentiability. If Aris a normed linear space,
Y= X* (the dual of X, in the canonical pairing, of course) and si consists of just
the unit ball of X, ^-differentiability is Fréchet differentiability.

In what follows, si will always denote a collection of nonempty subsets of X
such that

(a) each A esi'is w(X, y)-bounded,
(b) (J {A | A e si} generates X algebraically,
(c) A e si implies — A e si.

Assumptions (a) and (b) guarantee that a locally convex Hausdorff topology is
induced on Y by uniform convergence of the linear functionals < •, y> on subsets
in si; this topology on Twill be denoted by if. Assumption (b) implies by (2.2) that,
for a given x e X, there is at most one y e Y such that y is an ,4-gradient off at x
for every A esi. The unique y, if it exists, is called the si-gradient off at x. Assump-
tion (c) implies that, for an ¿/-gradient y, the limits in (2.1) can be taken in the
two-sided sense as A -> 0, rather than merely as A \ 0.

We shall mostly be interested in the case where/is a convex function on X, i.e.
where the epigraph

epi/ = {(x, p) | x £ X, p £ R, p à fix)}

is a convex set in X © R. lff(x) > — oo for every x andf(x) < +oo for at least one x,
we say that/is a proper convex function. We denote by dom/the effective domain
off, which is the convex set

{xe X\f(x) < +oo}.

A vector y e Y is said to be a subgradient off at x if

(2.3) f(x + u)^f(x) + (u,yy,   VueX.

The set of subgradients of/ at x is denoted by dfi(x), and the multivalued mapping
8f: x^f(x) from A" to Y is called the subdifferential off. The definition implies
that 8f(x) is a (possibly empty) w( Y, A')-closed convex subset of Y for each x.
Assuming/is a convex function finite at x, one has y e df(x) if and only if

(2.4) <u,y> Sf'(x;u),   VueX.

For the general theory of convex functions and subgradients, we refer the reader
to [4], [111, [131, [171.
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We shall denote by rad/the set of points at which the convex set dorn/is
radial, i.e. the set of all x e dorn /such that every half-line emanating from x
contains points of dorn/besides x.

Proposition 1. Let fi be a convex function on X, and let x be a point where f is
sí-differentiable. Then fi is proper and x e rad/ Moreover, df(x) consists of a single
vector y, the si-gradient of fiat x. This y is in particular the Gâteaux gradient off
at x.

Proof. Let U={J {A \ A e sí}; by our assumption (b) above, every vector in X
can be expressed as a linear combination of vectors in U. The ^/-gradient y
satisfies

(2.5) iu,y}=f(x;u)= -f'(x;-u)

for every ueU. Since/is convex, it follows, as is well known (e.g. see [17, Theorem
25.2]), that (2.5) holds for every u which is a linear combination of vectors
ux,.. .,uk in U. Thus (2.5) holds for every u e X, so that dom/is radial at x, and
y is the Gâteaux gradient. Then y is the unique subgradient at x, since it is the
only vector satisfying (2.4), and/is proper by (2.3). This finishes the proof.

Whenever 8f(x) consists of exactly one element y (as in the case of Proposition
1), we shall denote this y by V/(jc). The mapping Vf: x -> Vf(x) will be called the
gradient mapping associated with / (The domain of Vf is thus the set of points
xe X such that dfi(x) is nonempty and contains no more than one element, whereas
the range of Vf is a subset of F.)

Rotundity properties will now be defined. Let g he an extended real-valued-
function on F, and let F be a subset of F. We shall say that g is B-rotund at a
given y e Y relative to a given x e X if g(y) is finite and, for every e > 0, there
exists a 8 > 0 such that

(2.6) {v | g(y + v) - g(y) - <x, v} ^ 8} c £B.

We shall say that g is ^-rotund at y relative to x if g is F-rotund for every
^"-neighborhood F of the origin. Since 3~ is a Hausdorff topology on F, this
condition implies that

(2.7) g(y + v) > g(y) + {x, v),   Vz; # 0,

and hence in particular that x e dg(y).
The concept of ^"-rotundity is useful in the study of various extremum problems.

An extended-real-valued function « on F is said to attain its minimum over a
subset C of F at y strongly with respect to 3~ if (« attains its infimum over C at
the point y and) every sequence yu y2,..., in C with

lim h(yk) = inf h
fc-»oo C
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is ^"-convergent to y. (Here ^"-convergence of sequences actually implies 9~-
convergence of all nets.) It is easy to see that g is ^"-rotund at y relative to x if
and only if the infimum of the function g—(x, • > over Y is finite and attained at y
strongly with respect to ST. Thus, for example, when g is the indicator of a subset
C of Y, i.e.

g(y) = 0        ifxeC,
(2.8) = +00   if x$ C,

g is ^"-rotund at y relative to x if and only if the supremum of the linear functional
<jc, • > over C is finite and attained at y strongly with respect to 3~.

The following result will enable us to concentrate our investigation of rotundity
on the case of convex functions.

Proposition 2. Let g be an extended-real-valued function on Y, and let x and y
be elements of X and Y, respectively, such that g(y) is finite. Let g be the w(Y, X)-
lower semicontinuous convex hull of g (i.e. the pointwise supremum of the collection
of all w( Y, Xy lower semicontinuous convex functions on Y majorized by g). Suppose
that there exists a ^-bounded convex set C containing the origin in Y such that

(2.9) lim inf [(1/A) inf {g(y + v)-g(y)-{x, vy}] > 0.
Â-.+00    L vtAC J

Then g is 3"-rotund at y relative to x if and only if g is 3~-lower semicontinuous at y
and g is ¡F-rotund at y relative to x. In this event, g is necessarily proper and
g(y)=g(y)-

Proof. Replacing g if necessary by

h(v) = g(y + v)-g(y)-(.x, vy,

we can reduce the proof to the case where

(2.10) x = 0,    y = 0,   g(y) = g(0) = 0.

Assume that g is ^"-rotund at 0 relative to 0. Let B be any closed convex sym-
metric ^"-neighborhood of 0 in Y, and let p be the gauge of B, i.e.

p(v) = inf {A ̂  0 | veXB}.

Define y on [0, +oo) by

j(X) = inf{g(v)\p(v)^ A}.

Clearly j is a nondecreasing function such that

(2.11) j(p(v)) S g(v),   VveY,

and by (2.9) we have

(2.12) lim inf/(A)/A > 0.
A-. + CO
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The ^"-rotundity of g implies that

(2.13) yïO) = 0,    but 7(A) > 0 for every A > 0.

Let 7" be the lower semicontinuous convex hull of/ on [0, +oo), i.e. the pointwise
supremum of the collection of all lower semicontinuous convex functions on
[0, +oo) majorized by/ It follows easily from (2.12) and (2.13) that

(2.14) y-(0) = 0,    but 7(A) > 0 for every A > 0,

and this implies by the convexity of 7" that 7" is increasing. The function

(2.15) k(v)=j(p(v))

is convex and tr(F, A')-lower semicontinuous on F, and k Sg by (2.11). Therefore
k^g^g. Since

0 = *(0) S g(0) = 0,

we have g(0) = g(0) = 0, implying that g is w( F, A")-lower semicontinuous at 0, and
hence in particular ^"-iower semicontinuous at 0. For every 8 > 0, we also have

(2.16) {v I g(v) < 8} c {v I k(v) £ 8}.

Given any e>0, there exists, by (2.14) and the monotonicity of j, some 8>0 such
that/(A) = 8 implies A^£. Then k(v)£S implies p(v)<e, so that by (2.16)

{V I g(v) g 8} cz {V I piv) £ £} = eB.

This shows that g is F-rotund at 0 relative to 0, and since 3~ has a local base
consisting of w( Y, A")-closed convex symmetric sets like B we may conclude that g
is ^"-rotund at 0 relative to 0. In particular g majorizes the constant function 0,
so that g is a proper convex function.

On the other hand, assume that g is Slower semicontinuous at 0, and that g
is ^-rotund at 0 relative to 0. We have

(2.17) \nfg(v) = infg(v) = g(Q)£R
veY veY

(because g^g and the constant functions majorized by g are by definition also
majorized by g), and for each 8 > 0 we have

(2.18) {v I f(t>) S g(0) + 8} 3 {„ I g(p) á f(0) + 8} / 0.
In view of the ^"-rotundity of g at 0 relative to 0, the sets in (2.18) can be made to
lie in any given ^-neighborhood of 0 by choosing 8 sufficiently small. This implies
furthermore, by the^~-lower semicontinuity ofgatO, thatg(0)=g(0) = 0. Therefore
g is ^"-rotund at 0.

Remark. Condition (2.9) in Proposition 2 is satisfied trivially when the set of
points where g does not have the value +00 is ^-bounded.
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3. Duality between differentiability and rotundity. The conjugate of an extended-
real-valued function g on Y (with respect to the pairing between X and Y) is the
function fonX defined by

(3.1) /(x) = sup{<x,y>-g(v)|y£T}.

As is known,/is a wiX, T)-lower semicontinuous convex function on X. If g is a
w( Y, A')-lower semicontinuous proper convex function, then/is proper and g is in
turn the conjugate off, i.e. one has

(3.2) g(y) = sup{(x, y>-/(*) \xeX}.

In this case,

(3.3) y £ df(x) oxe dg(y) o (x, y> -f(x) -g(y) = 0.

The following fundamental result about polars of level sets of conjugate convex
functions is implicitly contained in a paper of Moreau [10]. As usual, we denote
by C° the polar of a set C<= Y, i.e.

-■o _ {ueX\{u,vy S 1,   VzzeC}.

Proposition 3. Let fand g be proper convex functions conjugate to each other on
X and Y, respectively. Let xeX and ye Y be such that the (nonpositive) quantity

a = inf{g(y + v)-g(y)-<[x, vy} = <x,yy~f(x)-g(y)

is finite. Then, for any 8>0,

{v I g(y+v)-g(y)-<x, vy S 3}° c 8-i{„ \f(x+u)-f(x)-<u,yy S 8}
«= 2{z; | g(y+v)-g(y)-<x, vy S « + S}°.

Proof. The proper convex functions

/o(z) = [f(x+8z)-f(x)-<:8z, yy-8]/8,
go(v) = [g(y + v)-g(y)-(x, vy-a + 8]/8,

are conjugate to each other (as can be verified by direct calculation), and they
satisfy

(3.5) 1 = inf g0 S g0(0) < +00,

(3.6) -1 =/0(0)^inf/o> -oo.

In terms of these functions we can rewrite (3.4) as

(3.7) {v | g0(v) S gQ(0) + l}° <=C^2{v\ g0(v) S 2}°,

where

C = {z\f0(z) SO}.
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Here C is a w(X, F)-closed convex subset of X containing the origin, so that
C00 = C. Thus (3.7) (and Proposition 3) will follow if we show that

(3.8) {v | g0(v) è go(0)+l} =C»3 (1/2X» | g0(v) i 2}.

Let « denote the support function of C on F, i.e.

h(v) = sup {<z, v)\ z eC}.

According to [14, Corollary 4B], « is related to g0 by the formula

(3.9) h(v) = inf AgoiA-1»).
K>0

In particular h^g0 by (3.9), so that

{v | g0(v) í 2} <= {» | A(») ̂  2} = 2{z> | A(») SI}- 2C°.

This establishes the right half of (3.8). To establish the left half of (3.8), it suffices
to show that

(3.10) {v | h(v) <l}^{v\ g0(v) í g0(0) + l},

since the w(Y, A')-closure of the set on the left in (3.10) is

{v | «(f) Ú 1} - C°,

whereas the set on the right in (3.10) is w(Y, A')-closed. Given any v such that
h(v)< 1, there exists by (3.9) some A>0 such that Xg0(\-1v)< 1. Sinceg0(X~1v)^ 1
by (3.5), this A must actually satisfy 0 < A < 1. The convexity of g0 implies then that

g0(v) Ï (l-AteoíOHteoíA-1») < *o(0)+l.

Thus (3.10) holds, and the proof of Proposition 3 is complete.
The fundamental duality between differentiability and rotundity can now be

proved by means of Proposition 3.

Proposition 4. Let fand g be proper convex functions conjugate to each other on
X and Y, respectively. Let A be any nonempty subset of X, and ¡et B be the polar of
A in Y. Let xe X and y e 8f(x). Then y is an A-gradient of fat x if and only if g is
B-rotund at y relative to x.

Proof. By definition, since y e 8f(x) and (2.3) holds, y is an ,4-gradient at x if
and only if, for every e > 0, there exists a p > 0 such that

(3.7) sup {f(x+X^-f(x)-<u,yy} ie,       0 < A Í ,.

Since [f(x+Xu)—fi(x)]/X is a nondecreasing function of A>0 by the convexity of/,
we can write (3.7) as

e~xA c e-y-H" \f(x+u)-f(x)-(u,yy g fu}.
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It follows from Proposition 3 (with a = 0, as indicated by (3.3)) that y is an A-
gradient at x if and only if, for every £>0, there exists a 8>0 such that

(3.8) e-'A c {v | g(v + v)-g(y)-(x, r> S S}°.

Taking polars, we can express (3.8) equivalently as

eB =» {v I g(y+v)-g(y)-(x, v; S $}■

Thus y is an /1-gradient if and only if g is 5-rotund at y relative to x.

Theorem 1. Let fi and g be proper convex functions conjugate to each other on X
and Y, respectively. Then fi is si-different ¡able at x with y= V/Fy) if and only if g is
3~-rotund at y relative to x.

Proof. If y is the «íZ-gradient of/at x, we have y e cf(x) in particular, by Prop-
osition 1. On the other hand, if g is ^"-rotund at y relative to x we have x e 8g(y),
and hence y e cf(x). Thus in either case Proposition 4 is applicable, and it follows
that/is ¿/-differentiable at x with ¿/-gradient y if and only if g is F-rotund at y
relative to x for every Bead, where 3) consists of all the polars of sets in si. The
latter condition is equivalent to g being ^-rotund at y relative to x, since the sets
of the form

B = XXBX n ■ ■ • n XmBm,       Af > 0,   Bte 38,

are a local base for F, and since g is 5-rotund for such a B if and only if g is
Frrotund for /= 1,..., zzz.

Corollary 1. Let f and g be proper convex functions conjugate to each other on
X and Y, respectively. Then fi is Gâteaux differentiable at x with y = Vf(x) if and
only if g is w( Y, X)-rotund at y relative to x.

In particular, fis Gâteaux differentiable at 0 with y= V/(0) if and only if g attains
its infimum over Y at y strongly with respect to the w( Y, X)-topology.

Proof. Take si to be the collection of all singleton subsets of X.

Corollary 2. Let X be a normed linear space, and let Y— X* (in the canonical
pairing). Let fand g be proper convex functions conjugate to each other on X and Y,
respectively. Then f is Fréchet differentiable at x with y= Vfi(x) if and only if g is
norm rotund (i.e. rotund with respect to the norm topology) at y relative to x.

In particular, fi is Fréchet differentiable at 0 with y= V/(0) if and only if g attains
its infimum over Y at y strongly with respect to the norm topology.

Proof. Let si consist of just the unit ball in X.

Corollary 3. Let f beany w(X, Y)-lower semicontinuous proper convex function
on X. Iff is si-differentiable at x, then f is actually si'-differentiable at x, where si'
consists of all the nonempty ^-equicontinuous subsets of X.
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Proof. The topology induced on F by uniform convergence of linear functionals
on subsets of si' is the same as 9". Hence the j/'-differentiability of/ at x is the
same as the ^-differentiability off at x by Theorem 1.

Corollary 3 implies in particular that (if/ is any w(X, F)-lower semicontinuous
proper convex function on X) fis Gâteaux differentiable at x if and only if/ is
actually ^"-differentiable at x, where IF is the collection of all nonempty finite-
dimensional bounded subsets of X.

Corollary 4. Let f be a w(X, Y)-lower semicontinuous proper convex junction on
X. Suppose there exists an s/-bounded linear functional k on X such that, for a given
x e X,f(x) is finite and

lim sup
A \ 0  veA

If Y is 3~-complete, then there exists a ye Y such that k(u) = <m,y} for every
ue X, so that fis actually si-differentiable at x.

Proof. Let Z be the space of all j^-bounded linear functionals on X. Under the
canonical pairing between X and Z (with respect to which the sets in si are all
w(X, Z)-bounded), we may regard F as a w(Z, A")-dense subspace of Z which by
^-completeness is ^"-closed (the ^"-topology on Z being, of course, the topology
of uniform convergence on the sets in si). Let g be the convex function on Z
conjugate to/ Then/is the conjugate of g with respect to the pairing between X
and Z, and at the same time / is the conjugate of the restriction of g to F with
respect to the pairing between X and F. The infimum of g-(x, •> over Z is thus
the same as the infimum of g—<[x, ■> over F, namely —f(x). Let yu y2,... be a
sequence in F such that g(yk) — (.yk, x) decreases to this infimum. By Theorem 1,
g is ^"-rotund relative to x at the point of Z corresponding to k, so that yk $~-
converges to this point. Since F is ^"-closed in Z, this point must actually belong
to F.

Corollary 5. Let Y be a Banach space, and let X= Y*. Let fi be a w(X, Y)-
lower semicontinuous proper convex function on X. Ififiis Fréchet differentiable at x,
the Fréchet gradient actually belongs to Y (rather than merely to Y**). Thus fi is
Fréchet differentiable at x if and only if the function g — (,x, •> (where g is the con-
jugate off) attains its infimum over Y strongly with respect to the norm topology.

Proof. Apply Theorem 1 and the preceding corollary in the case where si
consists of just the unit ball of X.

In the case of Corollary 5 where/is the norm on X= Y*, g is the indicator of the
unit ball C of F as in (2.8), and one gets a classical result of Smulyan [19]: the
norm on F* is Fréchet differentiable at x if and only if the linear functional
<[x, ■ > attains its supremum over C strongly with respect to the norm topology.

fi(x+Xu)-fi(x)-k(u) = 0, VA es/.
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Theorem 1 can be extended by means of Proposition 2 to cases where g is not
convex or everywhere h'( Y, A")-lower semicontinuous.

Corollary 6. Let g be an extended-real-valued function on Y, and let fi be the
conjugate of g on X. Let x and y be elements of X and Y, respectively, such that g is
finite and 3~-lower semicontinuous at y. Suppose there exists a ^-bounded convex
set C containing the origin in Y such that

liminff(l/A) inf{g(y + v)-g(y)-(x,vy}] > 0
Á-XC      [ vtÁC J

(which is true in particular if g has the value +oo everywhere outside of a certain
<T-bounded subset of Y). Then f is si-differentiable at x with y= V/(x) if and only
if g is J -rotund at y relative to x.

Proof. Let g be the w( Y, A')-lower semicontinuous convex hull of g. Of course,
/is also the conjugate off, and if either for g is propergis in turn the conjugate
off. The ¿/-differentiability off at x implies the properness of/by Proposition 1,
whereas the ^"-rotundity of g at y relative to x implies the properness of g by
Proposition 2. The result is thus immediate from Theorem 1 and Proposition 2.

4. Differential continuity. We shall now explore the relationship between the
differentiability of a w(X, F)-lower semicontinuous proper convex function / on
X and the continuity of the subdifferential mapping df: x -*■ 8f(x). More generally,
we shall consider continuity properties of the mapping

(x, X) -> dÁf(x),       xeX, XeR,

where dÁfi(x) is the set of vectors y e Y such that

fi(x + u)^ (f(x) -X) + <«, y>,    Vh £ X.

Note that df is the restriction of the latter mapping to A = 0.
One has

8J(x) = {y\g(y)-(,x,yy S ß + X},

where g is the conjugate off and

j8 = inf {g(y)-<x,yy}= -f(x).
veY

Thus 9A/(x) is always a w( Y, A")-closed convex subset of Y, nonempty in particular
when x e dorn / and A > 0 (but empty when x <£ dom / or A < 0).

Throughout this section, if will denote a topology on A" which is a locally
convex Hausdorff topology having a local base consisting of w(X, T)-closed (con-
vex) sets (polars of certain w( Y, A')-bounded subsets of Y).

If the convex set dom / has a nonempty interior with respect to if, this interior
is of course rad/(as defined just prior to Proposition 1). If dom/happens to be
closed with respect to w(X, Y), then rad/is by definition the s(X, y)-interior of
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dorn / Actually, even when dorn / is not w(X, F)-closed, rad / is the s(X, Y)-
interior of dorn/by the convexity and w(X, F)-lower semicontinuity of / (see
Corollary 1 below).

The following results will be needed.

Theorem 2 (Moreau [10, 13]). Let fi be a w(X, Y)-lower semicontinuous proper
convex function on X.

(a) Suppose that fi has a finite upper bound in some Sf-neighborhood of some point
of X. Then 8^f(x) is an Sf-equicontinuous subset of Y for every x e rad /and Xe R.
In fact, given any x e rad fand any p.e R, there exists an ¿^-neighborhood U of the
origin such that the sets 8Kf(x + u) are uniformly ¿f-equiconftnuous for ueU and
A^ja, i.e. such that

(4.1) \J{8J(x + u)\ueU,X^p}

is ¡f-equicontinuous.
(b) On the other hand, suppose that, for some xe X and some A>0, 8Kf(x) is

nonempty and ¿f-equicontinuous. Then xe rad / and fi is ¿f-continuous throughout
rad/ so that (a) applies and rad fit's the £f-interior of dorn fi.

Proof. This can be deduced from Proposition 3 and the well-known fact [3,
Chapter II, p. 92] that a finite convex function on an open convex set W is con-
tinuous throughout W if it is merely bounded above in a neighborhood of some
point of W. Proposition 3 says that the inclusions

(4.2) [SJ(x)-yf <= C c 2[8J(x)-yf
hold for

(4.3) C = p-'{u | f(x + u)-f(x)-(u, y) Ú p]

whenever A, p., x and y are such that p.>0,f(x)< +co, g(y)< +oo and

(4.4) *-n=fi(x)+g(y)-(x,y>.

Suppose that/has a finite upper bound in some .^-neighborhood of some point
of X, as hypothesized in (a). Then dorn/has a nonempty ¿"-interior, which must
be rad/ and/is ¿"-continuous throughout this interior. Fix any y e Y such that
g(y) is finite. Since g is conjugate to/ we have

gO0 = <x,y>-f(x)
for every x e X; thus the linear function < •, y} on X is majorized by a function of
the form/+const, implying that <-,j>> has a finite upper bound in some Sf-
neighborhood of some point of X and hence that <-,>>> is ¿''-continuous. The
expression

fi(x+u)-fi(x)-(u,yy
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in (4.3) therefore depends ^-continuously on x and u, as long as x £ rad / and
x + u e rad/ It follows that, given any x e rad/and any real number p>0, there
exist ^-neighborhoods U and V of the origin in X such that

/(x' + M)-/(x')-<zz,y> Sp

whenever x'— x e U and ue pV, or in other words

p-1{u\fi(x' + u)-fi(x')-(u,yy S p} = V

whenever x' — xeU. By the second inclusion in (4.2), we then have

V cz 2[dJ(x')-yf

whenever x' — x £ U. Thus

dJ(x+u)^8J(x+u)<=2V0+y

for every ue U and XSp- Since V is an ^-neighborhood of the origin, and the
linear function <•, y> is y-continuous, the set 2V°+y is y-equicontinuous in Y
and (a) is established.

To prove (b), suppose now that x e X and A > 0 are such that Sxf(x) is nonempty
and ^-equicontinuous. Then/(x)< +oo. Choose any y e d¿f(x) such that actually

fi(x)+g(y)-<x,yy < X

(as is possible by (3.1), since/is the conjugate of g), and define p by (4.4). Then
(4.2) holds. Since y belongs to the «S^-equicontinuous set 3A/(x), the linear function
<■, y> is ^-continuous and the translate dxf(x)—y is again an -^-equicontinuous
set. The polar of 8/ifi(x)—y in X is therefore an ^-neighborhood of the origin.
Then, by the first inclusion in (4.2), the convex function

h(u)=f(x + u)-f(x)-{u,yy

is bounded above in some ^-neighborhood of the origin and hence is ^-con-
tinuous at the origin. This implies that/is ^-continuous at x, and the conclusion
of (b) is immediate.

Corollary 1 (cf. Rockafellar [14]). Let f be a w(X, Y)-lower semicontinuous
proper convex function on X. Then fis s(X, Y)-continuous throughout rad fi (so that
rad / is in particular the s(X, Y)-interior of dom fi). Moreover

(a) dnf(x) is a w( Y, X)-bounded subset of Y for every x e rad fand Xe R. In fact,
given any x e rad / and any pe R, there exists an s(X, Y)-neighborhood U of the
origin such that the sets dKf(x + u) are uniformly w(Y, X)-boundedfor ue U and
XSp, i.e.

(J{dJ-(x + u)\ueU,X Sp}

is w( Y, X)-bounded.
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(b) On the other hand, if x is such that 8xf(x) is nonempty and w( Y, X)-bounded
for some A > 0, then x e rad /

Proof. For any x e rad / the w(X, F)-closed convex set

{u\f(x+u)fkf(x)+l}
is radial at the origin, and hence it is by definition an s(X, F)-neighborhood of the
origin. It follows from the continuity fact cited at the beginning of the proof of
Theorem 2 that/is s(X, F)-continuous throughout rad/ The corollary is then
obtained by specializing ¿" to s(X, Y) in Theorem 2.

Corollary 2 (Moreau [10], [13]). Let f be a w(X, Y)-lower semicontinuous
proper convex function on X, such that f has a finite upper bound in some ¿^-neighbor-
hood of some point of X. Assume that ¿f is compatible with the duality between X
and Y. Then 8fi(x) is a nonempty w( Y, X)-compact (convex) subset of Y for every
x e rad X. In fact, given any x e rad / there exists an ¿*'-neighborhood U of the
origin such that the set

\J{dfi(x + u)\ueU}
is relatively w( Y, X)-compact.

Proof. Since Sf is compatible with the duality, ¿"-equicontinuous sets are
relatively w(X, F)-compact. Then, for xe rad/ 8fi(x) is nonempty, because 8f(x)
is the intersection of the nonempty w( Y, A")-closed ¿"-equicontinuous sets 8xf(x),
A>0.

It can be shown, incidentally, that under the hypothesis of Corollary 2 one has

(4.5) f'(x; u) = max {<«, y)\ye 8f(x)}

for every xeradf. In this event, of course, / is Gâteaux-differentiable at x if
x e rad/and 8f(x) contains just one vector y. (See Moreau [10].)

We shall denote by F the collection of all nonempty w(Y, A")-closed bounded
convex subsets of F. According to Corollary 1, dÁfi(x) is an element of F for every
x e rad/and A>0.

By the ^-topology on F, we shall mean the topology in which, for each Ce Y,
the sets of the form

{De Y\ Dcz C+B and C <= D + B}

constitute a fundamental system of neighborhoods of C as F ranges over all
¿^-neighborhoods of the origin in F. Of course, when Fis regarded as a subset of
F, the relative ¿^"-topology induced on F is the same as the ¿'"-topology already
present on F.

The ¿'"-topology on F can also be obtained in a dual way. For each Ce Y, let
hc denote the support junction of C on X, i.e.

hc(x) = sup (x, y~).
yeC
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As is well known [7], the correspondence C<-> hc is one-to-one between Fand the
collection of all finite w(X, T)-lower semicontinuous positively homogeneous
convex functions on X, and it preserves addition and nonnegative scalar multi-
plication. (This is a natural extension of the correspondence between points of Y
and linear functions on A".) It is not hard to show that the «^"-topology on Y is the
same as the topology on Y induced by uniform convergence of the support func-
tions hc on all ^"-equicontinuous subsets of X.

Note that a sequence of sets Du D2,... in Y ^"-converges to a point ye Y
(regarded as a singleton set in Y) if and only if, for every ^-neighborhood B of
the origin in Y, there exists an integer m such that Dk<^y + B for all k>m. Thus
the conjugate g off is ¿^-rotund at y relative to x if and only if the nonempty
w( Y, A')-closed convex sets

y+{v I g(y+v)-<x, vy s g(v)+A},   a > o,

are w(Y, A")-bounded and ^"-converge in Y to y as A j 0. Since (3.3) holds and

SJ(x) = y+{v\ g(y + v)-<[x, vy S <x,yy-fi(x) + X},

the conclusion of Theorem 1 can therefore be stated as follows ://s si-differentiable
at x with v= V/(x) if and only if the sets 8Af(x) are nonempty and bounded for A > 0
(i.e. x e rad/) and 8hf(x) ^-converges in Y to y as X \ 0.

Proposition 5. Let f be a w(X, Y)-lower semicontinuous proper convex function
on X, such that f has a finite upper bound in some if-neighborhood of some point of
X. Assume that all the sets in si are if '-bounded (which is true in particular if either
if or F is compatible with the duality between X and Y). The mapping

(x, X) -> 8J(x)

is then continuous from (rad/)x(0, +oo) in the if-topology (i.e. the product of the
if-topology on rad / and the ordinary topology on the real interval (0, +oo)) to Y
in the ^-topology.

Proof. Choose any xe rad fi any S>0, and any w(Y, X)-closed convex 9~-
neighborhood B of the origin in Y. Let U be an y-neighborhood of the origin in
X such that, for p = 28, the set in (4.1), which we shall denote by M, is ^"-equi-
continuous. Since the sets in ¿/ are all ^-bounded in X, y-equicontinuous sets
are all ^"-bounded in Y. Thus we can find a real number p lg 28 such that

(4.6) M-MczpB.

Choose an e > 0 such that

(4.7) 2e < 8/(p + l).
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Since / is ¿"-continuous at x (Theorem 2), there exists an ¿"-neighborhood W of
the origin, IF<= U, such that

(4.8) \f(x + ux)-f(x+u2)\ ^ e/2,   Vux g W, Vm2 g W,

and

(4.9) |<h>, y>\ ^ e/4,   Vw g W, Vj> e M.

We shall demonstrate that

8J(x+u) c 8a/(x)+£   and   86f(x) c ¿)a/(x+h) + F

for arbitrary m g IF and A g [8 - e, S + e], and this will establish the desired con-
tinuity at the point (x, 8).

In what follows, a and ß denote real numbers such that a < ß. For any ux and u2
in (dorn f)-x, 8afi(x+ux) consists of the elements ye Y such that, for every z e X,

f(z) ^fi(x+ux) + <[z-x-ux,yy-a

= fi(x+u2) + (z-x-u2,y}

- [a +f(x + u2) -fi(x + ux) + <«a- «i, y}].

If ux e W, u2 e W, a^28 and ß — a^e, every y e 8af(x+ux) belongs to M, so that
by (4.8) and (4.9)

«+fi(x + u2)-f(x + ux) + (u2-ux,y> S a + (e/2) + (e/4) + (e/4) Ï ß,

and hence

8J(x+ux) <= 8J(x+u2).

It follows in particular that

(4.10) 3A_ J(x) c 8J(x + u)<=-8A + J(x),   Vk g W, VA ̂  28.

On the other hand, for any Ô > I we have

<* = (!/%+[!-0/W   for y = ß+e(a-ß) < «,
so that

(4.11) (l/e)8yfi(x) + [1 -(l/6)]8ßf(x) e ga/(x).

The latter inclusion follows from the fact that

dj(x) = {y I h(y) á A},

where « is a certain proper convex function on F, namely

h(y)=fi(x)+g(y)-<x,y)

(g being the conjugate of/). If 0<a<|5^28, and 6> 1 is such that y>0, i.e.

(4.12) 1 < 6 < ß/(ß-a),
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we have by (4.11) and (4.6)

8J(x) c [l-(l/0)]-W(x)-(l/W(x)]
= Safi(x)+[l/(e-l)][8afi(x)-8yf(X)]
c 8J(x)+[p/(e-l))B.

This calculation uses the fact that, since 8af(x) is a convex set, one has

8J(x) = [l-(l/e)]8af(x) + (l/6)8af(x).

If a = S — 2e and ß = 8, (4.12) is satisfied for ô = p+l by virtue of (4.7), and con-
sequently

(4.13) 8J(x)cz8i_2J(x) + B.

Similarly, if a = 8 and ß = S + 2e, (4.12) is satisfied for 6 = p + 1, so that

(4.14) 8à + 2J(x) c 86fi(x) + B.

For any ue Wand \ e [8 — e, S + e], we have A<28 (since £<8) and

3ö-2£/W <= ¿W(x) c ¿W(x) c 8ô + 2sf(x),

so that

W c 8J(x + u) + B

by (4.10) and (4.13), while

8J(x + u)^86f(x) + B

by (4.10) and (4.14). This completes the proof of Proposition 5.

Corollary Let f be a w(X, Y)-lower semicontinuous proper convex function on
X. Assume either that X is a barrelled space in some topology such that Y= X*, or
that Y is a barrelled space in some topology such that X= Y*. Then the mapping
(x, X) -> SA/(x) is continuous from (rad/)x(0, +oo) in the s(X, Y)-topology to Y
in the s( Y, X)-topology.

Proof. Invoke Corollary 1 of Theorem 2 along with the fact that, in a barrelled
space or its dual, the weakly bounded sets are the same as the strongly bounded
sets [3, Chapter III].

Proposition 5 and the results below should be compared with a recent theorem
of Moreau [13, 1 Id]. This result says that (under the same hypothesis about/as in
Proposition 5) if if is compatible with the duality between X and Y and !T is the
topology of uniform convergence on y-compact subsets of X, then the mapping
(x, A) -»■ 8Kf(x) is upper semicontinuous as a multivalued mapping from (rad/) x R
in the -^-topology to Y in the ^-topology. In this case, 8f is in particular (^ 9~)-
upper semicontinuous from rad/to Y, so that the gradient mapping V/is (if, 3~)-
continuous (and consequently (if, w(Y, A"))-continuous) where it exists.
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If/is ¿/-differentiable at x and the hypothesis of Proposition 5 is satisfied, it
follows from Proposition 5 and the observation preceding it that 8Kf(z) /"-con-
verges to V/(x) in Y as z .^-converges to x and A \ 0. This implies in turn that
8f(z) ./"-converges to V/(x) as z ^-converges to x in the set

D = {z Erad/1 8fi(z) # 0}.

Thus the mapping dfifrom Dto Y is (if, -^-continuous at x. When f is compatible
with the duality between A" and Y, we have D = radfiby Corollary 2 of Theorem 3,
and a stronger result may be stated.

Theorem 3. Let f be a w(X, Y)-lower semicontinuous proper convex function on
X, such that f has a finite upper bound in some f-neighborhood of some point of X.
Assume that if is compatible with the duality between X and Y (see the remark
below). Then, in order that the mapping x -> 8fi(x) from rad/ to Y be (if,-T)-
continuous at x, it is necessary and sufficient that f be si-differentiable at x.

Proof. The sufficiency of the condition has just been explained. To prove the
necessity, fix any x e rad/at which the mapping in question is (if, .Z~)-continuous.
It is enough to show that, given any £>0 and any A esi, there exists a A>0 such
that

(4.15) \f(x + Am) -/(x)]/A - (u, y> S 2«,   V« £ A, Vy £ 8f(x).
Let B=A° n (-A)0. Then B is a symmetric convex ./"-neighborhood of the origin
in Y, and

(4.16) \<u,vy\ S 1,   VueA,VveB.

Let U be an ^-neighborhood of x such that

(4.17) 8f(x+w)cz df(x) + eB,   VweU,

(4.18) 8f(x) <= 8fi(x+w) + eB,    Vw e U.

Since if is compatible with the duality, the set A, being w(X, F)-bounded by
assumption, is actually ^-bounded, and we can choose a A>0 such that A/lc (J.
Let ue A. If v e 8f(x+Xu), we have by definition

f(x) £ f(x + Xu) + <x - (x + Am), vy,

and consequently

(4.19) [/(x+Am)-/(x)]/A-<m, y> S <«, ̂ >-<m, y>

for any ye Y. When yedf(x), the left side of (4.19) is nonnegative, so that
(u, y> S <«, vy. Since the latter holds for any y e 8f(x) and v e 8fi(x+Xu), we must
have

(4.20) sup {<m, w> | w e 8f(x)} S inf «m, w> | w e 8fi(x+Xu)}.
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On the other hand, since Atz g XA c U, for any v e 8f(x+ Xu) we have

<«, p> ^ sup «m, w> | w g 8f(x + Xu)}

¿  SUp {<ZZ, R>> | W G 0/*(x)} + £

by (4.17) and (4.16), while for any y e 8fi(x) we have

<«, >>> ̂ inf {<«, w> | w g a/(x)}
^ inf {<[u, w) \ w e 8fi(x + Xu)} - e

by (4.18) and (4.16). Combining (4.20), (4.21) and (4.22), we see that, for any
v e 8fi(x+ Xu) and y e cfi(x),

<zv, v) S inf{<«, iv> | w e 8f(x + Xu)} + e
^ (u,y) + 2e

in (4.19), and the inequality (4.15) holds as desired.
Remark. The compatibility assumption on ¿f in Theorem 3 was used only to

ensure that all the sets in si are ¿"-bounded, and that S/(z)# 0 for every z in
some ¿"-neighborhood of the point x e rad/ where continuity was in question.
Therefore, the conclusion of Theorem 3 remains valid when the latter conditions
are satisfied, even if ¿" is not compatible with the duality between X and F.

Corollary 1. Let fi be a w(X, Y)-lower semicontinuous proper convex function
on X. Suppose that X is a barrelled space in some topology such that Y= X*. In
order that f be Gâteaux differentiable at x, it is necessary and sufficient that x e rad /
and that the mapping dfi from rad /to Y be continuous at x from the s(X, Y)-topology
to the w( Y, X)-topology.

Proof. Take ¿f = s(X, Y) and ¿r=w(Y, X). The hypothesis implies that ¿" is
compatible with the duality between X and F [3, Chapter III]. Moreover, / is
¿"-continuous on rad/by Corollary 1 of Theorem 2, so Theorem 3 is applicable.
(If rad/were empty,/could not be Gâteaux differentiable anywhere in view of
Proposition 1, so that the present corollary would be vacuous.)

Corollary 2. Let X be a normed linear space with Y= X*, and let f be a proper
convex function on X lower semicontinuous with respect to the norm topology. In
order that fi be Fréchet differentiable at x, it is necessary and sufficient that x e rad /
and that the mapping dfi from rad / to Y be continuous at x from the norm topology
to the norm topology.

Proof. We note first that/is actually w(X, F)-lower semicontinuous, since lower
semicontinuity depends only on the closedness of the convex level sets {x \f(x)f*a},
and the closed convex sets in X are the same in all topologies compatible with the
duality between X and F. Apply Theorem 3 as in the proof of the preceding
corollary, but with ¿r = j(F, A").
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Corollary 3. Let X be a normed linear space with Y= X*, and let fi be a
w(X, Y)-lower semicontinuous proper convex function on X. Let U be a nonempty
subset of X open with respect to the norm topology. Suppose that, for each xeU,
of(x) consists of a single element of Y (denoted by Vf(x)). Then fis Gâteaux differen-
tiable throughout U, and the gradient mapping Vf from U into Y is continuous from
the norm topology to the w( Y, X)-topology. In order that fi actually be Fréchet
differentiable throughout U, it is necessary and sufficient that Vf be norm-to-norm
continuous from U into Y.

Proof. Since 8f(x) = 0 for jc ̂  dorn / U must be contained in dorn / and hence
in rad/ By Corollary 1 of Theorem 2,/is norm continuous throughout U, so that
(4.5) holds, implying that Vf(x) is the Gâteaux gradient of/at x. The result now
follows from Corollary 1 and Corollary 2 above.

In view of the known monotonicity properties of 8f [15], Theorem 3 and its
corollaries suggest that, for a continuous convex function, differentiability is to be
expected in a large subset of the domain of continuity. Such results are classical in
the finite-dimensional case, and they have also been proved for certain classes of
Banach spaces. For details, see Asplund [2].

5. Gradient homeomorphisms. In this section, we shall characterize certain cases
where the gradient mapping V/is a homeomorphism between subsets of X and F
in the strong topologies.

Theorem 4. Suppose that the strong topology s(X, Y) on X is compatible with the
duality between X and Y, and that Y is s( Y, X)-complete and let f be a proper convex
function on X. In order that Vf be a homeomorphism from (all of) X onto Y with
respect to topologies s(X, Y) and s( Y, X), it is necessary and sufficient that s(X, Y)
be normable in such a way that

(a) /is Fréchet differentiable at every xe X,
(b) / is norm rotund relative to Vf(x) at every xe X,
(c) /— <-,>"> attains its minimum on X for every y e Y.

In this event, X is a reflexive Banach space with respect to the norm in question, with
Y= X*. Moreover, the convex function g on Y conjugate to fi likewise satisfies
conditions (a), (b) and (c), and the gradient mapping Vg is the inverse of Vf The
conjugate of g is in turn fi.

Proof. The existence of Vf(x) for every x implies that/is the pointwise supremum
of the affine functions of the form

z-*fi(x) + (z-x,Vf(x)\   xeX,

so that/is w(X, F)-lower semicontinuous, and /is in turn the conjugate of g.
Assume that Vf is a homeomorphism as specified. Then by (3.3), Vg is the

inverse of Vf so that Vg is a homeomorphism from F onto X with respect to the
strong topologies. Since the domains of Vf and Vg are contained in dorn /and
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dorn g, respectively,/and g must be finite everywhere. Corollary 1 of Theorem 2
implies that/and g are everywhere continuous with respect to the strong topologies,
and that all the sets of the form 8,f(x) and 8Kg(y) are weakly bounded. In par-
ticular, /is s(X, F)-continuous at 0, and for A=/(0)+g(0)+ 1 the set

8Ag(0) = {x\f(x)Sf(0)+l}

is w(X, T)-bounded (implying s(A", F)-bounded, because s(A", Y) is compatible
with the duality), so that A" contains s(A", F)-neighborhoods of the origin which are
s(A", y)-bounded. It follows that s(A", Y) is normable. We can suppose therefore
that A" is a normed linear space with Y= X* (the strong topologies on X and Y
being the norm topologies). The norm-to-norm continuity of V/implies by Theorem
3 that (a) holds. Similarly, the norm-to-norm continuity of Vg implies by Theorem 3
and the remark following it that g is Fréchet differentiable throughout Y, and
hence by Theorem 1 that / is norm rotund at Vg( y) relative to y for every y e Y.
This yields conditions (b) and (c), because x = Vg(y) if and only if y = V/(x).

Conversely, suppose s(A", Y) is normable in such a way that (a), (b) and (c) are
satisfied. By (a) and Theorem 3, 8f reduces to the single-valued mapping V/ and
this mapping is norm-to-norm continuous from all of X into Y. By (c), the range
of V/ is all of Y. By (b) and Theorem 1, g is Fréchet differentiable at y = V/(x)
for each xeX (and hence at each y e Y). Furthermore, the Fréchet gradient
mapping Vg, which must be the inverse of V/in view of (3.3), is norm-to-norm
continuous by Theorem 3. Thus Vf is a homeomorphism from X onto Y with
respect to the norm topologies.

An incomplete normed linear space cannot be homeomorphic to a Banach space,
as has been proved by Klee [8], so that X, being homeomorphic to its dual Y,
must be complete. It remains only to show that X** = X. Let h be the conjugate
of g on A"** with respect to the canonical pairing between A"** and A'* = Y.
Since g is in particular norm rotund at v/(0) relative to 0 (by virtue off being
Fréchet differentiable at 0), it follows by the duality between h and g that h is
Fréchet differentiable at 0. Hence, by Proposition 1, dom h has a nonempty
interior in A"**. Let D be the set of points in X** where h has a subgradient coming
from X*. According to Br0ndsted-Rockafellar [5, Theorem 2], D is dense in dorn h
in the norm topology. But D is just the range of Vg, which is X, because under the
pairing between X** and X* we have y £ 8h(x) if and only if x £ 8g(y); cf. (3.3).
This shows that the nonempty interior of dom h in X** is contained in X, and
consequently that X** = X, proving Theorem 4.

In Theorem 4, the finite convex functions / and g can be expressed in terms of
each other by the formulas

(5.1) g(y) = <(V/)-Hv), y>-f((Vf)-Ky)\
(5.2) fi(x) = <x, (Vg) - !(x)> - g((Vg) - Hx)).
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In other words, each is the Legendre transform of the other. In Theorem 5, we shall
further extend the theory of Legendre transforms of convex functions (see [16] for
the finite-dimensional case) to certain extended-real-valued functions on reflexive
Banach spaces. The following proposition is needed as a preliminary.

Proposition 6. Let X be a Banach space with Y= X*, and let fi be a proper
convex function on X lower semicontinuous with respect to the norm topology.
Suppose there exists a subset W of X, open in the norm topology, such that
W n dorn fj= 0 and

(J{8f(x)\xeW}

is bounded in Y. Then rad f=^ 0, and 8fi(x) is nonempty and bounded if and only if
x e rad /

Proof. As noted already in the proof of Corollary 2 to Theorem 3, lower semi-
continuity with respect to the norm topology implies w(X, F)-lower semicontinuity.
The lemma of Brandsted-Rockafellar [5] says that, for any xe Xand any positive
e and A, one has

(5.3) 8J(x) c U {8f(x + Xu) | u e U) + (e/X)B,

where U is the unit ball in A* and B is the dual unit ball in F. If x e IV n dorn/
and A>0 is chosen so small that x+XU<= W, the right side of (5.3) is a bounded
subset of F by the hypothesis, implying that 8£f(x) is bounded (as well as non-
empty). Then x e rad /by Corollary 1 of Theorem 2, so that rad/^0. On the
other hand, suppose rad// 0. Then rad /is the interior of dorn/with respect to
s(X, Y), which is the norm topology. Moreover, / is continuous on rad/with
respect to the norm topology (Corollary 1 of Theorem 2), and 8fi(x) is nonempty
and bounded for every x e rad/(Corollary 2 of Theorem 2).

Now let x be a point of X such that x xi rad/but 8f(x)=t 0 ; we shall show that
8fi(x) is unbounded, and this will complete the proof of Proposition 6. Since x is
not an interior point of the convex set dom/(and this interior rad/is nonempty),
x can be separated from dorn / i.e. there exists a nonzero v e Y such that

<jc, d> ^ <z, v},   Vz g dorn/

For any y e 8fi(x) and any z e dorn / we then have

fi(z)^f(x) + <:z-x,y>
^fi(x) + (z-x,y+Xv\   VASO.

This also holds trivially when zxt dorn/ (since then fi(z)= +oo), and hence it
holds for every zeX. Therefore

y+Xve8fi(x),   Vj g 8f(x), VA ̂  0,

and since v ̂  0 it follows that 8f(x) is not bounded.
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Theorem 5. Let X be a reflexive Banach space with Y= X*, and let f be a proper
convex function on X which is lower semicontinuous with respect to the norm topology.
Let

D = {xeX\8f(x) * 0}.

In order that 8fbe a one-to-one mapping from D into Y which is a homeomorphism
with respect to the norm topologies, it is necessary and sufficient that the following
conditions be satisfied (in which case dfi reduces to the gradient mapping Vf and
D = radf):

(a) rad/#0,
(b) fis Fréchet differentiable throughout rad/
(c) fis rotund relative to V/(x) in the norm topology at each x e rad /
(d) whenever z e rad / and x is a point of dom /not in rad/ one has

lim <z-x, V/((1-A)x+Az)> = -oo.
a ; o

Fzz this event the convex function g conjugate to f on Y likewise satisfies conditions
(a), (b), (c) and (d). Furthermore, the domain and range of the mapping Vf are the
open convex sets rad / and rad g, respectively, and the inverse of Vf is Vg.

Proof. As noted in the proof of Corollary 2 of Theorem 3,/is actually w(X, Y)-
lower semicontinuous. Suppose that V/is a homeomorphism from D into Y with
respect to the norm topologies. Then D = radf^0 by Proposition 6. The con-
tinuity of Vf implies by Corollary 2 of Theorem 3 that / is Fréchet differentiable
throughout rad/ so that 8fireduces to Vf. Thus V/is a one-to-one mapping of
rad/into T which is a norm-to-norm homeomorphism. By (3.3), 8g reduces to Vg,
and Vg is the inverse of V/(consequently a homeomorphism). It follows by applying
the preceding argument to g in place of / (which is permissible because X is
reflexive) that

(5.4) {y\8g(y) * 0} = radg * 0,

and that Vg is a norm-to-norm homeomorphism of rad g onto rad/ Hence g is
Fréchet differentiable at every y e rad g by Corollary 2 of Theorem 3. By Corollary
2 to Theorem 1, / is then norm rotund at Vg(y) relative to y for every y e rad g.
Thus conditions (a), (b) and (c) hold, along with

(d') D^ rad fi
Conversely, suppose that (a), (b), (c) and (d') hold. Then dfi reduces to Vf

which is by Corollary 2 of Theorem 3 a norm-to-norm continuous mapping of D
into Y. The range of V/is {y | 8g(y)^ 0} by (3.3), and for each y in this range
there exists by condition (c) some x such that /is norm rotund at x relative to y.
This implies by Theorem 1 that g is Fréchet differentiable at y. The inverse of Vf
is then Vg by (3.3), and Vg is norm-to-norm continuous by Corollary 2 of Theorem
3. In other words, V/is a norm-to-norm homeomorphism.
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To complete the proof of Theorem 5, it suffices to show that (d') is equivalent
to (d), assuming that (a) and (b) hold. Of course, (d') is equivalent under (a) to the
condition that 8f(x)= 0 for every x which is a point of dorn/not in rad/ Let x
be a particular point of dom/not in rad/ and let zeradf. For 0<A^1, the
point (1 —A)x + Az belongs to rad/ since rad/is the interior of the convex set
dorn /in the norm topology when rad// 0. The restriction of/to the line segment
joining x and z is a lower semicontinuous convex function, so the directional
derivative

f'((l-X)x+Xz;z-x) = {z-x, Vf((l-X)x+Xz)}

decreases to fix; z-x) as X decreases to 0. We must show that 8f(x)=£ 0 if and
only if fix; z—x)> — oo. One direction is easy: if 8f(x) contains an elementy, we
have

(5.5) <z-x,yy èf'(x;z-x) = inf A*+*(*-*))-/*»),
\>o A

and hence f'(x; z—x)> — oo. On the other hand, suppose f'(x;z—x)> -co. The
function h=f'(x; ■) is, of course, convex and positively homogeneous on X, and
it satisfies

(5.6) h(w -x)ú fi(w) -f(x),   Vu> g X.

Since / is norm continuous on rad / by Corollary 1 of Theorem 2, « is finitely
bounded above on a (norm) neighborhood of the point z—x. Hence, by the fact
cited to prove Theorem 2, « is not only finite but norm continuous at z-x. This
implies that « majorizes at least one continuous affine function (see Brondsted [4]),
and since « is positively homogeneous the affine function can be taken to be linear.
Thus there exists a y g F such that

<w, yy ^ h(u) ^ f(x + u) -fix),   Va g X.

Thus y belongs to Sfiix), so Sfiix) j= 0 and the proof is complete.
The functions / and g in Theorem 5 are given in terms of each other by the

Legendre transformation formulas (5.1) and (5.2) for x e rad/and y e rad g. Thus
Theorem 5 yields a certain one-to-one Legendre correspondence between certain
pairs (/ C), where C is an open convex set in X and / is a Fréchet differentiable
convex function on C, and pairs ig, D), where D is an open convex set in F and
g is a Fréchet differentiable convex function on D. This correspondence can be
described directly, i.e. without mentioning conjugacy, much as in [16]; we leave
the details to the reader.

In the case where the gradient homeomorphism is required to map all of X onto
F, Theorem 5 yields a result which is comparable to Theorem 4 but stronger due
to the assumption of reflexivity.
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Corollary Let X be a reflexive Banach space with Y= A"*, and let f be a proper
convex function on X. In order that the gradient mapping Vf be a norm-to-norm
homeomorphism from X onto Y, it is necessary and sufficient that the following
conditions hold:

(a) / is Fréchet differentiable at every xe X,
(b) / is norm rotund relative to Vf(x) at every xe X,
(c) limA_ +00 /(Ax)/A= + oo for every nonzero xe X.

In this event the conjugate g of f likewise satisfies conditions (a), (b) and (c), and Vg
is the inverse of Vf

Proof. The existence of V/(x) for every x implies, as explained at the beginning
of the proof of Theorem 4, that/is w(X, y)-lower semicontinuous. Conditions (a)
and (b) of the corollary are necessary and sufficient, in view of Theorem 5, for Vf
to be a norm-to-norm homeomorphism from X into Y. The range of Vf is then
rad g by Theorem 5, and rad g is the interior of the convex set dom g. Thus the
range of V/is all of y if and only if dom g is w( Y, A")-dense in Y, which is equivalent
to condition (c) according to Rockafellar [14, Theorem 5B].
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