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Grading Exams: 100, 99, ..., 1 or A, B, C?
Incentives in Games of Status

Pradeep Dubey and John Geanakoplos
June 18, 2004

Abstract

We show that if students care primarily about their status (relative rank) in
class, they are best motivated to work not by revealing their exact numerical
exam scores (100,99, ..., 1), but instead by clumping them in broad categories
(A, B,C). If their abilities are disparate, the optimal grading scheme awards
fewer A’s than there are alpha-quality students, creating small elites. If their
abilities are common knowledge, then it is better to grade them on an absolute
scale (100 to 90 is an A, etc.) rather than on a curve (top 15% is an A, etc.). We
develop criteria for optimal grading schemes in terms of the stochastic dominance
between student performances.

Keywords: Status, Incentives, Education, Grading, Wages
JEL Classification: C70, 120, 130, 133

1 Introduction

Examiners typically record scores on a precise scale 100, 99, ..., 1. Yet when they
report final grades, many of them nowadays tend to clump students together in broad
categories A, B, C, discarding information that is at hand. Why?

Many explanations come to mind. Less precision in grading may reflect the nois-
iness of performance: a 95 may be statistically insignificantly better than a 94. Al-
ternatively, the professor may require less effort in dividing students among three
categories rather than a hundred. Finally, it may be that lenient grading is a device
by which professors lure students into their class; unable to call an exam with 70%
correct answers a 95 instead of a 70, they call it an A instead.

We call attention to a different explanation. Suppose that the professor judges
each student’s performance exactly, though the performance itself may depend on
random factors, in addition to ability and effort. Suppose also that the professor is
motivated solely by the desire to induce his students to work hard. Third, and most
importantly, suppose that the students care about their relative rank in the class,
that is about their status. We show that, in this scenario, coarse grading motivates
status-conscious students to work harder.

Status is a great motivator, though it is largely absent from economic models.
For students competing for scarce positions in the job market or in higher educa-



tion, status or rank is often the decisive factor, and hence it naturally becomes the
student’s major concern. For workers, such as professors themselves, honors confer-
ring status but little remuneration often bring forth the greatest effort. Ranks and
titles are ubiquitous, in academia, in the armed forces, in corporations, and in public
bureaucracies. They define a hierarchy which, even when its original purpose might
have been organizational (say to signal lines of authority), always creates incentives
for people to exert effort in order to obtain higher status.

One might think that finer hierarchies generate more incentives. But this is often
not the case. Coarse hierarchies can paradoxically create more competition for status,
and thus provide better incentives for work, under certain conditions.

The advantage of coarse grading can most succinctly be seen with two students
who have disparate abilities, so that the strong student achieves a random but uni-
formly higher score even when he works little and the weak works hard. With such
disparate abilities and fine grading, the strong will come ahead of the weak, regardless
of their effort levels. Since they care only about rank, both will shirk. But we show
in Section 3 that appropriately-defined coarse grades can inspire the weak to work,
for then he stands a chance to acquire the same status B as the strong. This in turn
generates the competition which spurs the strong to also work so that, with luck, he
can get an A and distinguish himself from the weak. Notice that very coarse grading
would not do the job since then nobody has anything to gain by improving his score.
Optimal grading must be coarse, but not too coarse.

It should be emphasized that coarse grading does not involve what are commonly
called handicaps. It is of the essence of handicaps that they discriminate between
contestants by bestowing an advantage on the weak. Handicaps thus presume knowl-
edge of the contestants’ abilities, as well as the “legality” of the discrimination. The
grading we describe in this paper is, in contrast, completely anonymous in that grades
depend only on the exam scores of the students and not on their names. It is also
monotonic in the scores: if a student gets a better score than another, he is awarded
at least as good a grade. On either count, handicaps are ruled out since they would
necessarily entail an artificial boost to the score/grade of the weak student.

There can be schemes, other than coarse grading, which also generate competition
between the students without recourse to discriminatory handicaps. For instance, the
professor might add anonymous noise to each student’s score with enough variance so
that, if the weak student works, he stands a reasonable chance to equal or overtake
the strong. While theoretically intriguing, this scheme is so far removed from reality
— and, some might argue, from even being made acceptable as reality — that we do
not pursue it (or other like-minded schemes) here.! Our focus is on the familiar and
time-honored tradition of assigning letter grades to the numerical exam scores, with
no tampering of the scores.

Though we do not impose extraneous noise on students’ performance, it is critical
for our grading scheme that there be some degree of intrinsic randomness (albeit
arbitrarily small) in the performance. This hypothesis, in our opinion, should strain

!There are situations when noise can be “natural.” In Dubey-Wu (2001) and Dubey-Haimanko
(2003), noise was introduced by varying the sample size on the stream of outputs produced by agents.



no one’s credulity. In the rare situation when performance is a deterministic function
of effort, any grading coarse enough to incentivize the weak by enabling him to
be pooled with the strong, will destroy the possibility for the strong to separate
himself from the weak, leaving the strong with no incentive to work. To restore the
scheme, it is needful to add a touch of randomness into the scores from the outside.
The conjunction of a little randomness and appropriately coarse grading makes for
simultaneous incentives for all the students.

Many standard games, played in the parlor or the sports field, fit our general
framework. Performance can often be very finely calibrated (sometimes literally by
“the score”). But this is overlooked and the outcome is just declared to be a win,
draw or loss. The frequent possibility of draws is akin to a coarsening and is surely
introduced to sustain competition. In parlor games, randomness is often reinforced
by inserting moves of chance (throw of the dice, shuffling of the deck, etc.) to further
bolster the possibility of victory for the weak when he is overmatched. These twin
principles of coarsening and randomness have influenced the design of games since
antiquity. We bring them to bear on the game of status that is induced among
students taking an exam. And we call attention to the universal prevalence of games
of status in every day life.

Our main theme, as was said, is that the optimal design of exams often leads to
a coarse partition of numerical scores into letter grades. This no doubt reduces the
screening content delivered by schools. But our analysis reveals that if the schools
sought to convey more information about the quality of their students, they would
produce students of lower quality!

In Section 3 we characterize the optimal absolute grading scheme for an arbitrary
number of students K and N of two disparate abilities, and then we show how to
extend the analysis to three or more ability types. Throughout most of the paper we
assume that the distribution of ability types and the distribution of scores each type
will get on the exam, conditional on effort levels, is common knowledge among the
students and the professor. By virtue of repeated meetings of the class, perhaps even
over many years, it is not unreasonable to suppose that these distributions can be
fairly well estimated by the professor and the students alike, so that this assumption
is not so untenable. Each student also knows his own ability type. Our first and
most important conclusion is that in order to create the largest incentives to work,
the professor should use coarse grading.

Our second conclusion is that in apportioning status to foster incentives to work,
the optimal grading creates small elites, excluding many from membership who have
equal abilities and have also worked hard. In a population made up of equal numbers
of students of disparate abilities, say alpha and beta and gamma, fewer A grades will
be given than B’s, and fewer B’s will be given than C’s. In particular, though they all
work hard, only some alphas get A and only some betas get B. Furthermore, we show
that as the proportion of alpha ability students increases, the fraction of them who
should be given A’s decreases. No matter what the composition of student ability
types, no more than 50% of them should be given A’s. If less able students have
higher costs from studying hard, as Spence (1974) suggested, then the pyramiding



becomes still more extreme.

The hypothesis of disparate abilities is strong, but not as strong as it seems, and
can be plausibly interpreted. For example, one might imagine that students have
many effort levels, and that when the alpha students exert their second best effort
they will come ahead of the beta students, no matter how hard the betas work or
how lucky they get. If the professor wants to motivate each student to do his very
best, then our previous analysis holds without change. But we consider two other
situations as well.

Coarse grading can provide better incentives to work even when students are ex
ante identical. In Section 4 we provide criteria for an optimal grading partition in
this setting. The key analytical concepts in this analysis are stochastic dominance
and uniform stochastic dominance.? We show that a partition is optimal if inside
each cell, the shirker’s performance uniformly stochastically dominates the worker’s,
while across cells the worker’s uniformly dominates the shirker’s. Fine partitions are
typically not optimal. For example, if the performance of a hard worker has normal
distribution N(u, o) with mean p and standard deviation o, while the performance
of a shirker is given by N(ji,6), then the optimal grading scheme will make perfectly
fine distinctions on one tail, and mask all scores on the other tail into the same grade,
provided that o # &. (If 0 = & and p > i, then perfectly fine grading is optimal.)

In Section 5 we consider the mixed case, where students are neither identical
nor disparate, having significant overlap in their performance. We imagine an exam
with K questions, and students n € N who have probabilities p; < ps < -+ < pn
ranging uniformly on [0, 1], of answering each question (independently) correctly,
if they work hard. If a student n shirks, his p, is reduced to p,_1. It turns out
that coarse grading increases the incentive for the best and the worst students to
work hard, though diminishing the incentives of students in the middle. But since
the middle students already have a big incentive to work hard, the optimal grading
partition to incentivize every student to work hard has to be coarse.

In moving from scores to grades, professors can grade absolutely (say 90 to 100
is an A) or “on a curve” (say the top 15% get an A). Given that the students
only care about their relative rank, which kind of grading is better? We show in
Section 6 that if the students have identical abilities and utilities, then absolute
grading is always better than grading on a curve. This principle may be valid with
heterogeneous students, but we leave its exploration for future research. It breaks
down, however, when the professor is significantly uncertain about the distribution
of students’ abilities (though still the professor must, by and large, devise coarse
grades).

In Section 7 we consider the problem the professor faces to motivate his students
to study for two exams, say when he gives a midterm and final. The problem is that
if a student does very well or very badly on the midterm, he (or his rivals) will feel
less incentive to work for the final if he or they are unable to affect their course grade.
The only way around this problem is to weight the final more than the midterm, and

?Stochastic dominance frequently plays a role in economic modeling, but uniform stochastic dom-
inance has been less often used.



to grade even more coarsely on the midterm than on the final, averaging the letter
grades and not the scores from the two exams to obtain the final course grade.

Lastly, in Section 8 we observe that status pertains to situations far more general
than assigning course grades. We show that an employer who can induce his workers
to regard superior performance as an indication of status will be able to get them to
work harder and pay them less money. To minimize his cost, he should confine himself
to a few grades of wages, even if productivity can be much more finely measured.

Society as a whole has much to gain by associating status with productivity. This
insight was present and put into practice in the ancient world. As far back as 500
B.C., the Greeks were masters of designing competitions — for the best playwrights,
the best artists, the best athletes and so on. Around the same time, at the other end of
the civilized world of the day, contests of all kinds were also common practice in India,
and included prominently among these were “Shastrarthas” or philosophical debates,
with much prestige accorded to the winner. The ancients had clearly discovered that
games of status often call forth the most heroic effort. (This is not to deny, of course,
that calm Buddhistic detachment may also lead to inspired activity.)

This paper is a first step in analyzing games of status. We have pretty much char-
acterized optimal grading partitions for the case of disparate students, and for the
case of iid homogeneous students. We leave to future work the general case of hetero-
geneous (and overlapping) performances, and also the case where exam performances
are correlated (for example, because everyone might find the exam unexpectedly
hard).

2 Games of Status

In this section we precisely define what we mean by games of status, and the freedom
the principal has to design them.

Imagine a group of students N who are taking an exam. Depending on their
effort levels (e,,)nen, they will get exam scores, (2, )nen, which might also depend on
random events, such as whether they were lucky enough to have studied the material
precisely relevant to the questions, or how they felt that day, or how accurately the
professor corrected the exams. It is natural to assume that a student’s score does not
depend on others’ efforts, but actually none of our mathematics requires it. When
the score z,, depends (perhaps negatively) on the effort e,,, m # n, we can reinterpret
our model as a parlor game. Given the exam scores = (2 )nen, the professor must
assign grades y(z). Students are assumed to care only about status (and not about
the education they are getting). We capture this by assuming® that they obtain 1
utile for each student whose grade is strictly lower, and they lose 1 utile for each
student whose grade is strictly higher.

We suppose that the students are told in advance how the professor converts scores
to grades, i.e., they know «. Absolute grading is achieved by specifying intervals of

3This is to keep matters simple. One could postulate B;; utiles to i from beating j and v,; disutiles
from being beaten by j, without changing the tenor of our analysis. Even aditively separable utilities
are not essential.



scores corresponding to each grade, say [90, 100] gives A, [75,90) gives B, and so on.
Grading on a curve is based in contrast on relative performance alone, for example,
that the top 10% of students get A, the next 20% get B’s, and so on. Absolute and
relative grading are quite different, though both are widely used.

What grading system -y should a professor use, if he wants to incentivize (whenever
feasible) all his students to put in maximal effort? No matter what system he chooses,
and no matter what efforts the students put in, total utility awarded via grades will
be zero, since for every utile gained by a higher-ranked student, there is a utile lost
by a lower ranked student. Indeed when students all work hard, their total net utility
is minimized (since work inflicts disutility). Status seeking is the ultimate rat race!

Nevertheless, by the right choice of -y, the professor can often motivate his status-
conscious students into working hard, and thus willy-nilly becoming educated.

2.1 The Performance Map

Let N be a finite set of students (players). The strategy set E,, C R of each student
n € N consists of a finite set of effort levels that are w.l.o.g. identified with the
disutility they inflict on n. Efforts lead to (random) performance scores. For x €
RY, the nth-component x, of = represents the score (output) obtained by n. Let
E = XpenEy, and let A(RY) be the set of probability distributions on RY. The
performance map

7: E— A(RY)

associates stochastic scores with effort levels. Here m(e) gives the probability distri-
bution of score vectors when the students put in effort e € E.* We allow for the
possibility that n’s effort e,, might affect the score z,, of other students m # n.

2.2 Grading

Let R denote all possible orderings of N with ties allowed. There is a grading map
v:RY =R

which weakly ranks students according to (x) when the scores obtained are z € RY.
Each rank corresponds to a grade, and so coarse grading entails several ties for
the same rank. We consider, in principle, only maps 7 that are anonymous and
monotonic: the grades depend on the scores, not on the names, and a higher score
implies at least as high a grade. Our focus will be on two particular ways of generating

Y-

2.2.1 Absolute Grading

Let P be a partition of R into consecutive intervals, each of which has nonempty
interior and some of which are designated “perfectly fine.” When an interval® [a, b)

In the natural case (see our examples), higher effort levels tend to improve scores in the sense of
first-order stochastic dominance.
°We use [a,b) as a proxy for [a,b), (a,b], (a,b) or [a,b]. Our analysis works equally in all cases.



is designated perfectly fine, it is taken to represent the partition {{z} : = € [a,b)}
consisting of singleton cells. An interval [a,b) not so designated will signify the
standard unbroken interval, and will also be called a cell in the partition P. Notice
that the cells of P form a totally ordered set.

Fix a partition P as above. Then for any a,b € R we define a >=p b iff the cell
in P containing a lies strictly above the cell in P containing b. This leads to an
absolute grading vyp : RY — R where i >77> (@) J it z; =p x;. Thus yp(x) coarsens
the information in x, creating ties between players whose scores lie in the same cell
of P.

2.2.2 Grading on a Curve

Given scores T = (z,)neny € RY, define the class rank p,,(z) of each student n by
po(@) =#{j € N:x; >z} + 1.

Several students may have the same class rank. We define the “grading curve” @ to
be a consecutive partition of class ranks {1,2,...,|N|}. For any = € R, let y¢(x) be
given by

n >'yQ(m) J it pn($) <Q pj(x)

This defines the grading map 7, : RY - R.

In words, a grading curve is defined by the number n4 of students getting A, the
number np getting B, and so on. The grades are obtained by ranking student exam
scores, and taking the top n4 scores and giving all the students who got them A. If
k > n4 students tie with the top score, then all must get A, and the number of B’s
is diminished by the excess A’s, and so on.

2.3 Utilities

The (exam) performance payoff to a student n from being ranked according to R € R
is

#{ieEN:n>rjt—#{j EN:j>rn}

reflecting the fact that n gets a utile for each student he beats, and loses a utile for
each student who beats him. He cares about status.

Thus a student n who exerts effort e, € F,, and faces ranking R € R gets net
utility:

#{JEN n>rjt—#{JEN :j>rn} —ey

Notice again that the student is indifferent to learning. Had he put value on it,

our task of incentivizing him to work would have been much simpler.

2.4 The Game I',

Fix a grading function v : RN — R. Then, given effort levels e = (ex)ren € E, the
payoff to n € N is his expected net utility:

Expw(e) [#{j €EN:n >*y(z) ]} - #{] EN:jJ >*y(z) n}] —€én = uz(e) — €n.

7



Here Exp, () denotes expectation w.r.t. the distribution 7(e) over scores x € RN and
u’y(e) denotes the expected exam payoff to n.

For e = (ex)ren € E and n € N, denote e, = (ex)ren\(n}- Recall that e is a
Nash equilibrium (NE) of T, if the payoff each student n gets under e is at least as
good as the payoff under (e/,,e_,,) for all €/, € E,,.

Let € = (&,)nen be the strategy profile of mazimal effort:

én = max{e) : el € E,}.

The key concern of our analysis is to design < so as to ensure that € is an NE —
hopefully the unique NE — of the game T',.

2.5 Injecting Randomization

Let 1 be a probability distribution on R with mean zero and a symmetric distribution
around zero. We can think of 17 as a noise term. Then the principal can add the noise
term 7 independently to each z,,, € N, given any realization # € R". This generates
a new probability distribution in place of 7, which we denote 7 +17. The game I'; ;, is
defined exactly as before substituting 747 for 7. (Needless to say, more general noise
— which need not be i.i.d. — can be thought of. But, to keep the analysis tractable,
we refrain from doing so.) As we shall see, it can become needful for the principal to
add noise 7 # 0 to ensure that € is an NE of I', , when 7 is a deterministic map.

3 Disparate Students

3.1 Coarsening

We begin with the simplest example, with just two students, illustrating the benefits
of coarse grading.

First suppose N = {a, 5}, i.e., there are just two students. Each student n has
two effort levels, L, (shirk) or H, (work). The performance map is depicted in
Figure 1:

Low ability 3 High ability a

~ N r

r 9. ¢ 3 F 3 £ 7
C 35 0 L g6 0 L go O L ge J > Score
L L H

H

Low effort High effort

Figure 1: The Performance Map

Student n obtains marks uniformly distributed on the interval J7; when he works
and J}' when he shirks. His score depends only on chance and on his own effort, and



there is no interaction with the other student at this point. That happens once the
professor ranks them, since each student cares about his status.

We have taken the students to have highly disparate abilities: J& < Jb < J& <
J§;, i.e., o is so much more able than 3, that he always comes out ahead even when
he shirks and his rival works. Thus if the professor were to grade them finely, neither
would work, since status could not be affected by effort. More precisely, (La,Lg)
is the unique NE of the game® Iy, where P = {{z} : 2 € R} denotes the finest
partition — even more, it is an NE in strictly dominant strategies.

The professor can do better with a judiciously chosen coarse partition P. Indeed
consider the partition P(p) = {4, B, C} shown in Figure 2. Anything below .J g gets
grade C (including all scores in J f obtained when the beta type shirks). All scores
in Jf] and J{* get B, as well as the bottom (1 — p) fraction of the scores in Jf;. The
partition is completely characterized by the single parameter 0 < p < 1, specifying
the fraction of J§; that counts for the grade A (so that we may abbreviate Yp@p) = D
without confusion).

)P,

[ il I ] [ il [ il
P P Score

L J|[_3 _J L ‘]E _ L JL _J [ JH _J

Figure 2: The partition P(p)

The incentive I"(p) to switch from effort level L,, to H, for any student n (assuming
that his rival is working hard) is given by:

I*(p) = w,(Ha,Hg) — uy(La, Hp)

Clearly
ug(Ha,Lﬁ) =1

since, under (H,, Lg), 5 always gets C and so is always behind o (who gets B with
probability 1 — p and A with probability p). Also

ug(Ha,Hﬁ) =—p
since, under (H,, Hg), « beats 3 with probability p. So
I’(p)=—p—(-1)=—p+1.

Similarly, one computes
I“(p)=p—-0=p.

%(La, Lg) is in fact the strictly dominant strategy NE of ', for any P which has no cell inter-
secting both Jf and Jfl.




Denote d,, = Hp, — Ly, i-e., d, is n’s disutility for switching from shirk to work. Then
(Ha, Hp) is a Nash equilibrium if and only if

P(p)=—p+1>dsgie,p<1—dsg<1 (1a)
and
Ia(p) =p= de. (1b)
In Figure 3, we graph the two incentive functions:
1P(p) 1°(p)
16
|
|
|
|
|
|
|
|
0 | * p
p =1/2 1

Figure 3: The Incentives I"(p)

If the students have the same disutilities, i.e., do, = dg = d, the “optimal” p is
given by

p* = argmax min{I%(p), I/B(p)}
0<p<1

1
= 3
Note that I"(1/2) = 1/2 for both students n. If d < 1/2, T'p» induces both students
to work as its unique NE. Here p* is optimal in the sense that whenever (H,, Hg) is
an NE of I, for some partition P, it is also an NE of T«

Multiple Effort Levels and Less Disparateness One may imagine that each
student has several effort levels and that J}' is the performance interval for n € N
when n exerts his second-highest effort. Now the two students are not as heteroge-
neous as before: all we are postulating (in Figure 1) is that « is sufficiently more
able than (8 so that his second-highest effort leads to uniformly better scores than
B’s highest effort. (The term d, = H, — L, must be interpreted as the extra disu-
tility incurred when n switches from his second-highest to his highest effort.) In this
setting, it is harder to sustain maximal effort as an NE (more conditions will have
to be met), and our analysis gives only necessary conditions. Nevertheless, it shows
that if maximal effort is an NE, it is achievable via the partitions P(p) that we have
analyzed.

10



3.2 Pyramiding
Notice that the optimal grading partition, given by p* = 1/2, implies:

1
Expected # of students getting A = p* = 5 (2a)
3
Expected # of students getting B = 1+ (1 —p*) = 5 (2b)

In other words, optimal grading creates a pyramid with fewer A’s than B’s even
though there are equal numbers of strong and weak students in the class.
Spence (1974) postulated that typically the weak student incurs more disutility
from effort than the strong, i.e.,
d@ > d,.

It is evident that the Spence condition has the effect of accentuating the pyramid.
Indeed, by (1), (Ha, Hg) is an NE of 'y, iff p € [dn, 1 — dg]. Thus p falls as dg rises,
diminishing the expected number of A’s and increasing the B’s.

3.2.1 Multiple Students of Each Type

We shall show that coarsening and pyramiding persist with many students of each
type. Suppose there are two students of type «, and two of type 5. If a 3 type works,
his expected exam payoff against an a worker is p(—1). Since his expected exam
payoff against the other 5 student must be zero, his total expected exam payoff if he
works is then 0+ 2p(—1) = —2p. If he shirks, he comes below all the other three for
sure. His incentive to work is thus 3 — 2p. If an « type works, his expected exam
payoff against the other a student is always zero. His expected exam payoff against
the two 8 types is 2p. If the « type shirks, he comes equal with the 5 students, and
behind the other a student with probability p. His incentive to work is thus 3p. If all
students n have the same disutilities d,, for effort, then the optimal partition occurs
where p maximizes the minimum of 3 — 2p and 3p. This occurs at p = 3/5. On
average only 60% of « types get A.

Suppose there are N -type students of low ability and K a-type students of high
ability. All the results we obtained for N = K = 1,2 remain essentially intact. The
reader can check that the incentive functions become:

I°(p) = —pK —(—=(N+K —1))
= (=up+1)s

where ! = K/(N + K —1) gives the fraction of high ability in the population, when
a single low-ability student stands aside; and § = N + K — 1 = utiles to a student
when he beats all the others. Similarly, one can compute

I%(p) = dp.

It is convenient to normalize utilities, dividing incentives and effort costs by d.

11



Then we may rewrite

dy = (N+K—1)""x (old dy,)

= —uH p+1

=D

and the analysis proceeds as before. The optimal p = 1/(1 + p!!) is obtained by
solving —uf’p +1 = p. When K and N are large and equal, u!! is nearly 1/2, and
the optimal partition p converges to 2/3. The pyramid remains. Indeed, the pyramid
becomes more visible since expected # of students getting A ~ actual # of students

getting A, etc., by the law of large numbers.
We graph the incentives in Figure 4 (with u% = (N —1)/(N + K —1) = 1 — pfT).

Normalized
Incentive
1 ¢1f(R) 1*(p)

p =1y

0 > p
1

Figure 4: Normalized incentives with K a’s and N ’s

If the population changes to include more a-type students, this will lower the
fraction of the a-type students who get A. (Recall that all the 5-type get B.) Clearly
p=1/(14py) is decreasing in . It is interesting to observe that the proportion of
A’s in the whole population is always less than 1/2, since ppy = pg /(14 py) < 1/2,
with equality obtaining only when all the students are of type « (in which case pg =1
and puy = 1/2).

Observe that our solution for two disparate types is quite general. All we used
is that JL’B < Jfl < Ji¥ < J§, and that the interval Jf; has positive length, and that
the exam scores of o when he works has positive density on Jf;. In particular, all
we needed was just a touch of randomness to the test scores of @ when he works.
Without that randomness we could not have created incentives for the students to
work.

3.3 Many Disparate Student-Types

Our analysis carries over to any number of disparate student-types. When there are
¢ types, the optimal absolute grading partition will entail £+ 1 letter grades (i.e., will

12



divide the numerical score line into ¢ + 1 consecutive cells). Each type i will have a
positive probability 0 < p; < 1 of obtaining grade ¢ if he works; but will lapse into
the lower grade ¢ — 1 with certainty if he shirks.

We illustrate the case of three disparate types: v (low ability), 5 (middle ability),
a (high ability) in Figure 5.

y:]. BZZ a=3

r 1. r 3 - 3 - 3 £ 3 F » Score
L Jv ] L Jy _ [ JB _ [ JB _ [ Je _ [ Je _J
L H L H L H

Low Effort High Effort

Figure 5. The Performance Map with Three Types

The partition into four grades (A, B, C, D) is depicted in Figure 6.

< D C B A—>
LR R R P R B
r 7 Fl4 r 3 14 ¢ 3 F 173 . o5
C g J L J LCgppJ L Jd  LCged L ged
L H L H L H

Figure 6. The Partition P(p1, p2,ps)

Let us suppose that there are N students of each type, and that N is large enough
that we may take (N — 1)/N ~ 1. (Effectively we are assuming a continuum of
agents.) Then counting beating N students as one utile, the incentive to work for
the £ types is easily computed to be

I'p) = pi(2—p2)
I'(p) = pi2+ (pic1 — pig1)) forall2<i <0 —1
I'(p) = pe(l+pe).

When working, a student of type 2 < i < ¢ — 1 might get unlucky, with probability
1 — p;, and find himself no better off than if he shirked. But with probability p; he
will be lucky, beating the fraction p;_; of type ¢ — 1 he otherwise would be equal
with, and coming equal with the fraction 1 — p; 11, of type ¢ + 1 he would otherwise
have lost out against. In addition, he either beats (instead of equalling) or equals
(instead of losing to) every student of his own type. This gives the formula I*(p) for
2 <i</¢—1. Taking pp = 0 and py,; = 1 gives the formulas for I'(p) and I*(p).
The optimal partition p must maximize the minimum I*(p) over all i = 1,..., /.
It is immediately clear this implies p; = 1. Hence we know right off the bat that
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the number of students getting the lowest realized grade ¢ = 1 will be greater than
the population of lowest achievers (as long as po < 1). For grades i = 1,...,¢ — 1,
the expected number of students obtaining grade i, when all of them work, is N
multiplied by p; + (1 — pi41). Precisely Np; students can expect to be awarded the
top grade £. Grade ¢ = 0 is given only if a student of type ¢ = 1 shirks.

The optimal partition can be numerically calculated for any ¢. The pattern is
roughly as follows. For reasonably large ¢, the incentive is about 1.389 for each
student. Since p; = 1, this is also the number of students (multiplied by N) receiving
the lowest grade i = 1: I'(p) = p1(2 —p2) = (2 —p2) = 1 + (1 — p2). The top grade
1 = ¢ will be awarded to the fewest number of students, about 0.8 N. The next fewest
students will be awarded the second-lowest and second-highest grades, about 0.9 N
each. Every other grade will be awarded to approximately N students.

Thus as we saw with £ = 2, a small elite of A’s is awarded; only 80% of alpha
students ¢ get A. About 40% more i = 1 grades are awarded than there are very bad
students. For a middling student of type ¢, he has a 60-70% chance of getting grade
i and a 30-40% chance of getting grade ¢ — 1. The number of i types graded i — 1 is
just balanced by the number of ¢ 4+ 1 students who get graded 3.

In the table below we list the optimal (pi,...,p2o) and the number of students
(divided by N) for each grade i = (1, ..., 20).

TABLE A. Pyramiding

Partition Number of
Grade| probabilities students in grade
Lowest 1 1 1.389726998
2 0.610273002 0.887761199
3 0.722511804 1.036040471
4 0.686471333 0.9887908
5 0.697680533 1.00352003
6 0.694160503 0.998897996
7 0.695262507 1.000345096
8 0.69491741 0.99989156
9 0.69502585 1.000032891
10 0.694992959 0.999986499
11 0.69500646 0.999996886
12 0.695009574 0.99997551
13 0.695034064 0.999925241
14 0.695108824 0.999760849
15 0.695347975 0.999235638
16 0.696112336 0.997568329
17 0.698544007 0.992284376
18 0.706259632 0.975830841
19 0.730428791 0.927161102
Highest 20 0.803267689 0.803267689

Observe that there are more C’s than B’s, and more B’s than A’s, but for lower
grades the number of students stay equal until the very bottom is reached. The
bottome grade (aside from the failing grade ¢ = 0 that nobody gets) ¢ = 1 is the most
commonly given.
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4 Homogeneous Students

Until now we have concentrated on the case where students differ substantially in
their abilities. In that case, coarsening the grading allows the weaker student to
compete with the stronger. We turn now to the case where all students have the
same ability, and we show that coarsening still has a role to play.

4.1 An Example

Consider the situation in which N identical students take an exam. Suppose that if
a student works hard, his score will be uniformly distributed on [50%, 100%)], that is,
his score has density

f(z) =2if 50% < x < 100%, and 0 otherwise,

independent of the others’ scores and effort levels. If he shirks, suppose his score has
density
g(x) =2z for 0 < x < 100%, and 0 otherwise,

again independent of the others.

2 »1()
4
e
7/
4
4
7/
4
4
//
4 X
7/
9
4
//
e
1 4
7/
7/
e
7/
e
4
7/
7/
4
4
7
7
7/
4
4
//
50 100

Figure 7. Score Densities

Clearly work leads to performance f(z) that stochastically dominates the perfor-
mance g(x) from shirking on the interval [0,100]. But on [50,100], indeed on any
subinterval of [50,100], g(x) stochastically dominates f(x). (Stochestic dominance
will be defined in section 4.2)

Assume all other students are working hard, and a single student is debating
whether to work or shirk.

Suppose grading is perfectly fine. A student’s expected exam payoff is then the
sum of the probabilities he comes ahead of each other student, less the sum of the
probabilities he comes behind each other student.

15



If he works, his expected exam payoff will be 0. This follows with no need of
calculation from symmetry and the fact that total exam payoff is inevitably 0.

If he shirks, his expected exam payoff is equal to the probability he comes ahead
of a worker, less the probability he comes behind, all multiplied by N — 1.

The probability the shirker comes behind a worker is

1/2 1 1 FRE!
/ 2xdx + / 222(1 — x)dx = — + [23@2 — —x?’} = l
Jo J1/2 4 3 i 12

The probability the shirker comes ahead of a worker is therefore 1 — 7/12 = 5/12,
and we conclude that shirking gives an expected exam payoff

(N—DC%—%)z—gN—U

This shows that the incentive to study hard is %(N — 1), which must be compared to
the disutility of effort.

Suppose instead that just two grades are issued, namely A for scoring between
50% and 100%, and B for scoring between 0 and 50%. If a student works, along
with all his N — 1 rivals, then all will receive a score above 50% and therefore all will
receive A. Each student will get a payoff of 0. If a single student fails to study, then
his expected payoff is (N — 1) multiplied by

1/2 1 1
—1/ 2xda:—|—0/ 2xdr = ——
Jo J1/2 4

giving an incentive to study of

1

—(N —1).

TN 1)

Since this is greater than %(N — 1), we see that giving only two grades creates sig-
nificantly higher incentives to work than perfectly fine grading.

In fact, we will show that our partition of scores
P = {[0,50%), [50%, 100%] }

into just two grades yields the optimal absolute grading partition.

4.2 The General Theory with iid Students

We turn now to a more general situation. Observe first that as long as the students
are identical, their expected exam scores must be zero if they all work, as we noted
in the example. The incentive to work therefore comes entirely from the expected
payoff to a shirker who competes against hard workers. It follows that there is no
simplification gained by assuming that each student’s performance is independent of
the others’ effort levels. If in the example we continued to let (f,g) be the score
densities of the (workers, shirker), and introduced h # f as the score density when
all work, our analysis would remain absolutely unchanged; h would be irrelevant.

On the other hand, the following independence assumption does play an important
simplifying role.
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Assumption: Conditional on any choice of effort levels (eq, ..., ey ), students’ exam
scores are independent.

We shall maintain this assumption for the rest of the paper.

Lemma 1: Suppose two students H and L take an exam, yielding independent
scores xy and xr. If the grading partition is {(—o0,8),[0,00)}, then the expected
exam payoff to L is

P(zg, €[0,00)) — P(zy € [0, 0)).

Similarly, if the grading partition includes cells [a,f), [0,b), for a < 6 < b, then
conditional on both xy and xp being in |a,b), the expected exam payoff to L is
P(QZL S [9,1))) P(QZH S [9,()))
P(zy, € [a,b)) P(zy € la,b))’

Proof: In the first case, the expected exam payoff to L is
P(zp €[0,00) ANz € (—00,0)) — P(xy € [0,00) Axp € (—00,6)).
With independence, this becomes
Pz €[0,00))P(zh € (—00,0)) — Pxn € [0,00))P(xr, € (—00,0))

= P(xg €[0,0))(1 — P(zy € [0,0)) — P(xy € [0,00))(1 — P(xy, € [0,00)))
= P(xp €0,00)) — Plxg € [0,00)).

The second case is analogous. |

Corollary: If P is a partition of scores including the cell [a,b) and if P* modifies
P by cutting [a,b) at 6, into [a,0) and [0,b), leaving all the other cells intact, then
the move from P to P* increases the expected exam payoff to L by

P(:CL < [97b) P(xH € [97b))

P(zp € [a,b))P(zg € [a,b)) P(zp € [a,b) P(xg €la,b))|’

Proof: This follows from Lemma 1 after observing that if either z ¢ [a,b) or
xg ¢ la,b), the payoff is the same under P or P*. [ |

This should remind the reader of stochastic dominance.
Definition: We say that the random variable = (stochastically) dominates the in-

dependent random variable y on the interval [a, b) if, whenever P(z € [a,b)) > 0 and
P(y € [a,b)) > 0, we have

P(z € [0,b)|x € [a,b)) — P(y € [0,b)|y € [a,b)) >0,
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ie.,
P(z €[0,b))

P(z € [a,b))

for all 6 € (a,b). In this case we write

x 7 yon [a,b).

Stochastic dominance has an extremely important role to play in (monotonic)
grading schemes.

Lemma 2: Suppose x 7 y. Let the exam scores x and y be independent of the exam
scores of every student n =1,..., N — 1. Let v be any monotonic grading scheme for
N students. Then the expected exam payoff to N is at least as high under an exam
score of x as it is under y.

Proof: By independence, the payoffs from exam scores x and y depend only on their
distributions. According to Theorem 1.A.1 of Shaked—Shanthikumar, there exist &
and ¢ with the same distributions as x and y respectively, such that & > ¢ with
probability one. But then for any realization of the other IV — 1 scores, & will clearly
get a (weakly) higher payoff than 3. [ |

It will be useful to also consider a strengthened form of domination.

Definition: We say that = uniformly dominates y on the interval [A, B) if x dom-
inates y on every subinterval [a,b) C [A, B). In this case we write = -7 y on [A, B).

Both the notions of domination clearly extend to an arbitrary totally ordered set.
This will be of relevance in setting up Theorems 2 and 3, where a grading partition
P is viewed as a totally ordered set of cells.

Uniform domination can be characterized in terms of likelihood ratios in a manner
that makes it much more handy to work with. But first we must restrict the random
variables slightly.

Definition: We say that a random variable x is regular on [a,b) if (a) x has a
differentiable density function on [a,b), or (b) x takes on a finite number of val-
ues in [a,b). In either case we can speak of the density f(t), for t € [a,b) or
t € {ay,ag,....,ar} C[a,b).

Lemma 3: Let x and y be independent and reqular on [A, B), with density func-
tions f and g, respectively. Then x uniformly dominates y on [A, B) if and only if
f(t)/g(t) is increasing on [A, B].
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Proof: This follows from Theorem 1.C.2 in Shaked—Shanthikumar. |

In the leading example of this section x7 uniformly dominates zy on [50, 100].
When f and g are differentiable, f(t)/g(t) is increasing if and only if f'(t)/f(t) >
g'(t)/g(t). Let N(u,o0) denote the normal distribution with mean p and standard
deviation 0. If z ~ N(u,o) with density f(¢) and y ~ N(fi,&) with density g(t) then
"(t —(t — —(t — [ "(t
R e ) VP
f(t) o & 9(t)
If p > ji and o = G, then z uniformly dominates y on all of (—o0, c0). More generally,
2 will uniformly dominate y on the interval including all ¢ such that

t t I

t_t ok _ B

o2 &% " o?2 52

and y will uniformly dominate z on the complementary interval. Thus if 02 < &2,
then x uniformly dominates y on the lower tail, and y uniformly dominates x on the
upper tail.

Another instance of uniform domination occurs when an exam has k indepen-
dent questions, and a student has a probability p of getting any answer correct. If
another student independently has probability g of getting each question right, then
the likelihood ratio condition reduces to’

S
l=p~1-gq
As we mentioned earlier, uniform dominance can be applied to partitions. For
example, let P be perfectly fine on (—o0,a), and on [b, 00), and let [a, b) be a (masked)
cell in P. Let f and g be continuous, positive functions on (—oo,00). What does
it mean for f/g to be increasing on P? Define f(a:) = f(z) and g(z) = g(z) for all
x € (—00,a) U [b,00). Define

b

f@) = ﬁ / F(t)dt for = € [a, )
b

g(z) = ﬁ g(t)dt for x € [a,b).

Then f/§ must be increasing on (—oo, 00).

We are now ready to state some theorems about the optimal absolute grading
partition when students have conditionally independent scores.

The phrase “N #id students who can work or shirk” means that each student has
two effort levels, and that assuming any one student shirks while the others work, he

"The notion of domination does not rely on independence. For example, suppose that with
probability 7 the two students have chance p; > ¢1 of getting each question, while with probability
1 — 7 they have chance ps > g2 of getting each question; still the score of the first student would
uniformly dominate that of the second. This suggests that much of our analysis can be extended to
nonindependent scores, but we have not undertaken this extension here.
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has score x;, while each other student £ has an independent score zy ~ xg. (Here
~ denotes identical distribution.) In this scenario, any grading partition creates the
same incentive to work for all students, namely the negative of the expected exam
score of the shirker. Thus it becomes easier to examine the general structure of
optimal partitions than in the disparate case (where an increase in the incentive of
one student might come at the cost of a decrease for another).

We begin by stating conditions under which a cell [a,b) should not be cut by any
optimal partition.

Theorem 1 (Coarseness in the Optimal Grading): Let there be N iid students
who can work or shirk. Suppose that on some interval |a,b), x, uniformly dominates
xm. Then for any partition P that cuts [a,b), there is another partition P* that gives
at least as much incentive to work without cutting |a,b). If xp strictly uniformly
dominates xy on |a,b), then every optimal grading partition is perfectly coarse on

[a,b).

Proof: Consider the following picture:

Figure 8. Cutting (a,b) at 0

Let P be a partition that cuts [a,b) just once, that is, suppose that 6 € (a,b),
and that [o,0) € P and [0,3) € P, where a < a < 0 < b < 5. (The cases where
the closed end comes on the right instead of the left are handled the same way.) For
the rest of the proof all probabilities will be taken conditional on z;, and xy being
in [a, 8]. For ease of notation, we suppress this conditionality. Thus when we write
P(zy, € [a,b)), we really mean P(xy, € [a,b))/P(z € |, 5)), etc.

From the Corollary to Lemma 1, we know that the expected payoff to L in P
(conditional on both z;, and zy in [a, fB)) is

Plzr €10,5)) — P(zu €16, 5)).
Suppose first that P(xr € [0,b)) > P(xy € [0,b)). Then

P(xp € [b,8)) — P(xzg € [b,))
< P(zp€l0,8)) — P(zy €[0,5)).
It follows from the Corollary to Lemma 1 that the partition obtained from P by
moving the cut from 6 to b (i.e., by replacing [a, 6) and [0, 5) with [, ) and [b, 3))
weakly lowers the expected exam payoff to L, without cutting [a,b), as was to be
proved.
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Suppose on the other hand that P(x; € [0,0)) < P(zyg € [0,b)). From the
dominance of zy, over zy on [a,b), we conclude that P(zy, € [a,0)) < P(xy € [a,6)).
It follows immediately that

P(QZL S [a,ﬁ)) _P(xH € [CL, B))
< Pz €10,8)) — P(zu € 10,5))

showing that the partition obtained from P by moving the cut from 6 to a (i.e.,
by replacing [o,0) and [0, §) with [«, a) and [a, 3)) lowers the expected payoff to L,
without cutting [a, b], as was to be shown.

It only remains to consider the case where P cuts (a,b) multiple times. If there
are a finite number of cuts, that case can be reduced to the case where (a,b) is cut
once, by arbitrarily choosing any cut 6 € (a,b), and then choosing the highest cut
¢ < 0 and the lowest cut d > 6, and replacing (a,b) with (a,b)N(c,d). By the uniform
dominance of xz, over xy on [a,b), 1, dominates zg on [a,b)N[c,d). The same proof
can then be repeated. This reduces the number of cuts by 1. The reduction can then
be iterated.

Finally, suppose there is a subinterval [c,d) C [a,b) on which P is perfectly fine.
Change P to P* by completely masking [c,d). Since x; dominates zp on [c,d), this
masking can only (weakly) lower the expected exam payoff to L. In this way we
reduce the problem to finitely many cuts. This proves the first claim of the theorem.
The second claim is proved the same way. |

Theorem 1 shows that if work leads to a normal distribution N(u, o) of scores,
and shirk leads to N(fi,5), where o # &, then one tail of scores will be completely
masked in an optimal partition.

Theorem 1 leads to a sufficient condition for the optimality of a partition P.

Theorem 2 (Uniform Domination Implies Optimality): Let there be N iid
students who can work or shirk. Let P be a partition such that for every cell [a,b) € P,
xr Zu xg on [a,b), and such that vy Zy xr on the totally ordered set P. Then P
is optimal.

Proof: Suppose P’ does better than P. From Theorem 1, we know that there is
P” that does at least as well as P’, and which does not cut any cell in P. But every
cell in P” is refined by cells in P. Since xy 7y zr on P, it follows that the payoff to

xy, is weakly lower in P than in P”, a contradiction. [ |

Suppose that all students are ex ante identical, with independent, and normally
distributed exam scores. If hard work raises a student’s expected exam score, without
changing its variance, then Theorem 2 implies that an optimal grading scheme is to
post the exact scores.

Similarly, if the K exam questions are identical, independent trials, and if hard
work allows a student to raise his probability of getting each answer right, then again
an optimal grading scheme is to reveal the exact scores.
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But consider the leading example of this section. There we found that giving just
two grades, A and B, improved incentives beyond what could be achieved by fully
revealing the scores. Theorem 2 guarantees that this is indeed an optimal partition.
Inside the cell [0,50), xx has probability zero, so xp trivially uniformly dominates
it. Inside the other cell [50,100), f(t)/g(t) = 2/2t = 1/t is strictly falling, so by
Lemma 3, x;, uniformly dominates xy. Across cells we can check that xy uniformly
dominates zz. On [0,50), we can define the effective density of a worker as f(t) = 0,
and that of a shirker as §(t) = .5. On [50, 100) the effective densities become f(t) = 2
and §(t) = 1.5. Clearly f(t)/g(t) is increasing. Now we can apply Theorem 2.

In our next theorem we describe necessary conditions for a partition to be optimal,
when agents are homogeneous. The “outside” condition, that g = xz on P, is the
same as the sufficient “outside” condition appearing in Theorem 2. But the “inside”
condition zy, 2 zpy on each cell [a,b) in P is weaker than the sufficient “inside”

~

condition xy, 7y xy appearing in Theorem 2.
Theorem 3 (Optimality Implies Domination): Let there be N iid students
who can work or shirk. Let P be an optimal absolute grading partition. Then for any
cell [a,b) € P, xr, 7o g on [a,b). Furthermore, if exam performances are regular,
then xp 7~y xr on the totally ordered set P.

Proof: Consider any cell [a,b) in P such that P(zg € [a,b))P(xg € [a,b)) > 0.
Suppose there is some 6 € [a,b) with
P(.%L S [9, b)) P(.%H S [Q,b))

Plar clab)  Planclab) ~

Change P to P* by replacing [a, b) with [a,#) and [6,b). By the Corollary to Lemma
1, this must lower the expected exam payoff to the shirker against each worker. But
this means that P* is a better partition than P, a contradiction proving that z; =~ zy
on [a,b).

Suppose now that the performances are regular. Consider two consecutive cells
[a,b) and [b, ¢) in P whose union (a, b]U (b, ] has positive probability of being reached
by both xy and zp. Then it is clear from the Corollary to Lemma 1 that

P(zg € [b,c))
P(zy € [a,c))

P(zp € [b,c))
P(zp € [a,c))’

>

otherwise the partition P* obtained from P by replacing the two cells [a, b) and [b, ¢)
with the single cell [a, ¢) would lower the expected exam score to L, contradicting the
optimality of P.

First consider the case where the exam score space is discrete. Without loss of
generality, we can drop any scores that have probability zero of being reached by
both z;, and xp. Also we can then lump together into a single cell consecutive exam
scores which 7, reaches with zero probability. The same can thereafter be done for
consecutive scores that xpy reaches with zero probability. Now the argument of the

22



previous paragraph shows that the likelihood ratio property must hold for the cells
of P proving (by Lemma 3) that xy 7y z1 on P in the discrete case.

As for the continuous case, the partition P must consist of discrete intervals, each
of which is completely fine or completely masked. Thinking of the masked intervals
as single points, the proof proceeds exactly as above for consecutive masked intervals.

It remains to consider an interval [a,b) on which P is completely fine. Let fg be
the (differentiable) density for xy, and let fr be the (differentiable) density for xj.
We claim fg/fr, must have nonnegative derivative, and thus be weakly increasing,
on all of [a,b). If the derivative is negative somewhere in [a, b) then, on some small
subinterval («, ) C [a,b), fu/fr must be strictly decreasing. But that immediately
implies that conditional on zy € [a, 8) and zp € [a, B), 21 is more likely to come
ahead of xy than behind. Modifying P to P* by completely masking [, 5) gives
(by the Corollary to Lemma 1) a lower expected exam payoff to L, contradicting the
optimality of P. Thus the likelihood ratio properly holds on completely fine intervals.

Finally, for each masked interval (c,d] in P, consider the pseudo density fH =
P(zy € [¢,d))/(d—¢) and f;, = P(x, € [¢,d))/(d — ¢). We shall now show that at
any cut 0 between a completely fine interval [a, #) and a completely masked interval
[0,0) in P, fr(0)/fL(0) < fu(0)/fL(0). If not, we shall show that the partition P*
obtained from P by slightly expanding the masked interval [0, b) to [# — ,b) lowers
the expected exam payoff to L.

Indeed, the change in expected payoff to L is

P(xyg €10,0))P(0 —ec <zp, <0)— Pz €[0,0)P(0 —c <zy <0
+ Pl —c<zyg<O)PO—c<zp<0)Plag >zl —c <zp,zHg <0)
— P(zr, >zpgld —e <zxp,xyg <0).

Observe that the third term goes to zero as €2 when € — 0, whereas the first two
terms are of the order of e. Ase — 0, P(0 —e < xy < 0) converges to ¢ fr(6), and
P(0—¢ < z1, < 0) converges to efr,(0). Thus if f5(0)/fr(0) > fu(0)/fr(0), then the
first two terms add to less than zero. This shows that the extra masking obtained by
lowering the cut 6 to 6 — € reduces the expected exam payoff to L, contradicting the
optimality of P.

Thus we have proved that the pseudo densities fH and fL (defined by f on
perfectly fine intervals in P and by f for masked intervals) satisfy the likelihood ratio
dominance of fH over fL. Applying Lemma 3 proves the theorem. |

5 Heterogeneous Students

Consider now the situation in which students are neither identical nor disparate. To
be concrete, suppose that an exam consists of K questions. Each student n =1,..., N
who works has a probability p, of getting any question right, where answers are
independent across students and questions. Suppose that if n shirks this probability
drops to pp—1 where 0 =py < p; <p2 < --- <pny =1, and p, — pp—1 = 1/N for all
n.
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We have seen that working gives each student an exam performance that uni-
formly dominates his performance from shirking. Were all the students identical (say
prn(work) = 1/2 for all n, and p,(shirk) < 1/2 for all n) then the optimal grading
partition would be perfectly fine, by Theorem 2. But on account of the heterogeneity,
each student must compete with the performance of other students who are not like
him.

A standard variant of the central limit theorem shows that as N gets large, the
class performance converges to the distribution given by p = 1/2. For p, near 0
(and p,, near 1), a student n will almost surely finish near the bottom (near the
top) whether or not he works. Thus with perfectly fine grading the best and worst
students have little incentive to work. The interesting thing is that coarse grading will
increase their incentive to work. Since students in the middle with p, near 1/2 can
surpass a large number of others by switching from shirk to work, they already have
huge incentives to work. Even if coarse grading diminishes the middling students’
incentives, it is still the most effective device to incentivize all students to work, i.e.,
to maximize the minimum incentive.

We illustrate this by considering the case where K = 26 and N = 10. We simulate
the situation with 226 = 67,108, 864 students. In Table B we report the expected
exam payoffs for ability levels p = .1,.2,...,.9, who work, when scores are partitioned
into grades {[0,9),[9,29),...,[rg,27)}, where rg < 26 < (r + 1)g, for g = 1,...,9.
Higher g corresponds to coarser partitions. For g = 1 we get the perfectly fine
partition where all scores are reported. For g = 9, the grading partition corresponds
to just three grades {[0,9),[9,18), [18,27)}. Note that low-ability types get very low
expected exam payoffs, losing to nearly everyone in the class.

In Table C we give the incentives to work, obtained from Table B by subtracting
expected exam payoffs for p,_1 from expected exam payoffs for p,. Notice how
coarsening the partition helps all the very bad and very good students.

Finally, in Table D we compare the incentives from the partition g = 9 that gives
just three grades to the fine partition ¢ = 1 that reports scores exactly. Everybody
except the middling students p = .5 and p = .6 have higher incentives to work from
coarse grading. The maximin is also higher for ¢ = 9 than for g = 1.

TABLE B. Expected Exam Payoffs

Size of partition cells

1 2 3 4 5 6 7 8 9

0.1]| -67060341.99 | -67027557.41 | -66954572.62 | -66798284.52 | -66452484.31 | -66279793.62 | -66334980.98 | -65969700.87 | -64533683.04
0.2| -65768474.36 | -65404074.77 | -64749982.27 | -63751432.39 | -62476223.82 | -58974576.83 | -56995198.89 | -58766361.91 | -60749201.08
0.3| -57811907.91 | -56765291.46 | -55061210.25 | -52705913.55 | -50553306.28 | -47476806.64 | -38901651.72 | -35793564.73 | -40511823.36
0.4| -35591919.04 | -34470982.35 | -32739333.56 | -30669192.43 | -27533025.36 | -27565352.02 | -22987902.24 | -15390212.32 | -14405734.5
0.5 0 0 0 0 0 0 0 0 0
0.6| 35591919.04 | 34470982.29 | 32739333.56 | 30546272.77 | 28812711.55 | 23743732.17 | 25973646.66 | 24445855.03 14405734.5
0.7| 57811907.91 | 56765291.32 | 55061210.25 | 52885114.95 | 49945236.31 | 46357223.89 | 41579600.03 | 47925472.56 | 40511823.36
0.8| 65768474.36 | 65404074.52 | 64749982.27 | 63667698.85 | 61935421.24 | 61917720.25 | 55004931.85 | 56537217.42 | 60749201.08
0.9| 67060341.99 | 67027557.12 | 66954572.62 | 66823769.13 | 66651744.43 | 65837255.16 | 65894986.17 | 61737403.64 | 64533683.04
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TABLE C. Incentives

High Size of partition cells

ability 1 2 3 4 5 6 7 8 9
0.2 1291868| 1623483 2204590 3046852| 3976260| 7305217| 9339782| 7203339| 3784482
0.3 7956566| 8638783 9688772( 11045519| 11922918| 11497770| 18093547 | 22972797 | 20237378
0.4 | 22219989 22294309 22321877 22036721 | 23020281| 19911455| 15913749| 20403352 | 26106089
0.5 | 35591919 34470982 32739334 | 30669192| 27533025| 27565352| 22987902 | 15390212 | 14405735
0.6 | 35591919| 34470982| 32739334 | 30546273| 28812712| 23743732| 25973647 24445855 | 14405735
0.7 | 22219989| 22294309| 22321877 | 22338842 21132525| 22613492| 15605953 | 23479618 | 26106089
0.8 | 7956566| 8638783| 9688772| 10782584| 11990185| 15560496| 13425332| 8611745| 20237378
0.9 | 1291868 1623483| 2204590 3156070 4716323| 3919535| 10890054| 5200186| 3784482

TABLE D. Advantage of Coarse Grading

Incentives Incentives from
from fine partition
g9=9 g=1

p=.2 3784481.96 1291867.625
p=.3 20237377.72 7956566.455
p=.4 26106088.86 22219988.87
p=.5 14405734.5 35591919.04
p=.6 14405734.5 35591919.04
p=.7 26106088.86 22219988.87
p=.8 20237377.72 7956566.455
p=.9 3784481.96 1291867.625

6 Grading on a Curve

We have assumed that students care only about their relative grade. It would seem
therefore that relative grading, i.e., grading on a curve, would provide the best in-
centives. But in fact the contrary is true. We shall prove that when all the students
are ex ante identical, it is always better to grade according to an absolute scale.

Before turning to the case of homogeneous students, recall the model of disparate
students described in Section 3. With one weak student and one strong student,
grading on a curve provides no incentive whatsoever. (Either both get A, or else the
strong always gets A and the weak always gets B.) When there are two « students
and two 3 students, it is clear that the optimal way to grade on a curves is to declare
the top student an A, the next two a B and the last a C. This generates incentives
3/2=(1/2)3 + (1/2)0 — 0 for each a-student and 3/2 = (1/2)0 4 (1/2)(—3) — (—3)
for each (-student.

Thus absolute grading strictly dominates grading on a curve, since we showed
earlier in Section 3.1.1 that absolute grading with p* = 3/5 gives incentives of 9/5
to every student. It is also worth noting that, even if one were restricted to grading
on a curve, coarse grading (as above) would be better than fine, since fine generates
only the incentive of 1 for both student-types.

Consider our leading example of homogeneous students from Section 4, in which
a hard working student will get a score uniformly distributed between 50 and 100,
and the density of a shirker’s score is 2z. The optimal absolute grading system is
to give A for scores in [50,100) and B for scores in (0,50). With three students we
computed that the incentive to work is (3 —1)(1/4) = 1/2.

Now consider grading on a curve. Giving everybody an A provides no incentive at
all. Giving three grades is just like the perfectly fine partition with absolute grading
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and is therefore not as good as the optimal partition ([0, 50), [50,100)). (Indeed we
computed that fine grading gave incentive 1/3).

It can be checked that with a curve that gives two B’s and one A, the incentive
to work is 99/324 < 1/2, while with a curve that gives one B and two A’s it is
63/324 < 1/2.

None of the possible grading curves yields incentives as high as absolute grading.
We now establish the same conclusion in the general case of N independent, ez ante
identical students. But first we establish three more lemmas.

Lemma 4: Denote scores in [0,00) as A. Suppose N — 1 students work hard, and
each has probability pg of getting an A, while one student shirks and has probability
pB < pg of getting an A. Suppose all scores are independent. If exactly K students
wind up with A, the conditional probability that the shirker got A is at most K/N,
while the probability any hard worker got A is at least K/N.

Proof: The conditional probability the shirker got A is
N—-1)\ k1 -

N -1 _ N -1
T e o G PR

which is strictly monotonically increasing in pp (as can easily be seen by dividing
numerator and denominator by (1 — pg)). But when pp = pg, symmetry implies
that the expression must be exactly K/N. Hence the probability the shirker got A is
at most K/N. Since exactly the proportion K/N students did get A, the probability
of the good students getting A must then be at least K/N. |

Lemma 5: Suppose N — 1 students work hard, and have i.i.d. probabilities p =
(pa,PB, -, Pz) of getting absolute grades A, B, ..., Z, while one shirker has indepen-
dent probabilities ¢ = (qa4,94B,...,qz). Suppose p uniformly dominates q. If exactly
= (pa, by py) students wind up with grades (A, B,...,Z), then the posterior
probability distribution p = (pa,Ps,...,Pz) of a hard working student getting grades
A, B, ..., Z uniformly dominates the posterior probabilities ¢ = (4a, 4B, -.-,4z) of the
shirker.

Proof: Simply apply the previous lemma repeatedly. A partition into n cells can
always be obtained by repeated cuts of cells into z pieces. |

Lemma 6: Let there be N iid students who can work or shirk. Suppose P* is
an optimal absolute grading partition, giving the highest possible incentive to work.
Suppose one student shirks while the others work hard. Then conditional on any
distribution of absolute exam grades given by P*, the expected exam payoff to the
shirker is at most zero.
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Proof: If P*is optimal, then by Lemma 1, the ex ante probability p = (pa,ps,...,pz)
of a hard working student getting grades A, B, ..., Z must uniformly dominates the
ex ante probabilities ¢ = (g4, ¢B, ..., qz) of the shirker. By the previous lemma, the
posterior probability p uniformly dominates ¢§. Since exam payoffs are monotonic in
the grade, the posterior expected exam payoff is at least as high for a hard worker as
for a shirker. Since total exam payoffs are always zero, the posterior expected exam
payoff of the shirker plus (N — 1) times the posterior expected exam payoff of a hard
worker must be zero. The conclusion follows. |

Theorem 4: Let there be N iid students who can work or shirk. Let all their scores
be regular. Then optimal absolute grading gives at least as much incentive for hard
work as any grading on a curve.

Proof: Let P* be an optimal absolute grading partition of (—oo, 00). Let Q be any
partition of class rank {1, 2, ..., |N|}, representing an arbitrary grading on a curve.

For any possible exam scores © = (zp)nen, We can specify an absolute grade
distribution by counting the number of students who get A’s, B’s, and so on. Call
this the absolute grade distribution A(z) generated by x. It suffices to show that
conditional on any grade distribution A, the expected exam payoff to the shirker from
absolute grading is no higher than his expected payoff from grading on the curve Q.
A picture helps to clarify the situation.

5 Y B a
AW N SN S
L AVANRAYANSY,
c B A

Figure 9. Absolute vs. Relative Grading

In the picture there are 4 A’s, 3 B’s, and 3 C’s on the absolute scale. The relative
scale gives grade « to the top score, /3 to scores 2 and 3, v to {4,5,6,7,8,9}, and d to
the 10th highest score. We must show that the expected score of the shirker is worse
under the absolute scale P*, than under the relative scale @), given that according to
P* there were 4 A’s, 3 B’s, and 3 C’s awarded.

Conditional on the absolute grade distribution A, let p be the posterior proba-
bility that a worker receives each grade, and let ¢ be the posterior probability that
the shirker receives each grade. From Theorem 3, Lemma 3, and Lemma 5, p/q is
increasing as we go up the cells of the optimal partition P*.

Define the join P*V @ of P* and Q as follows: given scores (z,)nen, the exam
grade for x,, is strictly higher according to P* V ) than the exam grade for z,, iff
either the absolute letter grade for x, is strictly higher than for x,,, or the relative
grade for z,, is strictly higher than for z,,. In the diagram that is achieved by cutting
the grade cell v into three grades (one T, three 7, and two 7~ ) where it is intersected
by P*.

We will now argue that if we grade according to the join P*VQ then the expected
exam payoff of the shirker is no more than it was in Q. If a relative grade, such as v
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in @, is refined in P*V @, we show that the expected score of the shirker, conditional
on being in v to begin with, must go down. Since splitting « does not affect scores
against students outside 7, it suffices to show that the expected exam score of the
shirker against the other students in v must be less than zero.

Let p (or §) be the probabilities of a worker (or a shirker) getting each absolute
grade, conditional on the grade distribution A and the worker (or the shirker) being
in 7. If a partition cell (like B in the example) is completely included in +y, then

PB _ PB Plzy, € v|A]

i s Plzu €~|A]

Consider the bottom absolute grade that intersects v (namely C in the example).
Because the shirker stochastically dominates any worker, conditional on them both
getting C, and since v N C includes the top tail of the C' distribution,

Pc _ Pc  Plrp €9|A]
dc =~ 4o Plzg €v]A]

Consider the top absolute grade that intersects v, namely A in the example. Since
v N A includes the bottom tail of the A distribution,
Pa P Plrr €9]A]

Ga — 4a Plzg €A

Since pc/qc < pp/ds < Pa/qa, it follows that pc/Go < pp/ds < Pa/Ga. Hence p
uniformly dominates ¢, and so the payoff to the shirker from P* vV Q must be worse
than zero against a worker, conditional on A and the shirker being in +.

To conclude the proof, we need only show that the expected exam payoff of the
shirker in P* is even lower (weakly) than his expected exam payoff in P* \V (). This
follows at once from the fact (see Theorem 1) that conditional on being in a cell of
P*, the score of the shirker dominates the score of a worker. But then, by Lemma 2,
any monotonic grading scheme within cells of P* (as happens in P* Vv @)) will weakly
increase the payoff of the shirker. |

7 Midterms

The introduction of midterms before a final makes it even more necessary to have
coarse grading.

The point can be easily seen via our simple example (see Section 3.1) of two
disparate students. Suppose that the final has been assigned a weight of 0 < A < 1,
since it covers a fraction A of the course. Then it is natural to assume that if a
student n works for the final, he incurs disutility Ad,, = A(H,, — Ly,) when he switches
from shirk to work. The weight on the midterm is 1 — A with associated disutility
(1 = N)dp.

We imagine a two-period game in extensive form between the students. In period
1, both simultaneously choose effort levels (work or shirk) for the midterm. Their

28



performance is as in Figure 1. The scores of the midterm are made public, i.e., each
student finds out not only his own, but his rival’s score. Then they enter period 2
and again simultaneously choose effort levels for the final. The performance is once
more given by Figure 1. (It is independent of past history and depends only on the
current effort level.) Suppose students care only about their (relative) grade for the
course. Suppose also that the professor wants them to work for both exams. How
should the two exam grades be combined into a course grade?

One common practice would be simply to add the midterm score (multiplied by
1 — ) to the final exam score (multiplied by A), and then to assign a letter grade to
the aggregate score in accordance with a partition P(p) (see Figure 2).

We shall see that with such a grading scheme, it is often not feasible to incentivize
both students to work on both exam under all circumstances (i.e., at all information
sets of the game tree).

But if the midterm is also just given a letter grade, interpreted as some represen-
tative score out of the cell it stood for, then it becomes much easier to incentivize
them.

Let us turn to a precise calculation. Denote J' = [a},b}] and J}; = [a%;, b} for
n = a, 8 in Figure 1. Assume that A\b} + (1 — X\)b}, < a¥; and (1 — A)b} + A}, < aly
for n = o, 3, i.e., the intervals J7', Jp; are sufficiently separated so that, if a student
shirks in either exam, his weighted average cannot be in his upper interval.

Suppose the course grade is obtained by averaging the midterm score (weighted
by 1 — A) and the final score (weighted by A), and then assigning a letter grade
according to the old partition P(p).

Suppose both students have worked in period 1 and have entered period 2 after
observing the midterm numerical scores.

Suppose the good student o was lucky on the midterm, scoring the maximum b%;.
He will get an A for the course if his score on the final x satisfies

(1 = N)b% + Az > (1 — p)b%; + pag;.

If A < p, this will always hold, provided that « works on the final, and « will
certainly get an A for the course. But then, realizing that he can never come equal
with «, 8 will not bother to work at all studying for the final. If A\ > p, then
the probability that « gets an A is p/\, since the above inequality is equivalent to
x> by — R[bf — afy]. Hence f’s incentive to study for the final (which guarantees
him a B) is (1 = £) + £(—1) — (=1) = 1 — §. This must exceed his disutility Adg, so
we obtain:

p < A— Mdg. (4a)

In the unlucky midterm scenario for «v, when he gets a%,, we must have A > 1—p,
otherwise a will abandon work on the final. Then it is easy to compute that o’s
incentive to work on the final is 1 — 1/A 4+ p/\ which must exceed Ad,, giving us

p>Ndy+1- A (4b)
(Note that, since 0 < A < 1, (4a) implies A > p and (4b) implies A > 1 —p.) To

sum up: for both students to work for the final exam, no matter how the midterms

29



turned out, it is necessary (and sufficient) that
p € [Ndo+1— XM\ —Ndg)|. (5)

(If we take the open interval, they will strictly want to work.)

Clearly there is no solution to (5) if A < 1/2. This seems to have a counterpart
in the real world, since it is quite uncommon to see a final which carries less weight
than the midterm.

Indeed if d, = dg = d, then (5) has a solution iff

2X%d +1 < 2\ (6)

showing the need to weight the final sufficiently more than the midterm, in order to
keep students from shirking after the midterm.

Take A = 0.6 and d = 0.3. Then, by (6), it is impossible to incentivize the students
to work if midterm numerical scores are revealed.

Suppose, however, that information is coarsened at this interim stage and only
letter grades are assigned in the midterm, in accordance with P(p) for p = 1/2, as in
Figure 2. Furthermore suppose it is announced that, for the purposes of computing
the final weighted average, an A in the midterm will be viewed as a score of (a%; +
b%)/2 and a B as 2a, + 30% (and C as aﬁ). We submit® that in this scenario both
students will be driven to work (and leave it to the reader to check it).

8 (Games of Status in Other Settings: An Application to
the Optimal Wage Structure

Status-consciousness is widely prevalent in real life though it has not found a place
in much of economic theory. The fact that people (unlike Robinson Crusoe) care
not only about their direct consumption, but also about relative consumption vis-4-
vis others of their social group, in particular about the higher status that superior
consumption brings with it, can have profound implications for their behavior. We
illustrate the phenomenon with a simple example of wage setting.

Consider a principal who wishes to hire two agents a and 8 to work for him. As
before a is more skilled than 3: indeed their performance is as in Figure 1, with
the exam score now reinterpreted as output produced. The principal’s problem is
to announce wages as a (weakly) monotonic function of output so as to induce both
agents to work hard, while minimizing his total wage bill. For simplicity we suppose
that not only the principal, but also the agents, are risk-neutral. Each agent is
moreover concerned about whether his wage exceeds that of the other, i.e., about his
status. Thus if a and 8 are paid x, and g respectively, then n € {a, 3} obtains
utility

U (T, Tm) = Ty, + T sg{zy, — Tm }

®Now assume, in addition to sufficient separation, that %ai + 2af < ai.
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where m = {o, f}\{n} denotes the rival of n; sgn{x} is the sign of = (i.e., sgn{z} =1
if £ >0, sgn{z} =0if 2 =0, sgn{z} = —1 if x < 0); and 7 is a positive parameter
that measures the importance of status.

If, as in traditional analysis, wage were to be commensurate with output (e.g.,
the “piece-rate” contract wherein each agent is paid a fixed percentage of what he
produces) then S would always obtain lower status than «, and the agents would
work solely for the direct consumption of wages. By making wages sufficiently high,
it is evident that the principal can lure both to work. But he can do much better
by designing a wage function that consists of a few grades, pooling J g and the lower
half of J§ into one wage-grade (much like the grade B in the example of Section
3.1). For this has the effect of creating a game of status between the agents, so that
each now strives not just for wages but also for the status conferred on him when
his wage overtakes that of his rival. Grade-wages bring status into play and unleash
competition which stands to the benefit of the principal.

To be precise, consider a standard wage function ¢ : Ry — R4 which is strictly
monotonic. Denote fJ}? P(t)dt = w for n € {a,B} and k € {H,L}. It is easy to

check that, if 8 shirks, his (expected wage) payoff is w? — 73 if he works, it is wlﬁ{ —T;
and so 8 has incentive wfl — wf to switch from shirk to work. Since this must exceed
B B

dg, we must have wy; —w; > dg. But clearly the principal should announce wages as
low as he can over the interval J f (zero ideally, except that we have constrained him

to make 1 strictly monotonic). So, taking wg = ¢ = (0, we may rewrite the incentive

condition for 5 as

wh > ds +e. (7)
Similarly, the incentive condition for o is w$ — w$ > d, which, by (7) and the fact
that w§ > wfl on account of the strict monotonicity of v, yields

w%>da+dﬁ+6. (8)

From (7) and (8) we get a lower bound on the principal’s wage bill in the traditional
case
w4 why > dg + 2dg + 2. (9)

Consider instead a wage function that partitions the output space into P(p) as
in Figure 2, assigning constant wages vg, v1, vz in lieu of the grades A, B, C with (of
course) 0 = vy < v1 < vo. In this scenario, 3 obtains’ (expected wage) payoff —7 if
he shirks and v; — p7 if he works, yielding the incentive condition

v > ds— (1-p)r. (10)

Similarly a obtains payoffs v; and (1 — p)v1 + p(v2 + 7) from shirking and working,
yielding the incentive condition

pvg > do + pu1 — pr. (11)

9 As usual, when an agent contemplates switching between shirk and work, his rival is assumed to
be working throughout.
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The wage bill incurred by the principal is v1 + (1 — p)v1 + pva = (2 — p)vy +pva. The
principal must minimize this subject to 0 < p < 1 and 0 < v; < v2 and (10) and
(11). (Notice that (11) actually rules out p = 0.)

In most cases the principal can do better with grade wages than with strictly
monotonic wages. For example, if 7 > 2max{d,, ds}, then as we saw in Section 3, by
taking p = 1/2 and wages 0 = vg < € = v; < 2¢ = v9, the principal can satisfy both
of the incentive constraints (10) and (11) while paying the workers almost nothing.

Even if 7 is much smaller, the principal can exploit status to reduce his wage bill.
Interestingly, the possibility of combining wage incentives with status incentives leads
him to create smaller elites than we saw in Section 3 with status alone. Lowering p
increases the status incentive for 8 to work, but also lowers the status incentive for
a to work. But the latter can be compensated by increasing the wages ve for the
lucky hard worker . Only risk aversion would prevent the principal from choosing
p arbitrarily close to zero.

More precisely, suppose that min{d®,d’} > 7 > 0. Choose any 0 < p < 1. Define
vy via equality in (10), i.e., v = dg — (1 — p)7, and define v; via equality in (11), i.e.,
vg = (do/p) +v1 — 7. Since 7 < dg, we have v; > 0. Also, since d, < 7, we have
(do/p) — ™ > 0 and hence vy > v1. The grade-wage bill is

(2—pvi+pv2 = (2—p)v1 +da+pvr —pT
= 2v1+dy —pT
= 2(dg— (1—p)7) +da —pT
= 2dg+dy,—(2—-p)T
< 2dﬁ+da+2€

proving the superiority of grade wages over monotonic wages, even in this case. Indeed
the principal will wish to choose p as close to zero as possible, making the pyramid
really sharp! (Recall that (11) forbids setting p = 0.) But this, as we said, is an
artifact of the risk-neutrality assumption. If the agents were risk-averse the optimal
p would stay bounded away from zero.

Our analysis extends to many disparate types and multiple agents of each type in
a straightforward manner: grade wages, by and large, are best from the principal’s
point of view.

The reader will have observed that we have modeled the feeling of status with a
jump in utility. If we fix the rival’s wage at x,, and raise n’s wage x,, from below
ZTm, his feeling for status is reflected by a jump in utility from —7 to 7 as x,, crosses
ZTyn- This jump could be slightly smoothened and made to occur over a small interval
[ — 0,2y + 6] without much affecting our analysis. (One could think of § as a
“threshold” for the feeling of status.) But what is essential is the jump. A gradual
feeling of envy, given by say A(z, — ) for A > 0, instead of 7 sgn{z,, — =, }, would
be helpful in reducing the wages necessary to induce hard work, but it would not lead
to grade wages. Indeed, in our example, if we took n’s utility to be x,, + A(xy, — zp,) +
T sgn{xy, —Tm }, the superiority of grade wages would hold if, and only if, 7 > 0. (The
incentive conditions would be (1+ )\)wg > dg and (1+ \)(wf; —w§) > d,, for strictly
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monotonic wages; and (1 4+ A)vy + (1 —p)7 > dg and (1 4+ A)p(v2 — v1) + pT > d,, for
grade wages, showing that the two schemes become equivalent when 7 = 0 even if
A>0.)
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